cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

io.h (9482B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2006-2013 Solarflare Communications Inc.
      6 */
      7
      8#ifndef EF4_IO_H
      9#define EF4_IO_H
     10
     11#include <linux/io.h>
     12#include <linux/spinlock.h>
     13
     14/**************************************************************************
     15 *
     16 * NIC register I/O
     17 *
     18 **************************************************************************
     19 *
     20 * Notes on locking strategy for the Falcon architecture:
     21 *
     22 * Many CSRs are very wide and cannot be read or written atomically.
     23 * Writes from the host are buffered by the Bus Interface Unit (BIU)
     24 * up to 128 bits.  Whenever the host writes part of such a register,
     25 * the BIU collects the written value and does not write to the
     26 * underlying register until all 4 dwords have been written.  A
     27 * similar buffering scheme applies to host access to the NIC's 64-bit
     28 * SRAM.
     29 *
     30 * Writes to different CSRs and 64-bit SRAM words must be serialised,
     31 * since interleaved access can result in lost writes.  We use
     32 * ef4_nic::biu_lock for this.
     33 *
     34 * We also serialise reads from 128-bit CSRs and SRAM with the same
     35 * spinlock.  This may not be necessary, but it doesn't really matter
     36 * as there are no such reads on the fast path.
     37 *
     38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
     39 * 128-bit but are special-cased in the BIU to avoid the need for
     40 * locking in the host:
     41 *
     42 * - They are write-only.
     43 * - The semantics of writing to these registers are such that
     44 *   replacing the low 96 bits with zero does not affect functionality.
     45 * - If the host writes to the last dword address of such a register
     46 *   (i.e. the high 32 bits) the underlying register will always be
     47 *   written.  If the collector and the current write together do not
     48 *   provide values for all 128 bits of the register, the low 96 bits
     49 *   will be written as zero.
     50 * - If the host writes to the address of any other part of such a
     51 *   register while the collector already holds values for some other
     52 *   register, the write is discarded and the collector maintains its
     53 *   current state.
     54 *
     55 * The EF10 architecture exposes very few registers to the host and
     56 * most of them are only 32 bits wide.  The only exceptions are the MC
     57 * doorbell register pair, which has its own latching, and
     58 * TX_DESC_UPD, which works in a similar way to the Falcon
     59 * architecture.
     60 */
     61
     62#if BITS_PER_LONG == 64
     63#define EF4_USE_QWORD_IO 1
     64#endif
     65
     66#ifdef EF4_USE_QWORD_IO
     67static inline void _ef4_writeq(struct ef4_nic *efx, __le64 value,
     68				  unsigned int reg)
     69{
     70	__raw_writeq((__force u64)value, efx->membase + reg);
     71}
     72static inline __le64 _ef4_readq(struct ef4_nic *efx, unsigned int reg)
     73{
     74	return (__force __le64)__raw_readq(efx->membase + reg);
     75}
     76#endif
     77
     78static inline void _ef4_writed(struct ef4_nic *efx, __le32 value,
     79				  unsigned int reg)
     80{
     81	__raw_writel((__force u32)value, efx->membase + reg);
     82}
     83static inline __le32 _ef4_readd(struct ef4_nic *efx, unsigned int reg)
     84{
     85	return (__force __le32)__raw_readl(efx->membase + reg);
     86}
     87
     88/* Write a normal 128-bit CSR, locking as appropriate. */
     89static inline void ef4_writeo(struct ef4_nic *efx, const ef4_oword_t *value,
     90			      unsigned int reg)
     91{
     92	unsigned long flags __attribute__ ((unused));
     93
     94	netif_vdbg(efx, hw, efx->net_dev,
     95		   "writing register %x with " EF4_OWORD_FMT "\n", reg,
     96		   EF4_OWORD_VAL(*value));
     97
     98	spin_lock_irqsave(&efx->biu_lock, flags);
     99#ifdef EF4_USE_QWORD_IO
    100	_ef4_writeq(efx, value->u64[0], reg + 0);
    101	_ef4_writeq(efx, value->u64[1], reg + 8);
    102#else
    103	_ef4_writed(efx, value->u32[0], reg + 0);
    104	_ef4_writed(efx, value->u32[1], reg + 4);
    105	_ef4_writed(efx, value->u32[2], reg + 8);
    106	_ef4_writed(efx, value->u32[3], reg + 12);
    107#endif
    108	spin_unlock_irqrestore(&efx->biu_lock, flags);
    109}
    110
    111/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
    112static inline void ef4_sram_writeq(struct ef4_nic *efx, void __iomem *membase,
    113				   const ef4_qword_t *value, unsigned int index)
    114{
    115	unsigned int addr = index * sizeof(*value);
    116	unsigned long flags __attribute__ ((unused));
    117
    118	netif_vdbg(efx, hw, efx->net_dev,
    119		   "writing SRAM address %x with " EF4_QWORD_FMT "\n",
    120		   addr, EF4_QWORD_VAL(*value));
    121
    122	spin_lock_irqsave(&efx->biu_lock, flags);
    123#ifdef EF4_USE_QWORD_IO
    124	__raw_writeq((__force u64)value->u64[0], membase + addr);
    125#else
    126	__raw_writel((__force u32)value->u32[0], membase + addr);
    127	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
    128#endif
    129	spin_unlock_irqrestore(&efx->biu_lock, flags);
    130}
    131
    132/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
    133static inline void ef4_writed(struct ef4_nic *efx, const ef4_dword_t *value,
    134			      unsigned int reg)
    135{
    136	netif_vdbg(efx, hw, efx->net_dev,
    137		   "writing register %x with "EF4_DWORD_FMT"\n",
    138		   reg, EF4_DWORD_VAL(*value));
    139
    140	/* No lock required */
    141	_ef4_writed(efx, value->u32[0], reg);
    142}
    143
    144/* Read a 128-bit CSR, locking as appropriate. */
    145static inline void ef4_reado(struct ef4_nic *efx, ef4_oword_t *value,
    146			     unsigned int reg)
    147{
    148	unsigned long flags __attribute__ ((unused));
    149
    150	spin_lock_irqsave(&efx->biu_lock, flags);
    151	value->u32[0] = _ef4_readd(efx, reg + 0);
    152	value->u32[1] = _ef4_readd(efx, reg + 4);
    153	value->u32[2] = _ef4_readd(efx, reg + 8);
    154	value->u32[3] = _ef4_readd(efx, reg + 12);
    155	spin_unlock_irqrestore(&efx->biu_lock, flags);
    156
    157	netif_vdbg(efx, hw, efx->net_dev,
    158		   "read from register %x, got " EF4_OWORD_FMT "\n", reg,
    159		   EF4_OWORD_VAL(*value));
    160}
    161
    162/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
    163static inline void ef4_sram_readq(struct ef4_nic *efx, void __iomem *membase,
    164				  ef4_qword_t *value, unsigned int index)
    165{
    166	unsigned int addr = index * sizeof(*value);
    167	unsigned long flags __attribute__ ((unused));
    168
    169	spin_lock_irqsave(&efx->biu_lock, flags);
    170#ifdef EF4_USE_QWORD_IO
    171	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
    172#else
    173	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
    174	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
    175#endif
    176	spin_unlock_irqrestore(&efx->biu_lock, flags);
    177
    178	netif_vdbg(efx, hw, efx->net_dev,
    179		   "read from SRAM address %x, got "EF4_QWORD_FMT"\n",
    180		   addr, EF4_QWORD_VAL(*value));
    181}
    182
    183/* Read a 32-bit CSR or SRAM */
    184static inline void ef4_readd(struct ef4_nic *efx, ef4_dword_t *value,
    185				unsigned int reg)
    186{
    187	value->u32[0] = _ef4_readd(efx, reg);
    188	netif_vdbg(efx, hw, efx->net_dev,
    189		   "read from register %x, got "EF4_DWORD_FMT"\n",
    190		   reg, EF4_DWORD_VAL(*value));
    191}
    192
    193/* Write a 128-bit CSR forming part of a table */
    194static inline void
    195ef4_writeo_table(struct ef4_nic *efx, const ef4_oword_t *value,
    196		 unsigned int reg, unsigned int index)
    197{
    198	ef4_writeo(efx, value, reg + index * sizeof(ef4_oword_t));
    199}
    200
    201/* Read a 128-bit CSR forming part of a table */
    202static inline void ef4_reado_table(struct ef4_nic *efx, ef4_oword_t *value,
    203				     unsigned int reg, unsigned int index)
    204{
    205	ef4_reado(efx, value, reg + index * sizeof(ef4_oword_t));
    206}
    207
    208/* Page size used as step between per-VI registers */
    209#define EF4_VI_PAGE_SIZE 0x2000
    210
    211/* Calculate offset to page-mapped register */
    212#define EF4_PAGED_REG(page, reg) \
    213	((page) * EF4_VI_PAGE_SIZE + (reg))
    214
    215/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
    216static inline void _ef4_writeo_page(struct ef4_nic *efx, ef4_oword_t *value,
    217				    unsigned int reg, unsigned int page)
    218{
    219	reg = EF4_PAGED_REG(page, reg);
    220
    221	netif_vdbg(efx, hw, efx->net_dev,
    222		   "writing register %x with " EF4_OWORD_FMT "\n", reg,
    223		   EF4_OWORD_VAL(*value));
    224
    225#ifdef EF4_USE_QWORD_IO
    226	_ef4_writeq(efx, value->u64[0], reg + 0);
    227	_ef4_writeq(efx, value->u64[1], reg + 8);
    228#else
    229	_ef4_writed(efx, value->u32[0], reg + 0);
    230	_ef4_writed(efx, value->u32[1], reg + 4);
    231	_ef4_writed(efx, value->u32[2], reg + 8);
    232	_ef4_writed(efx, value->u32[3], reg + 12);
    233#endif
    234}
    235#define ef4_writeo_page(efx, value, reg, page)				\
    236	_ef4_writeo_page(efx, value,					\
    237			 reg +						\
    238			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
    239			 page)
    240
    241/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
    242 * high bits of RX_DESC_UPD or TX_DESC_UPD)
    243 */
    244static inline void
    245_ef4_writed_page(struct ef4_nic *efx, const ef4_dword_t *value,
    246		 unsigned int reg, unsigned int page)
    247{
    248	ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
    249}
    250#define ef4_writed_page(efx, value, reg, page)				\
    251	_ef4_writed_page(efx, value,					\
    252			 reg +						\
    253			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
    254					   (reg) != 0x420 &&		\
    255					   (reg) != 0x830 &&		\
    256					   (reg) != 0x83c &&		\
    257					   (reg) != 0xa18 &&		\
    258					   (reg) != 0xa1c),		\
    259			 page)
    260
    261/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
    262 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
    263 * collector register.
    264 */
    265static inline void _ef4_writed_page_locked(struct ef4_nic *efx,
    266					   const ef4_dword_t *value,
    267					   unsigned int reg,
    268					   unsigned int page)
    269{
    270	unsigned long flags __attribute__ ((unused));
    271
    272	if (page == 0) {
    273		spin_lock_irqsave(&efx->biu_lock, flags);
    274		ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
    275		spin_unlock_irqrestore(&efx->biu_lock, flags);
    276	} else {
    277		ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
    278	}
    279}
    280#define ef4_writed_page_locked(efx, value, reg, page)			\
    281	_ef4_writed_page_locked(efx, value,				\
    282				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
    283				page)
    284
    285#endif /* EF4_IO_H */