cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nic.h (16622B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2006-2013 Solarflare Communications Inc.
      6 */
      7
      8#ifndef EF4_NIC_H
      9#define EF4_NIC_H
     10
     11#include <linux/net_tstamp.h>
     12#include <linux/i2c-algo-bit.h>
     13#include "net_driver.h"
     14#include "efx.h"
     15
     16enum {
     17	EF4_REV_FALCON_A0 = 0,
     18	EF4_REV_FALCON_A1 = 1,
     19	EF4_REV_FALCON_B0 = 2,
     20};
     21
     22static inline int ef4_nic_rev(struct ef4_nic *efx)
     23{
     24	return efx->type->revision;
     25}
     26
     27u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
     28
     29/* NIC has two interlinked PCI functions for the same port. */
     30static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
     31{
     32	return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
     33}
     34
     35/* Read the current event from the event queue */
     36static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
     37				     unsigned int index)
     38{
     39	return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
     40		(index & channel->eventq_mask);
     41}
     42
     43/* See if an event is present
     44 *
     45 * We check both the high and low dword of the event for all ones.  We
     46 * wrote all ones when we cleared the event, and no valid event can
     47 * have all ones in either its high or low dwords.  This approach is
     48 * robust against reordering.
     49 *
     50 * Note that using a single 64-bit comparison is incorrect; even
     51 * though the CPU read will be atomic, the DMA write may not be.
     52 */
     53static inline int ef4_event_present(ef4_qword_t *event)
     54{
     55	return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
     56		  EF4_DWORD_IS_ALL_ONES(event->dword[1]));
     57}
     58
     59/* Returns a pointer to the specified transmit descriptor in the TX
     60 * descriptor queue belonging to the specified channel.
     61 */
     62static inline ef4_qword_t *
     63ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
     64{
     65	return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
     66}
     67
     68/* Get partner of a TX queue, seen as part of the same net core queue */
     69static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
     70{
     71	if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
     72		return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
     73	else
     74		return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
     75}
     76
     77/* Report whether this TX queue would be empty for the given write_count.
     78 * May return false negative.
     79 */
     80static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
     81					 unsigned int write_count)
     82{
     83	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
     84
     85	if (empty_read_count == 0)
     86		return false;
     87
     88	return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
     89}
     90
     91/* Decide whether to push a TX descriptor to the NIC vs merely writing
     92 * the doorbell.  This can reduce latency when we are adding a single
     93 * descriptor to an empty queue, but is otherwise pointless.  Further,
     94 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
     95 * triggered if we don't check this.
     96 * We use the write_count used for the last doorbell push, to get the
     97 * NIC's view of the tx queue.
     98 */
     99static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
    100					    unsigned int write_count)
    101{
    102	bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
    103
    104	tx_queue->empty_read_count = 0;
    105	return was_empty && tx_queue->write_count - write_count == 1;
    106}
    107
    108/* Returns a pointer to the specified descriptor in the RX descriptor queue */
    109static inline ef4_qword_t *
    110ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
    111{
    112	return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
    113}
    114
    115enum {
    116	PHY_TYPE_NONE = 0,
    117	PHY_TYPE_TXC43128 = 1,
    118	PHY_TYPE_88E1111 = 2,
    119	PHY_TYPE_SFX7101 = 3,
    120	PHY_TYPE_QT2022C2 = 4,
    121	PHY_TYPE_PM8358 = 6,
    122	PHY_TYPE_SFT9001A = 8,
    123	PHY_TYPE_QT2025C = 9,
    124	PHY_TYPE_SFT9001B = 10,
    125};
    126
    127#define FALCON_XMAC_LOOPBACKS			\
    128	((1 << LOOPBACK_XGMII) |		\
    129	 (1 << LOOPBACK_XGXS) |			\
    130	 (1 << LOOPBACK_XAUI))
    131
    132/* Alignment of PCIe DMA boundaries (4KB) */
    133#define EF4_PAGE_SIZE	4096
    134/* Size and alignment of buffer table entries (same) */
    135#define EF4_BUF_SIZE	EF4_PAGE_SIZE
    136
    137/* NIC-generic software stats */
    138enum {
    139	GENERIC_STAT_rx_noskb_drops,
    140	GENERIC_STAT_rx_nodesc_trunc,
    141	GENERIC_STAT_COUNT
    142};
    143
    144/**
    145 * struct falcon_board_type - board operations and type information
    146 * @id: Board type id, as found in NVRAM
    147 * @init: Allocate resources and initialise peripheral hardware
    148 * @init_phy: Do board-specific PHY initialisation
    149 * @fini: Shut down hardware and free resources
    150 * @set_id_led: Set state of identifying LED or revert to automatic function
    151 * @monitor: Board-specific health check function
    152 */
    153struct falcon_board_type {
    154	u8 id;
    155	int (*init) (struct ef4_nic *nic);
    156	void (*init_phy) (struct ef4_nic *efx);
    157	void (*fini) (struct ef4_nic *nic);
    158	void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
    159	int (*monitor) (struct ef4_nic *nic);
    160};
    161
    162/**
    163 * struct falcon_board - board information
    164 * @type: Type of board
    165 * @major: Major rev. ('A', 'B' ...)
    166 * @minor: Minor rev. (0, 1, ...)
    167 * @i2c_adap: I2C adapter for on-board peripherals
    168 * @i2c_data: Data for bit-banging algorithm
    169 * @hwmon_client: I2C client for hardware monitor
    170 * @ioexp_client: I2C client for power/port control
    171 */
    172struct falcon_board {
    173	const struct falcon_board_type *type;
    174	int major;
    175	int minor;
    176	struct i2c_adapter i2c_adap;
    177	struct i2c_algo_bit_data i2c_data;
    178	struct i2c_client *hwmon_client, *ioexp_client;
    179};
    180
    181/**
    182 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
    183 * @device_id:		Controller's id for the device
    184 * @size:		Size (in bytes)
    185 * @addr_len:		Number of address bytes in read/write commands
    186 * @munge_address:	Flag whether addresses should be munged.
    187 *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
    188 *	use bit 3 of the command byte as address bit A8, rather
    189 *	than having a two-byte address.  If this flag is set, then
    190 *	commands should be munged in this way.
    191 * @erase_command:	Erase command (or 0 if sector erase not needed).
    192 * @erase_size:		Erase sector size (in bytes)
    193 *	Erase commands affect sectors with this size and alignment.
    194 *	This must be a power of two.
    195 * @block_size:		Write block size (in bytes).
    196 *	Write commands are limited to blocks with this size and alignment.
    197 */
    198struct falcon_spi_device {
    199	int device_id;
    200	unsigned int size;
    201	unsigned int addr_len;
    202	unsigned int munge_address:1;
    203	u8 erase_command;
    204	unsigned int erase_size;
    205	unsigned int block_size;
    206};
    207
    208static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
    209{
    210	return spi->size != 0;
    211}
    212
    213enum {
    214	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
    215	FALCON_STAT_tx_packets,
    216	FALCON_STAT_tx_pause,
    217	FALCON_STAT_tx_control,
    218	FALCON_STAT_tx_unicast,
    219	FALCON_STAT_tx_multicast,
    220	FALCON_STAT_tx_broadcast,
    221	FALCON_STAT_tx_lt64,
    222	FALCON_STAT_tx_64,
    223	FALCON_STAT_tx_65_to_127,
    224	FALCON_STAT_tx_128_to_255,
    225	FALCON_STAT_tx_256_to_511,
    226	FALCON_STAT_tx_512_to_1023,
    227	FALCON_STAT_tx_1024_to_15xx,
    228	FALCON_STAT_tx_15xx_to_jumbo,
    229	FALCON_STAT_tx_gtjumbo,
    230	FALCON_STAT_tx_non_tcpudp,
    231	FALCON_STAT_tx_mac_src_error,
    232	FALCON_STAT_tx_ip_src_error,
    233	FALCON_STAT_rx_bytes,
    234	FALCON_STAT_rx_good_bytes,
    235	FALCON_STAT_rx_bad_bytes,
    236	FALCON_STAT_rx_packets,
    237	FALCON_STAT_rx_good,
    238	FALCON_STAT_rx_bad,
    239	FALCON_STAT_rx_pause,
    240	FALCON_STAT_rx_control,
    241	FALCON_STAT_rx_unicast,
    242	FALCON_STAT_rx_multicast,
    243	FALCON_STAT_rx_broadcast,
    244	FALCON_STAT_rx_lt64,
    245	FALCON_STAT_rx_64,
    246	FALCON_STAT_rx_65_to_127,
    247	FALCON_STAT_rx_128_to_255,
    248	FALCON_STAT_rx_256_to_511,
    249	FALCON_STAT_rx_512_to_1023,
    250	FALCON_STAT_rx_1024_to_15xx,
    251	FALCON_STAT_rx_15xx_to_jumbo,
    252	FALCON_STAT_rx_gtjumbo,
    253	FALCON_STAT_rx_bad_lt64,
    254	FALCON_STAT_rx_bad_gtjumbo,
    255	FALCON_STAT_rx_overflow,
    256	FALCON_STAT_rx_symbol_error,
    257	FALCON_STAT_rx_align_error,
    258	FALCON_STAT_rx_length_error,
    259	FALCON_STAT_rx_internal_error,
    260	FALCON_STAT_rx_nodesc_drop_cnt,
    261	FALCON_STAT_COUNT
    262};
    263
    264/**
    265 * struct falcon_nic_data - Falcon NIC state
    266 * @pci_dev2: Secondary function of Falcon A
    267 * @efx: ef4_nic pointer
    268 * @board: Board state and functions
    269 * @stats: Hardware statistics
    270 * @stats_disable_count: Nest count for disabling statistics fetches
    271 * @stats_pending: Is there a pending DMA of MAC statistics.
    272 * @stats_timer: A timer for regularly fetching MAC statistics.
    273 * @spi_flash: SPI flash device
    274 * @spi_eeprom: SPI EEPROM device
    275 * @spi_lock: SPI bus lock
    276 * @mdio_lock: MDIO bus lock
    277 * @xmac_poll_required: XMAC link state needs polling
    278 */
    279struct falcon_nic_data {
    280	struct pci_dev *pci_dev2;
    281	struct ef4_nic *efx;
    282	struct falcon_board board;
    283	u64 stats[FALCON_STAT_COUNT];
    284	unsigned int stats_disable_count;
    285	bool stats_pending;
    286	struct timer_list stats_timer;
    287	struct falcon_spi_device spi_flash;
    288	struct falcon_spi_device spi_eeprom;
    289	struct mutex spi_lock;
    290	struct mutex mdio_lock;
    291	bool xmac_poll_required;
    292};
    293
    294static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
    295{
    296	struct falcon_nic_data *data = efx->nic_data;
    297	return &data->board;
    298}
    299
    300struct ethtool_ts_info;
    301
    302extern const struct ef4_nic_type falcon_a1_nic_type;
    303extern const struct ef4_nic_type falcon_b0_nic_type;
    304
    305/**************************************************************************
    306 *
    307 * Externs
    308 *
    309 **************************************************************************
    310 */
    311
    312int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
    313
    314/* TX data path */
    315static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
    316{
    317	return tx_queue->efx->type->tx_probe(tx_queue);
    318}
    319static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
    320{
    321	tx_queue->efx->type->tx_init(tx_queue);
    322}
    323static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
    324{
    325	tx_queue->efx->type->tx_remove(tx_queue);
    326}
    327static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
    328{
    329	tx_queue->efx->type->tx_write(tx_queue);
    330}
    331
    332/* RX data path */
    333static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
    334{
    335	return rx_queue->efx->type->rx_probe(rx_queue);
    336}
    337static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
    338{
    339	rx_queue->efx->type->rx_init(rx_queue);
    340}
    341static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
    342{
    343	rx_queue->efx->type->rx_remove(rx_queue);
    344}
    345static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
    346{
    347	rx_queue->efx->type->rx_write(rx_queue);
    348}
    349static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
    350{
    351	rx_queue->efx->type->rx_defer_refill(rx_queue);
    352}
    353
    354/* Event data path */
    355static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
    356{
    357	return channel->efx->type->ev_probe(channel);
    358}
    359static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
    360{
    361	return channel->efx->type->ev_init(channel);
    362}
    363static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
    364{
    365	channel->efx->type->ev_fini(channel);
    366}
    367static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
    368{
    369	channel->efx->type->ev_remove(channel);
    370}
    371static inline int
    372ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
    373{
    374	return channel->efx->type->ev_process(channel, quota);
    375}
    376static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
    377{
    378	channel->efx->type->ev_read_ack(channel);
    379}
    380void ef4_nic_event_test_start(struct ef4_channel *channel);
    381
    382/* queue operations */
    383int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
    384void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
    385void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
    386void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
    387void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
    388unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
    389				    dma_addr_t dma_addr, unsigned int len);
    390int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
    391void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
    392void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
    393void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
    394void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
    395void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
    396int ef4_farch_ev_probe(struct ef4_channel *channel);
    397int ef4_farch_ev_init(struct ef4_channel *channel);
    398void ef4_farch_ev_fini(struct ef4_channel *channel);
    399void ef4_farch_ev_remove(struct ef4_channel *channel);
    400int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
    401void ef4_farch_ev_read_ack(struct ef4_channel *channel);
    402void ef4_farch_ev_test_generate(struct ef4_channel *channel);
    403
    404/* filter operations */
    405int ef4_farch_filter_table_probe(struct ef4_nic *efx);
    406void ef4_farch_filter_table_restore(struct ef4_nic *efx);
    407void ef4_farch_filter_table_remove(struct ef4_nic *efx);
    408void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
    409s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
    410			    bool replace);
    411int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
    412				 enum ef4_filter_priority priority,
    413				 u32 filter_id);
    414int ef4_farch_filter_get_safe(struct ef4_nic *efx,
    415			      enum ef4_filter_priority priority, u32 filter_id,
    416			      struct ef4_filter_spec *);
    417int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
    418			      enum ef4_filter_priority priority);
    419u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
    420				   enum ef4_filter_priority priority);
    421u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
    422s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
    423				enum ef4_filter_priority priority, u32 *buf,
    424				u32 size);
    425#ifdef CONFIG_RFS_ACCEL
    426s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
    427				struct ef4_filter_spec *spec);
    428bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
    429				     unsigned int index);
    430#endif
    431void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
    432
    433bool ef4_nic_event_present(struct ef4_channel *channel);
    434
    435/* Some statistics are computed as A - B where A and B each increase
    436 * linearly with some hardware counter(s) and the counters are read
    437 * asynchronously.  If the counters contributing to B are always read
    438 * after those contributing to A, the computed value may be lower than
    439 * the true value by some variable amount, and may decrease between
    440 * subsequent computations.
    441 *
    442 * We should never allow statistics to decrease or to exceed the true
    443 * value.  Since the computed value will never be greater than the
    444 * true value, we can achieve this by only storing the computed value
    445 * when it increases.
    446 */
    447static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
    448{
    449	if ((s64)(diff - *stat) > 0)
    450		*stat = diff;
    451}
    452
    453/* Interrupts */
    454int ef4_nic_init_interrupt(struct ef4_nic *efx);
    455int ef4_nic_irq_test_start(struct ef4_nic *efx);
    456void ef4_nic_fini_interrupt(struct ef4_nic *efx);
    457void ef4_farch_irq_enable_master(struct ef4_nic *efx);
    458int ef4_farch_irq_test_generate(struct ef4_nic *efx);
    459void ef4_farch_irq_disable_master(struct ef4_nic *efx);
    460irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
    461irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
    462irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
    463
    464static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
    465{
    466	return READ_ONCE(channel->event_test_cpu);
    467}
    468static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
    469{
    470	return READ_ONCE(efx->last_irq_cpu);
    471}
    472
    473/* Global Resources */
    474int ef4_nic_flush_queues(struct ef4_nic *efx);
    475int ef4_farch_fini_dmaq(struct ef4_nic *efx);
    476void ef4_farch_finish_flr(struct ef4_nic *efx);
    477void falcon_start_nic_stats(struct ef4_nic *efx);
    478void falcon_stop_nic_stats(struct ef4_nic *efx);
    479int falcon_reset_xaui(struct ef4_nic *efx);
    480void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
    481void ef4_farch_init_common(struct ef4_nic *efx);
    482void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
    483
    484int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
    485			 unsigned int len, gfp_t gfp_flags);
    486void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
    487
    488/* Tests */
    489struct ef4_farch_register_test {
    490	unsigned address;
    491	ef4_oword_t mask;
    492};
    493int ef4_farch_test_registers(struct ef4_nic *efx,
    494			     const struct ef4_farch_register_test *regs,
    495			     size_t n_regs);
    496
    497size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
    498void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
    499
    500size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
    501			      const unsigned long *mask, u8 *names);
    502void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
    503			  const unsigned long *mask, u64 *stats,
    504			  const void *dma_buf, bool accumulate);
    505void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
    506
    507#define EF4_MAX_FLUSH_TIME 5000
    508
    509void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
    510			      ef4_qword_t *event);
    511
    512#endif /* EF4_NIC_H */