cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ptp.c (67043B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2011-2013 Solarflare Communications Inc.
      5 */
      6
      7/* Theory of operation:
      8 *
      9 * PTP support is assisted by firmware running on the MC, which provides
     10 * the hardware timestamping capabilities.  Both transmitted and received
     11 * PTP event packets are queued onto internal queues for subsequent processing;
     12 * this is because the MC operations are relatively long and would block
     13 * block NAPI/interrupt operation.
     14 *
     15 * Receive event processing:
     16 *	The event contains the packet's UUID and sequence number, together
     17 *	with the hardware timestamp.  The PTP receive packet queue is searched
     18 *	for this UUID/sequence number and, if found, put on a pending queue.
     19 *	Packets not matching are delivered without timestamps (MCDI events will
     20 *	always arrive after the actual packet).
     21 *	It is important for the operation of the PTP protocol that the ordering
     22 *	of packets between the event and general port is maintained.
     23 *
     24 * Work queue processing:
     25 *	If work waiting, synchronise host/hardware time
     26 *
     27 *	Transmit: send packet through MC, which returns the transmission time
     28 *	that is converted to an appropriate timestamp.
     29 *
     30 *	Receive: the packet's reception time is converted to an appropriate
     31 *	timestamp.
     32 */
     33#include <linux/ip.h>
     34#include <linux/udp.h>
     35#include <linux/time.h>
     36#include <linux/ktime.h>
     37#include <linux/module.h>
     38#include <linux/pps_kernel.h>
     39#include <linux/ptp_clock_kernel.h>
     40#include "net_driver.h"
     41#include "efx.h"
     42#include "mcdi.h"
     43#include "mcdi_pcol.h"
     44#include "io.h"
     45#include "farch_regs.h"
     46#include "tx.h"
     47#include "nic.h" /* indirectly includes ptp.h */
     48#include "efx_channels.h"
     49
     50/* Maximum number of events expected to make up a PTP event */
     51#define	MAX_EVENT_FRAGS			3
     52
     53/* Maximum delay, ms, to begin synchronisation */
     54#define	MAX_SYNCHRONISE_WAIT_MS		2
     55
     56/* How long, at most, to spend synchronising */
     57#define	SYNCHRONISE_PERIOD_NS		250000
     58
     59/* How often to update the shared memory time */
     60#define	SYNCHRONISATION_GRANULARITY_NS	200
     61
     62/* Minimum permitted length of a (corrected) synchronisation time */
     63#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
     64
     65/* Maximum permitted length of a (corrected) synchronisation time */
     66#define	MAX_SYNCHRONISATION_NS		1000
     67
     68/* How many (MC) receive events that can be queued */
     69#define	MAX_RECEIVE_EVENTS		8
     70
     71/* Length of (modified) moving average. */
     72#define	AVERAGE_LENGTH			16
     73
     74/* How long an unmatched event or packet can be held */
     75#define PKT_EVENT_LIFETIME_MS		10
     76
     77/* Offsets into PTP packet for identification.  These offsets are from the
     78 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
     79 * PTP V2 permit the use of IPV4 options.
     80 */
     81#define PTP_DPORT_OFFSET	22
     82
     83#define PTP_V1_VERSION_LENGTH	2
     84#define PTP_V1_VERSION_OFFSET	28
     85
     86#define PTP_V1_UUID_LENGTH	6
     87#define PTP_V1_UUID_OFFSET	50
     88
     89#define PTP_V1_SEQUENCE_LENGTH	2
     90#define PTP_V1_SEQUENCE_OFFSET	58
     91
     92/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
     93 * includes IP header.
     94 */
     95#define	PTP_V1_MIN_LENGTH	64
     96
     97#define PTP_V2_VERSION_LENGTH	1
     98#define PTP_V2_VERSION_OFFSET	29
     99
    100#define PTP_V2_UUID_LENGTH	8
    101#define PTP_V2_UUID_OFFSET	48
    102
    103/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
    104 * the MC only captures the last six bytes of the clock identity. These values
    105 * reflect those, not the ones used in the standard.  The standard permits
    106 * mapping of V1 UUIDs to V2 UUIDs with these same values.
    107 */
    108#define PTP_V2_MC_UUID_LENGTH	6
    109#define PTP_V2_MC_UUID_OFFSET	50
    110
    111#define PTP_V2_SEQUENCE_LENGTH	2
    112#define PTP_V2_SEQUENCE_OFFSET	58
    113
    114/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
    115 * includes IP header.
    116 */
    117#define	PTP_V2_MIN_LENGTH	63
    118
    119#define	PTP_MIN_LENGTH		63
    120
    121#define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
    122#define PTP_EVENT_PORT		319
    123#define PTP_GENERAL_PORT	320
    124
    125/* Annoyingly the format of the version numbers are different between
    126 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
    127 */
    128#define	PTP_VERSION_V1		1
    129
    130#define	PTP_VERSION_V2		2
    131#define	PTP_VERSION_V2_MASK	0x0f
    132
    133enum ptp_packet_state {
    134	PTP_PACKET_STATE_UNMATCHED = 0,
    135	PTP_PACKET_STATE_MATCHED,
    136	PTP_PACKET_STATE_TIMED_OUT,
    137	PTP_PACKET_STATE_MATCH_UNWANTED
    138};
    139
    140/* NIC synchronised with single word of time only comprising
    141 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
    142 */
    143#define	MC_NANOSECOND_BITS	30
    144#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
    145#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
    146
    147/* Maximum parts-per-billion adjustment that is acceptable */
    148#define MAX_PPB			1000000
    149
    150/* Precalculate scale word to avoid long long division at runtime */
    151/* This is equivalent to 2^66 / 10^9. */
    152#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
    153
    154/* How much to shift down after scaling to convert to FP40 */
    155#define PPB_SHIFT_FP40		26
    156/* ... and FP44. */
    157#define PPB_SHIFT_FP44		22
    158
    159#define PTP_SYNC_ATTEMPTS	4
    160
    161/**
    162 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
    163 * @words: UUID and (partial) sequence number
    164 * @expiry: Time after which the packet should be delivered irrespective of
    165 *            event arrival.
    166 * @state: The state of the packet - whether it is ready for processing or
    167 *         whether that is of no interest.
    168 */
    169struct efx_ptp_match {
    170	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
    171	unsigned long expiry;
    172	enum ptp_packet_state state;
    173};
    174
    175/**
    176 * struct efx_ptp_event_rx - A PTP receive event (from MC)
    177 * @link: list of events
    178 * @seq0: First part of (PTP) UUID
    179 * @seq1: Second part of (PTP) UUID and sequence number
    180 * @hwtimestamp: Event timestamp
    181 * @expiry: Time which the packet arrived
    182 */
    183struct efx_ptp_event_rx {
    184	struct list_head link;
    185	u32 seq0;
    186	u32 seq1;
    187	ktime_t hwtimestamp;
    188	unsigned long expiry;
    189};
    190
    191/**
    192 * struct efx_ptp_timeset - Synchronisation between host and MC
    193 * @host_start: Host time immediately before hardware timestamp taken
    194 * @major: Hardware timestamp, major
    195 * @minor: Hardware timestamp, minor
    196 * @host_end: Host time immediately after hardware timestamp taken
    197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
    198 *          host end time being seen
    199 * @window: Difference of host_end and host_start
    200 * @valid: Whether this timeset is valid
    201 */
    202struct efx_ptp_timeset {
    203	u32 host_start;
    204	u32 major;
    205	u32 minor;
    206	u32 host_end;
    207	u32 wait;
    208	u32 window;	/* Derived: end - start, allowing for wrap */
    209};
    210
    211/**
    212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
    213 * @efx: The NIC context
    214 * @channel: The PTP channel (Siena only)
    215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
    216 *	separate events)
    217 * @rxq: Receive SKB queue (awaiting timestamps)
    218 * @txq: Transmit SKB queue
    219 * @evt_list: List of MC receive events awaiting packets
    220 * @evt_free_list: List of free events
    221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
    222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
    223 * @workwq: Work queue for processing pending PTP operations
    224 * @work: Work task
    225 * @reset_required: A serious error has occurred and the PTP task needs to be
    226 *                  reset (disable, enable).
    227 * @rxfilter_event: Receive filter when operating
    228 * @rxfilter_general: Receive filter when operating
    229 * @rxfilter_installed: Receive filter installed
    230 * @config: Current timestamp configuration
    231 * @enabled: PTP operation enabled
    232 * @mode: Mode in which PTP operating (PTP version)
    233 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
    234 * @nic_to_kernel_time: Function to convert from NIC to kernel time
    235 * @nic_time: contains time details
    236 * @nic_time.minor_max: Wrap point for NIC minor times
    237 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
    238 * in packet prefix and last MCDI time sync event i.e. how much earlier than
    239 * the last sync event time a packet timestamp can be.
    240 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
    241 * in packet prefix and last MCDI time sync event i.e. how much later than
    242 * the last sync event time a packet timestamp can be.
    243 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
    244 * field in MCDI time sync event.
    245 * @min_synchronisation_ns: Minimum acceptable corrected sync window
    246 * @capabilities: Capabilities flags from the NIC
    247 * @ts_corrections: contains corrections details
    248 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
    249 *                         timestamps
    250 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
    251 *                         timestamps
    252 * @ts_corrections.pps_out: PPS output error (information only)
    253 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
    254 * @ts_corrections.general_tx: Required driver correction of general packet
    255 *                             transmit timestamps
    256 * @ts_corrections.general_rx: Required driver correction of general packet
    257 *                             receive timestamps
    258 * @evt_frags: Partly assembled PTP events
    259 * @evt_frag_idx: Current fragment number
    260 * @evt_code: Last event code
    261 * @start: Address at which MC indicates ready for synchronisation
    262 * @host_time_pps: Host time at last PPS
    263 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
    264 * frequency adjustment into a fixed point fractional nanosecond format.
    265 * @current_adjfreq: Current ppb adjustment.
    266 * @phc_clock: Pointer to registered phc device (if primary function)
    267 * @phc_clock_info: Registration structure for phc device
    268 * @pps_work: pps work task for handling pps events
    269 * @pps_workwq: pps work queue
    270 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
    271 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
    272 *         allocations in main data path).
    273 * @good_syncs: Number of successful synchronisations.
    274 * @fast_syncs: Number of synchronisations requiring short delay
    275 * @bad_syncs: Number of failed synchronisations.
    276 * @sync_timeouts: Number of synchronisation timeouts
    277 * @no_time_syncs: Number of synchronisations with no good times.
    278 * @invalid_sync_windows: Number of sync windows with bad durations.
    279 * @undersize_sync_windows: Number of corrected sync windows that are too small
    280 * @oversize_sync_windows: Number of corrected sync windows that are too large
    281 * @rx_no_timestamp: Number of packets received without a timestamp.
    282 * @timeset: Last set of synchronisation statistics.
    283 * @xmit_skb: Transmit SKB function.
    284 */
    285struct efx_ptp_data {
    286	struct efx_nic *efx;
    287	struct efx_channel *channel;
    288	bool rx_ts_inline;
    289	struct sk_buff_head rxq;
    290	struct sk_buff_head txq;
    291	struct list_head evt_list;
    292	struct list_head evt_free_list;
    293	spinlock_t evt_lock;
    294	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
    295	struct workqueue_struct *workwq;
    296	struct work_struct work;
    297	bool reset_required;
    298	u32 rxfilter_event;
    299	u32 rxfilter_general;
    300	bool rxfilter_installed;
    301	struct hwtstamp_config config;
    302	bool enabled;
    303	unsigned int mode;
    304	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
    305	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
    306				      s32 correction);
    307	struct {
    308		u32 minor_max;
    309		u32 sync_event_diff_min;
    310		u32 sync_event_diff_max;
    311		unsigned int sync_event_minor_shift;
    312	} nic_time;
    313	unsigned int min_synchronisation_ns;
    314	unsigned int capabilities;
    315	struct {
    316		s32 ptp_tx;
    317		s32 ptp_rx;
    318		s32 pps_out;
    319		s32 pps_in;
    320		s32 general_tx;
    321		s32 general_rx;
    322	} ts_corrections;
    323	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
    324	int evt_frag_idx;
    325	int evt_code;
    326	struct efx_buffer start;
    327	struct pps_event_time host_time_pps;
    328	unsigned int adjfreq_ppb_shift;
    329	s64 current_adjfreq;
    330	struct ptp_clock *phc_clock;
    331	struct ptp_clock_info phc_clock_info;
    332	struct work_struct pps_work;
    333	struct workqueue_struct *pps_workwq;
    334	bool nic_ts_enabled;
    335	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
    336
    337	unsigned int good_syncs;
    338	unsigned int fast_syncs;
    339	unsigned int bad_syncs;
    340	unsigned int sync_timeouts;
    341	unsigned int no_time_syncs;
    342	unsigned int invalid_sync_windows;
    343	unsigned int undersize_sync_windows;
    344	unsigned int oversize_sync_windows;
    345	unsigned int rx_no_timestamp;
    346	struct efx_ptp_timeset
    347	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
    348	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
    349};
    350
    351static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
    352static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
    353static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
    354static int efx_phc_settime(struct ptp_clock_info *ptp,
    355			   const struct timespec64 *e_ts);
    356static int efx_phc_enable(struct ptp_clock_info *ptp,
    357			  struct ptp_clock_request *request, int on);
    358
    359bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
    360{
    361	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
    362}
    363
    364/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
    365 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
    366 */
    367static bool efx_ptp_want_txqs(struct efx_channel *channel)
    368{
    369	return efx_ptp_use_mac_tx_timestamps(channel->efx);
    370}
    371
    372#define PTP_SW_STAT(ext_name, field_name)				\
    373	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
    374#define PTP_MC_STAT(ext_name, mcdi_name)				\
    375	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
    376static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
    377	PTP_SW_STAT(ptp_good_syncs, good_syncs),
    378	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
    379	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
    380	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
    381	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
    382	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
    383	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
    384	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
    385	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
    386	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
    387	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
    388	PTP_MC_STAT(ptp_timestamp_packets, TS),
    389	PTP_MC_STAT(ptp_filter_matches, FM),
    390	PTP_MC_STAT(ptp_non_filter_matches, NFM),
    391};
    392#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
    393static const unsigned long efx_ptp_stat_mask[] = {
    394	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
    395};
    396
    397size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
    398{
    399	if (!efx->ptp_data)
    400		return 0;
    401
    402	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
    403				      efx_ptp_stat_mask, strings);
    404}
    405
    406size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
    407{
    408	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
    409	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
    410	size_t i;
    411	int rc;
    412
    413	if (!efx->ptp_data)
    414		return 0;
    415
    416	/* Copy software statistics */
    417	for (i = 0; i < PTP_STAT_COUNT; i++) {
    418		if (efx_ptp_stat_desc[i].dma_width)
    419			continue;
    420		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
    421					     efx_ptp_stat_desc[i].offset);
    422	}
    423
    424	/* Fetch MC statistics.  We *must* fill in all statistics or
    425	 * risk leaking kernel memory to userland, so if the MCDI
    426	 * request fails we pretend we got zeroes.
    427	 */
    428	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
    429	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    430	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    431			  outbuf, sizeof(outbuf), NULL);
    432	if (rc)
    433		memset(outbuf, 0, sizeof(outbuf));
    434	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
    435			     efx_ptp_stat_mask,
    436			     stats, _MCDI_PTR(outbuf, 0), false);
    437
    438	return PTP_STAT_COUNT;
    439}
    440
    441/* For Siena platforms NIC time is s and ns */
    442static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
    443{
    444	struct timespec64 ts = ns_to_timespec64(ns);
    445	*nic_major = (u32)ts.tv_sec;
    446	*nic_minor = ts.tv_nsec;
    447}
    448
    449static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
    450						s32 correction)
    451{
    452	ktime_t kt = ktime_set(nic_major, nic_minor);
    453	if (correction >= 0)
    454		kt = ktime_add_ns(kt, (u64)correction);
    455	else
    456		kt = ktime_sub_ns(kt, (u64)-correction);
    457	return kt;
    458}
    459
    460/* To convert from s27 format to ns we multiply then divide by a power of 2.
    461 * For the conversion from ns to s27, the operation is also converted to a
    462 * multiply and shift.
    463 */
    464#define S27_TO_NS_SHIFT	(27)
    465#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
    466#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
    467#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
    468
    469/* For Huntington platforms NIC time is in seconds and fractions of a second
    470 * where the minor register only uses 27 bits in units of 2^-27s.
    471 */
    472static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
    473{
    474	struct timespec64 ts = ns_to_timespec64(ns);
    475	u32 maj = (u32)ts.tv_sec;
    476	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
    477			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
    478
    479	/* The conversion can result in the minor value exceeding the maximum.
    480	 * In this case, round up to the next second.
    481	 */
    482	if (min >= S27_MINOR_MAX) {
    483		min -= S27_MINOR_MAX;
    484		maj++;
    485	}
    486
    487	*nic_major = maj;
    488	*nic_minor = min;
    489}
    490
    491static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
    492{
    493	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
    494			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
    495	return ktime_set(nic_major, ns);
    496}
    497
    498static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
    499					       s32 correction)
    500{
    501	/* Apply the correction and deal with carry */
    502	nic_minor += correction;
    503	if ((s32)nic_minor < 0) {
    504		nic_minor += S27_MINOR_MAX;
    505		nic_major--;
    506	} else if (nic_minor >= S27_MINOR_MAX) {
    507		nic_minor -= S27_MINOR_MAX;
    508		nic_major++;
    509	}
    510
    511	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
    512}
    513
    514/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
    515static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
    516{
    517	struct timespec64 ts = ns_to_timespec64(ns);
    518
    519	*nic_major = (u32)ts.tv_sec;
    520	*nic_minor = ts.tv_nsec * 4;
    521}
    522
    523static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
    524						 s32 correction)
    525{
    526	ktime_t kt;
    527
    528	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
    529	correction = DIV_ROUND_CLOSEST(correction, 4);
    530
    531	kt = ktime_set(nic_major, nic_minor);
    532
    533	if (correction >= 0)
    534		kt = ktime_add_ns(kt, (u64)correction);
    535	else
    536		kt = ktime_sub_ns(kt, (u64)-correction);
    537	return kt;
    538}
    539
    540struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
    541{
    542	return efx->ptp_data ? efx->ptp_data->channel : NULL;
    543}
    544
    545void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
    546{
    547	if (efx->ptp_data)
    548		efx->ptp_data->channel = channel;
    549}
    550
    551static u32 last_sync_timestamp_major(struct efx_nic *efx)
    552{
    553	struct efx_channel *channel = efx_ptp_channel(efx);
    554	u32 major = 0;
    555
    556	if (channel)
    557		major = channel->sync_timestamp_major;
    558	return major;
    559}
    560
    561/* The 8000 series and later can provide the time from the MAC, which is only
    562 * 48 bits long and provides meta-information in the top 2 bits.
    563 */
    564static ktime_t
    565efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
    566				    struct efx_ptp_data *ptp,
    567				    u32 nic_major, u32 nic_minor,
    568				    s32 correction)
    569{
    570	u32 sync_timestamp;
    571	ktime_t kt = { 0 };
    572	s16 delta;
    573
    574	if (!(nic_major & 0x80000000)) {
    575		WARN_ON_ONCE(nic_major >> 16);
    576
    577		/* Medford provides 48 bits of timestamp, so we must get the top
    578		 * 16 bits from the timesync event state.
    579		 *
    580		 * We only have the lower 16 bits of the time now, but we do
    581		 * have a full resolution timestamp at some point in past. As
    582		 * long as the difference between the (real) now and the sync
    583		 * is less than 2^15, then we can reconstruct the difference
    584		 * between those two numbers using only the lower 16 bits of
    585		 * each.
    586		 *
    587		 * Put another way
    588		 *
    589		 * a - b = ((a mod k) - b) mod k
    590		 *
    591		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
    592		 * (a mod k) and b, so can calculate the delta, a - b.
    593		 *
    594		 */
    595		sync_timestamp = last_sync_timestamp_major(efx);
    596
    597		/* Because delta is s16 this does an implicit mask down to
    598		 * 16 bits which is what we need, assuming
    599		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
    600		 * we can deal with the (unlikely) case of sync timestamps
    601		 * arriving from the future.
    602		 */
    603		delta = nic_major - sync_timestamp;
    604
    605		/* Recover the fully specified time now, by applying the offset
    606		 * to the (fully specified) sync time.
    607		 */
    608		nic_major = sync_timestamp + delta;
    609
    610		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
    611					     correction);
    612	}
    613	return kt;
    614}
    615
    616ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
    617{
    618	struct efx_nic *efx = tx_queue->efx;
    619	struct efx_ptp_data *ptp = efx->ptp_data;
    620	ktime_t kt;
    621
    622	if (efx_ptp_use_mac_tx_timestamps(efx))
    623		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
    624				tx_queue->completed_timestamp_major,
    625				tx_queue->completed_timestamp_minor,
    626				ptp->ts_corrections.general_tx);
    627	else
    628		kt = ptp->nic_to_kernel_time(
    629				tx_queue->completed_timestamp_major,
    630				tx_queue->completed_timestamp_minor,
    631				ptp->ts_corrections.general_tx);
    632	return kt;
    633}
    634
    635/* Get PTP attributes and set up time conversions */
    636static int efx_ptp_get_attributes(struct efx_nic *efx)
    637{
    638	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
    639	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
    640	struct efx_ptp_data *ptp = efx->ptp_data;
    641	int rc;
    642	u32 fmt;
    643	size_t out_len;
    644
    645	/* Get the PTP attributes. If the NIC doesn't support the operation we
    646	 * use the default format for compatibility with older NICs i.e.
    647	 * seconds and nanoseconds.
    648	 */
    649	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
    650	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    651	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    652				outbuf, sizeof(outbuf), &out_len);
    653	if (rc == 0) {
    654		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
    655	} else if (rc == -EINVAL) {
    656		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
    657	} else if (rc == -EPERM) {
    658		pci_info(efx->pci_dev, "no PTP support\n");
    659		return rc;
    660	} else {
    661		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
    662				       outbuf, sizeof(outbuf), rc);
    663		return rc;
    664	}
    665
    666	switch (fmt) {
    667	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
    668		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
    669		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
    670		ptp->nic_time.minor_max = 1 << 27;
    671		ptp->nic_time.sync_event_minor_shift = 19;
    672		break;
    673	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
    674		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
    675		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
    676		ptp->nic_time.minor_max = 1000000000;
    677		ptp->nic_time.sync_event_minor_shift = 22;
    678		break;
    679	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
    680		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
    681		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
    682		ptp->nic_time.minor_max = 4000000000UL;
    683		ptp->nic_time.sync_event_minor_shift = 24;
    684		break;
    685	default:
    686		return -ERANGE;
    687	}
    688
    689	/* Precalculate acceptable difference between the minor time in the
    690	 * packet prefix and the last MCDI time sync event. We expect the
    691	 * packet prefix timestamp to be after of sync event by up to one
    692	 * sync event interval (0.25s) but we allow it to exceed this by a
    693	 * fuzz factor of (0.1s)
    694	 */
    695	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
    696		- (ptp->nic_time.minor_max / 10);
    697	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
    698		+ (ptp->nic_time.minor_max / 10);
    699
    700	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
    701	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
    702	 * a value to use for the minimum acceptable corrected synchronization
    703	 * window and may return further capabilities.
    704	 * If we have the extra information store it. For older firmware that
    705	 * does not implement the extended command use the default value.
    706	 */
    707	if (rc == 0 &&
    708	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
    709		ptp->min_synchronisation_ns =
    710			MCDI_DWORD(outbuf,
    711				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
    712	else
    713		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
    714
    715	if (rc == 0 &&
    716	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
    717		ptp->capabilities = MCDI_DWORD(outbuf,
    718					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
    719	else
    720		ptp->capabilities = 0;
    721
    722	/* Set up the shift for conversion between frequency
    723	 * adjustments in parts-per-billion and the fixed-point
    724	 * fractional ns format that the adapter uses.
    725	 */
    726	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
    727		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
    728	else
    729		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
    730
    731	return 0;
    732}
    733
    734/* Get PTP timestamp corrections */
    735static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
    736{
    737	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
    738	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
    739	int rc;
    740	size_t out_len;
    741
    742	/* Get the timestamp corrections from the NIC. If this operation is
    743	 * not supported (older NICs) then no correction is required.
    744	 */
    745	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
    746		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
    747	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    748
    749	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    750				outbuf, sizeof(outbuf), &out_len);
    751	if (rc == 0) {
    752		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
    753			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
    754		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
    755			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
    756		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
    757			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
    758		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
    759			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
    760
    761		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
    762			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
    763				outbuf,
    764				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
    765			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
    766				outbuf,
    767				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
    768		} else {
    769			efx->ptp_data->ts_corrections.general_tx =
    770				efx->ptp_data->ts_corrections.ptp_tx;
    771			efx->ptp_data->ts_corrections.general_rx =
    772				efx->ptp_data->ts_corrections.ptp_rx;
    773		}
    774	} else if (rc == -EINVAL) {
    775		efx->ptp_data->ts_corrections.ptp_tx = 0;
    776		efx->ptp_data->ts_corrections.ptp_rx = 0;
    777		efx->ptp_data->ts_corrections.pps_out = 0;
    778		efx->ptp_data->ts_corrections.pps_in = 0;
    779		efx->ptp_data->ts_corrections.general_tx = 0;
    780		efx->ptp_data->ts_corrections.general_rx = 0;
    781	} else {
    782		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
    783				       sizeof(outbuf), rc);
    784		return rc;
    785	}
    786
    787	return 0;
    788}
    789
    790/* Enable MCDI PTP support. */
    791static int efx_ptp_enable(struct efx_nic *efx)
    792{
    793	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
    794	MCDI_DECLARE_BUF_ERR(outbuf);
    795	int rc;
    796
    797	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
    798	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    799	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
    800		       efx->ptp_data->channel ?
    801		       efx->ptp_data->channel->channel : 0);
    802	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
    803
    804	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    805				outbuf, sizeof(outbuf), NULL);
    806	rc = (rc == -EALREADY) ? 0 : rc;
    807	if (rc)
    808		efx_mcdi_display_error(efx, MC_CMD_PTP,
    809				       MC_CMD_PTP_IN_ENABLE_LEN,
    810				       outbuf, sizeof(outbuf), rc);
    811	return rc;
    812}
    813
    814/* Disable MCDI PTP support.
    815 *
    816 * Note that this function should never rely on the presence of ptp_data -
    817 * may be called before that exists.
    818 */
    819static int efx_ptp_disable(struct efx_nic *efx)
    820{
    821	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
    822	MCDI_DECLARE_BUF_ERR(outbuf);
    823	int rc;
    824
    825	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
    826	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    827	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    828				outbuf, sizeof(outbuf), NULL);
    829	rc = (rc == -EALREADY) ? 0 : rc;
    830	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
    831	 * should only have been called during probe.
    832	 */
    833	if (rc == -ENOSYS || rc == -EPERM)
    834		pci_info(efx->pci_dev, "no PTP support\n");
    835	else if (rc)
    836		efx_mcdi_display_error(efx, MC_CMD_PTP,
    837				       MC_CMD_PTP_IN_DISABLE_LEN,
    838				       outbuf, sizeof(outbuf), rc);
    839	return rc;
    840}
    841
    842static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
    843{
    844	struct sk_buff *skb;
    845
    846	while ((skb = skb_dequeue(q))) {
    847		local_bh_disable();
    848		netif_receive_skb(skb);
    849		local_bh_enable();
    850	}
    851}
    852
    853static void efx_ptp_handle_no_channel(struct efx_nic *efx)
    854{
    855	netif_err(efx, drv, efx->net_dev,
    856		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
    857		  "vector. PTP disabled\n");
    858}
    859
    860/* Repeatedly send the host time to the MC which will capture the hardware
    861 * time.
    862 */
    863static void efx_ptp_send_times(struct efx_nic *efx,
    864			       struct pps_event_time *last_time)
    865{
    866	struct pps_event_time now;
    867	struct timespec64 limit;
    868	struct efx_ptp_data *ptp = efx->ptp_data;
    869	int *mc_running = ptp->start.addr;
    870
    871	pps_get_ts(&now);
    872	limit = now.ts_real;
    873	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
    874
    875	/* Write host time for specified period or until MC is done */
    876	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
    877	       READ_ONCE(*mc_running)) {
    878		struct timespec64 update_time;
    879		unsigned int host_time;
    880
    881		/* Don't update continuously to avoid saturating the PCIe bus */
    882		update_time = now.ts_real;
    883		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
    884		do {
    885			pps_get_ts(&now);
    886		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
    887			 READ_ONCE(*mc_running));
    888
    889		/* Synchronise NIC with single word of time only */
    890		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
    891			     now.ts_real.tv_nsec);
    892		/* Update host time in NIC memory */
    893		efx->type->ptp_write_host_time(efx, host_time);
    894	}
    895	*last_time = now;
    896}
    897
    898/* Read a timeset from the MC's results and partial process. */
    899static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
    900				 struct efx_ptp_timeset *timeset)
    901{
    902	unsigned start_ns, end_ns;
    903
    904	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
    905	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
    906	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
    907	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
    908	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
    909
    910	/* Ignore seconds */
    911	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
    912	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
    913	/* Allow for rollover */
    914	if (end_ns < start_ns)
    915		end_ns += NSEC_PER_SEC;
    916	/* Determine duration of operation */
    917	timeset->window = end_ns - start_ns;
    918}
    919
    920/* Process times received from MC.
    921 *
    922 * Extract times from returned results, and establish the minimum value
    923 * seen.  The minimum value represents the "best" possible time and events
    924 * too much greater than this are rejected - the machine is, perhaps, too
    925 * busy. A number of readings are taken so that, hopefully, at least one good
    926 * synchronisation will be seen in the results.
    927 */
    928static int
    929efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
    930		      size_t response_length,
    931		      const struct pps_event_time *last_time)
    932{
    933	unsigned number_readings =
    934		MCDI_VAR_ARRAY_LEN(response_length,
    935				   PTP_OUT_SYNCHRONIZE_TIMESET);
    936	unsigned i;
    937	unsigned ngood = 0;
    938	unsigned last_good = 0;
    939	struct efx_ptp_data *ptp = efx->ptp_data;
    940	u32 last_sec;
    941	u32 start_sec;
    942	struct timespec64 delta;
    943	ktime_t mc_time;
    944
    945	if (number_readings == 0)
    946		return -EAGAIN;
    947
    948	/* Read the set of results and find the last good host-MC
    949	 * synchronization result. The MC times when it finishes reading the
    950	 * host time so the corrected window time should be fairly constant
    951	 * for a given platform. Increment stats for any results that appear
    952	 * to be erroneous.
    953	 */
    954	for (i = 0; i < number_readings; i++) {
    955		s32 window, corrected;
    956		struct timespec64 wait;
    957
    958		efx_ptp_read_timeset(
    959			MCDI_ARRAY_STRUCT_PTR(synch_buf,
    960					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
    961			&ptp->timeset[i]);
    962
    963		wait = ktime_to_timespec64(
    964			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
    965		window = ptp->timeset[i].window;
    966		corrected = window - wait.tv_nsec;
    967
    968		/* We expect the uncorrected synchronization window to be at
    969		 * least as large as the interval between host start and end
    970		 * times. If it is smaller than this then this is mostly likely
    971		 * to be a consequence of the host's time being adjusted.
    972		 * Check that the corrected sync window is in a reasonable
    973		 * range. If it is out of range it is likely to be because an
    974		 * interrupt or other delay occurred between reading the system
    975		 * time and writing it to MC memory.
    976		 */
    977		if (window < SYNCHRONISATION_GRANULARITY_NS) {
    978			++ptp->invalid_sync_windows;
    979		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
    980			++ptp->oversize_sync_windows;
    981		} else if (corrected < ptp->min_synchronisation_ns) {
    982			++ptp->undersize_sync_windows;
    983		} else {
    984			ngood++;
    985			last_good = i;
    986		}
    987	}
    988
    989	if (ngood == 0) {
    990		netif_warn(efx, drv, efx->net_dev,
    991			   "PTP no suitable synchronisations\n");
    992		return -EAGAIN;
    993	}
    994
    995	/* Calculate delay from last good sync (host time) to last_time.
    996	 * It is possible that the seconds rolled over between taking
    997	 * the start reading and the last value written by the host.  The
    998	 * timescales are such that a gap of more than one second is never
    999	 * expected.  delta is *not* normalised.
   1000	 */
   1001	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
   1002	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
   1003	if (start_sec != last_sec &&
   1004	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
   1005		netif_warn(efx, hw, efx->net_dev,
   1006			   "PTP bad synchronisation seconds\n");
   1007		return -EAGAIN;
   1008	}
   1009	delta.tv_sec = (last_sec - start_sec) & 1;
   1010	delta.tv_nsec =
   1011		last_time->ts_real.tv_nsec -
   1012		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
   1013
   1014	/* Convert the NIC time at last good sync into kernel time.
   1015	 * No correction is required - this time is the output of a
   1016	 * firmware process.
   1017	 */
   1018	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
   1019					  ptp->timeset[last_good].minor, 0);
   1020
   1021	/* Calculate delay from NIC top of second to last_time */
   1022	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
   1023
   1024	/* Set PPS timestamp to match NIC top of second */
   1025	ptp->host_time_pps = *last_time;
   1026	pps_sub_ts(&ptp->host_time_pps, delta);
   1027
   1028	return 0;
   1029}
   1030
   1031/* Synchronize times between the host and the MC */
   1032static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
   1033{
   1034	struct efx_ptp_data *ptp = efx->ptp_data;
   1035	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
   1036	size_t response_length;
   1037	int rc;
   1038	unsigned long timeout;
   1039	struct pps_event_time last_time = {};
   1040	unsigned int loops = 0;
   1041	int *start = ptp->start.addr;
   1042
   1043	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
   1044	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
   1045	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
   1046		       num_readings);
   1047	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
   1048		       ptp->start.dma_addr);
   1049
   1050	/* Clear flag that signals MC ready */
   1051	WRITE_ONCE(*start, 0);
   1052	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
   1053				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
   1054	EFX_WARN_ON_ONCE_PARANOID(rc);
   1055
   1056	/* Wait for start from MCDI (or timeout) */
   1057	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
   1058	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
   1059		udelay(20);	/* Usually start MCDI execution quickly */
   1060		loops++;
   1061	}
   1062
   1063	if (loops <= 1)
   1064		++ptp->fast_syncs;
   1065	if (!time_before(jiffies, timeout))
   1066		++ptp->sync_timeouts;
   1067
   1068	if (READ_ONCE(*start))
   1069		efx_ptp_send_times(efx, &last_time);
   1070
   1071	/* Collect results */
   1072	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
   1073				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
   1074				 synch_buf, sizeof(synch_buf),
   1075				 &response_length);
   1076	if (rc == 0) {
   1077		rc = efx_ptp_process_times(efx, synch_buf, response_length,
   1078					   &last_time);
   1079		if (rc == 0)
   1080			++ptp->good_syncs;
   1081		else
   1082			++ptp->no_time_syncs;
   1083	}
   1084
   1085	/* Increment the bad syncs counter if the synchronize fails, whatever
   1086	 * the reason.
   1087	 */
   1088	if (rc != 0)
   1089		++ptp->bad_syncs;
   1090
   1091	return rc;
   1092}
   1093
   1094/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
   1095static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
   1096{
   1097	struct efx_ptp_data *ptp_data = efx->ptp_data;
   1098	u8 type = efx_tx_csum_type_skb(skb);
   1099	struct efx_tx_queue *tx_queue;
   1100
   1101	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
   1102	if (tx_queue && tx_queue->timestamping) {
   1103		efx_enqueue_skb(tx_queue, skb);
   1104	} else {
   1105		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
   1106		dev_kfree_skb_any(skb);
   1107	}
   1108}
   1109
   1110/* Transmit a PTP packet, via the MCDI interface, to the wire. */
   1111static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
   1112{
   1113	struct efx_ptp_data *ptp_data = efx->ptp_data;
   1114	struct skb_shared_hwtstamps timestamps;
   1115	int rc = -EIO;
   1116	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
   1117	size_t len;
   1118
   1119	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
   1120	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
   1121	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
   1122	if (skb_shinfo(skb)->nr_frags != 0) {
   1123		rc = skb_linearize(skb);
   1124		if (rc != 0)
   1125			goto fail;
   1126	}
   1127
   1128	if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1129		rc = skb_checksum_help(skb);
   1130		if (rc != 0)
   1131			goto fail;
   1132	}
   1133	skb_copy_from_linear_data(skb,
   1134				  MCDI_PTR(ptp_data->txbuf,
   1135					   PTP_IN_TRANSMIT_PACKET),
   1136				  skb->len);
   1137	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
   1138			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
   1139			  txtime, sizeof(txtime), &len);
   1140	if (rc != 0)
   1141		goto fail;
   1142
   1143	memset(&timestamps, 0, sizeof(timestamps));
   1144	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
   1145		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
   1146		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
   1147		ptp_data->ts_corrections.ptp_tx);
   1148
   1149	skb_tstamp_tx(skb, &timestamps);
   1150
   1151	rc = 0;
   1152
   1153fail:
   1154	dev_kfree_skb_any(skb);
   1155
   1156	return;
   1157}
   1158
   1159static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
   1160{
   1161	struct efx_ptp_data *ptp = efx->ptp_data;
   1162	struct list_head *cursor;
   1163	struct list_head *next;
   1164
   1165	if (ptp->rx_ts_inline)
   1166		return;
   1167
   1168	/* Drop time-expired events */
   1169	spin_lock_bh(&ptp->evt_lock);
   1170	list_for_each_safe(cursor, next, &ptp->evt_list) {
   1171		struct efx_ptp_event_rx *evt;
   1172
   1173		evt = list_entry(cursor, struct efx_ptp_event_rx,
   1174				 link);
   1175		if (time_after(jiffies, evt->expiry)) {
   1176			list_move(&evt->link, &ptp->evt_free_list);
   1177			netif_warn(efx, hw, efx->net_dev,
   1178				   "PTP rx event dropped\n");
   1179		}
   1180	}
   1181	spin_unlock_bh(&ptp->evt_lock);
   1182}
   1183
   1184static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
   1185					      struct sk_buff *skb)
   1186{
   1187	struct efx_ptp_data *ptp = efx->ptp_data;
   1188	bool evts_waiting;
   1189	struct list_head *cursor;
   1190	struct list_head *next;
   1191	struct efx_ptp_match *match;
   1192	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
   1193
   1194	WARN_ON_ONCE(ptp->rx_ts_inline);
   1195
   1196	spin_lock_bh(&ptp->evt_lock);
   1197	evts_waiting = !list_empty(&ptp->evt_list);
   1198	spin_unlock_bh(&ptp->evt_lock);
   1199
   1200	if (!evts_waiting)
   1201		return PTP_PACKET_STATE_UNMATCHED;
   1202
   1203	match = (struct efx_ptp_match *)skb->cb;
   1204	/* Look for a matching timestamp in the event queue */
   1205	spin_lock_bh(&ptp->evt_lock);
   1206	list_for_each_safe(cursor, next, &ptp->evt_list) {
   1207		struct efx_ptp_event_rx *evt;
   1208
   1209		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
   1210		if ((evt->seq0 == match->words[0]) &&
   1211		    (evt->seq1 == match->words[1])) {
   1212			struct skb_shared_hwtstamps *timestamps;
   1213
   1214			/* Match - add in hardware timestamp */
   1215			timestamps = skb_hwtstamps(skb);
   1216			timestamps->hwtstamp = evt->hwtimestamp;
   1217
   1218			match->state = PTP_PACKET_STATE_MATCHED;
   1219			rc = PTP_PACKET_STATE_MATCHED;
   1220			list_move(&evt->link, &ptp->evt_free_list);
   1221			break;
   1222		}
   1223	}
   1224	spin_unlock_bh(&ptp->evt_lock);
   1225
   1226	return rc;
   1227}
   1228
   1229/* Process any queued receive events and corresponding packets
   1230 *
   1231 * q is returned with all the packets that are ready for delivery.
   1232 */
   1233static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
   1234{
   1235	struct efx_ptp_data *ptp = efx->ptp_data;
   1236	struct sk_buff *skb;
   1237
   1238	while ((skb = skb_dequeue(&ptp->rxq))) {
   1239		struct efx_ptp_match *match;
   1240
   1241		match = (struct efx_ptp_match *)skb->cb;
   1242		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
   1243			__skb_queue_tail(q, skb);
   1244		} else if (efx_ptp_match_rx(efx, skb) ==
   1245			   PTP_PACKET_STATE_MATCHED) {
   1246			__skb_queue_tail(q, skb);
   1247		} else if (time_after(jiffies, match->expiry)) {
   1248			match->state = PTP_PACKET_STATE_TIMED_OUT;
   1249			++ptp->rx_no_timestamp;
   1250			__skb_queue_tail(q, skb);
   1251		} else {
   1252			/* Replace unprocessed entry and stop */
   1253			skb_queue_head(&ptp->rxq, skb);
   1254			break;
   1255		}
   1256	}
   1257}
   1258
   1259/* Complete processing of a received packet */
   1260static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
   1261{
   1262	local_bh_disable();
   1263	netif_receive_skb(skb);
   1264	local_bh_enable();
   1265}
   1266
   1267static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
   1268{
   1269	struct efx_ptp_data *ptp = efx->ptp_data;
   1270
   1271	if (ptp->rxfilter_installed) {
   1272		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
   1273					  ptp->rxfilter_general);
   1274		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
   1275					  ptp->rxfilter_event);
   1276		ptp->rxfilter_installed = false;
   1277	}
   1278}
   1279
   1280static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
   1281{
   1282	struct efx_ptp_data *ptp = efx->ptp_data;
   1283	struct efx_filter_spec rxfilter;
   1284	int rc;
   1285
   1286	if (!ptp->channel || ptp->rxfilter_installed)
   1287		return 0;
   1288
   1289	/* Must filter on both event and general ports to ensure
   1290	 * that there is no packet re-ordering.
   1291	 */
   1292	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
   1293			   efx_rx_queue_index(
   1294				   efx_channel_get_rx_queue(ptp->channel)));
   1295	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
   1296				       htonl(PTP_ADDRESS),
   1297				       htons(PTP_EVENT_PORT));
   1298	if (rc != 0)
   1299		return rc;
   1300
   1301	rc = efx_filter_insert_filter(efx, &rxfilter, true);
   1302	if (rc < 0)
   1303		return rc;
   1304	ptp->rxfilter_event = rc;
   1305
   1306	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
   1307			   efx_rx_queue_index(
   1308				   efx_channel_get_rx_queue(ptp->channel)));
   1309	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
   1310				       htonl(PTP_ADDRESS),
   1311				       htons(PTP_GENERAL_PORT));
   1312	if (rc != 0)
   1313		goto fail;
   1314
   1315	rc = efx_filter_insert_filter(efx, &rxfilter, true);
   1316	if (rc < 0)
   1317		goto fail;
   1318	ptp->rxfilter_general = rc;
   1319
   1320	ptp->rxfilter_installed = true;
   1321	return 0;
   1322
   1323fail:
   1324	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
   1325				  ptp->rxfilter_event);
   1326	return rc;
   1327}
   1328
   1329static int efx_ptp_start(struct efx_nic *efx)
   1330{
   1331	struct efx_ptp_data *ptp = efx->ptp_data;
   1332	int rc;
   1333
   1334	ptp->reset_required = false;
   1335
   1336	rc = efx_ptp_insert_multicast_filters(efx);
   1337	if (rc)
   1338		return rc;
   1339
   1340	rc = efx_ptp_enable(efx);
   1341	if (rc != 0)
   1342		goto fail;
   1343
   1344	ptp->evt_frag_idx = 0;
   1345	ptp->current_adjfreq = 0;
   1346
   1347	return 0;
   1348
   1349fail:
   1350	efx_ptp_remove_multicast_filters(efx);
   1351	return rc;
   1352}
   1353
   1354static int efx_ptp_stop(struct efx_nic *efx)
   1355{
   1356	struct efx_ptp_data *ptp = efx->ptp_data;
   1357	struct list_head *cursor;
   1358	struct list_head *next;
   1359	int rc;
   1360
   1361	if (ptp == NULL)
   1362		return 0;
   1363
   1364	rc = efx_ptp_disable(efx);
   1365
   1366	efx_ptp_remove_multicast_filters(efx);
   1367
   1368	/* Make sure RX packets are really delivered */
   1369	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
   1370	skb_queue_purge(&efx->ptp_data->txq);
   1371
   1372	/* Drop any pending receive events */
   1373	spin_lock_bh(&efx->ptp_data->evt_lock);
   1374	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
   1375		list_move(cursor, &efx->ptp_data->evt_free_list);
   1376	}
   1377	spin_unlock_bh(&efx->ptp_data->evt_lock);
   1378
   1379	return rc;
   1380}
   1381
   1382static int efx_ptp_restart(struct efx_nic *efx)
   1383{
   1384	if (efx->ptp_data && efx->ptp_data->enabled)
   1385		return efx_ptp_start(efx);
   1386	return 0;
   1387}
   1388
   1389static void efx_ptp_pps_worker(struct work_struct *work)
   1390{
   1391	struct efx_ptp_data *ptp =
   1392		container_of(work, struct efx_ptp_data, pps_work);
   1393	struct efx_nic *efx = ptp->efx;
   1394	struct ptp_clock_event ptp_evt;
   1395
   1396	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
   1397		return;
   1398
   1399	ptp_evt.type = PTP_CLOCK_PPSUSR;
   1400	ptp_evt.pps_times = ptp->host_time_pps;
   1401	ptp_clock_event(ptp->phc_clock, &ptp_evt);
   1402}
   1403
   1404static void efx_ptp_worker(struct work_struct *work)
   1405{
   1406	struct efx_ptp_data *ptp_data =
   1407		container_of(work, struct efx_ptp_data, work);
   1408	struct efx_nic *efx = ptp_data->efx;
   1409	struct sk_buff *skb;
   1410	struct sk_buff_head tempq;
   1411
   1412	if (ptp_data->reset_required) {
   1413		efx_ptp_stop(efx);
   1414		efx_ptp_start(efx);
   1415		return;
   1416	}
   1417
   1418	efx_ptp_drop_time_expired_events(efx);
   1419
   1420	__skb_queue_head_init(&tempq);
   1421	efx_ptp_process_events(efx, &tempq);
   1422
   1423	while ((skb = skb_dequeue(&ptp_data->txq)))
   1424		ptp_data->xmit_skb(efx, skb);
   1425
   1426	while ((skb = __skb_dequeue(&tempq)))
   1427		efx_ptp_process_rx(efx, skb);
   1428}
   1429
   1430static const struct ptp_clock_info efx_phc_clock_info = {
   1431	.owner		= THIS_MODULE,
   1432	.name		= "sfc",
   1433	.max_adj	= MAX_PPB,
   1434	.n_alarm	= 0,
   1435	.n_ext_ts	= 0,
   1436	.n_per_out	= 0,
   1437	.n_pins		= 0,
   1438	.pps		= 1,
   1439	.adjfreq	= efx_phc_adjfreq,
   1440	.adjtime	= efx_phc_adjtime,
   1441	.gettime64	= efx_phc_gettime,
   1442	.settime64	= efx_phc_settime,
   1443	.enable		= efx_phc_enable,
   1444};
   1445
   1446/* Initialise PTP state. */
   1447int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
   1448{
   1449	struct efx_ptp_data *ptp;
   1450	int rc = 0;
   1451	unsigned int pos;
   1452
   1453	if (efx->ptp_data) {
   1454		efx->ptp_data->channel = channel;
   1455		return 0;
   1456	}
   1457
   1458	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
   1459	efx->ptp_data = ptp;
   1460	if (!efx->ptp_data)
   1461		return -ENOMEM;
   1462
   1463	ptp->efx = efx;
   1464	ptp->channel = channel;
   1465	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
   1466
   1467	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
   1468	if (rc != 0)
   1469		goto fail1;
   1470
   1471	skb_queue_head_init(&ptp->rxq);
   1472	skb_queue_head_init(&ptp->txq);
   1473	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
   1474	if (!ptp->workwq) {
   1475		rc = -ENOMEM;
   1476		goto fail2;
   1477	}
   1478
   1479	if (efx_ptp_use_mac_tx_timestamps(efx)) {
   1480		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
   1481		/* Request sync events on this channel. */
   1482		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
   1483	} else {
   1484		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
   1485	}
   1486
   1487	INIT_WORK(&ptp->work, efx_ptp_worker);
   1488	ptp->config.flags = 0;
   1489	ptp->config.tx_type = HWTSTAMP_TX_OFF;
   1490	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
   1491	INIT_LIST_HEAD(&ptp->evt_list);
   1492	INIT_LIST_HEAD(&ptp->evt_free_list);
   1493	spin_lock_init(&ptp->evt_lock);
   1494	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
   1495		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
   1496
   1497	/* Get the NIC PTP attributes and set up time conversions */
   1498	rc = efx_ptp_get_attributes(efx);
   1499	if (rc < 0)
   1500		goto fail3;
   1501
   1502	/* Get the timestamp corrections */
   1503	rc = efx_ptp_get_timestamp_corrections(efx);
   1504	if (rc < 0)
   1505		goto fail3;
   1506
   1507	if (efx->mcdi->fn_flags &
   1508	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
   1509		ptp->phc_clock_info = efx_phc_clock_info;
   1510		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
   1511						    &efx->pci_dev->dev);
   1512		if (IS_ERR(ptp->phc_clock)) {
   1513			rc = PTR_ERR(ptp->phc_clock);
   1514			goto fail3;
   1515		} else if (ptp->phc_clock) {
   1516			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
   1517			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
   1518			if (!ptp->pps_workwq) {
   1519				rc = -ENOMEM;
   1520				goto fail4;
   1521			}
   1522		}
   1523	}
   1524	ptp->nic_ts_enabled = false;
   1525
   1526	return 0;
   1527fail4:
   1528	ptp_clock_unregister(efx->ptp_data->phc_clock);
   1529
   1530fail3:
   1531	destroy_workqueue(efx->ptp_data->workwq);
   1532
   1533fail2:
   1534	efx_nic_free_buffer(efx, &ptp->start);
   1535
   1536fail1:
   1537	kfree(efx->ptp_data);
   1538	efx->ptp_data = NULL;
   1539
   1540	return rc;
   1541}
   1542
   1543/* Initialise PTP channel.
   1544 *
   1545 * Setting core_index to zero causes the queue to be initialised and doesn't
   1546 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
   1547 */
   1548static int efx_ptp_probe_channel(struct efx_channel *channel)
   1549{
   1550	struct efx_nic *efx = channel->efx;
   1551	int rc;
   1552
   1553	channel->irq_moderation_us = 0;
   1554	channel->rx_queue.core_index = 0;
   1555
   1556	rc = efx_ptp_probe(efx, channel);
   1557	/* Failure to probe PTP is not fatal; this channel will just not be
   1558	 * used for anything.
   1559	 * In the case of EPERM, efx_ptp_probe will print its own message (in
   1560	 * efx_ptp_get_attributes()), so we don't need to.
   1561	 */
   1562	if (rc && rc != -EPERM)
   1563		netif_warn(efx, drv, efx->net_dev,
   1564			   "Failed to probe PTP, rc=%d\n", rc);
   1565	return 0;
   1566}
   1567
   1568void efx_ptp_remove(struct efx_nic *efx)
   1569{
   1570	if (!efx->ptp_data)
   1571		return;
   1572
   1573	(void)efx_ptp_disable(efx);
   1574
   1575	cancel_work_sync(&efx->ptp_data->work);
   1576	if (efx->ptp_data->pps_workwq)
   1577		cancel_work_sync(&efx->ptp_data->pps_work);
   1578
   1579	skb_queue_purge(&efx->ptp_data->rxq);
   1580	skb_queue_purge(&efx->ptp_data->txq);
   1581
   1582	if (efx->ptp_data->phc_clock) {
   1583		destroy_workqueue(efx->ptp_data->pps_workwq);
   1584		ptp_clock_unregister(efx->ptp_data->phc_clock);
   1585	}
   1586
   1587	destroy_workqueue(efx->ptp_data->workwq);
   1588
   1589	efx_nic_free_buffer(efx, &efx->ptp_data->start);
   1590	kfree(efx->ptp_data);
   1591	efx->ptp_data = NULL;
   1592}
   1593
   1594static void efx_ptp_remove_channel(struct efx_channel *channel)
   1595{
   1596	efx_ptp_remove(channel->efx);
   1597}
   1598
   1599static void efx_ptp_get_channel_name(struct efx_channel *channel,
   1600				     char *buf, size_t len)
   1601{
   1602	snprintf(buf, len, "%s-ptp", channel->efx->name);
   1603}
   1604
   1605/* Determine whether this packet should be processed by the PTP module
   1606 * or transmitted conventionally.
   1607 */
   1608bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
   1609{
   1610	return efx->ptp_data &&
   1611		efx->ptp_data->enabled &&
   1612		skb->len >= PTP_MIN_LENGTH &&
   1613		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
   1614		likely(skb->protocol == htons(ETH_P_IP)) &&
   1615		skb_transport_header_was_set(skb) &&
   1616		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
   1617		ip_hdr(skb)->protocol == IPPROTO_UDP &&
   1618		skb_headlen(skb) >=
   1619		skb_transport_offset(skb) + sizeof(struct udphdr) &&
   1620		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
   1621}
   1622
   1623/* Receive a PTP packet.  Packets are queued until the arrival of
   1624 * the receive timestamp from the MC - this will probably occur after the
   1625 * packet arrival because of the processing in the MC.
   1626 */
   1627static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
   1628{
   1629	struct efx_nic *efx = channel->efx;
   1630	struct efx_ptp_data *ptp = efx->ptp_data;
   1631	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
   1632	u8 *match_data_012, *match_data_345;
   1633	unsigned int version;
   1634	u8 *data;
   1635
   1636	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
   1637
   1638	/* Correct version? */
   1639	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
   1640		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
   1641			return false;
   1642		}
   1643		data = skb->data;
   1644		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
   1645		if (version != PTP_VERSION_V1) {
   1646			return false;
   1647		}
   1648
   1649		/* PTP V1 uses all six bytes of the UUID to match the packet
   1650		 * to the timestamp
   1651		 */
   1652		match_data_012 = data + PTP_V1_UUID_OFFSET;
   1653		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
   1654	} else {
   1655		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
   1656			return false;
   1657		}
   1658		data = skb->data;
   1659		version = data[PTP_V2_VERSION_OFFSET];
   1660		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
   1661			return false;
   1662		}
   1663
   1664		/* The original V2 implementation uses bytes 2-7 of
   1665		 * the UUID to match the packet to the timestamp. This
   1666		 * discards two of the bytes of the MAC address used
   1667		 * to create the UUID (SF bug 33070).  The PTP V2
   1668		 * enhanced mode fixes this issue and uses bytes 0-2
   1669		 * and byte 5-7 of the UUID.
   1670		 */
   1671		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
   1672		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
   1673			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
   1674		} else {
   1675			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
   1676			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
   1677		}
   1678	}
   1679
   1680	/* Does this packet require timestamping? */
   1681	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
   1682		match->state = PTP_PACKET_STATE_UNMATCHED;
   1683
   1684		/* We expect the sequence number to be in the same position in
   1685		 * the packet for PTP V1 and V2
   1686		 */
   1687		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
   1688		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
   1689
   1690		/* Extract UUID/Sequence information */
   1691		match->words[0] = (match_data_012[0]         |
   1692				   (match_data_012[1] << 8)  |
   1693				   (match_data_012[2] << 16) |
   1694				   (match_data_345[0] << 24));
   1695		match->words[1] = (match_data_345[1]         |
   1696				   (match_data_345[2] << 8)  |
   1697				   (data[PTP_V1_SEQUENCE_OFFSET +
   1698					 PTP_V1_SEQUENCE_LENGTH - 1] <<
   1699				    16));
   1700	} else {
   1701		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
   1702	}
   1703
   1704	skb_queue_tail(&ptp->rxq, skb);
   1705	queue_work(ptp->workwq, &ptp->work);
   1706
   1707	return true;
   1708}
   1709
   1710/* Transmit a PTP packet.  This has to be transmitted by the MC
   1711 * itself, through an MCDI call.  MCDI calls aren't permitted
   1712 * in the transmit path so defer the actual transmission to a suitable worker.
   1713 */
   1714int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
   1715{
   1716	struct efx_ptp_data *ptp = efx->ptp_data;
   1717
   1718	skb_queue_tail(&ptp->txq, skb);
   1719
   1720	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
   1721	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
   1722		efx_xmit_hwtstamp_pending(skb);
   1723	queue_work(ptp->workwq, &ptp->work);
   1724
   1725	return NETDEV_TX_OK;
   1726}
   1727
   1728int efx_ptp_get_mode(struct efx_nic *efx)
   1729{
   1730	return efx->ptp_data->mode;
   1731}
   1732
   1733int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
   1734			unsigned int new_mode)
   1735{
   1736	if ((enable_wanted != efx->ptp_data->enabled) ||
   1737	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
   1738		int rc = 0;
   1739
   1740		if (enable_wanted) {
   1741			/* Change of mode requires disable */
   1742			if (efx->ptp_data->enabled &&
   1743			    (efx->ptp_data->mode != new_mode)) {
   1744				efx->ptp_data->enabled = false;
   1745				rc = efx_ptp_stop(efx);
   1746				if (rc != 0)
   1747					return rc;
   1748			}
   1749
   1750			/* Set new operating mode and establish
   1751			 * baseline synchronisation, which must
   1752			 * succeed.
   1753			 */
   1754			efx->ptp_data->mode = new_mode;
   1755			if (netif_running(efx->net_dev))
   1756				rc = efx_ptp_start(efx);
   1757			if (rc == 0) {
   1758				rc = efx_ptp_synchronize(efx,
   1759							 PTP_SYNC_ATTEMPTS * 2);
   1760				if (rc != 0)
   1761					efx_ptp_stop(efx);
   1762			}
   1763		} else {
   1764			rc = efx_ptp_stop(efx);
   1765		}
   1766
   1767		if (rc != 0)
   1768			return rc;
   1769
   1770		efx->ptp_data->enabled = enable_wanted;
   1771	}
   1772
   1773	return 0;
   1774}
   1775
   1776static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
   1777{
   1778	int rc;
   1779
   1780	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
   1781	    (init->tx_type != HWTSTAMP_TX_ON))
   1782		return -ERANGE;
   1783
   1784	rc = efx->type->ptp_set_ts_config(efx, init);
   1785	if (rc)
   1786		return rc;
   1787
   1788	efx->ptp_data->config = *init;
   1789	return 0;
   1790}
   1791
   1792void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
   1793{
   1794	struct efx_ptp_data *ptp = efx->ptp_data;
   1795	struct efx_nic *primary = efx->primary;
   1796
   1797	ASSERT_RTNL();
   1798
   1799	if (!ptp)
   1800		return;
   1801
   1802	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
   1803				     SOF_TIMESTAMPING_RX_HARDWARE |
   1804				     SOF_TIMESTAMPING_RAW_HARDWARE);
   1805	/* Check licensed features.  If we don't have the license for TX
   1806	 * timestamps, the NIC will not support them.
   1807	 */
   1808	if (efx_ptp_use_mac_tx_timestamps(efx)) {
   1809		struct efx_ef10_nic_data *nic_data = efx->nic_data;
   1810
   1811		if (!(nic_data->licensed_features &
   1812		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
   1813			ts_info->so_timestamping &=
   1814				~SOF_TIMESTAMPING_TX_HARDWARE;
   1815	}
   1816	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
   1817		ts_info->phc_index =
   1818			ptp_clock_index(primary->ptp_data->phc_clock);
   1819	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
   1820	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
   1821}
   1822
   1823int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
   1824{
   1825	struct hwtstamp_config config;
   1826	int rc;
   1827
   1828	/* Not a PTP enabled port */
   1829	if (!efx->ptp_data)
   1830		return -EOPNOTSUPP;
   1831
   1832	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
   1833		return -EFAULT;
   1834
   1835	rc = efx_ptp_ts_init(efx, &config);
   1836	if (rc != 0)
   1837		return rc;
   1838
   1839	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
   1840		? -EFAULT : 0;
   1841}
   1842
   1843int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
   1844{
   1845	if (!efx->ptp_data)
   1846		return -EOPNOTSUPP;
   1847
   1848	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
   1849			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
   1850}
   1851
   1852static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
   1853{
   1854	struct efx_ptp_data *ptp = efx->ptp_data;
   1855
   1856	netif_err(efx, hw, efx->net_dev,
   1857		"PTP unexpected event length: got %d expected %d\n",
   1858		ptp->evt_frag_idx, expected_frag_len);
   1859	ptp->reset_required = true;
   1860	queue_work(ptp->workwq, &ptp->work);
   1861}
   1862
   1863/* Process a completed receive event.  Put it on the event queue and
   1864 * start worker thread.  This is required because event and their
   1865 * correspoding packets may come in either order.
   1866 */
   1867static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
   1868{
   1869	struct efx_ptp_event_rx *evt = NULL;
   1870
   1871	if (WARN_ON_ONCE(ptp->rx_ts_inline))
   1872		return;
   1873
   1874	if (ptp->evt_frag_idx != 3) {
   1875		ptp_event_failure(efx, 3);
   1876		return;
   1877	}
   1878
   1879	spin_lock_bh(&ptp->evt_lock);
   1880	if (!list_empty(&ptp->evt_free_list)) {
   1881		evt = list_first_entry(&ptp->evt_free_list,
   1882				       struct efx_ptp_event_rx, link);
   1883		list_del(&evt->link);
   1884
   1885		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
   1886		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
   1887					     MCDI_EVENT_SRC)        |
   1888			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
   1889					      MCDI_EVENT_SRC) << 8) |
   1890			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
   1891					      MCDI_EVENT_SRC) << 16));
   1892		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
   1893			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
   1894			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
   1895			ptp->ts_corrections.ptp_rx);
   1896		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
   1897		list_add_tail(&evt->link, &ptp->evt_list);
   1898
   1899		queue_work(ptp->workwq, &ptp->work);
   1900	} else if (net_ratelimit()) {
   1901		/* Log a rate-limited warning message. */
   1902		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
   1903	}
   1904	spin_unlock_bh(&ptp->evt_lock);
   1905}
   1906
   1907static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
   1908{
   1909	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
   1910	if (ptp->evt_frag_idx != 1) {
   1911		ptp_event_failure(efx, 1);
   1912		return;
   1913	}
   1914
   1915	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
   1916}
   1917
   1918static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
   1919{
   1920	if (ptp->nic_ts_enabled)
   1921		queue_work(ptp->pps_workwq, &ptp->pps_work);
   1922}
   1923
   1924void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
   1925{
   1926	struct efx_ptp_data *ptp = efx->ptp_data;
   1927	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
   1928
   1929	if (!ptp) {
   1930		if (!efx->ptp_warned) {
   1931			netif_warn(efx, drv, efx->net_dev,
   1932				   "Received PTP event but PTP not set up\n");
   1933			efx->ptp_warned = true;
   1934		}
   1935		return;
   1936	}
   1937
   1938	if (!ptp->enabled)
   1939		return;
   1940
   1941	if (ptp->evt_frag_idx == 0) {
   1942		ptp->evt_code = code;
   1943	} else if (ptp->evt_code != code) {
   1944		netif_err(efx, hw, efx->net_dev,
   1945			  "PTP out of sequence event %d\n", code);
   1946		ptp->evt_frag_idx = 0;
   1947	}
   1948
   1949	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
   1950	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
   1951		/* Process resulting event */
   1952		switch (code) {
   1953		case MCDI_EVENT_CODE_PTP_RX:
   1954			ptp_event_rx(efx, ptp);
   1955			break;
   1956		case MCDI_EVENT_CODE_PTP_FAULT:
   1957			ptp_event_fault(efx, ptp);
   1958			break;
   1959		case MCDI_EVENT_CODE_PTP_PPS:
   1960			ptp_event_pps(efx, ptp);
   1961			break;
   1962		default:
   1963			netif_err(efx, hw, efx->net_dev,
   1964				  "PTP unknown event %d\n", code);
   1965			break;
   1966		}
   1967		ptp->evt_frag_idx = 0;
   1968	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
   1969		netif_err(efx, hw, efx->net_dev,
   1970			  "PTP too many event fragments\n");
   1971		ptp->evt_frag_idx = 0;
   1972	}
   1973}
   1974
   1975void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
   1976{
   1977	struct efx_nic *efx = channel->efx;
   1978	struct efx_ptp_data *ptp = efx->ptp_data;
   1979
   1980	/* When extracting the sync timestamp minor value, we should discard
   1981	 * the least significant two bits. These are not required in order
   1982	 * to reconstruct full-range timestamps and they are optionally used
   1983	 * to report status depending on the options supplied when subscribing
   1984	 * for sync events.
   1985	 */
   1986	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
   1987	channel->sync_timestamp_minor =
   1988		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
   1989			<< ptp->nic_time.sync_event_minor_shift;
   1990
   1991	/* if sync events have been disabled then we want to silently ignore
   1992	 * this event, so throw away result.
   1993	 */
   1994	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
   1995		       SYNC_EVENTS_VALID);
   1996}
   1997
   1998static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
   1999{
   2000#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
   2001	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
   2002#else
   2003	const u8 *data = eh + efx->rx_packet_ts_offset;
   2004	return (u32)data[0]       |
   2005	       (u32)data[1] << 8  |
   2006	       (u32)data[2] << 16 |
   2007	       (u32)data[3] << 24;
   2008#endif
   2009}
   2010
   2011void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
   2012				   struct sk_buff *skb)
   2013{
   2014	struct efx_nic *efx = channel->efx;
   2015	struct efx_ptp_data *ptp = efx->ptp_data;
   2016	u32 pkt_timestamp_major, pkt_timestamp_minor;
   2017	u32 diff, carry;
   2018	struct skb_shared_hwtstamps *timestamps;
   2019
   2020	if (channel->sync_events_state != SYNC_EVENTS_VALID)
   2021		return;
   2022
   2023	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
   2024
   2025	/* get the difference between the packet and sync timestamps,
   2026	 * modulo one second
   2027	 */
   2028	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
   2029	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
   2030		diff += ptp->nic_time.minor_max;
   2031
   2032	/* do we roll over a second boundary and need to carry the one? */
   2033	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
   2034		1 : 0;
   2035
   2036	if (diff <= ptp->nic_time.sync_event_diff_max) {
   2037		/* packet is ahead of the sync event by a quarter of a second or
   2038		 * less (allowing for fuzz)
   2039		 */
   2040		pkt_timestamp_major = channel->sync_timestamp_major + carry;
   2041	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
   2042		/* packet is behind the sync event but within the fuzz factor.
   2043		 * This means the RX packet and sync event crossed as they were
   2044		 * placed on the event queue, which can sometimes happen.
   2045		 */
   2046		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
   2047	} else {
   2048		/* it's outside tolerance in both directions. this might be
   2049		 * indicative of us missing sync events for some reason, so
   2050		 * we'll call it an error rather than risk giving a bogus
   2051		 * timestamp.
   2052		 */
   2053		netif_vdbg(efx, drv, efx->net_dev,
   2054			  "packet timestamp %x too far from sync event %x:%x\n",
   2055			  pkt_timestamp_minor, channel->sync_timestamp_major,
   2056			  channel->sync_timestamp_minor);
   2057		return;
   2058	}
   2059
   2060	/* attach the timestamps to the skb */
   2061	timestamps = skb_hwtstamps(skb);
   2062	timestamps->hwtstamp =
   2063		ptp->nic_to_kernel_time(pkt_timestamp_major,
   2064					pkt_timestamp_minor,
   2065					ptp->ts_corrections.general_rx);
   2066}
   2067
   2068static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
   2069{
   2070	struct efx_ptp_data *ptp_data = container_of(ptp,
   2071						     struct efx_ptp_data,
   2072						     phc_clock_info);
   2073	struct efx_nic *efx = ptp_data->efx;
   2074	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
   2075	s64 adjustment_ns;
   2076	int rc;
   2077
   2078	if (delta > MAX_PPB)
   2079		delta = MAX_PPB;
   2080	else if (delta < -MAX_PPB)
   2081		delta = -MAX_PPB;
   2082
   2083	/* Convert ppb to fixed point ns taking care to round correctly. */
   2084	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
   2085			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
   2086			ptp_data->adjfreq_ppb_shift;
   2087
   2088	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
   2089	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
   2090	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
   2091	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
   2092	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
   2093	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
   2094			  NULL, 0, NULL);
   2095	if (rc != 0)
   2096		return rc;
   2097
   2098	ptp_data->current_adjfreq = adjustment_ns;
   2099	return 0;
   2100}
   2101
   2102static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
   2103{
   2104	u32 nic_major, nic_minor;
   2105	struct efx_ptp_data *ptp_data = container_of(ptp,
   2106						     struct efx_ptp_data,
   2107						     phc_clock_info);
   2108	struct efx_nic *efx = ptp_data->efx;
   2109	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
   2110
   2111	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
   2112
   2113	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
   2114	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
   2115	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
   2116	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
   2117	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
   2118	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
   2119			    NULL, 0, NULL);
   2120}
   2121
   2122static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
   2123{
   2124	struct efx_ptp_data *ptp_data = container_of(ptp,
   2125						     struct efx_ptp_data,
   2126						     phc_clock_info);
   2127	struct efx_nic *efx = ptp_data->efx;
   2128	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
   2129	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
   2130	int rc;
   2131	ktime_t kt;
   2132
   2133	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
   2134	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
   2135
   2136	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
   2137			  outbuf, sizeof(outbuf), NULL);
   2138	if (rc != 0)
   2139		return rc;
   2140
   2141	kt = ptp_data->nic_to_kernel_time(
   2142		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
   2143		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
   2144	*ts = ktime_to_timespec64(kt);
   2145	return 0;
   2146}
   2147
   2148static int efx_phc_settime(struct ptp_clock_info *ptp,
   2149			   const struct timespec64 *e_ts)
   2150{
   2151	/* Get the current NIC time, efx_phc_gettime.
   2152	 * Subtract from the desired time to get the offset
   2153	 * call efx_phc_adjtime with the offset
   2154	 */
   2155	int rc;
   2156	struct timespec64 time_now;
   2157	struct timespec64 delta;
   2158
   2159	rc = efx_phc_gettime(ptp, &time_now);
   2160	if (rc != 0)
   2161		return rc;
   2162
   2163	delta = timespec64_sub(*e_ts, time_now);
   2164
   2165	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
   2166	if (rc != 0)
   2167		return rc;
   2168
   2169	return 0;
   2170}
   2171
   2172static int efx_phc_enable(struct ptp_clock_info *ptp,
   2173			  struct ptp_clock_request *request,
   2174			  int enable)
   2175{
   2176	struct efx_ptp_data *ptp_data = container_of(ptp,
   2177						     struct efx_ptp_data,
   2178						     phc_clock_info);
   2179	if (request->type != PTP_CLK_REQ_PPS)
   2180		return -EOPNOTSUPP;
   2181
   2182	ptp_data->nic_ts_enabled = !!enable;
   2183	return 0;
   2184}
   2185
   2186static const struct efx_channel_type efx_ptp_channel_type = {
   2187	.handle_no_channel	= efx_ptp_handle_no_channel,
   2188	.pre_probe		= efx_ptp_probe_channel,
   2189	.post_remove		= efx_ptp_remove_channel,
   2190	.get_name		= efx_ptp_get_channel_name,
   2191	.copy                   = efx_copy_channel,
   2192	.receive_skb		= efx_ptp_rx,
   2193	.want_txqs		= efx_ptp_want_txqs,
   2194	.keep_eventq		= false,
   2195};
   2196
   2197void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
   2198{
   2199	/* Check whether PTP is implemented on this NIC.  The DISABLE
   2200	 * operation will succeed if and only if it is implemented.
   2201	 */
   2202	if (efx_ptp_disable(efx) == 0)
   2203		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
   2204			&efx_ptp_channel_type;
   2205}
   2206
   2207void efx_ptp_start_datapath(struct efx_nic *efx)
   2208{
   2209	if (efx_ptp_restart(efx))
   2210		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
   2211	/* re-enable timestamping if it was previously enabled */
   2212	if (efx->type->ptp_set_ts_sync_events)
   2213		efx->type->ptp_set_ts_sync_events(efx, true, true);
   2214}
   2215
   2216void efx_ptp_stop_datapath(struct efx_nic *efx)
   2217{
   2218	/* temporarily disable timestamping */
   2219	if (efx->type->ptp_set_ts_sync_events)
   2220		efx->type->ptp_set_ts_sync_events(efx, false, true);
   2221	efx_ptp_stop(efx);
   2222}