io.h (9482B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 */ 7 8#ifndef EF4_IO_H 9#define EF4_IO_H 10 11#include <linux/io.h> 12#include <linux/spinlock.h> 13 14/************************************************************************** 15 * 16 * NIC register I/O 17 * 18 ************************************************************************** 19 * 20 * Notes on locking strategy for the Falcon architecture: 21 * 22 * Many CSRs are very wide and cannot be read or written atomically. 23 * Writes from the host are buffered by the Bus Interface Unit (BIU) 24 * up to 128 bits. Whenever the host writes part of such a register, 25 * the BIU collects the written value and does not write to the 26 * underlying register until all 4 dwords have been written. A 27 * similar buffering scheme applies to host access to the NIC's 64-bit 28 * SRAM. 29 * 30 * Writes to different CSRs and 64-bit SRAM words must be serialised, 31 * since interleaved access can result in lost writes. We use 32 * ef4_nic::biu_lock for this. 33 * 34 * We also serialise reads from 128-bit CSRs and SRAM with the same 35 * spinlock. This may not be necessary, but it doesn't really matter 36 * as there are no such reads on the fast path. 37 * 38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are 39 * 128-bit but are special-cased in the BIU to avoid the need for 40 * locking in the host: 41 * 42 * - They are write-only. 43 * - The semantics of writing to these registers are such that 44 * replacing the low 96 bits with zero does not affect functionality. 45 * - If the host writes to the last dword address of such a register 46 * (i.e. the high 32 bits) the underlying register will always be 47 * written. If the collector and the current write together do not 48 * provide values for all 128 bits of the register, the low 96 bits 49 * will be written as zero. 50 * - If the host writes to the address of any other part of such a 51 * register while the collector already holds values for some other 52 * register, the write is discarded and the collector maintains its 53 * current state. 54 * 55 * The EF10 architecture exposes very few registers to the host and 56 * most of them are only 32 bits wide. The only exceptions are the MC 57 * doorbell register pair, which has its own latching, and 58 * TX_DESC_UPD, which works in a similar way to the Falcon 59 * architecture. 60 */ 61 62#if BITS_PER_LONG == 64 63#define EF4_USE_QWORD_IO 1 64#endif 65 66#ifdef EF4_USE_QWORD_IO 67static inline void _ef4_writeq(struct ef4_nic *efx, __le64 value, 68 unsigned int reg) 69{ 70 __raw_writeq((__force u64)value, efx->membase + reg); 71} 72static inline __le64 _ef4_readq(struct ef4_nic *efx, unsigned int reg) 73{ 74 return (__force __le64)__raw_readq(efx->membase + reg); 75} 76#endif 77 78static inline void _ef4_writed(struct ef4_nic *efx, __le32 value, 79 unsigned int reg) 80{ 81 __raw_writel((__force u32)value, efx->membase + reg); 82} 83static inline __le32 _ef4_readd(struct ef4_nic *efx, unsigned int reg) 84{ 85 return (__force __le32)__raw_readl(efx->membase + reg); 86} 87 88/* Write a normal 128-bit CSR, locking as appropriate. */ 89static inline void ef4_writeo(struct ef4_nic *efx, const ef4_oword_t *value, 90 unsigned int reg) 91{ 92 unsigned long flags __attribute__ ((unused)); 93 94 netif_vdbg(efx, hw, efx->net_dev, 95 "writing register %x with " EF4_OWORD_FMT "\n", reg, 96 EF4_OWORD_VAL(*value)); 97 98 spin_lock_irqsave(&efx->biu_lock, flags); 99#ifdef EF4_USE_QWORD_IO 100 _ef4_writeq(efx, value->u64[0], reg + 0); 101 _ef4_writeq(efx, value->u64[1], reg + 8); 102#else 103 _ef4_writed(efx, value->u32[0], reg + 0); 104 _ef4_writed(efx, value->u32[1], reg + 4); 105 _ef4_writed(efx, value->u32[2], reg + 8); 106 _ef4_writed(efx, value->u32[3], reg + 12); 107#endif 108 spin_unlock_irqrestore(&efx->biu_lock, flags); 109} 110 111/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */ 112static inline void ef4_sram_writeq(struct ef4_nic *efx, void __iomem *membase, 113 const ef4_qword_t *value, unsigned int index) 114{ 115 unsigned int addr = index * sizeof(*value); 116 unsigned long flags __attribute__ ((unused)); 117 118 netif_vdbg(efx, hw, efx->net_dev, 119 "writing SRAM address %x with " EF4_QWORD_FMT "\n", 120 addr, EF4_QWORD_VAL(*value)); 121 122 spin_lock_irqsave(&efx->biu_lock, flags); 123#ifdef EF4_USE_QWORD_IO 124 __raw_writeq((__force u64)value->u64[0], membase + addr); 125#else 126 __raw_writel((__force u32)value->u32[0], membase + addr); 127 __raw_writel((__force u32)value->u32[1], membase + addr + 4); 128#endif 129 spin_unlock_irqrestore(&efx->biu_lock, flags); 130} 131 132/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ 133static inline void ef4_writed(struct ef4_nic *efx, const ef4_dword_t *value, 134 unsigned int reg) 135{ 136 netif_vdbg(efx, hw, efx->net_dev, 137 "writing register %x with "EF4_DWORD_FMT"\n", 138 reg, EF4_DWORD_VAL(*value)); 139 140 /* No lock required */ 141 _ef4_writed(efx, value->u32[0], reg); 142} 143 144/* Read a 128-bit CSR, locking as appropriate. */ 145static inline void ef4_reado(struct ef4_nic *efx, ef4_oword_t *value, 146 unsigned int reg) 147{ 148 unsigned long flags __attribute__ ((unused)); 149 150 spin_lock_irqsave(&efx->biu_lock, flags); 151 value->u32[0] = _ef4_readd(efx, reg + 0); 152 value->u32[1] = _ef4_readd(efx, reg + 4); 153 value->u32[2] = _ef4_readd(efx, reg + 8); 154 value->u32[3] = _ef4_readd(efx, reg + 12); 155 spin_unlock_irqrestore(&efx->biu_lock, flags); 156 157 netif_vdbg(efx, hw, efx->net_dev, 158 "read from register %x, got " EF4_OWORD_FMT "\n", reg, 159 EF4_OWORD_VAL(*value)); 160} 161 162/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */ 163static inline void ef4_sram_readq(struct ef4_nic *efx, void __iomem *membase, 164 ef4_qword_t *value, unsigned int index) 165{ 166 unsigned int addr = index * sizeof(*value); 167 unsigned long flags __attribute__ ((unused)); 168 169 spin_lock_irqsave(&efx->biu_lock, flags); 170#ifdef EF4_USE_QWORD_IO 171 value->u64[0] = (__force __le64)__raw_readq(membase + addr); 172#else 173 value->u32[0] = (__force __le32)__raw_readl(membase + addr); 174 value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); 175#endif 176 spin_unlock_irqrestore(&efx->biu_lock, flags); 177 178 netif_vdbg(efx, hw, efx->net_dev, 179 "read from SRAM address %x, got "EF4_QWORD_FMT"\n", 180 addr, EF4_QWORD_VAL(*value)); 181} 182 183/* Read a 32-bit CSR or SRAM */ 184static inline void ef4_readd(struct ef4_nic *efx, ef4_dword_t *value, 185 unsigned int reg) 186{ 187 value->u32[0] = _ef4_readd(efx, reg); 188 netif_vdbg(efx, hw, efx->net_dev, 189 "read from register %x, got "EF4_DWORD_FMT"\n", 190 reg, EF4_DWORD_VAL(*value)); 191} 192 193/* Write a 128-bit CSR forming part of a table */ 194static inline void 195ef4_writeo_table(struct ef4_nic *efx, const ef4_oword_t *value, 196 unsigned int reg, unsigned int index) 197{ 198 ef4_writeo(efx, value, reg + index * sizeof(ef4_oword_t)); 199} 200 201/* Read a 128-bit CSR forming part of a table */ 202static inline void ef4_reado_table(struct ef4_nic *efx, ef4_oword_t *value, 203 unsigned int reg, unsigned int index) 204{ 205 ef4_reado(efx, value, reg + index * sizeof(ef4_oword_t)); 206} 207 208/* Page size used as step between per-VI registers */ 209#define EF4_VI_PAGE_SIZE 0x2000 210 211/* Calculate offset to page-mapped register */ 212#define EF4_PAGED_REG(page, reg) \ 213 ((page) * EF4_VI_PAGE_SIZE + (reg)) 214 215/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */ 216static inline void _ef4_writeo_page(struct ef4_nic *efx, ef4_oword_t *value, 217 unsigned int reg, unsigned int page) 218{ 219 reg = EF4_PAGED_REG(page, reg); 220 221 netif_vdbg(efx, hw, efx->net_dev, 222 "writing register %x with " EF4_OWORD_FMT "\n", reg, 223 EF4_OWORD_VAL(*value)); 224 225#ifdef EF4_USE_QWORD_IO 226 _ef4_writeq(efx, value->u64[0], reg + 0); 227 _ef4_writeq(efx, value->u64[1], reg + 8); 228#else 229 _ef4_writed(efx, value->u32[0], reg + 0); 230 _ef4_writed(efx, value->u32[1], reg + 4); 231 _ef4_writed(efx, value->u32[2], reg + 8); 232 _ef4_writed(efx, value->u32[3], reg + 12); 233#endif 234} 235#define ef4_writeo_page(efx, value, reg, page) \ 236 _ef4_writeo_page(efx, value, \ 237 reg + \ 238 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \ 239 page) 240 241/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the 242 * high bits of RX_DESC_UPD or TX_DESC_UPD) 243 */ 244static inline void 245_ef4_writed_page(struct ef4_nic *efx, const ef4_dword_t *value, 246 unsigned int reg, unsigned int page) 247{ 248 ef4_writed(efx, value, EF4_PAGED_REG(page, reg)); 249} 250#define ef4_writed_page(efx, value, reg, page) \ 251 _ef4_writed_page(efx, value, \ 252 reg + \ 253 BUILD_BUG_ON_ZERO((reg) != 0x400 && \ 254 (reg) != 0x420 && \ 255 (reg) != 0x830 && \ 256 (reg) != 0x83c && \ 257 (reg) != 0xa18 && \ 258 (reg) != 0xa1c), \ 259 page) 260 261/* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug 262 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the 263 * collector register. 264 */ 265static inline void _ef4_writed_page_locked(struct ef4_nic *efx, 266 const ef4_dword_t *value, 267 unsigned int reg, 268 unsigned int page) 269{ 270 unsigned long flags __attribute__ ((unused)); 271 272 if (page == 0) { 273 spin_lock_irqsave(&efx->biu_lock, flags); 274 ef4_writed(efx, value, EF4_PAGED_REG(page, reg)); 275 spin_unlock_irqrestore(&efx->biu_lock, flags); 276 } else { 277 ef4_writed(efx, value, EF4_PAGED_REG(page, reg)); 278 } 279} 280#define ef4_writed_page_locked(efx, value, reg, page) \ 281 _ef4_writed_page_locked(efx, value, \ 282 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \ 283 page) 284 285#endif /* EF4_IO_H */