cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nic_common.h (7819B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2006-2013 Solarflare Communications Inc.
      6 * Copyright 2019-2020 Xilinx Inc.
      7 */
      8
      9#ifndef EFX_NIC_COMMON_H
     10#define EFX_NIC_COMMON_H
     11
     12#include "net_driver.h"
     13#include "efx_common.h"
     14#include "mcdi.h"
     15#include "ptp.h"
     16
     17enum {
     18	/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
     19	 * They are not supported by this driver but these revision numbers
     20	 * form part of the ethtool API for register dumping.
     21	 */
     22	EFX_REV_SIENA_A0 = 3,
     23	EFX_REV_HUNT_A0 = 4,
     24	EFX_REV_EF100 = 5,
     25};
     26
     27static inline int efx_nic_rev(struct efx_nic *efx)
     28{
     29	return efx->type->revision;
     30}
     31
     32/* Read the current event from the event queue */
     33static inline efx_qword_t *efx_event(struct efx_channel *channel,
     34				     unsigned int index)
     35{
     36	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
     37		(index & channel->eventq_mask);
     38}
     39
     40/* See if an event is present
     41 *
     42 * We check both the high and low dword of the event for all ones.  We
     43 * wrote all ones when we cleared the event, and no valid event can
     44 * have all ones in either its high or low dwords.  This approach is
     45 * robust against reordering.
     46 *
     47 * Note that using a single 64-bit comparison is incorrect; even
     48 * though the CPU read will be atomic, the DMA write may not be.
     49 */
     50static inline int efx_event_present(efx_qword_t *event)
     51{
     52	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
     53		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
     54}
     55
     56/* Returns a pointer to the specified transmit descriptor in the TX
     57 * descriptor queue belonging to the specified channel.
     58 */
     59static inline efx_qword_t *
     60efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
     61{
     62	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
     63}
     64
     65/* Report whether this TX queue would be empty for the given write_count.
     66 * May return false negative.
     67 */
     68static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count)
     69{
     70	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
     71
     72	if (empty_read_count == 0)
     73		return false;
     74
     75	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
     76}
     77
     78/* Decide whether to push a TX descriptor to the NIC vs merely writing
     79 * the doorbell.  This can reduce latency when we are adding a single
     80 * descriptor to an empty queue, but is otherwise pointless.  Further,
     81 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
     82 * triggered if we don't check this.
     83 * We use the write_count used for the last doorbell push, to get the
     84 * NIC's view of the tx queue.
     85 */
     86static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
     87					    unsigned int write_count)
     88{
     89	bool was_empty = efx_nic_tx_is_empty(tx_queue, write_count);
     90
     91	tx_queue->empty_read_count = 0;
     92	return was_empty && tx_queue->write_count - write_count == 1;
     93}
     94
     95/* Returns a pointer to the specified descriptor in the RX descriptor queue */
     96static inline efx_qword_t *
     97efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
     98{
     99	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
    100}
    101
    102/* Alignment of PCIe DMA boundaries (4KB) */
    103#define EFX_PAGE_SIZE	4096
    104/* Size and alignment of buffer table entries (same) */
    105#define EFX_BUF_SIZE	EFX_PAGE_SIZE
    106
    107/* NIC-generic software stats */
    108enum {
    109	GENERIC_STAT_rx_noskb_drops,
    110	GENERIC_STAT_rx_nodesc_trunc,
    111	GENERIC_STAT_COUNT
    112};
    113
    114#define EFX_GENERIC_SW_STAT(ext_name)				\
    115	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
    116
    117/* TX data path */
    118static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
    119{
    120	return tx_queue->efx->type->tx_probe(tx_queue);
    121}
    122static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
    123{
    124	tx_queue->efx->type->tx_init(tx_queue);
    125}
    126static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
    127{
    128	if (tx_queue->efx->type->tx_remove)
    129		tx_queue->efx->type->tx_remove(tx_queue);
    130}
    131static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
    132{
    133	tx_queue->efx->type->tx_write(tx_queue);
    134}
    135
    136/* RX data path */
    137static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
    138{
    139	return rx_queue->efx->type->rx_probe(rx_queue);
    140}
    141static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
    142{
    143	rx_queue->efx->type->rx_init(rx_queue);
    144}
    145static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
    146{
    147	rx_queue->efx->type->rx_remove(rx_queue);
    148}
    149static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
    150{
    151	rx_queue->efx->type->rx_write(rx_queue);
    152}
    153static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
    154{
    155	rx_queue->efx->type->rx_defer_refill(rx_queue);
    156}
    157
    158/* Event data path */
    159static inline int efx_nic_probe_eventq(struct efx_channel *channel)
    160{
    161	return channel->efx->type->ev_probe(channel);
    162}
    163static inline int efx_nic_init_eventq(struct efx_channel *channel)
    164{
    165	return channel->efx->type->ev_init(channel);
    166}
    167static inline void efx_nic_fini_eventq(struct efx_channel *channel)
    168{
    169	channel->efx->type->ev_fini(channel);
    170}
    171static inline void efx_nic_remove_eventq(struct efx_channel *channel)
    172{
    173	channel->efx->type->ev_remove(channel);
    174}
    175static inline int
    176efx_nic_process_eventq(struct efx_channel *channel, int quota)
    177{
    178	return channel->efx->type->ev_process(channel, quota);
    179}
    180static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
    181{
    182	channel->efx->type->ev_read_ack(channel);
    183}
    184
    185void efx_siena_event_test_start(struct efx_channel *channel);
    186
    187bool efx_siena_event_present(struct efx_channel *channel);
    188
    189static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
    190{
    191	if (efx->type->sensor_event)
    192		efx->type->sensor_event(efx, ev);
    193}
    194
    195static inline unsigned int efx_rx_recycle_ring_size(const struct efx_nic *efx)
    196{
    197	return efx->type->rx_recycle_ring_size(efx);
    198}
    199
    200/* Some statistics are computed as A - B where A and B each increase
    201 * linearly with some hardware counter(s) and the counters are read
    202 * asynchronously.  If the counters contributing to B are always read
    203 * after those contributing to A, the computed value may be lower than
    204 * the true value by some variable amount, and may decrease between
    205 * subsequent computations.
    206 *
    207 * We should never allow statistics to decrease or to exceed the true
    208 * value.  Since the computed value will never be greater than the
    209 * true value, we can achieve this by only storing the computed value
    210 * when it increases.
    211 */
    212static inline void efx_update_diff_stat(u64 *stat, u64 diff)
    213{
    214	if ((s64)(diff - *stat) > 0)
    215		*stat = diff;
    216}
    217
    218/* Interrupts */
    219int efx_siena_init_interrupt(struct efx_nic *efx);
    220int efx_siena_irq_test_start(struct efx_nic *efx);
    221void efx_siena_fini_interrupt(struct efx_nic *efx);
    222
    223static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
    224{
    225	return READ_ONCE(channel->event_test_cpu);
    226}
    227static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
    228{
    229	return READ_ONCE(efx->last_irq_cpu);
    230}
    231
    232/* Global Resources */
    233int efx_siena_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
    234			   unsigned int len, gfp_t gfp_flags);
    235void efx_siena_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
    236
    237size_t efx_siena_get_regs_len(struct efx_nic *efx);
    238void efx_siena_get_regs(struct efx_nic *efx, void *buf);
    239
    240#define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
    241
    242size_t efx_siena_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
    243				const unsigned long *mask, u8 *names);
    244void efx_siena_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
    245			    const unsigned long *mask, u64 *stats,
    246			    const void *dma_buf, bool accumulate);
    247void efx_siena_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
    248
    249#define EFX_MAX_FLUSH_TIME 5000
    250
    251#endif /* EFX_NIC_COMMON_H */