cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

farch.c (89749B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2006-2013 Solarflare Communications Inc.
      6 */
      7
      8#include <linux/bitops.h>
      9#include <linux/delay.h>
     10#include <linux/interrupt.h>
     11#include <linux/pci.h>
     12#include <linux/module.h>
     13#include <linux/seq_file.h>
     14#include <linux/crc32.h>
     15#include "net_driver.h"
     16#include "bitfield.h"
     17#include "efx.h"
     18#include "rx_common.h"
     19#include "tx_common.h"
     20#include "nic.h"
     21#include "farch_regs.h"
     22#include "sriov.h"
     23#include "siena_sriov.h"
     24#include "io.h"
     25#include "workarounds.h"
     26
     27/* Falcon-architecture (SFC9000-family) support */
     28
     29/**************************************************************************
     30 *
     31 * Configurable values
     32 *
     33 **************************************************************************
     34 */
     35
     36/* This is set to 16 for a good reason.  In summary, if larger than
     37 * 16, the descriptor cache holds more than a default socket
     38 * buffer's worth of packets (for UDP we can only have at most one
     39 * socket buffer's worth outstanding).  This combined with the fact
     40 * that we only get 1 TX event per descriptor cache means the NIC
     41 * goes idle.
     42 */
     43#define TX_DC_ENTRIES 16
     44#define TX_DC_ENTRIES_ORDER 1
     45
     46#define RX_DC_ENTRIES 64
     47#define RX_DC_ENTRIES_ORDER 3
     48
     49/* If EFX_MAX_INT_ERRORS internal errors occur within
     50 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
     51 * disable it.
     52 */
     53#define EFX_INT_ERROR_EXPIRE 3600
     54#define EFX_MAX_INT_ERRORS 5
     55
     56/* Depth of RX flush request fifo */
     57#define EFX_RX_FLUSH_COUNT 4
     58
     59/* Driver generated events */
     60#define _EFX_CHANNEL_MAGIC_TEST		0x000101
     61#define _EFX_CHANNEL_MAGIC_FILL		0x000102
     62#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
     63#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
     64
     65#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
     66#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
     67
     68#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
     69	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
     70#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
     71	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
     72			   efx_rx_queue_index(_rx_queue))
     73#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
     74	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
     75			   efx_rx_queue_index(_rx_queue))
     76#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
     77	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
     78			   (_tx_queue)->queue)
     79
     80static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
     81
     82/**************************************************************************
     83 *
     84 * Hardware access
     85 *
     86 **************************************************************************/
     87
     88static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
     89				     unsigned int index)
     90{
     91	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
     92			value, index);
     93}
     94
     95static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
     96				     const efx_oword_t *mask)
     97{
     98	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
     99		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
    100}
    101
    102int efx_farch_test_registers(struct efx_nic *efx,
    103			     const struct efx_farch_register_test *regs,
    104			     size_t n_regs)
    105{
    106	unsigned address = 0;
    107	int i, j;
    108	efx_oword_t mask, imask, original, reg, buf;
    109
    110	for (i = 0; i < n_regs; ++i) {
    111		address = regs[i].address;
    112		mask = imask = regs[i].mask;
    113		EFX_INVERT_OWORD(imask);
    114
    115		efx_reado(efx, &original, address);
    116
    117		/* bit sweep on and off */
    118		for (j = 0; j < 128; j++) {
    119			if (!EFX_EXTRACT_OWORD32(mask, j, j))
    120				continue;
    121
    122			/* Test this testable bit can be set in isolation */
    123			EFX_AND_OWORD(reg, original, mask);
    124			EFX_SET_OWORD32(reg, j, j, 1);
    125
    126			efx_writeo(efx, &reg, address);
    127			efx_reado(efx, &buf, address);
    128
    129			if (efx_masked_compare_oword(&reg, &buf, &mask))
    130				goto fail;
    131
    132			/* Test this testable bit can be cleared in isolation */
    133			EFX_OR_OWORD(reg, original, mask);
    134			EFX_SET_OWORD32(reg, j, j, 0);
    135
    136			efx_writeo(efx, &reg, address);
    137			efx_reado(efx, &buf, address);
    138
    139			if (efx_masked_compare_oword(&reg, &buf, &mask))
    140				goto fail;
    141		}
    142
    143		efx_writeo(efx, &original, address);
    144	}
    145
    146	return 0;
    147
    148fail:
    149	netif_err(efx, hw, efx->net_dev,
    150		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
    151		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
    152		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
    153	return -EIO;
    154}
    155
    156/**************************************************************************
    157 *
    158 * Special buffer handling
    159 * Special buffers are used for event queues and the TX and RX
    160 * descriptor rings.
    161 *
    162 *************************************************************************/
    163
    164/*
    165 * Initialise a special buffer
    166 *
    167 * This will define a buffer (previously allocated via
    168 * efx_alloc_special_buffer()) in the buffer table, allowing
    169 * it to be used for event queues, descriptor rings etc.
    170 */
    171static void
    172efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
    173{
    174	efx_qword_t buf_desc;
    175	unsigned int index;
    176	dma_addr_t dma_addr;
    177	int i;
    178
    179	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
    180
    181	/* Write buffer descriptors to NIC */
    182	for (i = 0; i < buffer->entries; i++) {
    183		index = buffer->index + i;
    184		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
    185		netif_dbg(efx, probe, efx->net_dev,
    186			  "mapping special buffer %d at %llx\n",
    187			  index, (unsigned long long)dma_addr);
    188		EFX_POPULATE_QWORD_3(buf_desc,
    189				     FRF_AZ_BUF_ADR_REGION, 0,
    190				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
    191				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
    192		efx_write_buf_tbl(efx, &buf_desc, index);
    193	}
    194}
    195
    196/* Unmaps a buffer and clears the buffer table entries */
    197static void
    198efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
    199{
    200	efx_oword_t buf_tbl_upd;
    201	unsigned int start = buffer->index;
    202	unsigned int end = (buffer->index + buffer->entries - 1);
    203
    204	if (!buffer->entries)
    205		return;
    206
    207	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
    208		  buffer->index, buffer->index + buffer->entries - 1);
    209
    210	EFX_POPULATE_OWORD_4(buf_tbl_upd,
    211			     FRF_AZ_BUF_UPD_CMD, 0,
    212			     FRF_AZ_BUF_CLR_CMD, 1,
    213			     FRF_AZ_BUF_CLR_END_ID, end,
    214			     FRF_AZ_BUF_CLR_START_ID, start);
    215	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
    216}
    217
    218/*
    219 * Allocate a new special buffer
    220 *
    221 * This allocates memory for a new buffer, clears it and allocates a
    222 * new buffer ID range.  It does not write into the buffer table.
    223 *
    224 * This call will allocate 4KB buffers, since 8KB buffers can't be
    225 * used for event queues and descriptor rings.
    226 */
    227static int efx_alloc_special_buffer(struct efx_nic *efx,
    228				    struct efx_special_buffer *buffer,
    229				    unsigned int len)
    230{
    231#ifdef CONFIG_SFC_SIENA_SRIOV
    232	struct siena_nic_data *nic_data = efx->nic_data;
    233#endif
    234	len = ALIGN(len, EFX_BUF_SIZE);
    235
    236	if (efx_siena_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
    237		return -ENOMEM;
    238	buffer->entries = len / EFX_BUF_SIZE;
    239	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
    240
    241	/* Select new buffer ID */
    242	buffer->index = efx->next_buffer_table;
    243	efx->next_buffer_table += buffer->entries;
    244#ifdef CONFIG_SFC_SIENA_SRIOV
    245	BUG_ON(efx_siena_sriov_enabled(efx) &&
    246	       nic_data->vf_buftbl_base < efx->next_buffer_table);
    247#endif
    248
    249	netif_dbg(efx, probe, efx->net_dev,
    250		  "allocating special buffers %d-%d at %llx+%x "
    251		  "(virt %p phys %llx)\n", buffer->index,
    252		  buffer->index + buffer->entries - 1,
    253		  (u64)buffer->buf.dma_addr, len,
    254		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
    255
    256	return 0;
    257}
    258
    259static void
    260efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
    261{
    262	if (!buffer->buf.addr)
    263		return;
    264
    265	netif_dbg(efx, hw, efx->net_dev,
    266		  "deallocating special buffers %d-%d at %llx+%x "
    267		  "(virt %p phys %llx)\n", buffer->index,
    268		  buffer->index + buffer->entries - 1,
    269		  (u64)buffer->buf.dma_addr, buffer->buf.len,
    270		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
    271
    272	efx_siena_free_buffer(efx, &buffer->buf);
    273	buffer->entries = 0;
    274}
    275
    276/**************************************************************************
    277 *
    278 * TX path
    279 *
    280 **************************************************************************/
    281
    282/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
    283static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
    284{
    285	unsigned write_ptr;
    286	efx_dword_t reg;
    287
    288	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
    289	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
    290	efx_writed_page(tx_queue->efx, &reg,
    291			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
    292}
    293
    294/* Write pointer and first descriptor for TX descriptor ring */
    295static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
    296					  const efx_qword_t *txd)
    297{
    298	unsigned write_ptr;
    299	efx_oword_t reg;
    300
    301	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
    302	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
    303
    304	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
    305	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
    306			     FRF_AZ_TX_DESC_WPTR, write_ptr);
    307	reg.qword[0] = *txd;
    308	efx_writeo_page(tx_queue->efx, &reg,
    309			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
    310}
    311
    312
    313/* For each entry inserted into the software descriptor ring, create a
    314 * descriptor in the hardware TX descriptor ring (in host memory), and
    315 * write a doorbell.
    316 */
    317void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
    318{
    319	struct efx_tx_buffer *buffer;
    320	efx_qword_t *txd;
    321	unsigned write_ptr;
    322	unsigned old_write_count = tx_queue->write_count;
    323
    324	tx_queue->xmit_pending = false;
    325	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
    326		return;
    327
    328	do {
    329		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
    330		buffer = &tx_queue->buffer[write_ptr];
    331		txd = efx_tx_desc(tx_queue, write_ptr);
    332		++tx_queue->write_count;
    333
    334		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
    335
    336		/* Create TX descriptor ring entry */
    337		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
    338		EFX_POPULATE_QWORD_4(*txd,
    339				     FSF_AZ_TX_KER_CONT,
    340				     buffer->flags & EFX_TX_BUF_CONT,
    341				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
    342				     FSF_AZ_TX_KER_BUF_REGION, 0,
    343				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
    344	} while (tx_queue->write_count != tx_queue->insert_count);
    345
    346	wmb(); /* Ensure descriptors are written before they are fetched */
    347
    348	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
    349		txd = efx_tx_desc(tx_queue,
    350				  old_write_count & tx_queue->ptr_mask);
    351		efx_farch_push_tx_desc(tx_queue, txd);
    352		++tx_queue->pushes;
    353	} else {
    354		efx_farch_notify_tx_desc(tx_queue);
    355	}
    356}
    357
    358unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
    359				    dma_addr_t dma_addr, unsigned int len)
    360{
    361	/* Don't cross 4K boundaries with descriptors. */
    362	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
    363
    364	len = min(limit, len);
    365
    366	return len;
    367}
    368
    369
    370/* Allocate hardware resources for a TX queue */
    371int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
    372{
    373	struct efx_nic *efx = tx_queue->efx;
    374	unsigned entries;
    375
    376	tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) |
    377			 ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
    378	entries = tx_queue->ptr_mask + 1;
    379	return efx_alloc_special_buffer(efx, &tx_queue->txd,
    380					entries * sizeof(efx_qword_t));
    381}
    382
    383void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
    384{
    385	int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
    386	struct efx_nic *efx = tx_queue->efx;
    387	efx_oword_t reg;
    388
    389	/* Pin TX descriptor ring */
    390	efx_init_special_buffer(efx, &tx_queue->txd);
    391
    392	/* Push TX descriptor ring to card */
    393	EFX_POPULATE_OWORD_10(reg,
    394			      FRF_AZ_TX_DESCQ_EN, 1,
    395			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
    396			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
    397			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
    398			      FRF_AZ_TX_DESCQ_EVQ_ID,
    399			      tx_queue->channel->channel,
    400			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
    401			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
    402			      FRF_AZ_TX_DESCQ_SIZE,
    403			      __ffs(tx_queue->txd.entries),
    404			      FRF_AZ_TX_DESCQ_TYPE, 0,
    405			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
    406
    407	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
    408	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
    409
    410	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
    411			 tx_queue->queue);
    412
    413	EFX_POPULATE_OWORD_1(reg,
    414			     FRF_BZ_TX_PACE,
    415			     (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
    416			     FFE_BZ_TX_PACE_OFF :
    417			     FFE_BZ_TX_PACE_RESERVED);
    418	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
    419
    420	tx_queue->tso_version = 1;
    421}
    422
    423static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
    424{
    425	struct efx_nic *efx = tx_queue->efx;
    426	efx_oword_t tx_flush_descq;
    427
    428	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
    429	atomic_set(&tx_queue->flush_outstanding, 1);
    430
    431	EFX_POPULATE_OWORD_2(tx_flush_descq,
    432			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
    433			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
    434	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
    435}
    436
    437void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
    438{
    439	struct efx_nic *efx = tx_queue->efx;
    440	efx_oword_t tx_desc_ptr;
    441
    442	/* Remove TX descriptor ring from card */
    443	EFX_ZERO_OWORD(tx_desc_ptr);
    444	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
    445			 tx_queue->queue);
    446
    447	/* Unpin TX descriptor ring */
    448	efx_fini_special_buffer(efx, &tx_queue->txd);
    449}
    450
    451/* Free buffers backing TX queue */
    452void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
    453{
    454	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
    455}
    456
    457/**************************************************************************
    458 *
    459 * RX path
    460 *
    461 **************************************************************************/
    462
    463/* This creates an entry in the RX descriptor queue */
    464static inline void
    465efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
    466{
    467	struct efx_rx_buffer *rx_buf;
    468	efx_qword_t *rxd;
    469
    470	rxd = efx_rx_desc(rx_queue, index);
    471	rx_buf = efx_rx_buffer(rx_queue, index);
    472	EFX_POPULATE_QWORD_3(*rxd,
    473			     FSF_AZ_RX_KER_BUF_SIZE,
    474			     rx_buf->len -
    475			     rx_queue->efx->type->rx_buffer_padding,
    476			     FSF_AZ_RX_KER_BUF_REGION, 0,
    477			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
    478}
    479
    480/* This writes to the RX_DESC_WPTR register for the specified receive
    481 * descriptor ring.
    482 */
    483void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
    484{
    485	struct efx_nic *efx = rx_queue->efx;
    486	efx_dword_t reg;
    487	unsigned write_ptr;
    488
    489	while (rx_queue->notified_count != rx_queue->added_count) {
    490		efx_farch_build_rx_desc(
    491			rx_queue,
    492			rx_queue->notified_count & rx_queue->ptr_mask);
    493		++rx_queue->notified_count;
    494	}
    495
    496	wmb();
    497	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
    498	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
    499	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
    500			efx_rx_queue_index(rx_queue));
    501}
    502
    503int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
    504{
    505	struct efx_nic *efx = rx_queue->efx;
    506	unsigned entries;
    507
    508	entries = rx_queue->ptr_mask + 1;
    509	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
    510					entries * sizeof(efx_qword_t));
    511}
    512
    513void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
    514{
    515	efx_oword_t rx_desc_ptr;
    516	struct efx_nic *efx = rx_queue->efx;
    517	bool jumbo_en;
    518
    519	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
    520	jumbo_en = efx->rx_scatter;
    521
    522	netif_dbg(efx, hw, efx->net_dev,
    523		  "RX queue %d ring in special buffers %d-%d\n",
    524		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
    525		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
    526
    527	rx_queue->scatter_n = 0;
    528
    529	/* Pin RX descriptor ring */
    530	efx_init_special_buffer(efx, &rx_queue->rxd);
    531
    532	/* Push RX descriptor ring to card */
    533	EFX_POPULATE_OWORD_10(rx_desc_ptr,
    534			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
    535			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
    536			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
    537			      FRF_AZ_RX_DESCQ_EVQ_ID,
    538			      efx_rx_queue_channel(rx_queue)->channel,
    539			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
    540			      FRF_AZ_RX_DESCQ_LABEL,
    541			      efx_rx_queue_index(rx_queue),
    542			      FRF_AZ_RX_DESCQ_SIZE,
    543			      __ffs(rx_queue->rxd.entries),
    544			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
    545			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
    546			      FRF_AZ_RX_DESCQ_EN, 1);
    547	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
    548			 efx_rx_queue_index(rx_queue));
    549}
    550
    551static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
    552{
    553	struct efx_nic *efx = rx_queue->efx;
    554	efx_oword_t rx_flush_descq;
    555
    556	EFX_POPULATE_OWORD_2(rx_flush_descq,
    557			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
    558			     FRF_AZ_RX_FLUSH_DESCQ,
    559			     efx_rx_queue_index(rx_queue));
    560	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
    561}
    562
    563void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
    564{
    565	efx_oword_t rx_desc_ptr;
    566	struct efx_nic *efx = rx_queue->efx;
    567
    568	/* Remove RX descriptor ring from card */
    569	EFX_ZERO_OWORD(rx_desc_ptr);
    570	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
    571			 efx_rx_queue_index(rx_queue));
    572
    573	/* Unpin RX descriptor ring */
    574	efx_fini_special_buffer(efx, &rx_queue->rxd);
    575}
    576
    577/* Free buffers backing RX queue */
    578void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
    579{
    580	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
    581}
    582
    583/**************************************************************************
    584 *
    585 * Flush handling
    586 *
    587 **************************************************************************/
    588
    589/* efx_farch_flush_queues() must be woken up when all flushes are completed,
    590 * or more RX flushes can be kicked off.
    591 */
    592static bool efx_farch_flush_wake(struct efx_nic *efx)
    593{
    594	/* Ensure that all updates are visible to efx_farch_flush_queues() */
    595	smp_mb();
    596
    597	return (atomic_read(&efx->active_queues) == 0 ||
    598		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
    599		 && atomic_read(&efx->rxq_flush_pending) > 0));
    600}
    601
    602static bool efx_check_tx_flush_complete(struct efx_nic *efx)
    603{
    604	bool i = true;
    605	efx_oword_t txd_ptr_tbl;
    606	struct efx_channel *channel;
    607	struct efx_tx_queue *tx_queue;
    608
    609	efx_for_each_channel(channel, efx) {
    610		efx_for_each_channel_tx_queue(tx_queue, channel) {
    611			efx_reado_table(efx, &txd_ptr_tbl,
    612					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
    613			if (EFX_OWORD_FIELD(txd_ptr_tbl,
    614					    FRF_AZ_TX_DESCQ_FLUSH) ||
    615			    EFX_OWORD_FIELD(txd_ptr_tbl,
    616					    FRF_AZ_TX_DESCQ_EN)) {
    617				netif_dbg(efx, hw, efx->net_dev,
    618					  "flush did not complete on TXQ %d\n",
    619					  tx_queue->queue);
    620				i = false;
    621			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
    622						  1, 0)) {
    623				/* The flush is complete, but we didn't
    624				 * receive a flush completion event
    625				 */
    626				netif_dbg(efx, hw, efx->net_dev,
    627					  "flush complete on TXQ %d, so drain "
    628					  "the queue\n", tx_queue->queue);
    629				/* Don't need to increment active_queues as it
    630				 * has already been incremented for the queues
    631				 * which did not drain
    632				 */
    633				efx_farch_magic_event(channel,
    634						      EFX_CHANNEL_MAGIC_TX_DRAIN(
    635							      tx_queue));
    636			}
    637		}
    638	}
    639
    640	return i;
    641}
    642
    643/* Flush all the transmit queues, and continue flushing receive queues until
    644 * they're all flushed. Wait for the DRAIN events to be received so that there
    645 * are no more RX and TX events left on any channel. */
    646static int efx_farch_do_flush(struct efx_nic *efx)
    647{
    648	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
    649	struct efx_channel *channel;
    650	struct efx_rx_queue *rx_queue;
    651	struct efx_tx_queue *tx_queue;
    652	int rc = 0;
    653
    654	efx_for_each_channel(channel, efx) {
    655		efx_for_each_channel_tx_queue(tx_queue, channel) {
    656			efx_farch_flush_tx_queue(tx_queue);
    657		}
    658		efx_for_each_channel_rx_queue(rx_queue, channel) {
    659			rx_queue->flush_pending = true;
    660			atomic_inc(&efx->rxq_flush_pending);
    661		}
    662	}
    663
    664	while (timeout && atomic_read(&efx->active_queues) > 0) {
    665		/* If SRIOV is enabled, then offload receive queue flushing to
    666		 * the firmware (though we will still have to poll for
    667		 * completion). If that fails, fall back to the old scheme.
    668		 */
    669		if (efx_siena_sriov_enabled(efx)) {
    670			rc = efx_siena_mcdi_flush_rxqs(efx);
    671			if (!rc)
    672				goto wait;
    673		}
    674
    675		/* The hardware supports four concurrent rx flushes, each of
    676		 * which may need to be retried if there is an outstanding
    677		 * descriptor fetch
    678		 */
    679		efx_for_each_channel(channel, efx) {
    680			efx_for_each_channel_rx_queue(rx_queue, channel) {
    681				if (atomic_read(&efx->rxq_flush_outstanding) >=
    682				    EFX_RX_FLUSH_COUNT)
    683					break;
    684
    685				if (rx_queue->flush_pending) {
    686					rx_queue->flush_pending = false;
    687					atomic_dec(&efx->rxq_flush_pending);
    688					atomic_inc(&efx->rxq_flush_outstanding);
    689					efx_farch_flush_rx_queue(rx_queue);
    690				}
    691			}
    692		}
    693
    694	wait:
    695		timeout = wait_event_timeout(efx->flush_wq,
    696					     efx_farch_flush_wake(efx),
    697					     timeout);
    698	}
    699
    700	if (atomic_read(&efx->active_queues) &&
    701	    !efx_check_tx_flush_complete(efx)) {
    702		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
    703			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
    704			  atomic_read(&efx->rxq_flush_outstanding),
    705			  atomic_read(&efx->rxq_flush_pending));
    706		rc = -ETIMEDOUT;
    707
    708		atomic_set(&efx->active_queues, 0);
    709		atomic_set(&efx->rxq_flush_pending, 0);
    710		atomic_set(&efx->rxq_flush_outstanding, 0);
    711	}
    712
    713	return rc;
    714}
    715
    716int efx_farch_fini_dmaq(struct efx_nic *efx)
    717{
    718	struct efx_channel *channel;
    719	struct efx_tx_queue *tx_queue;
    720	struct efx_rx_queue *rx_queue;
    721	int rc = 0;
    722
    723	/* Do not attempt to write to the NIC during EEH recovery */
    724	if (efx->state != STATE_RECOVERY) {
    725		/* Only perform flush if DMA is enabled */
    726		if (efx->pci_dev->is_busmaster) {
    727			efx->type->prepare_flush(efx);
    728			rc = efx_farch_do_flush(efx);
    729			efx->type->finish_flush(efx);
    730		}
    731
    732		efx_for_each_channel(channel, efx) {
    733			efx_for_each_channel_rx_queue(rx_queue, channel)
    734				efx_farch_rx_fini(rx_queue);
    735			efx_for_each_channel_tx_queue(tx_queue, channel)
    736				efx_farch_tx_fini(tx_queue);
    737		}
    738	}
    739
    740	return rc;
    741}
    742
    743/* Reset queue and flush accounting after FLR
    744 *
    745 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
    746 * mastering was disabled), in which case we don't receive (RXQ) flush
    747 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
    748 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
    749 * events were received, and we didn't go through efx_check_tx_flush_complete())
    750 * If we don't fix this up, on the next call to efx_siena_realloc_channels() we
    751 * won't flush any RX queues because efx->rxq_flush_outstanding is at the limit
    752 * of 4 for batched flush requests; and the efx->active_queues gets messed up
    753 * because we keep incrementing for the newly initialised queues, but it never
    754 * went to zero previously.  Then we get a timeout every time we try to restart
    755 * the queues, as it doesn't go back to zero when we should be flushing the
    756 * queues.
    757 */
    758void efx_farch_finish_flr(struct efx_nic *efx)
    759{
    760	atomic_set(&efx->rxq_flush_pending, 0);
    761	atomic_set(&efx->rxq_flush_outstanding, 0);
    762	atomic_set(&efx->active_queues, 0);
    763}
    764
    765
    766/**************************************************************************
    767 *
    768 * Event queue processing
    769 * Event queues are processed by per-channel tasklets.
    770 *
    771 **************************************************************************/
    772
    773/* Update a channel's event queue's read pointer (RPTR) register
    774 *
    775 * This writes the EVQ_RPTR_REG register for the specified channel's
    776 * event queue.
    777 */
    778void efx_farch_ev_read_ack(struct efx_channel *channel)
    779{
    780	efx_dword_t reg;
    781	struct efx_nic *efx = channel->efx;
    782
    783	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
    784			     channel->eventq_read_ptr & channel->eventq_mask);
    785
    786	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
    787	 * of 4 bytes, but it is really 16 bytes just like later revisions.
    788	 */
    789	efx_writed(efx, &reg,
    790		   efx->type->evq_rptr_tbl_base +
    791		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
    792}
    793
    794/* Use HW to insert a SW defined event */
    795void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
    796			      efx_qword_t *event)
    797{
    798	efx_oword_t drv_ev_reg;
    799
    800	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
    801		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
    802	drv_ev_reg.u32[0] = event->u32[0];
    803	drv_ev_reg.u32[1] = event->u32[1];
    804	drv_ev_reg.u32[2] = 0;
    805	drv_ev_reg.u32[3] = 0;
    806	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
    807	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
    808}
    809
    810static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
    811{
    812	efx_qword_t event;
    813
    814	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
    815			     FSE_AZ_EV_CODE_DRV_GEN_EV,
    816			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
    817	efx_farch_generate_event(channel->efx, channel->channel, &event);
    818}
    819
    820/* Handle a transmit completion event
    821 *
    822 * The NIC batches TX completion events; the message we receive is of
    823 * the form "complete all TX events up to this index".
    824 */
    825static void
    826efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
    827{
    828	unsigned int tx_ev_desc_ptr;
    829	unsigned int tx_ev_q_label;
    830	struct efx_tx_queue *tx_queue;
    831	struct efx_nic *efx = channel->efx;
    832
    833	if (unlikely(READ_ONCE(efx->reset_pending)))
    834		return;
    835
    836	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
    837		/* Transmit completion */
    838		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
    839		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
    840		tx_queue = channel->tx_queue +
    841				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
    842		efx_siena_xmit_done(tx_queue, tx_ev_desc_ptr);
    843	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
    844		/* Rewrite the FIFO write pointer */
    845		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
    846		tx_queue = channel->tx_queue +
    847				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
    848
    849		netif_tx_lock(efx->net_dev);
    850		efx_farch_notify_tx_desc(tx_queue);
    851		netif_tx_unlock(efx->net_dev);
    852	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
    853		efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
    854	} else {
    855		netif_err(efx, tx_err, efx->net_dev,
    856			  "channel %d unexpected TX event "
    857			  EFX_QWORD_FMT"\n", channel->channel,
    858			  EFX_QWORD_VAL(*event));
    859	}
    860}
    861
    862/* Detect errors included in the rx_evt_pkt_ok bit. */
    863static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
    864				      const efx_qword_t *event)
    865{
    866	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
    867	struct efx_nic *efx = rx_queue->efx;
    868	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
    869	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
    870	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
    871	bool rx_ev_other_err, rx_ev_pause_frm;
    872
    873	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
    874	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
    875						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
    876	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
    877						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
    878	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
    879						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
    880	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
    881	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
    882	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
    883
    884	/* Every error apart from tobe_disc and pause_frm */
    885	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
    886			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
    887			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
    888
    889	/* Count errors that are not in MAC stats.  Ignore expected
    890	 * checksum errors during self-test. */
    891	if (rx_ev_frm_trunc)
    892		++channel->n_rx_frm_trunc;
    893	else if (rx_ev_tobe_disc)
    894		++channel->n_rx_tobe_disc;
    895	else if (!efx->loopback_selftest) {
    896		if (rx_ev_ip_hdr_chksum_err)
    897			++channel->n_rx_ip_hdr_chksum_err;
    898		else if (rx_ev_tcp_udp_chksum_err)
    899			++channel->n_rx_tcp_udp_chksum_err;
    900	}
    901
    902	/* TOBE_DISC is expected on unicast mismatches; don't print out an
    903	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
    904	 * to a FIFO overflow.
    905	 */
    906#ifdef DEBUG
    907	if (rx_ev_other_err && net_ratelimit()) {
    908		netif_dbg(efx, rx_err, efx->net_dev,
    909			  " RX queue %d unexpected RX event "
    910			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
    911			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
    912			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
    913			  rx_ev_ip_hdr_chksum_err ?
    914			  " [IP_HDR_CHKSUM_ERR]" : "",
    915			  rx_ev_tcp_udp_chksum_err ?
    916			  " [TCP_UDP_CHKSUM_ERR]" : "",
    917			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
    918			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
    919			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
    920			  rx_ev_pause_frm ? " [PAUSE]" : "");
    921	}
    922#else
    923	(void) rx_ev_other_err;
    924#endif
    925
    926	if (efx->net_dev->features & NETIF_F_RXALL)
    927		/* don't discard frame for CRC error */
    928		rx_ev_eth_crc_err = false;
    929
    930	/* The frame must be discarded if any of these are true. */
    931	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
    932		rx_ev_tobe_disc | rx_ev_pause_frm) ?
    933		EFX_RX_PKT_DISCARD : 0;
    934}
    935
    936/* Handle receive events that are not in-order. Return true if this
    937 * can be handled as a partial packet discard, false if it's more
    938 * serious.
    939 */
    940static bool
    941efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
    942{
    943	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
    944	struct efx_nic *efx = rx_queue->efx;
    945	unsigned expected, dropped;
    946
    947	if (rx_queue->scatter_n &&
    948	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
    949		      rx_queue->ptr_mask)) {
    950		++channel->n_rx_nodesc_trunc;
    951		return true;
    952	}
    953
    954	expected = rx_queue->removed_count & rx_queue->ptr_mask;
    955	dropped = (index - expected) & rx_queue->ptr_mask;
    956	netif_info(efx, rx_err, efx->net_dev,
    957		   "dropped %d events (index=%d expected=%d)\n",
    958		   dropped, index, expected);
    959
    960	efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
    961	return false;
    962}
    963
    964/* Handle a packet received event
    965 *
    966 * The NIC gives a "discard" flag if it's a unicast packet with the
    967 * wrong destination address
    968 * Also "is multicast" and "matches multicast filter" flags can be used to
    969 * discard non-matching multicast packets.
    970 */
    971static void
    972efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
    973{
    974	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
    975	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
    976	unsigned expected_ptr;
    977	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
    978	u16 flags;
    979	struct efx_rx_queue *rx_queue;
    980	struct efx_nic *efx = channel->efx;
    981
    982	if (unlikely(READ_ONCE(efx->reset_pending)))
    983		return;
    984
    985	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
    986	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
    987	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
    988		channel->channel);
    989
    990	rx_queue = efx_channel_get_rx_queue(channel);
    991
    992	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
    993	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
    994			rx_queue->ptr_mask);
    995
    996	/* Check for partial drops and other errors */
    997	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
    998	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
    999		if (rx_ev_desc_ptr != expected_ptr &&
   1000		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
   1001			return;
   1002
   1003		/* Discard all pending fragments */
   1004		if (rx_queue->scatter_n) {
   1005			efx_siena_rx_packet(
   1006				rx_queue,
   1007				rx_queue->removed_count & rx_queue->ptr_mask,
   1008				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
   1009			rx_queue->removed_count += rx_queue->scatter_n;
   1010			rx_queue->scatter_n = 0;
   1011		}
   1012
   1013		/* Return if there is no new fragment */
   1014		if (rx_ev_desc_ptr != expected_ptr)
   1015			return;
   1016
   1017		/* Discard new fragment if not SOP */
   1018		if (!rx_ev_sop) {
   1019			efx_siena_rx_packet(
   1020				rx_queue,
   1021				rx_queue->removed_count & rx_queue->ptr_mask,
   1022				1, 0, EFX_RX_PKT_DISCARD);
   1023			++rx_queue->removed_count;
   1024			return;
   1025		}
   1026	}
   1027
   1028	++rx_queue->scatter_n;
   1029	if (rx_ev_cont)
   1030		return;
   1031
   1032	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
   1033	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
   1034	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
   1035
   1036	if (likely(rx_ev_pkt_ok)) {
   1037		/* If packet is marked as OK then we can rely on the
   1038		 * hardware checksum and classification.
   1039		 */
   1040		flags = 0;
   1041		switch (rx_ev_hdr_type) {
   1042		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
   1043			flags |= EFX_RX_PKT_TCP;
   1044			fallthrough;
   1045		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
   1046			flags |= EFX_RX_PKT_CSUMMED;
   1047			fallthrough;
   1048		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
   1049		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
   1050			break;
   1051		}
   1052	} else {
   1053		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
   1054	}
   1055
   1056	/* Detect multicast packets that didn't match the filter */
   1057	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
   1058	if (rx_ev_mcast_pkt) {
   1059		unsigned int rx_ev_mcast_hash_match =
   1060			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
   1061
   1062		if (unlikely(!rx_ev_mcast_hash_match)) {
   1063			++channel->n_rx_mcast_mismatch;
   1064			flags |= EFX_RX_PKT_DISCARD;
   1065		}
   1066	}
   1067
   1068	channel->irq_mod_score += 2;
   1069
   1070	/* Handle received packet */
   1071	efx_siena_rx_packet(rx_queue,
   1072			    rx_queue->removed_count & rx_queue->ptr_mask,
   1073			    rx_queue->scatter_n, rx_ev_byte_cnt, flags);
   1074	rx_queue->removed_count += rx_queue->scatter_n;
   1075	rx_queue->scatter_n = 0;
   1076}
   1077
   1078/* If this flush done event corresponds to a &struct efx_tx_queue, then
   1079 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
   1080 * of all transmit completions.
   1081 */
   1082static void
   1083efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
   1084{
   1085	struct efx_tx_queue *tx_queue;
   1086	struct efx_channel *channel;
   1087	int qid;
   1088
   1089	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
   1090	if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
   1091		channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL);
   1092		tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL);
   1093		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0))
   1094			efx_farch_magic_event(tx_queue->channel,
   1095					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
   1096	}
   1097}
   1098
   1099/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
   1100 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
   1101 * the RX queue back to the mask of RX queues in need of flushing.
   1102 */
   1103static void
   1104efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
   1105{
   1106	struct efx_channel *channel;
   1107	struct efx_rx_queue *rx_queue;
   1108	int qid;
   1109	bool failed;
   1110
   1111	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
   1112	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
   1113	if (qid >= efx->n_channels)
   1114		return;
   1115	channel = efx_get_channel(efx, qid);
   1116	if (!efx_channel_has_rx_queue(channel))
   1117		return;
   1118	rx_queue = efx_channel_get_rx_queue(channel);
   1119
   1120	if (failed) {
   1121		netif_info(efx, hw, efx->net_dev,
   1122			   "RXQ %d flush retry\n", qid);
   1123		rx_queue->flush_pending = true;
   1124		atomic_inc(&efx->rxq_flush_pending);
   1125	} else {
   1126		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
   1127				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
   1128	}
   1129	atomic_dec(&efx->rxq_flush_outstanding);
   1130	if (efx_farch_flush_wake(efx))
   1131		wake_up(&efx->flush_wq);
   1132}
   1133
   1134static void
   1135efx_farch_handle_drain_event(struct efx_channel *channel)
   1136{
   1137	struct efx_nic *efx = channel->efx;
   1138
   1139	WARN_ON(atomic_read(&efx->active_queues) == 0);
   1140	atomic_dec(&efx->active_queues);
   1141	if (efx_farch_flush_wake(efx))
   1142		wake_up(&efx->flush_wq);
   1143}
   1144
   1145static void efx_farch_handle_generated_event(struct efx_channel *channel,
   1146					     efx_qword_t *event)
   1147{
   1148	struct efx_nic *efx = channel->efx;
   1149	struct efx_rx_queue *rx_queue =
   1150		efx_channel_has_rx_queue(channel) ?
   1151		efx_channel_get_rx_queue(channel) : NULL;
   1152	unsigned magic, code;
   1153
   1154	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
   1155	code = _EFX_CHANNEL_MAGIC_CODE(magic);
   1156
   1157	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
   1158		channel->event_test_cpu = raw_smp_processor_id();
   1159	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
   1160		/* The queue must be empty, so we won't receive any rx
   1161		 * events, so efx_process_channel() won't refill the
   1162		 * queue. Refill it here */
   1163		efx_siena_fast_push_rx_descriptors(rx_queue, true);
   1164	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
   1165		efx_farch_handle_drain_event(channel);
   1166	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
   1167		efx_farch_handle_drain_event(channel);
   1168	} else {
   1169		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
   1170			  "generated event "EFX_QWORD_FMT"\n",
   1171			  channel->channel, EFX_QWORD_VAL(*event));
   1172	}
   1173}
   1174
   1175static void
   1176efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
   1177{
   1178	struct efx_nic *efx = channel->efx;
   1179	unsigned int ev_sub_code;
   1180	unsigned int ev_sub_data;
   1181
   1182	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
   1183	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
   1184
   1185	switch (ev_sub_code) {
   1186	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
   1187		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
   1188			   channel->channel, ev_sub_data);
   1189		efx_farch_handle_tx_flush_done(efx, event);
   1190#ifdef CONFIG_SFC_SIENA_SRIOV
   1191		efx_siena_sriov_tx_flush_done(efx, event);
   1192#endif
   1193		break;
   1194	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
   1195		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
   1196			   channel->channel, ev_sub_data);
   1197		efx_farch_handle_rx_flush_done(efx, event);
   1198#ifdef CONFIG_SFC_SIENA_SRIOV
   1199		efx_siena_sriov_rx_flush_done(efx, event);
   1200#endif
   1201		break;
   1202	case FSE_AZ_EVQ_INIT_DONE_EV:
   1203		netif_dbg(efx, hw, efx->net_dev,
   1204			  "channel %d EVQ %d initialised\n",
   1205			  channel->channel, ev_sub_data);
   1206		break;
   1207	case FSE_AZ_SRM_UPD_DONE_EV:
   1208		netif_vdbg(efx, hw, efx->net_dev,
   1209			   "channel %d SRAM update done\n", channel->channel);
   1210		break;
   1211	case FSE_AZ_WAKE_UP_EV:
   1212		netif_vdbg(efx, hw, efx->net_dev,
   1213			   "channel %d RXQ %d wakeup event\n",
   1214			   channel->channel, ev_sub_data);
   1215		break;
   1216	case FSE_AZ_TIMER_EV:
   1217		netif_vdbg(efx, hw, efx->net_dev,
   1218			   "channel %d RX queue %d timer expired\n",
   1219			   channel->channel, ev_sub_data);
   1220		break;
   1221	case FSE_AA_RX_RECOVER_EV:
   1222		netif_err(efx, rx_err, efx->net_dev,
   1223			  "channel %d seen DRIVER RX_RESET event. "
   1224			"Resetting.\n", channel->channel);
   1225		atomic_inc(&efx->rx_reset);
   1226		efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
   1227		break;
   1228	case FSE_BZ_RX_DSC_ERROR_EV:
   1229		if (ev_sub_data < EFX_VI_BASE) {
   1230			netif_err(efx, rx_err, efx->net_dev,
   1231				  "RX DMA Q %d reports descriptor fetch error."
   1232				  " RX Q %d is disabled.\n", ev_sub_data,
   1233				  ev_sub_data);
   1234			efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
   1235		}
   1236#ifdef CONFIG_SFC_SIENA_SRIOV
   1237		else
   1238			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
   1239#endif
   1240		break;
   1241	case FSE_BZ_TX_DSC_ERROR_EV:
   1242		if (ev_sub_data < EFX_VI_BASE) {
   1243			netif_err(efx, tx_err, efx->net_dev,
   1244				  "TX DMA Q %d reports descriptor fetch error."
   1245				  " TX Q %d is disabled.\n", ev_sub_data,
   1246				  ev_sub_data);
   1247			efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
   1248		}
   1249#ifdef CONFIG_SFC_SIENA_SRIOV
   1250		else
   1251			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
   1252#endif
   1253		break;
   1254	default:
   1255		netif_vdbg(efx, hw, efx->net_dev,
   1256			   "channel %d unknown driver event code %d "
   1257			   "data %04x\n", channel->channel, ev_sub_code,
   1258			   ev_sub_data);
   1259		break;
   1260	}
   1261}
   1262
   1263int efx_farch_ev_process(struct efx_channel *channel, int budget)
   1264{
   1265	struct efx_nic *efx = channel->efx;
   1266	unsigned int read_ptr;
   1267	efx_qword_t event, *p_event;
   1268	int ev_code;
   1269	int spent = 0;
   1270
   1271	if (budget <= 0)
   1272		return spent;
   1273
   1274	read_ptr = channel->eventq_read_ptr;
   1275
   1276	for (;;) {
   1277		p_event = efx_event(channel, read_ptr);
   1278		event = *p_event;
   1279
   1280		if (!efx_event_present(&event))
   1281			/* End of events */
   1282			break;
   1283
   1284		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
   1285			   "channel %d event is "EFX_QWORD_FMT"\n",
   1286			   channel->channel, EFX_QWORD_VAL(event));
   1287
   1288		/* Clear this event by marking it all ones */
   1289		EFX_SET_QWORD(*p_event);
   1290
   1291		++read_ptr;
   1292
   1293		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
   1294
   1295		switch (ev_code) {
   1296		case FSE_AZ_EV_CODE_RX_EV:
   1297			efx_farch_handle_rx_event(channel, &event);
   1298			if (++spent == budget)
   1299				goto out;
   1300			break;
   1301		case FSE_AZ_EV_CODE_TX_EV:
   1302			efx_farch_handle_tx_event(channel, &event);
   1303			break;
   1304		case FSE_AZ_EV_CODE_DRV_GEN_EV:
   1305			efx_farch_handle_generated_event(channel, &event);
   1306			break;
   1307		case FSE_AZ_EV_CODE_DRIVER_EV:
   1308			efx_farch_handle_driver_event(channel, &event);
   1309			break;
   1310#ifdef CONFIG_SFC_SIENA_SRIOV
   1311		case FSE_CZ_EV_CODE_USER_EV:
   1312			efx_siena_sriov_event(channel, &event);
   1313			break;
   1314#endif
   1315		case FSE_CZ_EV_CODE_MCDI_EV:
   1316			efx_siena_mcdi_process_event(channel, &event);
   1317			break;
   1318		case FSE_AZ_EV_CODE_GLOBAL_EV:
   1319			if (efx->type->handle_global_event &&
   1320			    efx->type->handle_global_event(channel, &event))
   1321				break;
   1322			fallthrough;
   1323		default:
   1324			netif_err(channel->efx, hw, channel->efx->net_dev,
   1325				  "channel %d unknown event type %d (data "
   1326				  EFX_QWORD_FMT ")\n", channel->channel,
   1327				  ev_code, EFX_QWORD_VAL(event));
   1328		}
   1329	}
   1330
   1331out:
   1332	channel->eventq_read_ptr = read_ptr;
   1333	return spent;
   1334}
   1335
   1336/* Allocate buffer table entries for event queue */
   1337int efx_farch_ev_probe(struct efx_channel *channel)
   1338{
   1339	struct efx_nic *efx = channel->efx;
   1340	unsigned entries;
   1341
   1342	entries = channel->eventq_mask + 1;
   1343	return efx_alloc_special_buffer(efx, &channel->eventq,
   1344					entries * sizeof(efx_qword_t));
   1345}
   1346
   1347int efx_farch_ev_init(struct efx_channel *channel)
   1348{
   1349	efx_oword_t reg;
   1350	struct efx_nic *efx = channel->efx;
   1351
   1352	netif_dbg(efx, hw, efx->net_dev,
   1353		  "channel %d event queue in special buffers %d-%d\n",
   1354		  channel->channel, channel->eventq.index,
   1355		  channel->eventq.index + channel->eventq.entries - 1);
   1356
   1357	EFX_POPULATE_OWORD_3(reg,
   1358			     FRF_CZ_TIMER_Q_EN, 1,
   1359			     FRF_CZ_HOST_NOTIFY_MODE, 0,
   1360			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
   1361	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
   1362
   1363	/* Pin event queue buffer */
   1364	efx_init_special_buffer(efx, &channel->eventq);
   1365
   1366	/* Fill event queue with all ones (i.e. empty events) */
   1367	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
   1368
   1369	/* Push event queue to card */
   1370	EFX_POPULATE_OWORD_3(reg,
   1371			     FRF_AZ_EVQ_EN, 1,
   1372			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
   1373			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
   1374	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
   1375			 channel->channel);
   1376
   1377	return 0;
   1378}
   1379
   1380void efx_farch_ev_fini(struct efx_channel *channel)
   1381{
   1382	efx_oword_t reg;
   1383	struct efx_nic *efx = channel->efx;
   1384
   1385	/* Remove event queue from card */
   1386	EFX_ZERO_OWORD(reg);
   1387	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
   1388			 channel->channel);
   1389	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
   1390
   1391	/* Unpin event queue */
   1392	efx_fini_special_buffer(efx, &channel->eventq);
   1393}
   1394
   1395/* Free buffers backing event queue */
   1396void efx_farch_ev_remove(struct efx_channel *channel)
   1397{
   1398	efx_free_special_buffer(channel->efx, &channel->eventq);
   1399}
   1400
   1401
   1402void efx_farch_ev_test_generate(struct efx_channel *channel)
   1403{
   1404	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
   1405}
   1406
   1407void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
   1408{
   1409	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
   1410			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
   1411}
   1412
   1413/**************************************************************************
   1414 *
   1415 * Hardware interrupts
   1416 * The hardware interrupt handler does very little work; all the event
   1417 * queue processing is carried out by per-channel tasklets.
   1418 *
   1419 **************************************************************************/
   1420
   1421/* Enable/disable/generate interrupts */
   1422static inline void efx_farch_interrupts(struct efx_nic *efx,
   1423				      bool enabled, bool force)
   1424{
   1425	efx_oword_t int_en_reg_ker;
   1426
   1427	EFX_POPULATE_OWORD_3(int_en_reg_ker,
   1428			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
   1429			     FRF_AZ_KER_INT_KER, force,
   1430			     FRF_AZ_DRV_INT_EN_KER, enabled);
   1431	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
   1432}
   1433
   1434void efx_farch_irq_enable_master(struct efx_nic *efx)
   1435{
   1436	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
   1437	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
   1438
   1439	efx_farch_interrupts(efx, true, false);
   1440}
   1441
   1442void efx_farch_irq_disable_master(struct efx_nic *efx)
   1443{
   1444	/* Disable interrupts */
   1445	efx_farch_interrupts(efx, false, false);
   1446}
   1447
   1448/* Generate a test interrupt
   1449 * Interrupt must already have been enabled, otherwise nasty things
   1450 * may happen.
   1451 */
   1452int efx_farch_irq_test_generate(struct efx_nic *efx)
   1453{
   1454	efx_farch_interrupts(efx, true, true);
   1455	return 0;
   1456}
   1457
   1458/* Process a fatal interrupt
   1459 * Disable bus mastering ASAP and schedule a reset
   1460 */
   1461irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
   1462{
   1463	efx_oword_t *int_ker = efx->irq_status.addr;
   1464	efx_oword_t fatal_intr;
   1465	int error, mem_perr;
   1466
   1467	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
   1468	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
   1469
   1470	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
   1471		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
   1472		  EFX_OWORD_VAL(fatal_intr),
   1473		  error ? "disabling bus mastering" : "no recognised error");
   1474
   1475	/* If this is a memory parity error dump which blocks are offending */
   1476	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
   1477		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
   1478	if (mem_perr) {
   1479		efx_oword_t reg;
   1480		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
   1481		netif_err(efx, hw, efx->net_dev,
   1482			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
   1483			  EFX_OWORD_VAL(reg));
   1484	}
   1485
   1486	/* Disable both devices */
   1487	pci_clear_master(efx->pci_dev);
   1488	efx_farch_irq_disable_master(efx);
   1489
   1490	/* Count errors and reset or disable the NIC accordingly */
   1491	if (efx->int_error_count == 0 ||
   1492	    time_after(jiffies, efx->int_error_expire)) {
   1493		efx->int_error_count = 0;
   1494		efx->int_error_expire =
   1495			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
   1496	}
   1497	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
   1498		netif_err(efx, hw, efx->net_dev,
   1499			  "SYSTEM ERROR - reset scheduled\n");
   1500		efx_siena_schedule_reset(efx, RESET_TYPE_INT_ERROR);
   1501	} else {
   1502		netif_err(efx, hw, efx->net_dev,
   1503			  "SYSTEM ERROR - max number of errors seen."
   1504			  "NIC will be disabled\n");
   1505		efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
   1506	}
   1507
   1508	return IRQ_HANDLED;
   1509}
   1510
   1511/* Handle a legacy interrupt
   1512 * Acknowledges the interrupt and schedule event queue processing.
   1513 */
   1514irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
   1515{
   1516	struct efx_nic *efx = dev_id;
   1517	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
   1518	efx_oword_t *int_ker = efx->irq_status.addr;
   1519	irqreturn_t result = IRQ_NONE;
   1520	struct efx_channel *channel;
   1521	efx_dword_t reg;
   1522	u32 queues;
   1523	int syserr;
   1524
   1525	/* Read the ISR which also ACKs the interrupts */
   1526	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
   1527	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
   1528
   1529	/* Legacy interrupts are disabled too late by the EEH kernel
   1530	 * code. Disable them earlier.
   1531	 * If an EEH error occurred, the read will have returned all ones.
   1532	 */
   1533	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_siena_try_recovery(efx) &&
   1534	    !efx->eeh_disabled_legacy_irq) {
   1535		disable_irq_nosync(efx->legacy_irq);
   1536		efx->eeh_disabled_legacy_irq = true;
   1537	}
   1538
   1539	/* Handle non-event-queue sources */
   1540	if (queues & (1U << efx->irq_level) && soft_enabled) {
   1541		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
   1542		if (unlikely(syserr))
   1543			return efx_farch_fatal_interrupt(efx);
   1544		efx->last_irq_cpu = raw_smp_processor_id();
   1545	}
   1546
   1547	if (queues != 0) {
   1548		efx->irq_zero_count = 0;
   1549
   1550		/* Schedule processing of any interrupting queues */
   1551		if (likely(soft_enabled)) {
   1552			efx_for_each_channel(channel, efx) {
   1553				if (queues & 1)
   1554					efx_schedule_channel_irq(channel);
   1555				queues >>= 1;
   1556			}
   1557		}
   1558		result = IRQ_HANDLED;
   1559
   1560	} else {
   1561		efx_qword_t *event;
   1562
   1563		/* Legacy ISR read can return zero once (SF bug 15783) */
   1564
   1565		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
   1566		 * because this might be a shared interrupt. */
   1567		if (efx->irq_zero_count++ == 0)
   1568			result = IRQ_HANDLED;
   1569
   1570		/* Ensure we schedule or rearm all event queues */
   1571		if (likely(soft_enabled)) {
   1572			efx_for_each_channel(channel, efx) {
   1573				event = efx_event(channel,
   1574						  channel->eventq_read_ptr);
   1575				if (efx_event_present(event))
   1576					efx_schedule_channel_irq(channel);
   1577				else
   1578					efx_farch_ev_read_ack(channel);
   1579			}
   1580		}
   1581	}
   1582
   1583	if (result == IRQ_HANDLED)
   1584		netif_vdbg(efx, intr, efx->net_dev,
   1585			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
   1586			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
   1587
   1588	return result;
   1589}
   1590
   1591/* Handle an MSI interrupt
   1592 *
   1593 * Handle an MSI hardware interrupt.  This routine schedules event
   1594 * queue processing.  No interrupt acknowledgement cycle is necessary.
   1595 * Also, we never need to check that the interrupt is for us, since
   1596 * MSI interrupts cannot be shared.
   1597 */
   1598irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
   1599{
   1600	struct efx_msi_context *context = dev_id;
   1601	struct efx_nic *efx = context->efx;
   1602	efx_oword_t *int_ker = efx->irq_status.addr;
   1603	int syserr;
   1604
   1605	netif_vdbg(efx, intr, efx->net_dev,
   1606		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
   1607		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
   1608
   1609	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
   1610		return IRQ_HANDLED;
   1611
   1612	/* Handle non-event-queue sources */
   1613	if (context->index == efx->irq_level) {
   1614		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
   1615		if (unlikely(syserr))
   1616			return efx_farch_fatal_interrupt(efx);
   1617		efx->last_irq_cpu = raw_smp_processor_id();
   1618	}
   1619
   1620	/* Schedule processing of the channel */
   1621	efx_schedule_channel_irq(efx->channel[context->index]);
   1622
   1623	return IRQ_HANDLED;
   1624}
   1625
   1626/* Setup RSS indirection table.
   1627 * This maps from the hash value of the packet to RXQ
   1628 */
   1629void efx_farch_rx_push_indir_table(struct efx_nic *efx)
   1630{
   1631	size_t i = 0;
   1632	efx_dword_t dword;
   1633
   1634	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
   1635		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
   1636
   1637	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
   1638		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
   1639				     efx->rss_context.rx_indir_table[i]);
   1640		efx_writed(efx, &dword,
   1641			   FR_BZ_RX_INDIRECTION_TBL +
   1642			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
   1643	}
   1644}
   1645
   1646void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
   1647{
   1648	size_t i = 0;
   1649	efx_dword_t dword;
   1650
   1651	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
   1652		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
   1653
   1654	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
   1655		efx_readd(efx, &dword,
   1656			   FR_BZ_RX_INDIRECTION_TBL +
   1657			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
   1658		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
   1659	}
   1660}
   1661
   1662/* Looks at available SRAM resources and works out how many queues we
   1663 * can support, and where things like descriptor caches should live.
   1664 *
   1665 * SRAM is split up as follows:
   1666 * 0                          buftbl entries for channels
   1667 * efx->vf_buftbl_base        buftbl entries for SR-IOV
   1668 * efx->rx_dc_base            RX descriptor caches
   1669 * efx->tx_dc_base            TX descriptor caches
   1670 */
   1671void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
   1672{
   1673	unsigned vi_count, total_tx_channels;
   1674#ifdef CONFIG_SFC_SIENA_SRIOV
   1675	struct siena_nic_data *nic_data;
   1676	unsigned buftbl_min;
   1677#endif
   1678
   1679	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
   1680	vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
   1681
   1682#ifdef CONFIG_SFC_SIENA_SRIOV
   1683	nic_data = efx->nic_data;
   1684	/* Account for the buffer table entries backing the datapath channels
   1685	 * and the descriptor caches for those channels.
   1686	 */
   1687	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
   1688		       total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
   1689		       efx->n_channels * EFX_MAX_EVQ_SIZE)
   1690		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
   1691	if (efx->type->sriov_wanted) {
   1692		if (efx->type->sriov_wanted(efx)) {
   1693			unsigned vi_dc_entries, buftbl_free;
   1694			unsigned entries_per_vf, vf_limit;
   1695
   1696			nic_data->vf_buftbl_base = buftbl_min;
   1697
   1698			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
   1699			vi_count = max(vi_count, EFX_VI_BASE);
   1700			buftbl_free = (sram_lim_qw - buftbl_min -
   1701				       vi_count * vi_dc_entries);
   1702
   1703			entries_per_vf = ((vi_dc_entries +
   1704					   EFX_VF_BUFTBL_PER_VI) *
   1705					  efx_vf_size(efx));
   1706			vf_limit = min(buftbl_free / entries_per_vf,
   1707				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
   1708
   1709			if (efx->vf_count > vf_limit) {
   1710				netif_err(efx, probe, efx->net_dev,
   1711					  "Reducing VF count from from %d to %d\n",
   1712					  efx->vf_count, vf_limit);
   1713				efx->vf_count = vf_limit;
   1714			}
   1715			vi_count += efx->vf_count * efx_vf_size(efx);
   1716		}
   1717	}
   1718#endif
   1719
   1720	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
   1721	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
   1722}
   1723
   1724u32 efx_farch_fpga_ver(struct efx_nic *efx)
   1725{
   1726	efx_oword_t altera_build;
   1727	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
   1728	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
   1729}
   1730
   1731void efx_farch_init_common(struct efx_nic *efx)
   1732{
   1733	efx_oword_t temp;
   1734
   1735	/* Set positions of descriptor caches in SRAM. */
   1736	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
   1737	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
   1738	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
   1739	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
   1740
   1741	/* Set TX descriptor cache size. */
   1742	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
   1743	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
   1744	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
   1745
   1746	/* Set RX descriptor cache size.  Set low watermark to size-8, as
   1747	 * this allows most efficient prefetching.
   1748	 */
   1749	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
   1750	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
   1751	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
   1752	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
   1753	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
   1754
   1755	/* Program INT_KER address */
   1756	EFX_POPULATE_OWORD_2(temp,
   1757			     FRF_AZ_NORM_INT_VEC_DIS_KER,
   1758			     EFX_INT_MODE_USE_MSI(efx),
   1759			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
   1760	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
   1761
   1762	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
   1763		/* Use an interrupt level unused by event queues */
   1764		efx->irq_level = 0x1f;
   1765	else
   1766		/* Use a valid MSI-X vector */
   1767		efx->irq_level = 0;
   1768
   1769	/* Enable all the genuinely fatal interrupts.  (They are still
   1770	 * masked by the overall interrupt mask, controlled by
   1771	 * falcon_interrupts()).
   1772	 *
   1773	 * Note: All other fatal interrupts are enabled
   1774	 */
   1775	EFX_POPULATE_OWORD_3(temp,
   1776			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
   1777			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
   1778			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
   1779	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
   1780	EFX_INVERT_OWORD(temp);
   1781	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
   1782
   1783	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
   1784	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
   1785	 */
   1786	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
   1787	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
   1788	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
   1789	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
   1790	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
   1791	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
   1792	/* Enable SW_EV to inherit in char driver - assume harmless here */
   1793	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
   1794	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
   1795	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
   1796	/* Disable hardware watchdog which can misfire */
   1797	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
   1798	/* Squash TX of packets of 16 bytes or less */
   1799	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
   1800	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
   1801
   1802	EFX_POPULATE_OWORD_4(temp,
   1803			     /* Default values */
   1804			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
   1805			     FRF_BZ_TX_PACE_SB_AF, 0xb,
   1806			     FRF_BZ_TX_PACE_FB_BASE, 0,
   1807			     /* Allow large pace values in the fast bin. */
   1808			     FRF_BZ_TX_PACE_BIN_TH,
   1809			     FFE_BZ_TX_PACE_RESERVED);
   1810	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
   1811}
   1812
   1813/**************************************************************************
   1814 *
   1815 * Filter tables
   1816 *
   1817 **************************************************************************
   1818 */
   1819
   1820/* "Fudge factors" - difference between programmed value and actual depth.
   1821 * Due to pipelined implementation we need to program H/W with a value that
   1822 * is larger than the hop limit we want.
   1823 */
   1824#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
   1825#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
   1826
   1827/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
   1828 * We also need to avoid infinite loops in efx_farch_filter_search() when the
   1829 * table is full.
   1830 */
   1831#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
   1832
   1833/* Don't try very hard to find space for performance hints, as this is
   1834 * counter-productive. */
   1835#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
   1836
   1837enum efx_farch_filter_type {
   1838	EFX_FARCH_FILTER_TCP_FULL = 0,
   1839	EFX_FARCH_FILTER_TCP_WILD,
   1840	EFX_FARCH_FILTER_UDP_FULL,
   1841	EFX_FARCH_FILTER_UDP_WILD,
   1842	EFX_FARCH_FILTER_MAC_FULL = 4,
   1843	EFX_FARCH_FILTER_MAC_WILD,
   1844	EFX_FARCH_FILTER_UC_DEF = 8,
   1845	EFX_FARCH_FILTER_MC_DEF,
   1846	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
   1847};
   1848
   1849enum efx_farch_filter_table_id {
   1850	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
   1851	EFX_FARCH_FILTER_TABLE_RX_MAC,
   1852	EFX_FARCH_FILTER_TABLE_RX_DEF,
   1853	EFX_FARCH_FILTER_TABLE_TX_MAC,
   1854	EFX_FARCH_FILTER_TABLE_COUNT,
   1855};
   1856
   1857enum efx_farch_filter_index {
   1858	EFX_FARCH_FILTER_INDEX_UC_DEF,
   1859	EFX_FARCH_FILTER_INDEX_MC_DEF,
   1860	EFX_FARCH_FILTER_SIZE_RX_DEF,
   1861};
   1862
   1863struct efx_farch_filter_spec {
   1864	u8	type:4;
   1865	u8	priority:4;
   1866	u8	flags;
   1867	u16	dmaq_id;
   1868	u32	data[3];
   1869};
   1870
   1871struct efx_farch_filter_table {
   1872	enum efx_farch_filter_table_id id;
   1873	u32		offset;		/* address of table relative to BAR */
   1874	unsigned	size;		/* number of entries */
   1875	unsigned	step;		/* step between entries */
   1876	unsigned	used;		/* number currently used */
   1877	unsigned long	*used_bitmap;
   1878	struct efx_farch_filter_spec *spec;
   1879	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
   1880};
   1881
   1882struct efx_farch_filter_state {
   1883	struct rw_semaphore lock; /* Protects table contents */
   1884	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
   1885};
   1886
   1887static void
   1888efx_farch_filter_table_clear_entry(struct efx_nic *efx,
   1889				   struct efx_farch_filter_table *table,
   1890				   unsigned int filter_idx);
   1891
   1892/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
   1893 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
   1894static u16 efx_farch_filter_hash(u32 key)
   1895{
   1896	u16 tmp;
   1897
   1898	/* First 16 rounds */
   1899	tmp = 0x1fff ^ key >> 16;
   1900	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
   1901	tmp = tmp ^ tmp >> 9;
   1902	/* Last 16 rounds */
   1903	tmp = tmp ^ tmp << 13 ^ key;
   1904	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
   1905	return tmp ^ tmp >> 9;
   1906}
   1907
   1908/* To allow for hash collisions, filter search continues at these
   1909 * increments from the first possible entry selected by the hash. */
   1910static u16 efx_farch_filter_increment(u32 key)
   1911{
   1912	return key * 2 - 1;
   1913}
   1914
   1915static enum efx_farch_filter_table_id
   1916efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
   1917{
   1918	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
   1919		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
   1920	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
   1921		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
   1922	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
   1923		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
   1924	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
   1925		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
   1926	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
   1927		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
   1928	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
   1929		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
   1930	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
   1931		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
   1932	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
   1933}
   1934
   1935static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
   1936{
   1937	struct efx_farch_filter_state *state = efx->filter_state;
   1938	struct efx_farch_filter_table *table;
   1939	efx_oword_t filter_ctl;
   1940
   1941	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
   1942
   1943	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
   1944	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
   1945			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
   1946			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
   1947	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
   1948			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
   1949			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
   1950	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
   1951			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
   1952			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
   1953	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
   1954			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
   1955			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
   1956
   1957	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
   1958	if (table->size) {
   1959		EFX_SET_OWORD_FIELD(
   1960			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
   1961			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
   1962			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
   1963		EFX_SET_OWORD_FIELD(
   1964			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
   1965			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
   1966			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
   1967	}
   1968
   1969	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
   1970	if (table->size) {
   1971		EFX_SET_OWORD_FIELD(
   1972			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
   1973			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
   1974		EFX_SET_OWORD_FIELD(
   1975			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
   1976			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
   1977			   EFX_FILTER_FLAG_RX_RSS));
   1978		EFX_SET_OWORD_FIELD(
   1979			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
   1980			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
   1981		EFX_SET_OWORD_FIELD(
   1982			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
   1983			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
   1984			   EFX_FILTER_FLAG_RX_RSS));
   1985
   1986		/* There is a single bit to enable RX scatter for all
   1987		 * unmatched packets.  Only set it if scatter is
   1988		 * enabled in both filter specs.
   1989		 */
   1990		EFX_SET_OWORD_FIELD(
   1991			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
   1992			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
   1993			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
   1994			   EFX_FILTER_FLAG_RX_SCATTER));
   1995	} else {
   1996		/* We don't expose 'default' filters because unmatched
   1997		 * packets always go to the queue number found in the
   1998		 * RSS table.  But we still need to set the RX scatter
   1999		 * bit here.
   2000		 */
   2001		EFX_SET_OWORD_FIELD(
   2002			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
   2003			efx->rx_scatter);
   2004	}
   2005
   2006	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
   2007}
   2008
   2009static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
   2010{
   2011	struct efx_farch_filter_state *state = efx->filter_state;
   2012	struct efx_farch_filter_table *table;
   2013	efx_oword_t tx_cfg;
   2014
   2015	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
   2016
   2017	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
   2018	if (table->size) {
   2019		EFX_SET_OWORD_FIELD(
   2020			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
   2021			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
   2022			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
   2023		EFX_SET_OWORD_FIELD(
   2024			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
   2025			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
   2026			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
   2027	}
   2028
   2029	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
   2030}
   2031
   2032static int
   2033efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
   2034			       const struct efx_filter_spec *gen_spec)
   2035{
   2036	bool is_full = false;
   2037
   2038	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
   2039		return -EINVAL;
   2040
   2041	spec->priority = gen_spec->priority;
   2042	spec->flags = gen_spec->flags;
   2043	spec->dmaq_id = gen_spec->dmaq_id;
   2044
   2045	switch (gen_spec->match_flags) {
   2046	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
   2047	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
   2048	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
   2049		is_full = true;
   2050		fallthrough;
   2051	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
   2052	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
   2053		__be32 rhost, host1, host2;
   2054		__be16 rport, port1, port2;
   2055
   2056		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
   2057
   2058		if (gen_spec->ether_type != htons(ETH_P_IP))
   2059			return -EPROTONOSUPPORT;
   2060		if (gen_spec->loc_port == 0 ||
   2061		    (is_full && gen_spec->rem_port == 0))
   2062			return -EADDRNOTAVAIL;
   2063		switch (gen_spec->ip_proto) {
   2064		case IPPROTO_TCP:
   2065			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
   2066				      EFX_FARCH_FILTER_TCP_WILD);
   2067			break;
   2068		case IPPROTO_UDP:
   2069			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
   2070				      EFX_FARCH_FILTER_UDP_WILD);
   2071			break;
   2072		default:
   2073			return -EPROTONOSUPPORT;
   2074		}
   2075
   2076		/* Filter is constructed in terms of source and destination,
   2077		 * with the odd wrinkle that the ports are swapped in a UDP
   2078		 * wildcard filter.  We need to convert from local and remote
   2079		 * (= zero for wildcard) addresses.
   2080		 */
   2081		rhost = is_full ? gen_spec->rem_host[0] : 0;
   2082		rport = is_full ? gen_spec->rem_port : 0;
   2083		host1 = rhost;
   2084		host2 = gen_spec->loc_host[0];
   2085		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
   2086			port1 = gen_spec->loc_port;
   2087			port2 = rport;
   2088		} else {
   2089			port1 = rport;
   2090			port2 = gen_spec->loc_port;
   2091		}
   2092		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
   2093		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
   2094		spec->data[2] = ntohl(host2);
   2095
   2096		break;
   2097	}
   2098
   2099	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
   2100		is_full = true;
   2101		fallthrough;
   2102	case EFX_FILTER_MATCH_LOC_MAC:
   2103		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
   2104			      EFX_FARCH_FILTER_MAC_WILD);
   2105		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
   2106		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
   2107				 gen_spec->loc_mac[3] << 16 |
   2108				 gen_spec->loc_mac[4] << 8 |
   2109				 gen_spec->loc_mac[5]);
   2110		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
   2111				 gen_spec->loc_mac[1]);
   2112		break;
   2113
   2114	case EFX_FILTER_MATCH_LOC_MAC_IG:
   2115		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
   2116			      EFX_FARCH_FILTER_MC_DEF :
   2117			      EFX_FARCH_FILTER_UC_DEF);
   2118		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
   2119		break;
   2120
   2121	default:
   2122		return -EPROTONOSUPPORT;
   2123	}
   2124
   2125	return 0;
   2126}
   2127
   2128static void
   2129efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
   2130			     const struct efx_farch_filter_spec *spec)
   2131{
   2132	bool is_full = false;
   2133
   2134	/* *gen_spec should be completely initialised, to be consistent
   2135	 * with efx_filter_init_{rx,tx}() and in case we want to copy
   2136	 * it back to userland.
   2137	 */
   2138	memset(gen_spec, 0, sizeof(*gen_spec));
   2139
   2140	gen_spec->priority = spec->priority;
   2141	gen_spec->flags = spec->flags;
   2142	gen_spec->dmaq_id = spec->dmaq_id;
   2143
   2144	switch (spec->type) {
   2145	case EFX_FARCH_FILTER_TCP_FULL:
   2146	case EFX_FARCH_FILTER_UDP_FULL:
   2147		is_full = true;
   2148		fallthrough;
   2149	case EFX_FARCH_FILTER_TCP_WILD:
   2150	case EFX_FARCH_FILTER_UDP_WILD: {
   2151		__be32 host1, host2;
   2152		__be16 port1, port2;
   2153
   2154		gen_spec->match_flags =
   2155			EFX_FILTER_MATCH_ETHER_TYPE |
   2156			EFX_FILTER_MATCH_IP_PROTO |
   2157			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
   2158		if (is_full)
   2159			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
   2160						  EFX_FILTER_MATCH_REM_PORT);
   2161		gen_spec->ether_type = htons(ETH_P_IP);
   2162		gen_spec->ip_proto =
   2163			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
   2164			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
   2165			IPPROTO_TCP : IPPROTO_UDP;
   2166
   2167		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
   2168		port1 = htons(spec->data[0]);
   2169		host2 = htonl(spec->data[2]);
   2170		port2 = htons(spec->data[1] >> 16);
   2171		if (spec->flags & EFX_FILTER_FLAG_TX) {
   2172			gen_spec->loc_host[0] = host1;
   2173			gen_spec->rem_host[0] = host2;
   2174		} else {
   2175			gen_spec->loc_host[0] = host2;
   2176			gen_spec->rem_host[0] = host1;
   2177		}
   2178		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
   2179		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
   2180			gen_spec->loc_port = port1;
   2181			gen_spec->rem_port = port2;
   2182		} else {
   2183			gen_spec->loc_port = port2;
   2184			gen_spec->rem_port = port1;
   2185		}
   2186
   2187		break;
   2188	}
   2189
   2190	case EFX_FARCH_FILTER_MAC_FULL:
   2191		is_full = true;
   2192		fallthrough;
   2193	case EFX_FARCH_FILTER_MAC_WILD:
   2194		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
   2195		if (is_full)
   2196			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
   2197		gen_spec->loc_mac[0] = spec->data[2] >> 8;
   2198		gen_spec->loc_mac[1] = spec->data[2];
   2199		gen_spec->loc_mac[2] = spec->data[1] >> 24;
   2200		gen_spec->loc_mac[3] = spec->data[1] >> 16;
   2201		gen_spec->loc_mac[4] = spec->data[1] >> 8;
   2202		gen_spec->loc_mac[5] = spec->data[1];
   2203		gen_spec->outer_vid = htons(spec->data[0]);
   2204		break;
   2205
   2206	case EFX_FARCH_FILTER_UC_DEF:
   2207	case EFX_FARCH_FILTER_MC_DEF:
   2208		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
   2209		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
   2210		break;
   2211
   2212	default:
   2213		WARN_ON(1);
   2214		break;
   2215	}
   2216}
   2217
   2218static void
   2219efx_farch_filter_init_rx_auto(struct efx_nic *efx,
   2220			      struct efx_farch_filter_spec *spec)
   2221{
   2222	/* If there's only one channel then disable RSS for non VF
   2223	 * traffic, thereby allowing VFs to use RSS when the PF can't.
   2224	 */
   2225	spec->priority = EFX_FILTER_PRI_AUTO;
   2226	spec->flags = (EFX_FILTER_FLAG_RX |
   2227		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
   2228		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
   2229	spec->dmaq_id = 0;
   2230}
   2231
   2232/* Build a filter entry and return its n-tuple key. */
   2233static u32 efx_farch_filter_build(efx_oword_t *filter,
   2234				  struct efx_farch_filter_spec *spec)
   2235{
   2236	u32 data3;
   2237
   2238	switch (efx_farch_filter_spec_table_id(spec)) {
   2239	case EFX_FARCH_FILTER_TABLE_RX_IP: {
   2240		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
   2241			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
   2242		EFX_POPULATE_OWORD_7(
   2243			*filter,
   2244			FRF_BZ_RSS_EN,
   2245			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
   2246			FRF_BZ_SCATTER_EN,
   2247			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
   2248			FRF_BZ_TCP_UDP, is_udp,
   2249			FRF_BZ_RXQ_ID, spec->dmaq_id,
   2250			EFX_DWORD_2, spec->data[2],
   2251			EFX_DWORD_1, spec->data[1],
   2252			EFX_DWORD_0, spec->data[0]);
   2253		data3 = is_udp;
   2254		break;
   2255	}
   2256
   2257	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
   2258		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
   2259		EFX_POPULATE_OWORD_7(
   2260			*filter,
   2261			FRF_CZ_RMFT_RSS_EN,
   2262			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
   2263			FRF_CZ_RMFT_SCATTER_EN,
   2264			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
   2265			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
   2266			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
   2267			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
   2268			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
   2269			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
   2270		data3 = is_wild;
   2271		break;
   2272	}
   2273
   2274	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
   2275		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
   2276		EFX_POPULATE_OWORD_5(*filter,
   2277				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
   2278				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
   2279				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
   2280				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
   2281				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
   2282		data3 = is_wild | spec->dmaq_id << 1;
   2283		break;
   2284	}
   2285
   2286	default:
   2287		BUG();
   2288	}
   2289
   2290	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
   2291}
   2292
   2293static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
   2294				   const struct efx_farch_filter_spec *right)
   2295{
   2296	if (left->type != right->type ||
   2297	    memcmp(left->data, right->data, sizeof(left->data)))
   2298		return false;
   2299
   2300	if (left->flags & EFX_FILTER_FLAG_TX &&
   2301	    left->dmaq_id != right->dmaq_id)
   2302		return false;
   2303
   2304	return true;
   2305}
   2306
   2307/*
   2308 * Construct/deconstruct external filter IDs.  At least the RX filter
   2309 * IDs must be ordered by matching priority, for RX NFC semantics.
   2310 *
   2311 * Deconstruction needs to be robust against invalid IDs so that
   2312 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
   2313 * accept user-provided IDs.
   2314 */
   2315
   2316#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
   2317
   2318static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
   2319	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
   2320	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
   2321	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
   2322	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
   2323	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
   2324	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
   2325	[EFX_FARCH_FILTER_UC_DEF]	= 4,
   2326	[EFX_FARCH_FILTER_MC_DEF]	= 4,
   2327};
   2328
   2329static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
   2330	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
   2331	EFX_FARCH_FILTER_TABLE_RX_IP,
   2332	EFX_FARCH_FILTER_TABLE_RX_MAC,
   2333	EFX_FARCH_FILTER_TABLE_RX_MAC,
   2334	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
   2335	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
   2336	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
   2337};
   2338
   2339#define EFX_FARCH_FILTER_INDEX_WIDTH 13
   2340#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
   2341
   2342static inline u32
   2343efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
   2344			 unsigned int index)
   2345{
   2346	unsigned int range;
   2347
   2348	range = efx_farch_filter_type_match_pri[spec->type];
   2349	if (!(spec->flags & EFX_FILTER_FLAG_RX))
   2350		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
   2351
   2352	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
   2353}
   2354
   2355static inline enum efx_farch_filter_table_id
   2356efx_farch_filter_id_table_id(u32 id)
   2357{
   2358	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
   2359
   2360	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
   2361		return efx_farch_filter_range_table[range];
   2362	else
   2363		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
   2364}
   2365
   2366static inline unsigned int efx_farch_filter_id_index(u32 id)
   2367{
   2368	return id & EFX_FARCH_FILTER_INDEX_MASK;
   2369}
   2370
   2371u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
   2372{
   2373	struct efx_farch_filter_state *state = efx->filter_state;
   2374	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
   2375	enum efx_farch_filter_table_id table_id;
   2376
   2377	do {
   2378		table_id = efx_farch_filter_range_table[range];
   2379		if (state->table[table_id].size != 0)
   2380			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
   2381				state->table[table_id].size;
   2382	} while (range--);
   2383
   2384	return 0;
   2385}
   2386
   2387s32 efx_farch_filter_insert(struct efx_nic *efx,
   2388			    struct efx_filter_spec *gen_spec,
   2389			    bool replace_equal)
   2390{
   2391	struct efx_farch_filter_state *state = efx->filter_state;
   2392	struct efx_farch_filter_table *table;
   2393	struct efx_farch_filter_spec spec;
   2394	efx_oword_t filter;
   2395	int rep_index, ins_index;
   2396	unsigned int depth = 0;
   2397	int rc;
   2398
   2399	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
   2400	if (rc)
   2401		return rc;
   2402
   2403	down_write(&state->lock);
   2404
   2405	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
   2406	if (table->size == 0) {
   2407		rc = -EINVAL;
   2408		goto out_unlock;
   2409	}
   2410
   2411	netif_vdbg(efx, hw, efx->net_dev,
   2412		   "%s: type %d search_limit=%d", __func__, spec.type,
   2413		   table->search_limit[spec.type]);
   2414
   2415	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
   2416		/* One filter spec per type */
   2417		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
   2418		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
   2419			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
   2420		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
   2421		ins_index = rep_index;
   2422	} else {
   2423		/* Search concurrently for
   2424		 * (1) a filter to be replaced (rep_index): any filter
   2425		 *     with the same match values, up to the current
   2426		 *     search depth for this type, and
   2427		 * (2) the insertion point (ins_index): (1) or any
   2428		 *     free slot before it or up to the maximum search
   2429		 *     depth for this priority
   2430		 * We fail if we cannot find (2).
   2431		 *
   2432		 * We can stop once either
   2433		 * (a) we find (1), in which case we have definitely
   2434		 *     found (2) as well; or
   2435		 * (b) we have searched exhaustively for (1), and have
   2436		 *     either found (2) or searched exhaustively for it
   2437		 */
   2438		u32 key = efx_farch_filter_build(&filter, &spec);
   2439		unsigned int hash = efx_farch_filter_hash(key);
   2440		unsigned int incr = efx_farch_filter_increment(key);
   2441		unsigned int max_rep_depth = table->search_limit[spec.type];
   2442		unsigned int max_ins_depth =
   2443			spec.priority <= EFX_FILTER_PRI_HINT ?
   2444			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
   2445			EFX_FARCH_FILTER_CTL_SRCH_MAX;
   2446		unsigned int i = hash & (table->size - 1);
   2447
   2448		ins_index = -1;
   2449		depth = 1;
   2450
   2451		for (;;) {
   2452			if (!test_bit(i, table->used_bitmap)) {
   2453				if (ins_index < 0)
   2454					ins_index = i;
   2455			} else if (efx_farch_filter_equal(&spec,
   2456							  &table->spec[i])) {
   2457				/* Case (a) */
   2458				if (ins_index < 0)
   2459					ins_index = i;
   2460				rep_index = i;
   2461				break;
   2462			}
   2463
   2464			if (depth >= max_rep_depth &&
   2465			    (ins_index >= 0 || depth >= max_ins_depth)) {
   2466				/* Case (b) */
   2467				if (ins_index < 0) {
   2468					rc = -EBUSY;
   2469					goto out_unlock;
   2470				}
   2471				rep_index = -1;
   2472				break;
   2473			}
   2474
   2475			i = (i + incr) & (table->size - 1);
   2476			++depth;
   2477		}
   2478	}
   2479
   2480	/* If we found a filter to be replaced, check whether we
   2481	 * should do so
   2482	 */
   2483	if (rep_index >= 0) {
   2484		struct efx_farch_filter_spec *saved_spec =
   2485			&table->spec[rep_index];
   2486
   2487		if (spec.priority == saved_spec->priority && !replace_equal) {
   2488			rc = -EEXIST;
   2489			goto out_unlock;
   2490		}
   2491		if (spec.priority < saved_spec->priority) {
   2492			rc = -EPERM;
   2493			goto out_unlock;
   2494		}
   2495		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
   2496		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
   2497			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
   2498	}
   2499
   2500	/* Insert the filter */
   2501	if (ins_index != rep_index) {
   2502		__set_bit(ins_index, table->used_bitmap);
   2503		++table->used;
   2504	}
   2505	table->spec[ins_index] = spec;
   2506
   2507	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
   2508		efx_farch_filter_push_rx_config(efx);
   2509	} else {
   2510		if (table->search_limit[spec.type] < depth) {
   2511			table->search_limit[spec.type] = depth;
   2512			if (spec.flags & EFX_FILTER_FLAG_TX)
   2513				efx_farch_filter_push_tx_limits(efx);
   2514			else
   2515				efx_farch_filter_push_rx_config(efx);
   2516		}
   2517
   2518		efx_writeo(efx, &filter,
   2519			   table->offset + table->step * ins_index);
   2520
   2521		/* If we were able to replace a filter by inserting
   2522		 * at a lower depth, clear the replaced filter
   2523		 */
   2524		if (ins_index != rep_index && rep_index >= 0)
   2525			efx_farch_filter_table_clear_entry(efx, table,
   2526							   rep_index);
   2527	}
   2528
   2529	netif_vdbg(efx, hw, efx->net_dev,
   2530		   "%s: filter type %d index %d rxq %u set",
   2531		   __func__, spec.type, ins_index, spec.dmaq_id);
   2532	rc = efx_farch_filter_make_id(&spec, ins_index);
   2533
   2534out_unlock:
   2535	up_write(&state->lock);
   2536	return rc;
   2537}
   2538
   2539static void
   2540efx_farch_filter_table_clear_entry(struct efx_nic *efx,
   2541				   struct efx_farch_filter_table *table,
   2542				   unsigned int filter_idx)
   2543{
   2544	static efx_oword_t filter;
   2545
   2546	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
   2547	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
   2548
   2549	__clear_bit(filter_idx, table->used_bitmap);
   2550	--table->used;
   2551	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
   2552
   2553	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
   2554
   2555	/* If this filter required a greater search depth than
   2556	 * any other, the search limit for its type can now be
   2557	 * decreased.  However, it is hard to determine that
   2558	 * unless the table has become completely empty - in
   2559	 * which case, all its search limits can be set to 0.
   2560	 */
   2561	if (unlikely(table->used == 0)) {
   2562		memset(table->search_limit, 0, sizeof(table->search_limit));
   2563		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
   2564			efx_farch_filter_push_tx_limits(efx);
   2565		else
   2566			efx_farch_filter_push_rx_config(efx);
   2567	}
   2568}
   2569
   2570static int efx_farch_filter_remove(struct efx_nic *efx,
   2571				   struct efx_farch_filter_table *table,
   2572				   unsigned int filter_idx,
   2573				   enum efx_filter_priority priority)
   2574{
   2575	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
   2576
   2577	if (!test_bit(filter_idx, table->used_bitmap) ||
   2578	    spec->priority != priority)
   2579		return -ENOENT;
   2580
   2581	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
   2582		efx_farch_filter_init_rx_auto(efx, spec);
   2583		efx_farch_filter_push_rx_config(efx);
   2584	} else {
   2585		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
   2586	}
   2587
   2588	return 0;
   2589}
   2590
   2591int efx_farch_filter_remove_safe(struct efx_nic *efx,
   2592				 enum efx_filter_priority priority,
   2593				 u32 filter_id)
   2594{
   2595	struct efx_farch_filter_state *state = efx->filter_state;
   2596	enum efx_farch_filter_table_id table_id;
   2597	struct efx_farch_filter_table *table;
   2598	unsigned int filter_idx;
   2599	int rc;
   2600
   2601	table_id = efx_farch_filter_id_table_id(filter_id);
   2602	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
   2603		return -ENOENT;
   2604	table = &state->table[table_id];
   2605
   2606	filter_idx = efx_farch_filter_id_index(filter_id);
   2607	if (filter_idx >= table->size)
   2608		return -ENOENT;
   2609	down_write(&state->lock);
   2610
   2611	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
   2612	up_write(&state->lock);
   2613
   2614	return rc;
   2615}
   2616
   2617int efx_farch_filter_get_safe(struct efx_nic *efx,
   2618			      enum efx_filter_priority priority,
   2619			      u32 filter_id, struct efx_filter_spec *spec_buf)
   2620{
   2621	struct efx_farch_filter_state *state = efx->filter_state;
   2622	enum efx_farch_filter_table_id table_id;
   2623	struct efx_farch_filter_table *table;
   2624	struct efx_farch_filter_spec *spec;
   2625	unsigned int filter_idx;
   2626	int rc = -ENOENT;
   2627
   2628	down_read(&state->lock);
   2629
   2630	table_id = efx_farch_filter_id_table_id(filter_id);
   2631	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
   2632		goto out_unlock;
   2633	table = &state->table[table_id];
   2634
   2635	filter_idx = efx_farch_filter_id_index(filter_id);
   2636	if (filter_idx >= table->size)
   2637		goto out_unlock;
   2638	spec = &table->spec[filter_idx];
   2639
   2640	if (test_bit(filter_idx, table->used_bitmap) &&
   2641	    spec->priority == priority) {
   2642		efx_farch_filter_to_gen_spec(spec_buf, spec);
   2643		rc = 0;
   2644	}
   2645
   2646out_unlock:
   2647	up_read(&state->lock);
   2648	return rc;
   2649}
   2650
   2651static void
   2652efx_farch_filter_table_clear(struct efx_nic *efx,
   2653			     enum efx_farch_filter_table_id table_id,
   2654			     enum efx_filter_priority priority)
   2655{
   2656	struct efx_farch_filter_state *state = efx->filter_state;
   2657	struct efx_farch_filter_table *table = &state->table[table_id];
   2658	unsigned int filter_idx;
   2659
   2660	down_write(&state->lock);
   2661	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
   2662		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
   2663			efx_farch_filter_remove(efx, table,
   2664						filter_idx, priority);
   2665	}
   2666	up_write(&state->lock);
   2667}
   2668
   2669int efx_farch_filter_clear_rx(struct efx_nic *efx,
   2670			       enum efx_filter_priority priority)
   2671{
   2672	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
   2673				     priority);
   2674	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
   2675				     priority);
   2676	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
   2677				     priority);
   2678	return 0;
   2679}
   2680
   2681u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
   2682				   enum efx_filter_priority priority)
   2683{
   2684	struct efx_farch_filter_state *state = efx->filter_state;
   2685	enum efx_farch_filter_table_id table_id;
   2686	struct efx_farch_filter_table *table;
   2687	unsigned int filter_idx;
   2688	u32 count = 0;
   2689
   2690	down_read(&state->lock);
   2691
   2692	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
   2693	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
   2694	     table_id++) {
   2695		table = &state->table[table_id];
   2696		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
   2697			if (test_bit(filter_idx, table->used_bitmap) &&
   2698			    table->spec[filter_idx].priority == priority)
   2699				++count;
   2700		}
   2701	}
   2702
   2703	up_read(&state->lock);
   2704
   2705	return count;
   2706}
   2707
   2708s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
   2709				enum efx_filter_priority priority,
   2710				u32 *buf, u32 size)
   2711{
   2712	struct efx_farch_filter_state *state = efx->filter_state;
   2713	enum efx_farch_filter_table_id table_id;
   2714	struct efx_farch_filter_table *table;
   2715	unsigned int filter_idx;
   2716	s32 count = 0;
   2717
   2718	down_read(&state->lock);
   2719
   2720	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
   2721	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
   2722	     table_id++) {
   2723		table = &state->table[table_id];
   2724		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
   2725			if (test_bit(filter_idx, table->used_bitmap) &&
   2726			    table->spec[filter_idx].priority == priority) {
   2727				if (count == size) {
   2728					count = -EMSGSIZE;
   2729					goto out;
   2730				}
   2731				buf[count++] = efx_farch_filter_make_id(
   2732					&table->spec[filter_idx], filter_idx);
   2733			}
   2734		}
   2735	}
   2736out:
   2737	up_read(&state->lock);
   2738
   2739	return count;
   2740}
   2741
   2742/* Restore filter stater after reset */
   2743void efx_farch_filter_table_restore(struct efx_nic *efx)
   2744{
   2745	struct efx_farch_filter_state *state = efx->filter_state;
   2746	enum efx_farch_filter_table_id table_id;
   2747	struct efx_farch_filter_table *table;
   2748	efx_oword_t filter;
   2749	unsigned int filter_idx;
   2750
   2751	down_write(&state->lock);
   2752
   2753	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
   2754		table = &state->table[table_id];
   2755
   2756		/* Check whether this is a regular register table */
   2757		if (table->step == 0)
   2758			continue;
   2759
   2760		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
   2761			if (!test_bit(filter_idx, table->used_bitmap))
   2762				continue;
   2763			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
   2764			efx_writeo(efx, &filter,
   2765				   table->offset + table->step * filter_idx);
   2766		}
   2767	}
   2768
   2769	efx_farch_filter_push_rx_config(efx);
   2770	efx_farch_filter_push_tx_limits(efx);
   2771
   2772	up_write(&state->lock);
   2773}
   2774
   2775void efx_farch_filter_table_remove(struct efx_nic *efx)
   2776{
   2777	struct efx_farch_filter_state *state = efx->filter_state;
   2778	enum efx_farch_filter_table_id table_id;
   2779
   2780	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
   2781		kfree(state->table[table_id].used_bitmap);
   2782		vfree(state->table[table_id].spec);
   2783	}
   2784	kfree(state);
   2785}
   2786
   2787int efx_farch_filter_table_probe(struct efx_nic *efx)
   2788{
   2789	struct efx_farch_filter_state *state;
   2790	struct efx_farch_filter_table *table;
   2791	unsigned table_id;
   2792
   2793	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
   2794	if (!state)
   2795		return -ENOMEM;
   2796	efx->filter_state = state;
   2797	init_rwsem(&state->lock);
   2798
   2799	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
   2800	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
   2801	table->offset = FR_BZ_RX_FILTER_TBL0;
   2802	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
   2803	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
   2804
   2805	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
   2806	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
   2807	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
   2808	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
   2809	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
   2810
   2811	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
   2812	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
   2813	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
   2814
   2815	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
   2816	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
   2817	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
   2818	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
   2819	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
   2820
   2821	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
   2822		table = &state->table[table_id];
   2823		if (table->size == 0)
   2824			continue;
   2825		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
   2826					     sizeof(unsigned long),
   2827					     GFP_KERNEL);
   2828		if (!table->used_bitmap)
   2829			goto fail;
   2830		table->spec = vzalloc(array_size(sizeof(*table->spec),
   2831						 table->size));
   2832		if (!table->spec)
   2833			goto fail;
   2834	}
   2835
   2836	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
   2837	if (table->size) {
   2838		/* RX default filters must always exist */
   2839		struct efx_farch_filter_spec *spec;
   2840		unsigned i;
   2841
   2842		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
   2843			spec = &table->spec[i];
   2844			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
   2845			efx_farch_filter_init_rx_auto(efx, spec);
   2846			__set_bit(i, table->used_bitmap);
   2847		}
   2848	}
   2849
   2850	efx_farch_filter_push_rx_config(efx);
   2851
   2852	return 0;
   2853
   2854fail:
   2855	efx_farch_filter_table_remove(efx);
   2856	return -ENOMEM;
   2857}
   2858
   2859/* Update scatter enable flags for filters pointing to our own RX queues */
   2860void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
   2861{
   2862	struct efx_farch_filter_state *state = efx->filter_state;
   2863	enum efx_farch_filter_table_id table_id;
   2864	struct efx_farch_filter_table *table;
   2865	efx_oword_t filter;
   2866	unsigned int filter_idx;
   2867
   2868	down_write(&state->lock);
   2869
   2870	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
   2871	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
   2872	     table_id++) {
   2873		table = &state->table[table_id];
   2874
   2875		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
   2876			if (!test_bit(filter_idx, table->used_bitmap) ||
   2877			    table->spec[filter_idx].dmaq_id >=
   2878			    efx->n_rx_channels)
   2879				continue;
   2880
   2881			if (efx->rx_scatter)
   2882				table->spec[filter_idx].flags |=
   2883					EFX_FILTER_FLAG_RX_SCATTER;
   2884			else
   2885				table->spec[filter_idx].flags &=
   2886					~EFX_FILTER_FLAG_RX_SCATTER;
   2887
   2888			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
   2889				/* Pushed by efx_farch_filter_push_rx_config() */
   2890				continue;
   2891
   2892			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
   2893			efx_writeo(efx, &filter,
   2894				   table->offset + table->step * filter_idx);
   2895		}
   2896	}
   2897
   2898	efx_farch_filter_push_rx_config(efx);
   2899
   2900	up_write(&state->lock);
   2901}
   2902
   2903#ifdef CONFIG_RFS_ACCEL
   2904
   2905bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
   2906				     unsigned int index)
   2907{
   2908	struct efx_farch_filter_state *state = efx->filter_state;
   2909	struct efx_farch_filter_table *table;
   2910	bool ret = false, force = false;
   2911	u16 arfs_id;
   2912
   2913	down_write(&state->lock);
   2914	spin_lock_bh(&efx->rps_hash_lock);
   2915	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
   2916	if (test_bit(index, table->used_bitmap) &&
   2917	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
   2918		struct efx_arfs_rule *rule = NULL;
   2919		struct efx_filter_spec spec;
   2920
   2921		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
   2922		if (!efx->rps_hash_table) {
   2923			/* In the absence of the table, we always returned 0 to
   2924			 * ARFS, so use the same to query it.
   2925			 */
   2926			arfs_id = 0;
   2927		} else {
   2928			rule = efx_siena_rps_hash_find(efx, &spec);
   2929			if (!rule) {
   2930				/* ARFS table doesn't know of this filter, remove it */
   2931				force = true;
   2932			} else {
   2933				arfs_id = rule->arfs_id;
   2934				if (!efx_siena_rps_check_rule(rule, index,
   2935							      &force))
   2936					goto out_unlock;
   2937			}
   2938		}
   2939		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
   2940						 flow_id, arfs_id)) {
   2941			if (rule)
   2942				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
   2943			efx_siena_rps_hash_del(efx, &spec);
   2944			efx_farch_filter_table_clear_entry(efx, table, index);
   2945			ret = true;
   2946		}
   2947	}
   2948out_unlock:
   2949	spin_unlock_bh(&efx->rps_hash_lock);
   2950	up_write(&state->lock);
   2951	return ret;
   2952}
   2953
   2954#endif /* CONFIG_RFS_ACCEL */
   2955
   2956void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
   2957{
   2958	struct net_device *net_dev = efx->net_dev;
   2959	struct netdev_hw_addr *ha;
   2960	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
   2961	u32 crc;
   2962	int bit;
   2963
   2964	if (!efx_dev_registered(efx))
   2965		return;
   2966
   2967	netif_addr_lock_bh(net_dev);
   2968
   2969	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
   2970
   2971	/* Build multicast hash table */
   2972	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
   2973		memset(mc_hash, 0xff, sizeof(*mc_hash));
   2974	} else {
   2975		memset(mc_hash, 0x00, sizeof(*mc_hash));
   2976		netdev_for_each_mc_addr(ha, net_dev) {
   2977			crc = ether_crc_le(ETH_ALEN, ha->addr);
   2978			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
   2979			__set_bit_le(bit, mc_hash);
   2980		}
   2981
   2982		/* Broadcast packets go through the multicast hash filter.
   2983		 * ether_crc_le() of the broadcast address is 0xbe2612ff
   2984		 * so we always add bit 0xff to the mask.
   2985		 */
   2986		__set_bit_le(0xff, mc_hash);
   2987	}
   2988
   2989	netif_addr_unlock_bh(net_dev);
   2990}