cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efx_common.c (39845B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2018 Solarflare Communications Inc.
      5 *
      6 * This program is free software; you can redistribute it and/or modify it
      7 * under the terms of the GNU General Public License version 2 as published
      8 * by the Free Software Foundation, incorporated herein by reference.
      9 */
     10
     11#include "net_driver.h"
     12#include <linux/filter.h>
     13#include <linux/module.h>
     14#include <linux/netdevice.h>
     15#include <net/gre.h>
     16#include "efx_common.h"
     17#include "efx_channels.h"
     18#include "efx.h"
     19#include "mcdi.h"
     20#include "selftest.h"
     21#include "rx_common.h"
     22#include "tx_common.h"
     23#include "nic.h"
     24#include "mcdi_port_common.h"
     25#include "io.h"
     26#include "mcdi_pcol.h"
     27
     28static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
     29			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
     30			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
     31			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
     32module_param(debug, uint, 0);
     33MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
     34
     35/* This is the time (in jiffies) between invocations of the hardware
     36 * monitor.
     37 * On Falcon-based NICs, this will:
     38 * - Check the on-board hardware monitor;
     39 * - Poll the link state and reconfigure the hardware as necessary.
     40 * On Siena-based NICs for power systems with EEH support, this will give EEH a
     41 * chance to start.
     42 */
     43static unsigned int efx_monitor_interval = 1 * HZ;
     44
     45/* How often and how many times to poll for a reset while waiting for a
     46 * BIST that another function started to complete.
     47 */
     48#define BIST_WAIT_DELAY_MS	100
     49#define BIST_WAIT_DELAY_COUNT	100
     50
     51/* Default stats update time */
     52#define STATS_PERIOD_MS_DEFAULT 1000
     53
     54static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
     55static const char *const efx_reset_type_names[] = {
     56	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
     57	[RESET_TYPE_ALL]                = "ALL",
     58	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
     59	[RESET_TYPE_WORLD]              = "WORLD",
     60	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
     61	[RESET_TYPE_DATAPATH]           = "DATAPATH",
     62	[RESET_TYPE_MC_BIST]		= "MC_BIST",
     63	[RESET_TYPE_DISABLE]            = "DISABLE",
     64	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
     65	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
     66	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
     67	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
     68	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
     69	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
     70};
     71
     72#define RESET_TYPE(type) \
     73	STRING_TABLE_LOOKUP(type, efx_reset_type)
     74
     75/* Loopback mode names (see LOOPBACK_MODE()) */
     76const unsigned int efx_siena_loopback_mode_max = LOOPBACK_MAX;
     77const char *const efx_siena_loopback_mode_names[] = {
     78	[LOOPBACK_NONE]		= "NONE",
     79	[LOOPBACK_DATA]		= "DATAPATH",
     80	[LOOPBACK_GMAC]		= "GMAC",
     81	[LOOPBACK_XGMII]	= "XGMII",
     82	[LOOPBACK_XGXS]		= "XGXS",
     83	[LOOPBACK_XAUI]		= "XAUI",
     84	[LOOPBACK_GMII]		= "GMII",
     85	[LOOPBACK_SGMII]	= "SGMII",
     86	[LOOPBACK_XGBR]		= "XGBR",
     87	[LOOPBACK_XFI]		= "XFI",
     88	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
     89	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
     90	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
     91	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
     92	[LOOPBACK_GPHY]		= "GPHY",
     93	[LOOPBACK_PHYXS]	= "PHYXS",
     94	[LOOPBACK_PCS]		= "PCS",
     95	[LOOPBACK_PMAPMD]	= "PMA/PMD",
     96	[LOOPBACK_XPORT]	= "XPORT",
     97	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
     98	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
     99	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
    100	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
    101	[LOOPBACK_GMII_WS]	= "GMII_WS",
    102	[LOOPBACK_XFI_WS]	= "XFI_WS",
    103	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
    104	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
    105};
    106
    107/* Reset workqueue. If any NIC has a hardware failure then a reset will be
    108 * queued onto this work queue. This is not a per-nic work queue, because
    109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
    110 */
    111static struct workqueue_struct *reset_workqueue;
    112
    113int efx_siena_create_reset_workqueue(void)
    114{
    115	reset_workqueue = create_singlethread_workqueue("sfc_siena_reset");
    116	if (!reset_workqueue) {
    117		printk(KERN_ERR "Failed to create reset workqueue\n");
    118		return -ENOMEM;
    119	}
    120
    121	return 0;
    122}
    123
    124void efx_siena_queue_reset_work(struct efx_nic *efx)
    125{
    126	queue_work(reset_workqueue, &efx->reset_work);
    127}
    128
    129void efx_siena_flush_reset_workqueue(struct efx_nic *efx)
    130{
    131	cancel_work_sync(&efx->reset_work);
    132}
    133
    134void efx_siena_destroy_reset_workqueue(void)
    135{
    136	if (reset_workqueue) {
    137		destroy_workqueue(reset_workqueue);
    138		reset_workqueue = NULL;
    139	}
    140}
    141
    142/* We assume that efx->type->reconfigure_mac will always try to sync RX
    143 * filters and therefore needs to read-lock the filter table against freeing
    144 */
    145void efx_siena_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
    146{
    147	if (efx->type->reconfigure_mac) {
    148		down_read(&efx->filter_sem);
    149		efx->type->reconfigure_mac(efx, mtu_only);
    150		up_read(&efx->filter_sem);
    151	}
    152}
    153
    154/* Asynchronous work item for changing MAC promiscuity and multicast
    155 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
    156 * MAC directly.
    157 */
    158static void efx_mac_work(struct work_struct *data)
    159{
    160	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
    161
    162	mutex_lock(&efx->mac_lock);
    163	if (efx->port_enabled)
    164		efx_siena_mac_reconfigure(efx, false);
    165	mutex_unlock(&efx->mac_lock);
    166}
    167
    168int efx_siena_set_mac_address(struct net_device *net_dev, void *data)
    169{
    170	struct efx_nic *efx = netdev_priv(net_dev);
    171	struct sockaddr *addr = data;
    172	u8 *new_addr = addr->sa_data;
    173	u8 old_addr[6];
    174	int rc;
    175
    176	if (!is_valid_ether_addr(new_addr)) {
    177		netif_err(efx, drv, efx->net_dev,
    178			  "invalid ethernet MAC address requested: %pM\n",
    179			  new_addr);
    180		return -EADDRNOTAVAIL;
    181	}
    182
    183	/* save old address */
    184	ether_addr_copy(old_addr, net_dev->dev_addr);
    185	eth_hw_addr_set(net_dev, new_addr);
    186	if (efx->type->set_mac_address) {
    187		rc = efx->type->set_mac_address(efx);
    188		if (rc) {
    189			eth_hw_addr_set(net_dev, old_addr);
    190			return rc;
    191		}
    192	}
    193
    194	/* Reconfigure the MAC */
    195	mutex_lock(&efx->mac_lock);
    196	efx_siena_mac_reconfigure(efx, false);
    197	mutex_unlock(&efx->mac_lock);
    198
    199	return 0;
    200}
    201
    202/* Context: netif_addr_lock held, BHs disabled. */
    203void efx_siena_set_rx_mode(struct net_device *net_dev)
    204{
    205	struct efx_nic *efx = netdev_priv(net_dev);
    206
    207	if (efx->port_enabled)
    208		queue_work(efx->workqueue, &efx->mac_work);
    209	/* Otherwise efx_start_port() will do this */
    210}
    211
    212int efx_siena_set_features(struct net_device *net_dev, netdev_features_t data)
    213{
    214	struct efx_nic *efx = netdev_priv(net_dev);
    215	int rc;
    216
    217	/* If disabling RX n-tuple filtering, clear existing filters */
    218	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
    219		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
    220		if (rc)
    221			return rc;
    222	}
    223
    224	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
    225	 * If rx-fcs is changed, mac_reconfigure updates that too.
    226	 */
    227	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
    228					  NETIF_F_RXFCS)) {
    229		/* efx_siena_set_rx_mode() will schedule MAC work to update filters
    230		 * when a new features are finally set in net_dev.
    231		 */
    232		efx_siena_set_rx_mode(net_dev);
    233	}
    234
    235	return 0;
    236}
    237
    238/* This ensures that the kernel is kept informed (via
    239 * netif_carrier_on/off) of the link status, and also maintains the
    240 * link status's stop on the port's TX queue.
    241 */
    242void efx_siena_link_status_changed(struct efx_nic *efx)
    243{
    244	struct efx_link_state *link_state = &efx->link_state;
    245
    246	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
    247	 * that no events are triggered between unregister_netdev() and the
    248	 * driver unloading. A more general condition is that NETDEV_CHANGE
    249	 * can only be generated between NETDEV_UP and NETDEV_DOWN
    250	 */
    251	if (!netif_running(efx->net_dev))
    252		return;
    253
    254	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
    255		efx->n_link_state_changes++;
    256
    257		if (link_state->up)
    258			netif_carrier_on(efx->net_dev);
    259		else
    260			netif_carrier_off(efx->net_dev);
    261	}
    262
    263	/* Status message for kernel log */
    264	if (link_state->up)
    265		netif_info(efx, link, efx->net_dev,
    266			   "link up at %uMbps %s-duplex (MTU %d)\n",
    267			   link_state->speed, link_state->fd ? "full" : "half",
    268			   efx->net_dev->mtu);
    269	else
    270		netif_info(efx, link, efx->net_dev, "link down\n");
    271}
    272
    273unsigned int efx_siena_xdp_max_mtu(struct efx_nic *efx)
    274{
    275	/* The maximum MTU that we can fit in a single page, allowing for
    276	 * framing, overhead and XDP headroom + tailroom.
    277	 */
    278	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
    279		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
    280		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
    281
    282	return PAGE_SIZE - overhead;
    283}
    284
    285/* Context: process, rtnl_lock() held. */
    286int efx_siena_change_mtu(struct net_device *net_dev, int new_mtu)
    287{
    288	struct efx_nic *efx = netdev_priv(net_dev);
    289	int rc;
    290
    291	rc = efx_check_disabled(efx);
    292	if (rc)
    293		return rc;
    294
    295	if (rtnl_dereference(efx->xdp_prog) &&
    296	    new_mtu > efx_siena_xdp_max_mtu(efx)) {
    297		netif_err(efx, drv, efx->net_dev,
    298			  "Requested MTU of %d too big for XDP (max: %d)\n",
    299			  new_mtu, efx_siena_xdp_max_mtu(efx));
    300		return -EINVAL;
    301	}
    302
    303	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
    304
    305	efx_device_detach_sync(efx);
    306	efx_siena_stop_all(efx);
    307
    308	mutex_lock(&efx->mac_lock);
    309	net_dev->mtu = new_mtu;
    310	efx_siena_mac_reconfigure(efx, true);
    311	mutex_unlock(&efx->mac_lock);
    312
    313	efx_siena_start_all(efx);
    314	efx_device_attach_if_not_resetting(efx);
    315	return 0;
    316}
    317
    318/**************************************************************************
    319 *
    320 * Hardware monitor
    321 *
    322 **************************************************************************/
    323
    324/* Run periodically off the general workqueue */
    325static void efx_monitor(struct work_struct *data)
    326{
    327	struct efx_nic *efx = container_of(data, struct efx_nic,
    328					   monitor_work.work);
    329
    330	netif_vdbg(efx, timer, efx->net_dev,
    331		   "hardware monitor executing on CPU %d\n",
    332		   raw_smp_processor_id());
    333	BUG_ON(efx->type->monitor == NULL);
    334
    335	/* If the mac_lock is already held then it is likely a port
    336	 * reconfiguration is already in place, which will likely do
    337	 * most of the work of monitor() anyway.
    338	 */
    339	if (mutex_trylock(&efx->mac_lock)) {
    340		if (efx->port_enabled && efx->type->monitor)
    341			efx->type->monitor(efx);
    342		mutex_unlock(&efx->mac_lock);
    343	}
    344
    345	efx_siena_start_monitor(efx);
    346}
    347
    348void efx_siena_start_monitor(struct efx_nic *efx)
    349{
    350	if (efx->type->monitor)
    351		queue_delayed_work(efx->workqueue, &efx->monitor_work,
    352				   efx_monitor_interval);
    353}
    354
    355/**************************************************************************
    356 *
    357 * Event queue processing
    358 *
    359 *************************************************************************/
    360
    361/* Channels are shutdown and reinitialised whilst the NIC is running
    362 * to propagate configuration changes (mtu, checksum offload), or
    363 * to clear hardware error conditions
    364 */
    365static void efx_start_datapath(struct efx_nic *efx)
    366{
    367	netdev_features_t old_features = efx->net_dev->features;
    368	bool old_rx_scatter = efx->rx_scatter;
    369	size_t rx_buf_len;
    370
    371	/* Calculate the rx buffer allocation parameters required to
    372	 * support the current MTU, including padding for header
    373	 * alignment and overruns.
    374	 */
    375	efx->rx_dma_len = (efx->rx_prefix_size +
    376			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
    377			   efx->type->rx_buffer_padding);
    378	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
    379		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
    380
    381	if (rx_buf_len <= PAGE_SIZE) {
    382		efx->rx_scatter = efx->type->always_rx_scatter;
    383		efx->rx_buffer_order = 0;
    384	} else if (efx->type->can_rx_scatter) {
    385		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
    386		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
    387			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
    388				       EFX_RX_BUF_ALIGNMENT) >
    389			     PAGE_SIZE);
    390		efx->rx_scatter = true;
    391		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
    392		efx->rx_buffer_order = 0;
    393	} else {
    394		efx->rx_scatter = false;
    395		efx->rx_buffer_order = get_order(rx_buf_len);
    396	}
    397
    398	efx_siena_rx_config_page_split(efx);
    399	if (efx->rx_buffer_order)
    400		netif_dbg(efx, drv, efx->net_dev,
    401			  "RX buf len=%u; page order=%u batch=%u\n",
    402			  efx->rx_dma_len, efx->rx_buffer_order,
    403			  efx->rx_pages_per_batch);
    404	else
    405		netif_dbg(efx, drv, efx->net_dev,
    406			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
    407			  efx->rx_dma_len, efx->rx_page_buf_step,
    408			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
    409
    410	/* Restore previously fixed features in hw_features and remove
    411	 * features which are fixed now
    412	 */
    413	efx->net_dev->hw_features |= efx->net_dev->features;
    414	efx->net_dev->hw_features &= ~efx->fixed_features;
    415	efx->net_dev->features |= efx->fixed_features;
    416	if (efx->net_dev->features != old_features)
    417		netdev_features_change(efx->net_dev);
    418
    419	/* RX filters may also have scatter-enabled flags */
    420	if ((efx->rx_scatter != old_rx_scatter) &&
    421	    efx->type->filter_update_rx_scatter)
    422		efx->type->filter_update_rx_scatter(efx);
    423
    424	/* We must keep at least one descriptor in a TX ring empty.
    425	 * We could avoid this when the queue size does not exactly
    426	 * match the hardware ring size, but it's not that important.
    427	 * Therefore we stop the queue when one more skb might fill
    428	 * the ring completely.  We wake it when half way back to
    429	 * empty.
    430	 */
    431	efx->txq_stop_thresh = efx->txq_entries - efx_siena_tx_max_skb_descs(efx);
    432	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
    433
    434	/* Initialise the channels */
    435	efx_siena_start_channels(efx);
    436
    437	efx_siena_ptp_start_datapath(efx);
    438
    439	if (netif_device_present(efx->net_dev))
    440		netif_tx_wake_all_queues(efx->net_dev);
    441}
    442
    443static void efx_stop_datapath(struct efx_nic *efx)
    444{
    445	EFX_ASSERT_RESET_SERIALISED(efx);
    446	BUG_ON(efx->port_enabled);
    447
    448	efx_siena_ptp_stop_datapath(efx);
    449
    450	efx_siena_stop_channels(efx);
    451}
    452
    453/**************************************************************************
    454 *
    455 * Port handling
    456 *
    457 **************************************************************************/
    458
    459/* Equivalent to efx_siena_link_set_advertising with all-zeroes, except does not
    460 * force the Autoneg bit on.
    461 */
    462void efx_siena_link_clear_advertising(struct efx_nic *efx)
    463{
    464	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
    465	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
    466}
    467
    468void efx_siena_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
    469{
    470	efx->wanted_fc = wanted_fc;
    471	if (efx->link_advertising[0]) {
    472		if (wanted_fc & EFX_FC_RX)
    473			efx->link_advertising[0] |= (ADVERTISED_Pause |
    474						     ADVERTISED_Asym_Pause);
    475		else
    476			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
    477						      ADVERTISED_Asym_Pause);
    478		if (wanted_fc & EFX_FC_TX)
    479			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
    480	}
    481}
    482
    483static void efx_start_port(struct efx_nic *efx)
    484{
    485	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
    486	BUG_ON(efx->port_enabled);
    487
    488	mutex_lock(&efx->mac_lock);
    489	efx->port_enabled = true;
    490
    491	/* Ensure MAC ingress/egress is enabled */
    492	efx_siena_mac_reconfigure(efx, false);
    493
    494	mutex_unlock(&efx->mac_lock);
    495}
    496
    497/* Cancel work for MAC reconfiguration, periodic hardware monitoring
    498 * and the async self-test, wait for them to finish and prevent them
    499 * being scheduled again.  This doesn't cover online resets, which
    500 * should only be cancelled when removing the device.
    501 */
    502static void efx_stop_port(struct efx_nic *efx)
    503{
    504	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
    505
    506	EFX_ASSERT_RESET_SERIALISED(efx);
    507
    508	mutex_lock(&efx->mac_lock);
    509	efx->port_enabled = false;
    510	mutex_unlock(&efx->mac_lock);
    511
    512	/* Serialise against efx_set_multicast_list() */
    513	netif_addr_lock_bh(efx->net_dev);
    514	netif_addr_unlock_bh(efx->net_dev);
    515
    516	cancel_delayed_work_sync(&efx->monitor_work);
    517	efx_siena_selftest_async_cancel(efx);
    518	cancel_work_sync(&efx->mac_work);
    519}
    520
    521/* If the interface is supposed to be running but is not, start
    522 * the hardware and software data path, regular activity for the port
    523 * (MAC statistics, link polling, etc.) and schedule the port to be
    524 * reconfigured.  Interrupts must already be enabled.  This function
    525 * is safe to call multiple times, so long as the NIC is not disabled.
    526 * Requires the RTNL lock.
    527 */
    528void efx_siena_start_all(struct efx_nic *efx)
    529{
    530	EFX_ASSERT_RESET_SERIALISED(efx);
    531	BUG_ON(efx->state == STATE_DISABLED);
    532
    533	/* Check that it is appropriate to restart the interface. All
    534	 * of these flags are safe to read under just the rtnl lock
    535	 */
    536	if (efx->port_enabled || !netif_running(efx->net_dev) ||
    537	    efx->reset_pending)
    538		return;
    539
    540	efx_start_port(efx);
    541	efx_start_datapath(efx);
    542
    543	/* Start the hardware monitor if there is one */
    544	efx_siena_start_monitor(efx);
    545
    546	/* Link state detection is normally event-driven; we have
    547	 * to poll now because we could have missed a change
    548	 */
    549	mutex_lock(&efx->mac_lock);
    550	if (efx_siena_mcdi_phy_poll(efx))
    551		efx_siena_link_status_changed(efx);
    552	mutex_unlock(&efx->mac_lock);
    553
    554	if (efx->type->start_stats) {
    555		efx->type->start_stats(efx);
    556		efx->type->pull_stats(efx);
    557		spin_lock_bh(&efx->stats_lock);
    558		efx->type->update_stats(efx, NULL, NULL);
    559		spin_unlock_bh(&efx->stats_lock);
    560	}
    561}
    562
    563/* Quiesce the hardware and software data path, and regular activity
    564 * for the port without bringing the link down.  Safe to call multiple
    565 * times with the NIC in almost any state, but interrupts should be
    566 * enabled.  Requires the RTNL lock.
    567 */
    568void efx_siena_stop_all(struct efx_nic *efx)
    569{
    570	EFX_ASSERT_RESET_SERIALISED(efx);
    571
    572	/* port_enabled can be read safely under the rtnl lock */
    573	if (!efx->port_enabled)
    574		return;
    575
    576	if (efx->type->update_stats) {
    577		/* update stats before we go down so we can accurately count
    578		 * rx_nodesc_drops
    579		 */
    580		efx->type->pull_stats(efx);
    581		spin_lock_bh(&efx->stats_lock);
    582		efx->type->update_stats(efx, NULL, NULL);
    583		spin_unlock_bh(&efx->stats_lock);
    584		efx->type->stop_stats(efx);
    585	}
    586
    587	efx_stop_port(efx);
    588
    589	/* Stop the kernel transmit interface.  This is only valid if
    590	 * the device is stopped or detached; otherwise the watchdog
    591	 * may fire immediately.
    592	 */
    593	WARN_ON(netif_running(efx->net_dev) &&
    594		netif_device_present(efx->net_dev));
    595	netif_tx_disable(efx->net_dev);
    596
    597	efx_stop_datapath(efx);
    598}
    599
    600static size_t efx_siena_update_stats_atomic(struct efx_nic *efx, u64 *full_stats,
    601					    struct rtnl_link_stats64 *core_stats)
    602{
    603	if (efx->type->update_stats_atomic)
    604		return efx->type->update_stats_atomic(efx, full_stats, core_stats);
    605	return efx->type->update_stats(efx, full_stats, core_stats);
    606}
    607
    608/* Context: process, dev_base_lock or RTNL held, non-blocking. */
    609void efx_siena_net_stats(struct net_device *net_dev,
    610			 struct rtnl_link_stats64 *stats)
    611{
    612	struct efx_nic *efx = netdev_priv(net_dev);
    613
    614	spin_lock_bh(&efx->stats_lock);
    615	efx_siena_update_stats_atomic(efx, NULL, stats);
    616	spin_unlock_bh(&efx->stats_lock);
    617}
    618
    619/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
    620 * the MAC appropriately. All other PHY configuration changes are pushed
    621 * through phy_op->set_settings(), and pushed asynchronously to the MAC
    622 * through efx_monitor().
    623 *
    624 * Callers must hold the mac_lock
    625 */
    626int __efx_siena_reconfigure_port(struct efx_nic *efx)
    627{
    628	enum efx_phy_mode phy_mode;
    629	int rc = 0;
    630
    631	WARN_ON(!mutex_is_locked(&efx->mac_lock));
    632
    633	/* Disable PHY transmit in mac level loopbacks */
    634	phy_mode = efx->phy_mode;
    635	if (LOOPBACK_INTERNAL(efx))
    636		efx->phy_mode |= PHY_MODE_TX_DISABLED;
    637	else
    638		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
    639
    640	if (efx->type->reconfigure_port)
    641		rc = efx->type->reconfigure_port(efx);
    642
    643	if (rc)
    644		efx->phy_mode = phy_mode;
    645
    646	return rc;
    647}
    648
    649/* Reinitialise the MAC to pick up new PHY settings, even if the port is
    650 * disabled.
    651 */
    652int efx_siena_reconfigure_port(struct efx_nic *efx)
    653{
    654	int rc;
    655
    656	EFX_ASSERT_RESET_SERIALISED(efx);
    657
    658	mutex_lock(&efx->mac_lock);
    659	rc = __efx_siena_reconfigure_port(efx);
    660	mutex_unlock(&efx->mac_lock);
    661
    662	return rc;
    663}
    664
    665/**************************************************************************
    666 *
    667 * Device reset and suspend
    668 *
    669 **************************************************************************/
    670
    671static void efx_wait_for_bist_end(struct efx_nic *efx)
    672{
    673	int i;
    674
    675	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
    676		if (efx_siena_mcdi_poll_reboot(efx))
    677			goto out;
    678		msleep(BIST_WAIT_DELAY_MS);
    679	}
    680
    681	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
    682out:
    683	/* Either way unset the BIST flag. If we found no reboot we probably
    684	 * won't recover, but we should try.
    685	 */
    686	efx->mc_bist_for_other_fn = false;
    687}
    688
    689/* Try recovery mechanisms.
    690 * For now only EEH is supported.
    691 * Returns 0 if the recovery mechanisms are unsuccessful.
    692 * Returns a non-zero value otherwise.
    693 */
    694int efx_siena_try_recovery(struct efx_nic *efx)
    695{
    696#ifdef CONFIG_EEH
    697	/* A PCI error can occur and not be seen by EEH because nothing
    698	 * happens on the PCI bus. In this case the driver may fail and
    699	 * schedule a 'recover or reset', leading to this recovery handler.
    700	 * Manually call the eeh failure check function.
    701	 */
    702	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
    703	if (eeh_dev_check_failure(eehdev)) {
    704		/* The EEH mechanisms will handle the error and reset the
    705		 * device if necessary.
    706		 */
    707		return 1;
    708	}
    709#endif
    710	return 0;
    711}
    712
    713/* Tears down the entire software state and most of the hardware state
    714 * before reset.
    715 */
    716void efx_siena_reset_down(struct efx_nic *efx, enum reset_type method)
    717{
    718	EFX_ASSERT_RESET_SERIALISED(efx);
    719
    720	if (method == RESET_TYPE_MCDI_TIMEOUT)
    721		efx->type->prepare_flr(efx);
    722
    723	efx_siena_stop_all(efx);
    724	efx_siena_disable_interrupts(efx);
    725
    726	mutex_lock(&efx->mac_lock);
    727	down_write(&efx->filter_sem);
    728	mutex_lock(&efx->rss_lock);
    729	efx->type->fini(efx);
    730}
    731
    732/* Context: netif_tx_lock held, BHs disabled. */
    733void efx_siena_watchdog(struct net_device *net_dev, unsigned int txqueue)
    734{
    735	struct efx_nic *efx = netdev_priv(net_dev);
    736
    737	netif_err(efx, tx_err, efx->net_dev,
    738		  "TX stuck with port_enabled=%d: resetting channels\n",
    739		  efx->port_enabled);
    740
    741	efx_siena_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
    742}
    743
    744/* This function will always ensure that the locks acquired in
    745 * efx_siena_reset_down() are released. A failure return code indicates
    746 * that we were unable to reinitialise the hardware, and the
    747 * driver should be disabled. If ok is false, then the rx and tx
    748 * engines are not restarted, pending a RESET_DISABLE.
    749 */
    750int efx_siena_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
    751{
    752	int rc;
    753
    754	EFX_ASSERT_RESET_SERIALISED(efx);
    755
    756	if (method == RESET_TYPE_MCDI_TIMEOUT)
    757		efx->type->finish_flr(efx);
    758
    759	/* Ensure that SRAM is initialised even if we're disabling the device */
    760	rc = efx->type->init(efx);
    761	if (rc) {
    762		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
    763		goto fail;
    764	}
    765
    766	if (!ok)
    767		goto fail;
    768
    769	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
    770	    method != RESET_TYPE_DATAPATH) {
    771		rc = efx_siena_mcdi_port_reconfigure(efx);
    772		if (rc && rc != -EPERM)
    773			netif_err(efx, drv, efx->net_dev,
    774				  "could not restore PHY settings\n");
    775	}
    776
    777	rc = efx_siena_enable_interrupts(efx);
    778	if (rc)
    779		goto fail;
    780
    781#ifdef CONFIG_SFC_SIENA_SRIOV
    782	rc = efx->type->vswitching_restore(efx);
    783	if (rc) /* not fatal; the PF will still work fine */
    784		netif_warn(efx, probe, efx->net_dev,
    785			   "failed to restore vswitching rc=%d;"
    786			   " VFs may not function\n", rc);
    787#endif
    788
    789	if (efx->type->rx_restore_rss_contexts)
    790		efx->type->rx_restore_rss_contexts(efx);
    791	mutex_unlock(&efx->rss_lock);
    792	efx->type->filter_table_restore(efx);
    793	up_write(&efx->filter_sem);
    794	if (efx->type->sriov_reset)
    795		efx->type->sriov_reset(efx);
    796
    797	mutex_unlock(&efx->mac_lock);
    798
    799	efx_siena_start_all(efx);
    800
    801	if (efx->type->udp_tnl_push_ports)
    802		efx->type->udp_tnl_push_ports(efx);
    803
    804	return 0;
    805
    806fail:
    807	efx->port_initialized = false;
    808
    809	mutex_unlock(&efx->rss_lock);
    810	up_write(&efx->filter_sem);
    811	mutex_unlock(&efx->mac_lock);
    812
    813	return rc;
    814}
    815
    816/* Reset the NIC using the specified method.  Note that the reset may
    817 * fail, in which case the card will be left in an unusable state.
    818 *
    819 * Caller must hold the rtnl_lock.
    820 */
    821int efx_siena_reset(struct efx_nic *efx, enum reset_type method)
    822{
    823	int rc, rc2 = 0;
    824	bool disabled;
    825
    826	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
    827		   RESET_TYPE(method));
    828
    829	efx_device_detach_sync(efx);
    830	/* efx_siena_reset_down() grabs locks that prevent recovery on EF100.
    831	 * EF100 reset is handled in the efx_nic_type callback below.
    832	 */
    833	if (efx_nic_rev(efx) != EFX_REV_EF100)
    834		efx_siena_reset_down(efx, method);
    835
    836	rc = efx->type->reset(efx, method);
    837	if (rc) {
    838		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
    839		goto out;
    840	}
    841
    842	/* Clear flags for the scopes we covered.  We assume the NIC and
    843	 * driver are now quiescent so that there is no race here.
    844	 */
    845	if (method < RESET_TYPE_MAX_METHOD)
    846		efx->reset_pending &= -(1 << (method + 1));
    847	else /* it doesn't fit into the well-ordered scope hierarchy */
    848		__clear_bit(method, &efx->reset_pending);
    849
    850	/* Reinitialise bus-mastering, which may have been turned off before
    851	 * the reset was scheduled. This is still appropriate, even in the
    852	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
    853	 * can respond to requests.
    854	 */
    855	pci_set_master(efx->pci_dev);
    856
    857out:
    858	/* Leave device stopped if necessary */
    859	disabled = rc ||
    860		method == RESET_TYPE_DISABLE ||
    861		method == RESET_TYPE_RECOVER_OR_DISABLE;
    862	if (efx_nic_rev(efx) != EFX_REV_EF100)
    863		rc2 = efx_siena_reset_up(efx, method, !disabled);
    864	if (rc2) {
    865		disabled = true;
    866		if (!rc)
    867			rc = rc2;
    868	}
    869
    870	if (disabled) {
    871		dev_close(efx->net_dev);
    872		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
    873		efx->state = STATE_DISABLED;
    874	} else {
    875		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
    876		efx_device_attach_if_not_resetting(efx);
    877	}
    878	return rc;
    879}
    880
    881/* The worker thread exists so that code that cannot sleep can
    882 * schedule a reset for later.
    883 */
    884static void efx_reset_work(struct work_struct *data)
    885{
    886	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
    887	unsigned long pending;
    888	enum reset_type method;
    889
    890	pending = READ_ONCE(efx->reset_pending);
    891	method = fls(pending) - 1;
    892
    893	if (method == RESET_TYPE_MC_BIST)
    894		efx_wait_for_bist_end(efx);
    895
    896	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
    897	     method == RESET_TYPE_RECOVER_OR_ALL) &&
    898	    efx_siena_try_recovery(efx))
    899		return;
    900
    901	if (!pending)
    902		return;
    903
    904	rtnl_lock();
    905
    906	/* We checked the state in efx_siena_schedule_reset() but it may
    907	 * have changed by now.  Now that we have the RTNL lock,
    908	 * it cannot change again.
    909	 */
    910	if (efx->state == STATE_READY)
    911		(void)efx_siena_reset(efx, method);
    912
    913	rtnl_unlock();
    914}
    915
    916void efx_siena_schedule_reset(struct efx_nic *efx, enum reset_type type)
    917{
    918	enum reset_type method;
    919
    920	if (efx->state == STATE_RECOVERY) {
    921		netif_dbg(efx, drv, efx->net_dev,
    922			  "recovering: skip scheduling %s reset\n",
    923			  RESET_TYPE(type));
    924		return;
    925	}
    926
    927	switch (type) {
    928	case RESET_TYPE_INVISIBLE:
    929	case RESET_TYPE_ALL:
    930	case RESET_TYPE_RECOVER_OR_ALL:
    931	case RESET_TYPE_WORLD:
    932	case RESET_TYPE_DISABLE:
    933	case RESET_TYPE_RECOVER_OR_DISABLE:
    934	case RESET_TYPE_DATAPATH:
    935	case RESET_TYPE_MC_BIST:
    936	case RESET_TYPE_MCDI_TIMEOUT:
    937		method = type;
    938		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
    939			  RESET_TYPE(method));
    940		break;
    941	default:
    942		method = efx->type->map_reset_reason(type);
    943		netif_dbg(efx, drv, efx->net_dev,
    944			  "scheduling %s reset for %s\n",
    945			  RESET_TYPE(method), RESET_TYPE(type));
    946		break;
    947	}
    948
    949	set_bit(method, &efx->reset_pending);
    950	smp_mb(); /* ensure we change reset_pending before checking state */
    951
    952	/* If we're not READY then just leave the flags set as the cue
    953	 * to abort probing or reschedule the reset later.
    954	 */
    955	if (READ_ONCE(efx->state) != STATE_READY)
    956		return;
    957
    958	/* efx_process_channel() will no longer read events once a
    959	 * reset is scheduled. So switch back to poll'd MCDI completions.
    960	 */
    961	efx_siena_mcdi_mode_poll(efx);
    962
    963	efx_siena_queue_reset_work(efx);
    964}
    965
    966/**************************************************************************
    967 *
    968 * Dummy NIC operations
    969 *
    970 * Can be used for some unimplemented operations
    971 * Needed so all function pointers are valid and do not have to be tested
    972 * before use
    973 *
    974 **************************************************************************/
    975int efx_siena_port_dummy_op_int(struct efx_nic *efx)
    976{
    977	return 0;
    978}
    979
    980void efx_siena_port_dummy_op_void(struct efx_nic *efx) {}
    981
    982/**************************************************************************
    983 *
    984 * Data housekeeping
    985 *
    986 **************************************************************************/
    987
    988/* This zeroes out and then fills in the invariants in a struct
    989 * efx_nic (including all sub-structures).
    990 */
    991int efx_siena_init_struct(struct efx_nic *efx,
    992			  struct pci_dev *pci_dev, struct net_device *net_dev)
    993{
    994	int rc = -ENOMEM;
    995
    996	/* Initialise common structures */
    997	INIT_LIST_HEAD(&efx->node);
    998	INIT_LIST_HEAD(&efx->secondary_list);
    999	spin_lock_init(&efx->biu_lock);
   1000#ifdef CONFIG_SFC_SIENA_MTD
   1001	INIT_LIST_HEAD(&efx->mtd_list);
   1002#endif
   1003	INIT_WORK(&efx->reset_work, efx_reset_work);
   1004	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
   1005	efx_siena_selftest_async_init(efx);
   1006	efx->pci_dev = pci_dev;
   1007	efx->msg_enable = debug;
   1008	efx->state = STATE_UNINIT;
   1009	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
   1010
   1011	efx->net_dev = net_dev;
   1012	efx->rx_prefix_size = efx->type->rx_prefix_size;
   1013	efx->rx_ip_align =
   1014		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
   1015	efx->rx_packet_hash_offset =
   1016		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
   1017	efx->rx_packet_ts_offset =
   1018		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
   1019	INIT_LIST_HEAD(&efx->rss_context.list);
   1020	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
   1021	mutex_init(&efx->rss_lock);
   1022	efx->vport_id = EVB_PORT_ID_ASSIGNED;
   1023	spin_lock_init(&efx->stats_lock);
   1024	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
   1025	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
   1026	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
   1027	mutex_init(&efx->mac_lock);
   1028	init_rwsem(&efx->filter_sem);
   1029#ifdef CONFIG_RFS_ACCEL
   1030	mutex_init(&efx->rps_mutex);
   1031	spin_lock_init(&efx->rps_hash_lock);
   1032	/* Failure to allocate is not fatal, but may degrade ARFS performance */
   1033	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
   1034				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
   1035#endif
   1036	efx->mdio.dev = net_dev;
   1037	INIT_WORK(&efx->mac_work, efx_mac_work);
   1038	init_waitqueue_head(&efx->flush_wq);
   1039
   1040	efx->tx_queues_per_channel = 1;
   1041	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
   1042	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
   1043
   1044	efx->mem_bar = UINT_MAX;
   1045
   1046	rc = efx_siena_init_channels(efx);
   1047	if (rc)
   1048		goto fail;
   1049
   1050	/* Would be good to use the net_dev name, but we're too early */
   1051	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
   1052		 pci_name(pci_dev));
   1053	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
   1054	if (!efx->workqueue) {
   1055		rc = -ENOMEM;
   1056		goto fail;
   1057	}
   1058
   1059	return 0;
   1060
   1061fail:
   1062	efx_siena_fini_struct(efx);
   1063	return rc;
   1064}
   1065
   1066void efx_siena_fini_struct(struct efx_nic *efx)
   1067{
   1068#ifdef CONFIG_RFS_ACCEL
   1069	kfree(efx->rps_hash_table);
   1070#endif
   1071
   1072	efx_siena_fini_channels(efx);
   1073
   1074	kfree(efx->vpd_sn);
   1075
   1076	if (efx->workqueue) {
   1077		destroy_workqueue(efx->workqueue);
   1078		efx->workqueue = NULL;
   1079	}
   1080}
   1081
   1082/* This configures the PCI device to enable I/O and DMA. */
   1083int efx_siena_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
   1084		      unsigned int mem_map_size)
   1085{
   1086	struct pci_dev *pci_dev = efx->pci_dev;
   1087	int rc;
   1088
   1089	efx->mem_bar = UINT_MAX;
   1090
   1091	netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
   1092
   1093	rc = pci_enable_device(pci_dev);
   1094	if (rc) {
   1095		netif_err(efx, probe, efx->net_dev,
   1096			  "failed to enable PCI device\n");
   1097		goto fail1;
   1098	}
   1099
   1100	pci_set_master(pci_dev);
   1101
   1102	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
   1103	if (rc) {
   1104		netif_err(efx, probe, efx->net_dev,
   1105			  "could not find a suitable DMA mask\n");
   1106		goto fail2;
   1107	}
   1108	netif_dbg(efx, probe, efx->net_dev,
   1109		  "using DMA mask %llx\n", (unsigned long long)dma_mask);
   1110
   1111	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
   1112	if (!efx->membase_phys) {
   1113		netif_err(efx, probe, efx->net_dev,
   1114			  "ERROR: No BAR%d mapping from the BIOS. "
   1115			  "Try pci=realloc on the kernel command line\n", bar);
   1116		rc = -ENODEV;
   1117		goto fail3;
   1118	}
   1119
   1120	rc = pci_request_region(pci_dev, bar, "sfc");
   1121	if (rc) {
   1122		netif_err(efx, probe, efx->net_dev,
   1123			  "request for memory BAR[%d] failed\n", bar);
   1124		rc = -EIO;
   1125		goto fail3;
   1126	}
   1127	efx->mem_bar = bar;
   1128	efx->membase = ioremap(efx->membase_phys, mem_map_size);
   1129	if (!efx->membase) {
   1130		netif_err(efx, probe, efx->net_dev,
   1131			  "could not map memory BAR[%d] at %llx+%x\n", bar,
   1132			  (unsigned long long)efx->membase_phys, mem_map_size);
   1133		rc = -ENOMEM;
   1134		goto fail4;
   1135	}
   1136	netif_dbg(efx, probe, efx->net_dev,
   1137		  "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
   1138		  (unsigned long long)efx->membase_phys, mem_map_size,
   1139		  efx->membase);
   1140
   1141	return 0;
   1142
   1143fail4:
   1144	pci_release_region(efx->pci_dev, bar);
   1145fail3:
   1146	efx->membase_phys = 0;
   1147fail2:
   1148	pci_disable_device(efx->pci_dev);
   1149fail1:
   1150	return rc;
   1151}
   1152
   1153void efx_siena_fini_io(struct efx_nic *efx)
   1154{
   1155	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
   1156
   1157	if (efx->membase) {
   1158		iounmap(efx->membase);
   1159		efx->membase = NULL;
   1160	}
   1161
   1162	if (efx->membase_phys) {
   1163		pci_release_region(efx->pci_dev, efx->mem_bar);
   1164		efx->membase_phys = 0;
   1165		efx->mem_bar = UINT_MAX;
   1166	}
   1167
   1168	/* Don't disable bus-mastering if VFs are assigned */
   1169	if (!pci_vfs_assigned(efx->pci_dev))
   1170		pci_disable_device(efx->pci_dev);
   1171}
   1172
   1173#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
   1174static ssize_t mcdi_logging_show(struct device *dev,
   1175				 struct device_attribute *attr,
   1176				 char *buf)
   1177{
   1178	struct efx_nic *efx = dev_get_drvdata(dev);
   1179	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
   1180
   1181	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
   1182}
   1183
   1184static ssize_t mcdi_logging_store(struct device *dev,
   1185				  struct device_attribute *attr,
   1186				  const char *buf, size_t count)
   1187{
   1188	struct efx_nic *efx = dev_get_drvdata(dev);
   1189	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
   1190	bool enable = count > 0 && *buf != '0';
   1191
   1192	mcdi->logging_enabled = enable;
   1193	return count;
   1194}
   1195
   1196static DEVICE_ATTR_RW(mcdi_logging);
   1197
   1198void efx_siena_init_mcdi_logging(struct efx_nic *efx)
   1199{
   1200	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
   1201
   1202	if (rc) {
   1203		netif_warn(efx, drv, efx->net_dev,
   1204			   "failed to init net dev attributes\n");
   1205	}
   1206}
   1207
   1208void efx_siena_fini_mcdi_logging(struct efx_nic *efx)
   1209{
   1210	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
   1211}
   1212#endif
   1213
   1214/* A PCI error affecting this device was detected.
   1215 * At this point MMIO and DMA may be disabled.
   1216 * Stop the software path and request a slot reset.
   1217 */
   1218static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
   1219					      pci_channel_state_t state)
   1220{
   1221	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
   1222	struct efx_nic *efx = pci_get_drvdata(pdev);
   1223
   1224	if (state == pci_channel_io_perm_failure)
   1225		return PCI_ERS_RESULT_DISCONNECT;
   1226
   1227	rtnl_lock();
   1228
   1229	if (efx->state != STATE_DISABLED) {
   1230		efx->state = STATE_RECOVERY;
   1231		efx->reset_pending = 0;
   1232
   1233		efx_device_detach_sync(efx);
   1234
   1235		efx_siena_stop_all(efx);
   1236		efx_siena_disable_interrupts(efx);
   1237
   1238		status = PCI_ERS_RESULT_NEED_RESET;
   1239	} else {
   1240		/* If the interface is disabled we don't want to do anything
   1241		 * with it.
   1242		 */
   1243		status = PCI_ERS_RESULT_RECOVERED;
   1244	}
   1245
   1246	rtnl_unlock();
   1247
   1248	pci_disable_device(pdev);
   1249
   1250	return status;
   1251}
   1252
   1253/* Fake a successful reset, which will be performed later in efx_io_resume. */
   1254static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
   1255{
   1256	struct efx_nic *efx = pci_get_drvdata(pdev);
   1257	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
   1258
   1259	if (pci_enable_device(pdev)) {
   1260		netif_err(efx, hw, efx->net_dev,
   1261			  "Cannot re-enable PCI device after reset.\n");
   1262		status =  PCI_ERS_RESULT_DISCONNECT;
   1263	}
   1264
   1265	return status;
   1266}
   1267
   1268/* Perform the actual reset and resume I/O operations. */
   1269static void efx_io_resume(struct pci_dev *pdev)
   1270{
   1271	struct efx_nic *efx = pci_get_drvdata(pdev);
   1272	int rc;
   1273
   1274	rtnl_lock();
   1275
   1276	if (efx->state == STATE_DISABLED)
   1277		goto out;
   1278
   1279	rc = efx_siena_reset(efx, RESET_TYPE_ALL);
   1280	if (rc) {
   1281		netif_err(efx, hw, efx->net_dev,
   1282			  "efx_siena_reset failed after PCI error (%d)\n", rc);
   1283	} else {
   1284		efx->state = STATE_READY;
   1285		netif_dbg(efx, hw, efx->net_dev,
   1286			  "Done resetting and resuming IO after PCI error.\n");
   1287	}
   1288
   1289out:
   1290	rtnl_unlock();
   1291}
   1292
   1293/* For simplicity and reliability, we always require a slot reset and try to
   1294 * reset the hardware when a pci error affecting the device is detected.
   1295 * We leave both the link_reset and mmio_enabled callback unimplemented:
   1296 * with our request for slot reset the mmio_enabled callback will never be
   1297 * called, and the link_reset callback is not used by AER or EEH mechanisms.
   1298 */
   1299const struct pci_error_handlers efx_siena_err_handlers = {
   1300	.error_detected = efx_io_error_detected,
   1301	.slot_reset	= efx_io_slot_reset,
   1302	.resume		= efx_io_resume,
   1303};
   1304
   1305/* Determine whether the NIC will be able to handle TX offloads for a given
   1306 * encapsulated packet.
   1307 */
   1308static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
   1309{
   1310	struct gre_base_hdr *greh;
   1311	__be16 dst_port;
   1312	u8 ipproto;
   1313
   1314	/* Does the NIC support encap offloads?
   1315	 * If not, we should never get here, because we shouldn't have
   1316	 * advertised encap offload feature flags in the first place.
   1317	 */
   1318	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
   1319		return false;
   1320
   1321	/* Determine encapsulation protocol in use */
   1322	switch (skb->protocol) {
   1323	case htons(ETH_P_IP):
   1324		ipproto = ip_hdr(skb)->protocol;
   1325		break;
   1326	case htons(ETH_P_IPV6):
   1327		/* If there are extension headers, this will cause us to
   1328		 * think we can't offload something that we maybe could have.
   1329		 */
   1330		ipproto = ipv6_hdr(skb)->nexthdr;
   1331		break;
   1332	default:
   1333		/* Not IP, so can't offload it */
   1334		return false;
   1335	}
   1336	switch (ipproto) {
   1337	case IPPROTO_GRE:
   1338		/* We support NVGRE but not IP over GRE or random gretaps.
   1339		 * Specifically, the NIC will accept GRE as encapsulated if
   1340		 * the inner protocol is Ethernet, but only handle it
   1341		 * correctly if the GRE header is 8 bytes long.  Moreover,
   1342		 * it will not update the Checksum or Sequence Number fields
   1343		 * if they are present.  (The Routing Present flag,
   1344		 * GRE_ROUTING, cannot be set else the header would be more
   1345		 * than 8 bytes long; so we don't have to worry about it.)
   1346		 */
   1347		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
   1348			return false;
   1349		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
   1350			return false;
   1351		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
   1352			return false;
   1353		greh = (struct gre_base_hdr *)skb_transport_header(skb);
   1354		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
   1355	case IPPROTO_UDP:
   1356		/* If the port is registered for a UDP tunnel, we assume the
   1357		 * packet is for that tunnel, and the NIC will handle it as
   1358		 * such.  If not, the NIC won't know what to do with it.
   1359		 */
   1360		dst_port = udp_hdr(skb)->dest;
   1361		return efx->type->udp_tnl_has_port(efx, dst_port);
   1362	default:
   1363		return false;
   1364	}
   1365}
   1366
   1367netdev_features_t efx_siena_features_check(struct sk_buff *skb,
   1368					   struct net_device *dev,
   1369					   netdev_features_t features)
   1370{
   1371	struct efx_nic *efx = netdev_priv(dev);
   1372
   1373	if (skb->encapsulation) {
   1374		if (features & NETIF_F_GSO_MASK)
   1375			/* Hardware can only do TSO with at most 208 bytes
   1376			 * of headers.
   1377			 */
   1378			if (skb_inner_transport_offset(skb) >
   1379			    EFX_TSO2_MAX_HDRLEN)
   1380				features &= ~(NETIF_F_GSO_MASK);
   1381		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
   1382			if (!efx_can_encap_offloads(efx, skb))
   1383				features &= ~(NETIF_F_GSO_MASK |
   1384					      NETIF_F_CSUM_MASK);
   1385	}
   1386	return features;
   1387}
   1388
   1389int efx_siena_get_phys_port_id(struct net_device *net_dev,
   1390			       struct netdev_phys_item_id *ppid)
   1391{
   1392	struct efx_nic *efx = netdev_priv(net_dev);
   1393
   1394	if (efx->type->get_phys_port_id)
   1395		return efx->type->get_phys_port_id(efx, ppid);
   1396	else
   1397		return -EOPNOTSUPP;
   1398}
   1399
   1400int efx_siena_get_phys_port_name(struct net_device *net_dev,
   1401				 char *name, size_t len)
   1402{
   1403	struct efx_nic *efx = netdev_priv(net_dev);
   1404
   1405	if (snprintf(name, len, "p%u", efx->port_num) >= len)
   1406		return -EINVAL;
   1407	return 0;
   1408}