cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

io.h (10191B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2006-2013 Solarflare Communications Inc.
      6 */
      7
      8#ifndef EFX_IO_H
      9#define EFX_IO_H
     10
     11#include <linux/io.h>
     12#include <linux/spinlock.h>
     13
     14/**************************************************************************
     15 *
     16 * NIC register I/O
     17 *
     18 **************************************************************************
     19 *
     20 * Notes on locking strategy for the Falcon architecture:
     21 *
     22 * Many CSRs are very wide and cannot be read or written atomically.
     23 * Writes from the host are buffered by the Bus Interface Unit (BIU)
     24 * up to 128 bits.  Whenever the host writes part of such a register,
     25 * the BIU collects the written value and does not write to the
     26 * underlying register until all 4 dwords have been written.  A
     27 * similar buffering scheme applies to host access to the NIC's 64-bit
     28 * SRAM.
     29 *
     30 * Writes to different CSRs and 64-bit SRAM words must be serialised,
     31 * since interleaved access can result in lost writes.  We use
     32 * efx_nic::biu_lock for this.
     33 *
     34 * We also serialise reads from 128-bit CSRs and SRAM with the same
     35 * spinlock.  This may not be necessary, but it doesn't really matter
     36 * as there are no such reads on the fast path.
     37 *
     38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
     39 * 128-bit but are special-cased in the BIU to avoid the need for
     40 * locking in the host:
     41 *
     42 * - They are write-only.
     43 * - The semantics of writing to these registers are such that
     44 *   replacing the low 96 bits with zero does not affect functionality.
     45 * - If the host writes to the last dword address of such a register
     46 *   (i.e. the high 32 bits) the underlying register will always be
     47 *   written.  If the collector and the current write together do not
     48 *   provide values for all 128 bits of the register, the low 96 bits
     49 *   will be written as zero.
     50 * - If the host writes to the address of any other part of such a
     51 *   register while the collector already holds values for some other
     52 *   register, the write is discarded and the collector maintains its
     53 *   current state.
     54 *
     55 * The EF10 architecture exposes very few registers to the host and
     56 * most of them are only 32 bits wide.  The only exceptions are the MC
     57 * doorbell register pair, which has its own latching, and
     58 * TX_DESC_UPD, which works in a similar way to the Falcon
     59 * architecture.
     60 */
     61
     62#if BITS_PER_LONG == 64
     63#define EFX_USE_QWORD_IO 1
     64#endif
     65
     66/* Hardware issue requires that only 64-bit naturally aligned writes
     67 * are seen by hardware. Its not strictly necessary to restrict to
     68 * x86_64 arch, but done for safety since unusual write combining behaviour
     69 * can break PIO.
     70 */
     71#ifdef CONFIG_X86_64
     72/* PIO is a win only if write-combining is possible */
     73#ifdef ARCH_HAS_IOREMAP_WC
     74#define EFX_USE_PIO 1
     75#endif
     76#endif
     77
     78static inline u32 efx_reg(struct efx_nic *efx, unsigned int reg)
     79{
     80	return efx->reg_base + reg;
     81}
     82
     83#ifdef EFX_USE_QWORD_IO
     84static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
     85				  unsigned int reg)
     86{
     87	__raw_writeq((__force u64)value, efx->membase + reg);
     88}
     89static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
     90{
     91	return (__force __le64)__raw_readq(efx->membase + reg);
     92}
     93#endif
     94
     95static inline void _efx_writed(struct efx_nic *efx, __le32 value,
     96				  unsigned int reg)
     97{
     98	__raw_writel((__force u32)value, efx->membase + reg);
     99}
    100static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
    101{
    102	return (__force __le32)__raw_readl(efx->membase + reg);
    103}
    104
    105/* Write a normal 128-bit CSR, locking as appropriate. */
    106static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
    107			      unsigned int reg)
    108{
    109	unsigned long flags __attribute__ ((unused));
    110
    111	netif_vdbg(efx, hw, efx->net_dev,
    112		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
    113		   EFX_OWORD_VAL(*value));
    114
    115	spin_lock_irqsave(&efx->biu_lock, flags);
    116#ifdef EFX_USE_QWORD_IO
    117	_efx_writeq(efx, value->u64[0], reg + 0);
    118	_efx_writeq(efx, value->u64[1], reg + 8);
    119#else
    120	_efx_writed(efx, value->u32[0], reg + 0);
    121	_efx_writed(efx, value->u32[1], reg + 4);
    122	_efx_writed(efx, value->u32[2], reg + 8);
    123	_efx_writed(efx, value->u32[3], reg + 12);
    124#endif
    125	spin_unlock_irqrestore(&efx->biu_lock, flags);
    126}
    127
    128/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
    129static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
    130				   const efx_qword_t *value, unsigned int index)
    131{
    132	unsigned int addr = index * sizeof(*value);
    133	unsigned long flags __attribute__ ((unused));
    134
    135	netif_vdbg(efx, hw, efx->net_dev,
    136		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
    137		   addr, EFX_QWORD_VAL(*value));
    138
    139	spin_lock_irqsave(&efx->biu_lock, flags);
    140#ifdef EFX_USE_QWORD_IO
    141	__raw_writeq((__force u64)value->u64[0], membase + addr);
    142#else
    143	__raw_writel((__force u32)value->u32[0], membase + addr);
    144	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
    145#endif
    146	spin_unlock_irqrestore(&efx->biu_lock, flags);
    147}
    148
    149/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
    150static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
    151			      unsigned int reg)
    152{
    153	netif_vdbg(efx, hw, efx->net_dev,
    154		   "writing register %x with "EFX_DWORD_FMT"\n",
    155		   reg, EFX_DWORD_VAL(*value));
    156
    157	/* No lock required */
    158	_efx_writed(efx, value->u32[0], reg);
    159}
    160
    161/* Read a 128-bit CSR, locking as appropriate. */
    162static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
    163			     unsigned int reg)
    164{
    165	unsigned long flags __attribute__ ((unused));
    166
    167	spin_lock_irqsave(&efx->biu_lock, flags);
    168	value->u32[0] = _efx_readd(efx, reg + 0);
    169	value->u32[1] = _efx_readd(efx, reg + 4);
    170	value->u32[2] = _efx_readd(efx, reg + 8);
    171	value->u32[3] = _efx_readd(efx, reg + 12);
    172	spin_unlock_irqrestore(&efx->biu_lock, flags);
    173
    174	netif_vdbg(efx, hw, efx->net_dev,
    175		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
    176		   EFX_OWORD_VAL(*value));
    177}
    178
    179/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
    180static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
    181				  efx_qword_t *value, unsigned int index)
    182{
    183	unsigned int addr = index * sizeof(*value);
    184	unsigned long flags __attribute__ ((unused));
    185
    186	spin_lock_irqsave(&efx->biu_lock, flags);
    187#ifdef EFX_USE_QWORD_IO
    188	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
    189#else
    190	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
    191	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
    192#endif
    193	spin_unlock_irqrestore(&efx->biu_lock, flags);
    194
    195	netif_vdbg(efx, hw, efx->net_dev,
    196		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
    197		   addr, EFX_QWORD_VAL(*value));
    198}
    199
    200/* Read a 32-bit CSR or SRAM */
    201static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
    202				unsigned int reg)
    203{
    204	value->u32[0] = _efx_readd(efx, reg);
    205	netif_vdbg(efx, hw, efx->net_dev,
    206		   "read from register %x, got "EFX_DWORD_FMT"\n",
    207		   reg, EFX_DWORD_VAL(*value));
    208}
    209
    210/* Write a 128-bit CSR forming part of a table */
    211static inline void
    212efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
    213		 unsigned int reg, unsigned int index)
    214{
    215	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
    216}
    217
    218/* Read a 128-bit CSR forming part of a table */
    219static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
    220				     unsigned int reg, unsigned int index)
    221{
    222	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
    223}
    224
    225/* default VI stride (step between per-VI registers) is 8K on EF10 and
    226 * 64K on EF100
    227 */
    228#define EFX_DEFAULT_VI_STRIDE		0x2000
    229#define EF100_DEFAULT_VI_STRIDE		0x10000
    230
    231/* Calculate offset to page-mapped register */
    232static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
    233					 unsigned int reg)
    234{
    235	return page * efx->vi_stride + reg;
    236}
    237
    238/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
    239static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
    240				    unsigned int reg, unsigned int page)
    241{
    242	reg = efx_paged_reg(efx, page, reg);
    243
    244	netif_vdbg(efx, hw, efx->net_dev,
    245		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
    246		   EFX_OWORD_VAL(*value));
    247
    248#ifdef EFX_USE_QWORD_IO
    249	_efx_writeq(efx, value->u64[0], reg + 0);
    250	_efx_writeq(efx, value->u64[1], reg + 8);
    251#else
    252	_efx_writed(efx, value->u32[0], reg + 0);
    253	_efx_writed(efx, value->u32[1], reg + 4);
    254	_efx_writed(efx, value->u32[2], reg + 8);
    255	_efx_writed(efx, value->u32[3], reg + 12);
    256#endif
    257}
    258#define efx_writeo_page(efx, value, reg, page)				\
    259	_efx_writeo_page(efx, value,					\
    260			 reg +						\
    261			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
    262			 page)
    263
    264/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
    265 * high bits of RX_DESC_UPD or TX_DESC_UPD)
    266 */
    267static inline void
    268_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
    269		 unsigned int reg, unsigned int page)
    270{
    271	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
    272}
    273#define efx_writed_page(efx, value, reg, page)				\
    274	_efx_writed_page(efx, value,					\
    275			 reg +						\
    276			 BUILD_BUG_ON_ZERO((reg) != 0x180 &&		\
    277					   (reg) != 0x200 &&		\
    278					   (reg) != 0x400 &&		\
    279					   (reg) != 0x420 &&		\
    280					   (reg) != 0x830 &&		\
    281					   (reg) != 0x83c &&		\
    282					   (reg) != 0xa18 &&		\
    283					   (reg) != 0xa1c),		\
    284			 page)
    285
    286/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
    287 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
    288 * collector register.
    289 */
    290static inline void _efx_writed_page_locked(struct efx_nic *efx,
    291					   const efx_dword_t *value,
    292					   unsigned int reg,
    293					   unsigned int page)
    294{
    295	unsigned long flags __attribute__ ((unused));
    296
    297	if (page == 0) {
    298		spin_lock_irqsave(&efx->biu_lock, flags);
    299		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
    300		spin_unlock_irqrestore(&efx->biu_lock, flags);
    301	} else {
    302		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
    303	}
    304}
    305#define efx_writed_page_locked(efx, value, reg, page)			\
    306	_efx_writed_page_locked(efx, value,				\
    307				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
    308				page)
    309
    310#endif /* EFX_IO_H */