cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ptp.c (66768B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2011-2013 Solarflare Communications Inc.
      5 */
      6
      7/* Theory of operation:
      8 *
      9 * PTP support is assisted by firmware running on the MC, which provides
     10 * the hardware timestamping capabilities.  Both transmitted and received
     11 * PTP event packets are queued onto internal queues for subsequent processing;
     12 * this is because the MC operations are relatively long and would block
     13 * block NAPI/interrupt operation.
     14 *
     15 * Receive event processing:
     16 *	The event contains the packet's UUID and sequence number, together
     17 *	with the hardware timestamp.  The PTP receive packet queue is searched
     18 *	for this UUID/sequence number and, if found, put on a pending queue.
     19 *	Packets not matching are delivered without timestamps (MCDI events will
     20 *	always arrive after the actual packet).
     21 *	It is important for the operation of the PTP protocol that the ordering
     22 *	of packets between the event and general port is maintained.
     23 *
     24 * Work queue processing:
     25 *	If work waiting, synchronise host/hardware time
     26 *
     27 *	Transmit: send packet through MC, which returns the transmission time
     28 *	that is converted to an appropriate timestamp.
     29 *
     30 *	Receive: the packet's reception time is converted to an appropriate
     31 *	timestamp.
     32 */
     33#include <linux/ip.h>
     34#include <linux/udp.h>
     35#include <linux/time.h>
     36#include <linux/ktime.h>
     37#include <linux/module.h>
     38#include <linux/pps_kernel.h>
     39#include <linux/ptp_clock_kernel.h>
     40#include "net_driver.h"
     41#include "efx.h"
     42#include "mcdi.h"
     43#include "mcdi_pcol.h"
     44#include "io.h"
     45#include "farch_regs.h"
     46#include "tx.h"
     47#include "nic.h" /* indirectly includes ptp.h */
     48
     49/* Maximum number of events expected to make up a PTP event */
     50#define	MAX_EVENT_FRAGS			3
     51
     52/* Maximum delay, ms, to begin synchronisation */
     53#define	MAX_SYNCHRONISE_WAIT_MS		2
     54
     55/* How long, at most, to spend synchronising */
     56#define	SYNCHRONISE_PERIOD_NS		250000
     57
     58/* How often to update the shared memory time */
     59#define	SYNCHRONISATION_GRANULARITY_NS	200
     60
     61/* Minimum permitted length of a (corrected) synchronisation time */
     62#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
     63
     64/* Maximum permitted length of a (corrected) synchronisation time */
     65#define	MAX_SYNCHRONISATION_NS		1000
     66
     67/* How many (MC) receive events that can be queued */
     68#define	MAX_RECEIVE_EVENTS		8
     69
     70/* Length of (modified) moving average. */
     71#define	AVERAGE_LENGTH			16
     72
     73/* How long an unmatched event or packet can be held */
     74#define PKT_EVENT_LIFETIME_MS		10
     75
     76/* Offsets into PTP packet for identification.  These offsets are from the
     77 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
     78 * PTP V2 permit the use of IPV4 options.
     79 */
     80#define PTP_DPORT_OFFSET	22
     81
     82#define PTP_V1_VERSION_LENGTH	2
     83#define PTP_V1_VERSION_OFFSET	28
     84
     85#define PTP_V1_UUID_LENGTH	6
     86#define PTP_V1_UUID_OFFSET	50
     87
     88#define PTP_V1_SEQUENCE_LENGTH	2
     89#define PTP_V1_SEQUENCE_OFFSET	58
     90
     91/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
     92 * includes IP header.
     93 */
     94#define	PTP_V1_MIN_LENGTH	64
     95
     96#define PTP_V2_VERSION_LENGTH	1
     97#define PTP_V2_VERSION_OFFSET	29
     98
     99#define PTP_V2_UUID_LENGTH	8
    100#define PTP_V2_UUID_OFFSET	48
    101
    102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
    103 * the MC only captures the last six bytes of the clock identity. These values
    104 * reflect those, not the ones used in the standard.  The standard permits
    105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
    106 */
    107#define PTP_V2_MC_UUID_LENGTH	6
    108#define PTP_V2_MC_UUID_OFFSET	50
    109
    110#define PTP_V2_SEQUENCE_LENGTH	2
    111#define PTP_V2_SEQUENCE_OFFSET	58
    112
    113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
    114 * includes IP header.
    115 */
    116#define	PTP_V2_MIN_LENGTH	63
    117
    118#define	PTP_MIN_LENGTH		63
    119
    120#define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
    121#define PTP_EVENT_PORT		319
    122#define PTP_GENERAL_PORT	320
    123
    124/* Annoyingly the format of the version numbers are different between
    125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
    126 */
    127#define	PTP_VERSION_V1		1
    128
    129#define	PTP_VERSION_V2		2
    130#define	PTP_VERSION_V2_MASK	0x0f
    131
    132enum ptp_packet_state {
    133	PTP_PACKET_STATE_UNMATCHED = 0,
    134	PTP_PACKET_STATE_MATCHED,
    135	PTP_PACKET_STATE_TIMED_OUT,
    136	PTP_PACKET_STATE_MATCH_UNWANTED
    137};
    138
    139/* NIC synchronised with single word of time only comprising
    140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
    141 */
    142#define	MC_NANOSECOND_BITS	30
    143#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
    144#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
    145
    146/* Maximum parts-per-billion adjustment that is acceptable */
    147#define MAX_PPB			1000000
    148
    149/* Precalculate scale word to avoid long long division at runtime */
    150/* This is equivalent to 2^66 / 10^9. */
    151#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
    152
    153/* How much to shift down after scaling to convert to FP40 */
    154#define PPB_SHIFT_FP40		26
    155/* ... and FP44. */
    156#define PPB_SHIFT_FP44		22
    157
    158#define PTP_SYNC_ATTEMPTS	4
    159
    160/**
    161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
    162 * @words: UUID and (partial) sequence number
    163 * @expiry: Time after which the packet should be delivered irrespective of
    164 *            event arrival.
    165 * @state: The state of the packet - whether it is ready for processing or
    166 *         whether that is of no interest.
    167 */
    168struct efx_ptp_match {
    169	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
    170	unsigned long expiry;
    171	enum ptp_packet_state state;
    172};
    173
    174/**
    175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
    176 * @link: list of events
    177 * @seq0: First part of (PTP) UUID
    178 * @seq1: Second part of (PTP) UUID and sequence number
    179 * @hwtimestamp: Event timestamp
    180 * @expiry: Time which the packet arrived
    181 */
    182struct efx_ptp_event_rx {
    183	struct list_head link;
    184	u32 seq0;
    185	u32 seq1;
    186	ktime_t hwtimestamp;
    187	unsigned long expiry;
    188};
    189
    190/**
    191 * struct efx_ptp_timeset - Synchronisation between host and MC
    192 * @host_start: Host time immediately before hardware timestamp taken
    193 * @major: Hardware timestamp, major
    194 * @minor: Hardware timestamp, minor
    195 * @host_end: Host time immediately after hardware timestamp taken
    196 * @wait: Number of NIC clock ticks between hardware timestamp being read and
    197 *          host end time being seen
    198 * @window: Difference of host_end and host_start
    199 * @valid: Whether this timeset is valid
    200 */
    201struct efx_ptp_timeset {
    202	u32 host_start;
    203	u32 major;
    204	u32 minor;
    205	u32 host_end;
    206	u32 wait;
    207	u32 window;	/* Derived: end - start, allowing for wrap */
    208};
    209
    210/**
    211 * struct efx_ptp_data - Precision Time Protocol (PTP) state
    212 * @efx: The NIC context
    213 * @channel: The PTP channel (Siena only)
    214 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
    215 *	separate events)
    216 * @rxq: Receive SKB queue (awaiting timestamps)
    217 * @txq: Transmit SKB queue
    218 * @evt_list: List of MC receive events awaiting packets
    219 * @evt_free_list: List of free events
    220 * @evt_lock: Lock for manipulating evt_list and evt_free_list
    221 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
    222 * @workwq: Work queue for processing pending PTP operations
    223 * @work: Work task
    224 * @reset_required: A serious error has occurred and the PTP task needs to be
    225 *                  reset (disable, enable).
    226 * @rxfilter_event: Receive filter when operating
    227 * @rxfilter_general: Receive filter when operating
    228 * @rxfilter_installed: Receive filter installed
    229 * @config: Current timestamp configuration
    230 * @enabled: PTP operation enabled
    231 * @mode: Mode in which PTP operating (PTP version)
    232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
    233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
    234 * @nic_time: contains time details
    235 * @nic_time.minor_max: Wrap point for NIC minor times
    236 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
    237 * in packet prefix and last MCDI time sync event i.e. how much earlier than
    238 * the last sync event time a packet timestamp can be.
    239 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
    240 * in packet prefix and last MCDI time sync event i.e. how much later than
    241 * the last sync event time a packet timestamp can be.
    242 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
    243 * field in MCDI time sync event.
    244 * @min_synchronisation_ns: Minimum acceptable corrected sync window
    245 * @capabilities: Capabilities flags from the NIC
    246 * @ts_corrections: contains corrections details
    247 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
    248 *                         timestamps
    249 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
    250 *                         timestamps
    251 * @ts_corrections.pps_out: PPS output error (information only)
    252 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
    253 * @ts_corrections.general_tx: Required driver correction of general packet
    254 *                             transmit timestamps
    255 * @ts_corrections.general_rx: Required driver correction of general packet
    256 *                             receive timestamps
    257 * @evt_frags: Partly assembled PTP events
    258 * @evt_frag_idx: Current fragment number
    259 * @evt_code: Last event code
    260 * @start: Address at which MC indicates ready for synchronisation
    261 * @host_time_pps: Host time at last PPS
    262 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
    263 * frequency adjustment into a fixed point fractional nanosecond format.
    264 * @current_adjfreq: Current ppb adjustment.
    265 * @phc_clock: Pointer to registered phc device (if primary function)
    266 * @phc_clock_info: Registration structure for phc device
    267 * @pps_work: pps work task for handling pps events
    268 * @pps_workwq: pps work queue
    269 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
    270 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
    271 *         allocations in main data path).
    272 * @good_syncs: Number of successful synchronisations.
    273 * @fast_syncs: Number of synchronisations requiring short delay
    274 * @bad_syncs: Number of failed synchronisations.
    275 * @sync_timeouts: Number of synchronisation timeouts
    276 * @no_time_syncs: Number of synchronisations with no good times.
    277 * @invalid_sync_windows: Number of sync windows with bad durations.
    278 * @undersize_sync_windows: Number of corrected sync windows that are too small
    279 * @oversize_sync_windows: Number of corrected sync windows that are too large
    280 * @rx_no_timestamp: Number of packets received without a timestamp.
    281 * @timeset: Last set of synchronisation statistics.
    282 * @xmit_skb: Transmit SKB function.
    283 */
    284struct efx_ptp_data {
    285	struct efx_nic *efx;
    286	struct efx_channel *channel;
    287	bool rx_ts_inline;
    288	struct sk_buff_head rxq;
    289	struct sk_buff_head txq;
    290	struct list_head evt_list;
    291	struct list_head evt_free_list;
    292	spinlock_t evt_lock;
    293	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
    294	struct workqueue_struct *workwq;
    295	struct work_struct work;
    296	bool reset_required;
    297	u32 rxfilter_event;
    298	u32 rxfilter_general;
    299	bool rxfilter_installed;
    300	struct hwtstamp_config config;
    301	bool enabled;
    302	unsigned int mode;
    303	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
    304	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
    305				      s32 correction);
    306	struct {
    307		u32 minor_max;
    308		u32 sync_event_diff_min;
    309		u32 sync_event_diff_max;
    310		unsigned int sync_event_minor_shift;
    311	} nic_time;
    312	unsigned int min_synchronisation_ns;
    313	unsigned int capabilities;
    314	struct {
    315		s32 ptp_tx;
    316		s32 ptp_rx;
    317		s32 pps_out;
    318		s32 pps_in;
    319		s32 general_tx;
    320		s32 general_rx;
    321	} ts_corrections;
    322	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
    323	int evt_frag_idx;
    324	int evt_code;
    325	struct efx_buffer start;
    326	struct pps_event_time host_time_pps;
    327	unsigned int adjfreq_ppb_shift;
    328	s64 current_adjfreq;
    329	struct ptp_clock *phc_clock;
    330	struct ptp_clock_info phc_clock_info;
    331	struct work_struct pps_work;
    332	struct workqueue_struct *pps_workwq;
    333	bool nic_ts_enabled;
    334	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
    335
    336	unsigned int good_syncs;
    337	unsigned int fast_syncs;
    338	unsigned int bad_syncs;
    339	unsigned int sync_timeouts;
    340	unsigned int no_time_syncs;
    341	unsigned int invalid_sync_windows;
    342	unsigned int undersize_sync_windows;
    343	unsigned int oversize_sync_windows;
    344	unsigned int rx_no_timestamp;
    345	struct efx_ptp_timeset
    346	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
    347	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
    348};
    349
    350static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
    351static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
    352static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
    353static int efx_phc_settime(struct ptp_clock_info *ptp,
    354			   const struct timespec64 *e_ts);
    355static int efx_phc_enable(struct ptp_clock_info *ptp,
    356			  struct ptp_clock_request *request, int on);
    357
    358bool efx_siena_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
    359{
    360	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
    361}
    362
    363/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
    364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
    365 */
    366static bool efx_ptp_want_txqs(struct efx_channel *channel)
    367{
    368	return efx_siena_ptp_use_mac_tx_timestamps(channel->efx);
    369}
    370
    371#define PTP_SW_STAT(ext_name, field_name)				\
    372	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
    373#define PTP_MC_STAT(ext_name, mcdi_name)				\
    374	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
    375static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
    376	PTP_SW_STAT(ptp_good_syncs, good_syncs),
    377	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
    378	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
    379	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
    380	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
    381	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
    382	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
    383	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
    384	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
    385	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
    386	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
    387	PTP_MC_STAT(ptp_timestamp_packets, TS),
    388	PTP_MC_STAT(ptp_filter_matches, FM),
    389	PTP_MC_STAT(ptp_non_filter_matches, NFM),
    390};
    391#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
    392static const unsigned long efx_ptp_stat_mask[] = {
    393	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
    394};
    395
    396size_t efx_siena_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
    397{
    398	if (!efx->ptp_data)
    399		return 0;
    400
    401	return efx_siena_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
    402					efx_ptp_stat_mask, strings);
    403}
    404
    405size_t efx_siena_ptp_update_stats(struct efx_nic *efx, u64 *stats)
    406{
    407	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
    408	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
    409	size_t i;
    410	int rc;
    411
    412	if (!efx->ptp_data)
    413		return 0;
    414
    415	/* Copy software statistics */
    416	for (i = 0; i < PTP_STAT_COUNT; i++) {
    417		if (efx_ptp_stat_desc[i].dma_width)
    418			continue;
    419		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
    420					     efx_ptp_stat_desc[i].offset);
    421	}
    422
    423	/* Fetch MC statistics.  We *must* fill in all statistics or
    424	 * risk leaking kernel memory to userland, so if the MCDI
    425	 * request fails we pretend we got zeroes.
    426	 */
    427	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
    428	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    429	rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    430				outbuf, sizeof(outbuf), NULL);
    431	if (rc)
    432		memset(outbuf, 0, sizeof(outbuf));
    433	efx_siena_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
    434			       efx_ptp_stat_mask,
    435			       stats, _MCDI_PTR(outbuf, 0), false);
    436
    437	return PTP_STAT_COUNT;
    438}
    439
    440/* For Siena platforms NIC time is s and ns */
    441static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
    442{
    443	struct timespec64 ts = ns_to_timespec64(ns);
    444	*nic_major = (u32)ts.tv_sec;
    445	*nic_minor = ts.tv_nsec;
    446}
    447
    448static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
    449						s32 correction)
    450{
    451	ktime_t kt = ktime_set(nic_major, nic_minor);
    452	if (correction >= 0)
    453		kt = ktime_add_ns(kt, (u64)correction);
    454	else
    455		kt = ktime_sub_ns(kt, (u64)-correction);
    456	return kt;
    457}
    458
    459/* To convert from s27 format to ns we multiply then divide by a power of 2.
    460 * For the conversion from ns to s27, the operation is also converted to a
    461 * multiply and shift.
    462 */
    463#define S27_TO_NS_SHIFT	(27)
    464#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
    465#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
    466#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
    467
    468/* For Huntington platforms NIC time is in seconds and fractions of a second
    469 * where the minor register only uses 27 bits in units of 2^-27s.
    470 */
    471static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
    472{
    473	struct timespec64 ts = ns_to_timespec64(ns);
    474	u32 maj = (u32)ts.tv_sec;
    475	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
    476			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
    477
    478	/* The conversion can result in the minor value exceeding the maximum.
    479	 * In this case, round up to the next second.
    480	 */
    481	if (min >= S27_MINOR_MAX) {
    482		min -= S27_MINOR_MAX;
    483		maj++;
    484	}
    485
    486	*nic_major = maj;
    487	*nic_minor = min;
    488}
    489
    490static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
    491{
    492	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
    493			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
    494	return ktime_set(nic_major, ns);
    495}
    496
    497static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
    498					       s32 correction)
    499{
    500	/* Apply the correction and deal with carry */
    501	nic_minor += correction;
    502	if ((s32)nic_minor < 0) {
    503		nic_minor += S27_MINOR_MAX;
    504		nic_major--;
    505	} else if (nic_minor >= S27_MINOR_MAX) {
    506		nic_minor -= S27_MINOR_MAX;
    507		nic_major++;
    508	}
    509
    510	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
    511}
    512
    513/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
    514static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
    515{
    516	struct timespec64 ts = ns_to_timespec64(ns);
    517
    518	*nic_major = (u32)ts.tv_sec;
    519	*nic_minor = ts.tv_nsec * 4;
    520}
    521
    522static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
    523						 s32 correction)
    524{
    525	ktime_t kt;
    526
    527	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
    528	correction = DIV_ROUND_CLOSEST(correction, 4);
    529
    530	kt = ktime_set(nic_major, nic_minor);
    531
    532	if (correction >= 0)
    533		kt = ktime_add_ns(kt, (u64)correction);
    534	else
    535		kt = ktime_sub_ns(kt, (u64)-correction);
    536	return kt;
    537}
    538
    539struct efx_channel *efx_siena_ptp_channel(struct efx_nic *efx)
    540{
    541	return efx->ptp_data ? efx->ptp_data->channel : NULL;
    542}
    543
    544static u32 last_sync_timestamp_major(struct efx_nic *efx)
    545{
    546	struct efx_channel *channel = efx_siena_ptp_channel(efx);
    547	u32 major = 0;
    548
    549	if (channel)
    550		major = channel->sync_timestamp_major;
    551	return major;
    552}
    553
    554/* The 8000 series and later can provide the time from the MAC, which is only
    555 * 48 bits long and provides meta-information in the top 2 bits.
    556 */
    557static ktime_t
    558efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
    559				    struct efx_ptp_data *ptp,
    560				    u32 nic_major, u32 nic_minor,
    561				    s32 correction)
    562{
    563	u32 sync_timestamp;
    564	ktime_t kt = { 0 };
    565	s16 delta;
    566
    567	if (!(nic_major & 0x80000000)) {
    568		WARN_ON_ONCE(nic_major >> 16);
    569
    570		/* Medford provides 48 bits of timestamp, so we must get the top
    571		 * 16 bits from the timesync event state.
    572		 *
    573		 * We only have the lower 16 bits of the time now, but we do
    574		 * have a full resolution timestamp at some point in past. As
    575		 * long as the difference between the (real) now and the sync
    576		 * is less than 2^15, then we can reconstruct the difference
    577		 * between those two numbers using only the lower 16 bits of
    578		 * each.
    579		 *
    580		 * Put another way
    581		 *
    582		 * a - b = ((a mod k) - b) mod k
    583		 *
    584		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
    585		 * (a mod k) and b, so can calculate the delta, a - b.
    586		 *
    587		 */
    588		sync_timestamp = last_sync_timestamp_major(efx);
    589
    590		/* Because delta is s16 this does an implicit mask down to
    591		 * 16 bits which is what we need, assuming
    592		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
    593		 * we can deal with the (unlikely) case of sync timestamps
    594		 * arriving from the future.
    595		 */
    596		delta = nic_major - sync_timestamp;
    597
    598		/* Recover the fully specified time now, by applying the offset
    599		 * to the (fully specified) sync time.
    600		 */
    601		nic_major = sync_timestamp + delta;
    602
    603		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
    604					     correction);
    605	}
    606	return kt;
    607}
    608
    609ktime_t efx_siena_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
    610{
    611	struct efx_nic *efx = tx_queue->efx;
    612	struct efx_ptp_data *ptp = efx->ptp_data;
    613	ktime_t kt;
    614
    615	if (efx_siena_ptp_use_mac_tx_timestamps(efx))
    616		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
    617				tx_queue->completed_timestamp_major,
    618				tx_queue->completed_timestamp_minor,
    619				ptp->ts_corrections.general_tx);
    620	else
    621		kt = ptp->nic_to_kernel_time(
    622				tx_queue->completed_timestamp_major,
    623				tx_queue->completed_timestamp_minor,
    624				ptp->ts_corrections.general_tx);
    625	return kt;
    626}
    627
    628/* Get PTP attributes and set up time conversions */
    629static int efx_ptp_get_attributes(struct efx_nic *efx)
    630{
    631	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
    632	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
    633	struct efx_ptp_data *ptp = efx->ptp_data;
    634	int rc;
    635	u32 fmt;
    636	size_t out_len;
    637
    638	/* Get the PTP attributes. If the NIC doesn't support the operation we
    639	 * use the default format for compatibility with older NICs i.e.
    640	 * seconds and nanoseconds.
    641	 */
    642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
    643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    644	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    645				      outbuf, sizeof(outbuf), &out_len);
    646	if (rc == 0) {
    647		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
    648	} else if (rc == -EINVAL) {
    649		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
    650	} else if (rc == -EPERM) {
    651		pci_info(efx->pci_dev, "no PTP support\n");
    652		return rc;
    653	} else {
    654		efx_siena_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
    655					     outbuf, sizeof(outbuf), rc);
    656		return rc;
    657	}
    658
    659	switch (fmt) {
    660	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
    661		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
    662		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
    663		ptp->nic_time.minor_max = 1 << 27;
    664		ptp->nic_time.sync_event_minor_shift = 19;
    665		break;
    666	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
    667		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
    668		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
    669		ptp->nic_time.minor_max = 1000000000;
    670		ptp->nic_time.sync_event_minor_shift = 22;
    671		break;
    672	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
    673		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
    674		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
    675		ptp->nic_time.minor_max = 4000000000UL;
    676		ptp->nic_time.sync_event_minor_shift = 24;
    677		break;
    678	default:
    679		return -ERANGE;
    680	}
    681
    682	/* Precalculate acceptable difference between the minor time in the
    683	 * packet prefix and the last MCDI time sync event. We expect the
    684	 * packet prefix timestamp to be after of sync event by up to one
    685	 * sync event interval (0.25s) but we allow it to exceed this by a
    686	 * fuzz factor of (0.1s)
    687	 */
    688	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
    689		- (ptp->nic_time.minor_max / 10);
    690	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
    691		+ (ptp->nic_time.minor_max / 10);
    692
    693	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
    694	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
    695	 * a value to use for the minimum acceptable corrected synchronization
    696	 * window and may return further capabilities.
    697	 * If we have the extra information store it. For older firmware that
    698	 * does not implement the extended command use the default value.
    699	 */
    700	if (rc == 0 &&
    701	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
    702		ptp->min_synchronisation_ns =
    703			MCDI_DWORD(outbuf,
    704				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
    705	else
    706		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
    707
    708	if (rc == 0 &&
    709	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
    710		ptp->capabilities = MCDI_DWORD(outbuf,
    711					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
    712	else
    713		ptp->capabilities = 0;
    714
    715	/* Set up the shift for conversion between frequency
    716	 * adjustments in parts-per-billion and the fixed-point
    717	 * fractional ns format that the adapter uses.
    718	 */
    719	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
    720		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
    721	else
    722		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
    723
    724	return 0;
    725}
    726
    727/* Get PTP timestamp corrections */
    728static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
    729{
    730	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
    731	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
    732	int rc;
    733	size_t out_len;
    734
    735	/* Get the timestamp corrections from the NIC. If this operation is
    736	 * not supported (older NICs) then no correction is required.
    737	 */
    738	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
    739		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
    740	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    741
    742	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    743				      outbuf, sizeof(outbuf), &out_len);
    744	if (rc == 0) {
    745		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
    746			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
    747		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
    748			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
    749		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
    750			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
    751		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
    752			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
    753
    754		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
    755			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
    756				outbuf,
    757				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
    758			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
    759				outbuf,
    760				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
    761		} else {
    762			efx->ptp_data->ts_corrections.general_tx =
    763				efx->ptp_data->ts_corrections.ptp_tx;
    764			efx->ptp_data->ts_corrections.general_rx =
    765				efx->ptp_data->ts_corrections.ptp_rx;
    766		}
    767	} else if (rc == -EINVAL) {
    768		efx->ptp_data->ts_corrections.ptp_tx = 0;
    769		efx->ptp_data->ts_corrections.ptp_rx = 0;
    770		efx->ptp_data->ts_corrections.pps_out = 0;
    771		efx->ptp_data->ts_corrections.pps_in = 0;
    772		efx->ptp_data->ts_corrections.general_tx = 0;
    773		efx->ptp_data->ts_corrections.general_rx = 0;
    774	} else {
    775		efx_siena_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
    776					     outbuf, sizeof(outbuf), rc);
    777		return rc;
    778	}
    779
    780	return 0;
    781}
    782
    783/* Enable MCDI PTP support. */
    784static int efx_ptp_enable(struct efx_nic *efx)
    785{
    786	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
    787	MCDI_DECLARE_BUF_ERR(outbuf);
    788	int rc;
    789
    790	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
    791	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    792	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
    793		       efx->ptp_data->channel ?
    794		       efx->ptp_data->channel->channel : 0);
    795	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
    796
    797	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    798				      outbuf, sizeof(outbuf), NULL);
    799	rc = (rc == -EALREADY) ? 0 : rc;
    800	if (rc)
    801		efx_siena_mcdi_display_error(efx, MC_CMD_PTP,
    802					     MC_CMD_PTP_IN_ENABLE_LEN,
    803					     outbuf, sizeof(outbuf), rc);
    804	return rc;
    805}
    806
    807/* Disable MCDI PTP support.
    808 *
    809 * Note that this function should never rely on the presence of ptp_data -
    810 * may be called before that exists.
    811 */
    812static int efx_ptp_disable(struct efx_nic *efx)
    813{
    814	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
    815	MCDI_DECLARE_BUF_ERR(outbuf);
    816	int rc;
    817
    818	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
    819	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
    820	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
    821				      outbuf, sizeof(outbuf), NULL);
    822	rc = (rc == -EALREADY) ? 0 : rc;
    823	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
    824	 * should only have been called during probe.
    825	 */
    826	if (rc == -ENOSYS || rc == -EPERM)
    827		pci_info(efx->pci_dev, "no PTP support\n");
    828	else if (rc)
    829		efx_siena_mcdi_display_error(efx, MC_CMD_PTP,
    830					     MC_CMD_PTP_IN_DISABLE_LEN,
    831					     outbuf, sizeof(outbuf), rc);
    832	return rc;
    833}
    834
    835static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
    836{
    837	struct sk_buff *skb;
    838
    839	while ((skb = skb_dequeue(q))) {
    840		local_bh_disable();
    841		netif_receive_skb(skb);
    842		local_bh_enable();
    843	}
    844}
    845
    846static void efx_ptp_handle_no_channel(struct efx_nic *efx)
    847{
    848	netif_err(efx, drv, efx->net_dev,
    849		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
    850		  "vector. PTP disabled\n");
    851}
    852
    853/* Repeatedly send the host time to the MC which will capture the hardware
    854 * time.
    855 */
    856static void efx_ptp_send_times(struct efx_nic *efx,
    857			       struct pps_event_time *last_time)
    858{
    859	struct pps_event_time now;
    860	struct timespec64 limit;
    861	struct efx_ptp_data *ptp = efx->ptp_data;
    862	int *mc_running = ptp->start.addr;
    863
    864	pps_get_ts(&now);
    865	limit = now.ts_real;
    866	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
    867
    868	/* Write host time for specified period or until MC is done */
    869	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
    870	       READ_ONCE(*mc_running)) {
    871		struct timespec64 update_time;
    872		unsigned int host_time;
    873
    874		/* Don't update continuously to avoid saturating the PCIe bus */
    875		update_time = now.ts_real;
    876		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
    877		do {
    878			pps_get_ts(&now);
    879		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
    880			 READ_ONCE(*mc_running));
    881
    882		/* Synchronise NIC with single word of time only */
    883		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
    884			     now.ts_real.tv_nsec);
    885		/* Update host time in NIC memory */
    886		efx->type->ptp_write_host_time(efx, host_time);
    887	}
    888	*last_time = now;
    889}
    890
    891/* Read a timeset from the MC's results and partial process. */
    892static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
    893				 struct efx_ptp_timeset *timeset)
    894{
    895	unsigned start_ns, end_ns;
    896
    897	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
    898	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
    899	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
    900	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
    901	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
    902
    903	/* Ignore seconds */
    904	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
    905	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
    906	/* Allow for rollover */
    907	if (end_ns < start_ns)
    908		end_ns += NSEC_PER_SEC;
    909	/* Determine duration of operation */
    910	timeset->window = end_ns - start_ns;
    911}
    912
    913/* Process times received from MC.
    914 *
    915 * Extract times from returned results, and establish the minimum value
    916 * seen.  The minimum value represents the "best" possible time and events
    917 * too much greater than this are rejected - the machine is, perhaps, too
    918 * busy. A number of readings are taken so that, hopefully, at least one good
    919 * synchronisation will be seen in the results.
    920 */
    921static int
    922efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
    923		      size_t response_length,
    924		      const struct pps_event_time *last_time)
    925{
    926	unsigned number_readings =
    927		MCDI_VAR_ARRAY_LEN(response_length,
    928				   PTP_OUT_SYNCHRONIZE_TIMESET);
    929	unsigned i;
    930	unsigned ngood = 0;
    931	unsigned last_good = 0;
    932	struct efx_ptp_data *ptp = efx->ptp_data;
    933	u32 last_sec;
    934	u32 start_sec;
    935	struct timespec64 delta;
    936	ktime_t mc_time;
    937
    938	if (number_readings == 0)
    939		return -EAGAIN;
    940
    941	/* Read the set of results and find the last good host-MC
    942	 * synchronization result. The MC times when it finishes reading the
    943	 * host time so the corrected window time should be fairly constant
    944	 * for a given platform. Increment stats for any results that appear
    945	 * to be erroneous.
    946	 */
    947	for (i = 0; i < number_readings; i++) {
    948		s32 window, corrected;
    949		struct timespec64 wait;
    950
    951		efx_ptp_read_timeset(
    952			MCDI_ARRAY_STRUCT_PTR(synch_buf,
    953					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
    954			&ptp->timeset[i]);
    955
    956		wait = ktime_to_timespec64(
    957			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
    958		window = ptp->timeset[i].window;
    959		corrected = window - wait.tv_nsec;
    960
    961		/* We expect the uncorrected synchronization window to be at
    962		 * least as large as the interval between host start and end
    963		 * times. If it is smaller than this then this is mostly likely
    964		 * to be a consequence of the host's time being adjusted.
    965		 * Check that the corrected sync window is in a reasonable
    966		 * range. If it is out of range it is likely to be because an
    967		 * interrupt or other delay occurred between reading the system
    968		 * time and writing it to MC memory.
    969		 */
    970		if (window < SYNCHRONISATION_GRANULARITY_NS) {
    971			++ptp->invalid_sync_windows;
    972		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
    973			++ptp->oversize_sync_windows;
    974		} else if (corrected < ptp->min_synchronisation_ns) {
    975			++ptp->undersize_sync_windows;
    976		} else {
    977			ngood++;
    978			last_good = i;
    979		}
    980	}
    981
    982	if (ngood == 0) {
    983		netif_warn(efx, drv, efx->net_dev,
    984			   "PTP no suitable synchronisations\n");
    985		return -EAGAIN;
    986	}
    987
    988	/* Calculate delay from last good sync (host time) to last_time.
    989	 * It is possible that the seconds rolled over between taking
    990	 * the start reading and the last value written by the host.  The
    991	 * timescales are such that a gap of more than one second is never
    992	 * expected.  delta is *not* normalised.
    993	 */
    994	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
    995	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
    996	if (start_sec != last_sec &&
    997	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
    998		netif_warn(efx, hw, efx->net_dev,
    999			   "PTP bad synchronisation seconds\n");
   1000		return -EAGAIN;
   1001	}
   1002	delta.tv_sec = (last_sec - start_sec) & 1;
   1003	delta.tv_nsec =
   1004		last_time->ts_real.tv_nsec -
   1005		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
   1006
   1007	/* Convert the NIC time at last good sync into kernel time.
   1008	 * No correction is required - this time is the output of a
   1009	 * firmware process.
   1010	 */
   1011	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
   1012					  ptp->timeset[last_good].minor, 0);
   1013
   1014	/* Calculate delay from NIC top of second to last_time */
   1015	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
   1016
   1017	/* Set PPS timestamp to match NIC top of second */
   1018	ptp->host_time_pps = *last_time;
   1019	pps_sub_ts(&ptp->host_time_pps, delta);
   1020
   1021	return 0;
   1022}
   1023
   1024/* Synchronize times between the host and the MC */
   1025static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
   1026{
   1027	struct efx_ptp_data *ptp = efx->ptp_data;
   1028	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
   1029	size_t response_length;
   1030	int rc;
   1031	unsigned long timeout;
   1032	struct pps_event_time last_time = {};
   1033	unsigned int loops = 0;
   1034	int *start = ptp->start.addr;
   1035
   1036	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
   1037	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
   1038	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
   1039		       num_readings);
   1040	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
   1041		       ptp->start.dma_addr);
   1042
   1043	/* Clear flag that signals MC ready */
   1044	WRITE_ONCE(*start, 0);
   1045	rc = efx_siena_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
   1046				      MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
   1047	EFX_WARN_ON_ONCE_PARANOID(rc);
   1048
   1049	/* Wait for start from MCDI (or timeout) */
   1050	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
   1051	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
   1052		udelay(20);	/* Usually start MCDI execution quickly */
   1053		loops++;
   1054	}
   1055
   1056	if (loops <= 1)
   1057		++ptp->fast_syncs;
   1058	if (!time_before(jiffies, timeout))
   1059		++ptp->sync_timeouts;
   1060
   1061	if (READ_ONCE(*start))
   1062		efx_ptp_send_times(efx, &last_time);
   1063
   1064	/* Collect results */
   1065	rc = efx_siena_mcdi_rpc_finish(efx, MC_CMD_PTP,
   1066				       MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
   1067				       synch_buf, sizeof(synch_buf),
   1068				       &response_length);
   1069	if (rc == 0) {
   1070		rc = efx_ptp_process_times(efx, synch_buf, response_length,
   1071					   &last_time);
   1072		if (rc == 0)
   1073			++ptp->good_syncs;
   1074		else
   1075			++ptp->no_time_syncs;
   1076	}
   1077
   1078	/* Increment the bad syncs counter if the synchronize fails, whatever
   1079	 * the reason.
   1080	 */
   1081	if (rc != 0)
   1082		++ptp->bad_syncs;
   1083
   1084	return rc;
   1085}
   1086
   1087/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
   1088static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
   1089{
   1090	struct efx_ptp_data *ptp_data = efx->ptp_data;
   1091	u8 type = efx_tx_csum_type_skb(skb);
   1092	struct efx_tx_queue *tx_queue;
   1093
   1094	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
   1095	if (tx_queue && tx_queue->timestamping) {
   1096		efx_enqueue_skb(tx_queue, skb);
   1097	} else {
   1098		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
   1099		dev_kfree_skb_any(skb);
   1100	}
   1101}
   1102
   1103/* Transmit a PTP packet, via the MCDI interface, to the wire. */
   1104static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
   1105{
   1106	struct efx_ptp_data *ptp_data = efx->ptp_data;
   1107	struct skb_shared_hwtstamps timestamps;
   1108	int rc = -EIO;
   1109	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
   1110	size_t len;
   1111
   1112	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
   1113	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
   1114	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
   1115	if (skb_shinfo(skb)->nr_frags != 0) {
   1116		rc = skb_linearize(skb);
   1117		if (rc != 0)
   1118			goto fail;
   1119	}
   1120
   1121	if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1122		rc = skb_checksum_help(skb);
   1123		if (rc != 0)
   1124			goto fail;
   1125	}
   1126	skb_copy_from_linear_data(skb,
   1127				  MCDI_PTR(ptp_data->txbuf,
   1128					   PTP_IN_TRANSMIT_PACKET),
   1129				  skb->len);
   1130	rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, ptp_data->txbuf,
   1131				MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), txtime,
   1132				sizeof(txtime), &len);
   1133	if (rc != 0)
   1134		goto fail;
   1135
   1136	memset(&timestamps, 0, sizeof(timestamps));
   1137	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
   1138		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
   1139		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
   1140		ptp_data->ts_corrections.ptp_tx);
   1141
   1142	skb_tstamp_tx(skb, &timestamps);
   1143
   1144	rc = 0;
   1145
   1146fail:
   1147	dev_kfree_skb_any(skb);
   1148
   1149	return;
   1150}
   1151
   1152static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
   1153{
   1154	struct efx_ptp_data *ptp = efx->ptp_data;
   1155	struct list_head *cursor;
   1156	struct list_head *next;
   1157
   1158	if (ptp->rx_ts_inline)
   1159		return;
   1160
   1161	/* Drop time-expired events */
   1162	spin_lock_bh(&ptp->evt_lock);
   1163	list_for_each_safe(cursor, next, &ptp->evt_list) {
   1164		struct efx_ptp_event_rx *evt;
   1165
   1166		evt = list_entry(cursor, struct efx_ptp_event_rx,
   1167				 link);
   1168		if (time_after(jiffies, evt->expiry)) {
   1169			list_move(&evt->link, &ptp->evt_free_list);
   1170			netif_warn(efx, hw, efx->net_dev,
   1171				   "PTP rx event dropped\n");
   1172		}
   1173	}
   1174	spin_unlock_bh(&ptp->evt_lock);
   1175}
   1176
   1177static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
   1178					      struct sk_buff *skb)
   1179{
   1180	struct efx_ptp_data *ptp = efx->ptp_data;
   1181	bool evts_waiting;
   1182	struct list_head *cursor;
   1183	struct list_head *next;
   1184	struct efx_ptp_match *match;
   1185	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
   1186
   1187	WARN_ON_ONCE(ptp->rx_ts_inline);
   1188
   1189	spin_lock_bh(&ptp->evt_lock);
   1190	evts_waiting = !list_empty(&ptp->evt_list);
   1191	spin_unlock_bh(&ptp->evt_lock);
   1192
   1193	if (!evts_waiting)
   1194		return PTP_PACKET_STATE_UNMATCHED;
   1195
   1196	match = (struct efx_ptp_match *)skb->cb;
   1197	/* Look for a matching timestamp in the event queue */
   1198	spin_lock_bh(&ptp->evt_lock);
   1199	list_for_each_safe(cursor, next, &ptp->evt_list) {
   1200		struct efx_ptp_event_rx *evt;
   1201
   1202		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
   1203		if ((evt->seq0 == match->words[0]) &&
   1204		    (evt->seq1 == match->words[1])) {
   1205			struct skb_shared_hwtstamps *timestamps;
   1206
   1207			/* Match - add in hardware timestamp */
   1208			timestamps = skb_hwtstamps(skb);
   1209			timestamps->hwtstamp = evt->hwtimestamp;
   1210
   1211			match->state = PTP_PACKET_STATE_MATCHED;
   1212			rc = PTP_PACKET_STATE_MATCHED;
   1213			list_move(&evt->link, &ptp->evt_free_list);
   1214			break;
   1215		}
   1216	}
   1217	spin_unlock_bh(&ptp->evt_lock);
   1218
   1219	return rc;
   1220}
   1221
   1222/* Process any queued receive events and corresponding packets
   1223 *
   1224 * q is returned with all the packets that are ready for delivery.
   1225 */
   1226static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
   1227{
   1228	struct efx_ptp_data *ptp = efx->ptp_data;
   1229	struct sk_buff *skb;
   1230
   1231	while ((skb = skb_dequeue(&ptp->rxq))) {
   1232		struct efx_ptp_match *match;
   1233
   1234		match = (struct efx_ptp_match *)skb->cb;
   1235		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
   1236			__skb_queue_tail(q, skb);
   1237		} else if (efx_ptp_match_rx(efx, skb) ==
   1238			   PTP_PACKET_STATE_MATCHED) {
   1239			__skb_queue_tail(q, skb);
   1240		} else if (time_after(jiffies, match->expiry)) {
   1241			match->state = PTP_PACKET_STATE_TIMED_OUT;
   1242			++ptp->rx_no_timestamp;
   1243			__skb_queue_tail(q, skb);
   1244		} else {
   1245			/* Replace unprocessed entry and stop */
   1246			skb_queue_head(&ptp->rxq, skb);
   1247			break;
   1248		}
   1249	}
   1250}
   1251
   1252/* Complete processing of a received packet */
   1253static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
   1254{
   1255	local_bh_disable();
   1256	netif_receive_skb(skb);
   1257	local_bh_enable();
   1258}
   1259
   1260static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
   1261{
   1262	struct efx_ptp_data *ptp = efx->ptp_data;
   1263
   1264	if (ptp->rxfilter_installed) {
   1265		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
   1266					  ptp->rxfilter_general);
   1267		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
   1268					  ptp->rxfilter_event);
   1269		ptp->rxfilter_installed = false;
   1270	}
   1271}
   1272
   1273static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
   1274{
   1275	struct efx_ptp_data *ptp = efx->ptp_data;
   1276	struct efx_filter_spec rxfilter;
   1277	int rc;
   1278
   1279	if (!ptp->channel || ptp->rxfilter_installed)
   1280		return 0;
   1281
   1282	/* Must filter on both event and general ports to ensure
   1283	 * that there is no packet re-ordering.
   1284	 */
   1285	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
   1286			   efx_rx_queue_index(
   1287				   efx_channel_get_rx_queue(ptp->channel)));
   1288	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
   1289				       htonl(PTP_ADDRESS),
   1290				       htons(PTP_EVENT_PORT));
   1291	if (rc != 0)
   1292		return rc;
   1293
   1294	rc = efx_filter_insert_filter(efx, &rxfilter, true);
   1295	if (rc < 0)
   1296		return rc;
   1297	ptp->rxfilter_event = rc;
   1298
   1299	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
   1300			   efx_rx_queue_index(
   1301				   efx_channel_get_rx_queue(ptp->channel)));
   1302	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
   1303				       htonl(PTP_ADDRESS),
   1304				       htons(PTP_GENERAL_PORT));
   1305	if (rc != 0)
   1306		goto fail;
   1307
   1308	rc = efx_filter_insert_filter(efx, &rxfilter, true);
   1309	if (rc < 0)
   1310		goto fail;
   1311	ptp->rxfilter_general = rc;
   1312
   1313	ptp->rxfilter_installed = true;
   1314	return 0;
   1315
   1316fail:
   1317	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
   1318				  ptp->rxfilter_event);
   1319	return rc;
   1320}
   1321
   1322static int efx_ptp_start(struct efx_nic *efx)
   1323{
   1324	struct efx_ptp_data *ptp = efx->ptp_data;
   1325	int rc;
   1326
   1327	ptp->reset_required = false;
   1328
   1329	rc = efx_ptp_insert_multicast_filters(efx);
   1330	if (rc)
   1331		return rc;
   1332
   1333	rc = efx_ptp_enable(efx);
   1334	if (rc != 0)
   1335		goto fail;
   1336
   1337	ptp->evt_frag_idx = 0;
   1338	ptp->current_adjfreq = 0;
   1339
   1340	return 0;
   1341
   1342fail:
   1343	efx_ptp_remove_multicast_filters(efx);
   1344	return rc;
   1345}
   1346
   1347static int efx_ptp_stop(struct efx_nic *efx)
   1348{
   1349	struct efx_ptp_data *ptp = efx->ptp_data;
   1350	struct list_head *cursor;
   1351	struct list_head *next;
   1352	int rc;
   1353
   1354	if (ptp == NULL)
   1355		return 0;
   1356
   1357	rc = efx_ptp_disable(efx);
   1358
   1359	efx_ptp_remove_multicast_filters(efx);
   1360
   1361	/* Make sure RX packets are really delivered */
   1362	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
   1363	skb_queue_purge(&efx->ptp_data->txq);
   1364
   1365	/* Drop any pending receive events */
   1366	spin_lock_bh(&efx->ptp_data->evt_lock);
   1367	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
   1368		list_move(cursor, &efx->ptp_data->evt_free_list);
   1369	}
   1370	spin_unlock_bh(&efx->ptp_data->evt_lock);
   1371
   1372	return rc;
   1373}
   1374
   1375static int efx_ptp_restart(struct efx_nic *efx)
   1376{
   1377	if (efx->ptp_data && efx->ptp_data->enabled)
   1378		return efx_ptp_start(efx);
   1379	return 0;
   1380}
   1381
   1382static void efx_ptp_pps_worker(struct work_struct *work)
   1383{
   1384	struct efx_ptp_data *ptp =
   1385		container_of(work, struct efx_ptp_data, pps_work);
   1386	struct efx_nic *efx = ptp->efx;
   1387	struct ptp_clock_event ptp_evt;
   1388
   1389	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
   1390		return;
   1391
   1392	ptp_evt.type = PTP_CLOCK_PPSUSR;
   1393	ptp_evt.pps_times = ptp->host_time_pps;
   1394	ptp_clock_event(ptp->phc_clock, &ptp_evt);
   1395}
   1396
   1397static void efx_ptp_worker(struct work_struct *work)
   1398{
   1399	struct efx_ptp_data *ptp_data =
   1400		container_of(work, struct efx_ptp_data, work);
   1401	struct efx_nic *efx = ptp_data->efx;
   1402	struct sk_buff *skb;
   1403	struct sk_buff_head tempq;
   1404
   1405	if (ptp_data->reset_required) {
   1406		efx_ptp_stop(efx);
   1407		efx_ptp_start(efx);
   1408		return;
   1409	}
   1410
   1411	efx_ptp_drop_time_expired_events(efx);
   1412
   1413	__skb_queue_head_init(&tempq);
   1414	efx_ptp_process_events(efx, &tempq);
   1415
   1416	while ((skb = skb_dequeue(&ptp_data->txq)))
   1417		ptp_data->xmit_skb(efx, skb);
   1418
   1419	while ((skb = __skb_dequeue(&tempq)))
   1420		efx_ptp_process_rx(efx, skb);
   1421}
   1422
   1423static const struct ptp_clock_info efx_phc_clock_info = {
   1424	.owner		= THIS_MODULE,
   1425	.name		= "sfc_siena",
   1426	.max_adj	= MAX_PPB,
   1427	.n_alarm	= 0,
   1428	.n_ext_ts	= 0,
   1429	.n_per_out	= 0,
   1430	.n_pins		= 0,
   1431	.pps		= 1,
   1432	.adjfreq	= efx_phc_adjfreq,
   1433	.adjtime	= efx_phc_adjtime,
   1434	.gettime64	= efx_phc_gettime,
   1435	.settime64	= efx_phc_settime,
   1436	.enable		= efx_phc_enable,
   1437};
   1438
   1439/* Initialise PTP state. */
   1440static int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
   1441{
   1442	struct efx_ptp_data *ptp;
   1443	int rc = 0;
   1444	unsigned int pos;
   1445
   1446	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
   1447	efx->ptp_data = ptp;
   1448	if (!efx->ptp_data)
   1449		return -ENOMEM;
   1450
   1451	ptp->efx = efx;
   1452	ptp->channel = channel;
   1453	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
   1454
   1455	rc = efx_siena_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
   1456	if (rc != 0)
   1457		goto fail1;
   1458
   1459	skb_queue_head_init(&ptp->rxq);
   1460	skb_queue_head_init(&ptp->txq);
   1461	ptp->workwq = create_singlethread_workqueue("sfc_siena_ptp");
   1462	if (!ptp->workwq) {
   1463		rc = -ENOMEM;
   1464		goto fail2;
   1465	}
   1466
   1467	if (efx_siena_ptp_use_mac_tx_timestamps(efx)) {
   1468		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
   1469		/* Request sync events on this channel. */
   1470		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
   1471	} else {
   1472		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
   1473	}
   1474
   1475	INIT_WORK(&ptp->work, efx_ptp_worker);
   1476	ptp->config.flags = 0;
   1477	ptp->config.tx_type = HWTSTAMP_TX_OFF;
   1478	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
   1479	INIT_LIST_HEAD(&ptp->evt_list);
   1480	INIT_LIST_HEAD(&ptp->evt_free_list);
   1481	spin_lock_init(&ptp->evt_lock);
   1482	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
   1483		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
   1484
   1485	/* Get the NIC PTP attributes and set up time conversions */
   1486	rc = efx_ptp_get_attributes(efx);
   1487	if (rc < 0)
   1488		goto fail3;
   1489
   1490	/* Get the timestamp corrections */
   1491	rc = efx_ptp_get_timestamp_corrections(efx);
   1492	if (rc < 0)
   1493		goto fail3;
   1494
   1495	if (efx->mcdi->fn_flags &
   1496	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
   1497		ptp->phc_clock_info = efx_phc_clock_info;
   1498		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
   1499						    &efx->pci_dev->dev);
   1500		if (IS_ERR(ptp->phc_clock)) {
   1501			rc = PTR_ERR(ptp->phc_clock);
   1502			goto fail3;
   1503		} else if (ptp->phc_clock) {
   1504			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
   1505			ptp->pps_workwq =
   1506				create_singlethread_workqueue("sfc_siena_pps");
   1507			if (!ptp->pps_workwq) {
   1508				rc = -ENOMEM;
   1509				goto fail4;
   1510			}
   1511		}
   1512	}
   1513	ptp->nic_ts_enabled = false;
   1514
   1515	return 0;
   1516fail4:
   1517	ptp_clock_unregister(efx->ptp_data->phc_clock);
   1518
   1519fail3:
   1520	destroy_workqueue(efx->ptp_data->workwq);
   1521
   1522fail2:
   1523	efx_siena_free_buffer(efx, &ptp->start);
   1524
   1525fail1:
   1526	kfree(efx->ptp_data);
   1527	efx->ptp_data = NULL;
   1528
   1529	return rc;
   1530}
   1531
   1532/* Initialise PTP channel.
   1533 *
   1534 * Setting core_index to zero causes the queue to be initialised and doesn't
   1535 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
   1536 */
   1537static int efx_ptp_probe_channel(struct efx_channel *channel)
   1538{
   1539	struct efx_nic *efx = channel->efx;
   1540	int rc;
   1541
   1542	channel->irq_moderation_us = 0;
   1543	channel->rx_queue.core_index = 0;
   1544
   1545	rc = efx_ptp_probe(efx, channel);
   1546	/* Failure to probe PTP is not fatal; this channel will just not be
   1547	 * used for anything.
   1548	 * In the case of EPERM, efx_ptp_probe will print its own message (in
   1549	 * efx_ptp_get_attributes()), so we don't need to.
   1550	 */
   1551	if (rc && rc != -EPERM)
   1552		netif_warn(efx, drv, efx->net_dev,
   1553			   "Failed to probe PTP, rc=%d\n", rc);
   1554	return 0;
   1555}
   1556
   1557static void efx_ptp_remove(struct efx_nic *efx)
   1558{
   1559	if (!efx->ptp_data)
   1560		return;
   1561
   1562	(void)efx_ptp_disable(efx);
   1563
   1564	cancel_work_sync(&efx->ptp_data->work);
   1565	if (efx->ptp_data->pps_workwq)
   1566		cancel_work_sync(&efx->ptp_data->pps_work);
   1567
   1568	skb_queue_purge(&efx->ptp_data->rxq);
   1569	skb_queue_purge(&efx->ptp_data->txq);
   1570
   1571	if (efx->ptp_data->phc_clock) {
   1572		destroy_workqueue(efx->ptp_data->pps_workwq);
   1573		ptp_clock_unregister(efx->ptp_data->phc_clock);
   1574	}
   1575
   1576	destroy_workqueue(efx->ptp_data->workwq);
   1577
   1578	efx_siena_free_buffer(efx, &efx->ptp_data->start);
   1579	kfree(efx->ptp_data);
   1580	efx->ptp_data = NULL;
   1581}
   1582
   1583static void efx_ptp_remove_channel(struct efx_channel *channel)
   1584{
   1585	efx_ptp_remove(channel->efx);
   1586}
   1587
   1588static void efx_ptp_get_channel_name(struct efx_channel *channel,
   1589				     char *buf, size_t len)
   1590{
   1591	snprintf(buf, len, "%s-ptp", channel->efx->name);
   1592}
   1593
   1594/* Determine whether this packet should be processed by the PTP module
   1595 * or transmitted conventionally.
   1596 */
   1597bool efx_siena_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
   1598{
   1599	return efx->ptp_data &&
   1600		efx->ptp_data->enabled &&
   1601		skb->len >= PTP_MIN_LENGTH &&
   1602		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
   1603		likely(skb->protocol == htons(ETH_P_IP)) &&
   1604		skb_transport_header_was_set(skb) &&
   1605		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
   1606		ip_hdr(skb)->protocol == IPPROTO_UDP &&
   1607		skb_headlen(skb) >=
   1608		skb_transport_offset(skb) + sizeof(struct udphdr) &&
   1609		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
   1610}
   1611
   1612/* Receive a PTP packet.  Packets are queued until the arrival of
   1613 * the receive timestamp from the MC - this will probably occur after the
   1614 * packet arrival because of the processing in the MC.
   1615 */
   1616static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
   1617{
   1618	struct efx_nic *efx = channel->efx;
   1619	struct efx_ptp_data *ptp = efx->ptp_data;
   1620	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
   1621	u8 *match_data_012, *match_data_345;
   1622	unsigned int version;
   1623	u8 *data;
   1624
   1625	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
   1626
   1627	/* Correct version? */
   1628	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
   1629		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
   1630			return false;
   1631		}
   1632		data = skb->data;
   1633		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
   1634		if (version != PTP_VERSION_V1) {
   1635			return false;
   1636		}
   1637
   1638		/* PTP V1 uses all six bytes of the UUID to match the packet
   1639		 * to the timestamp
   1640		 */
   1641		match_data_012 = data + PTP_V1_UUID_OFFSET;
   1642		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
   1643	} else {
   1644		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
   1645			return false;
   1646		}
   1647		data = skb->data;
   1648		version = data[PTP_V2_VERSION_OFFSET];
   1649		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
   1650			return false;
   1651		}
   1652
   1653		/* The original V2 implementation uses bytes 2-7 of
   1654		 * the UUID to match the packet to the timestamp. This
   1655		 * discards two of the bytes of the MAC address used
   1656		 * to create the UUID (SF bug 33070).  The PTP V2
   1657		 * enhanced mode fixes this issue and uses bytes 0-2
   1658		 * and byte 5-7 of the UUID.
   1659		 */
   1660		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
   1661		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
   1662			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
   1663		} else {
   1664			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
   1665			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
   1666		}
   1667	}
   1668
   1669	/* Does this packet require timestamping? */
   1670	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
   1671		match->state = PTP_PACKET_STATE_UNMATCHED;
   1672
   1673		/* We expect the sequence number to be in the same position in
   1674		 * the packet for PTP V1 and V2
   1675		 */
   1676		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
   1677		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
   1678
   1679		/* Extract UUID/Sequence information */
   1680		match->words[0] = (match_data_012[0]         |
   1681				   (match_data_012[1] << 8)  |
   1682				   (match_data_012[2] << 16) |
   1683				   (match_data_345[0] << 24));
   1684		match->words[1] = (match_data_345[1]         |
   1685				   (match_data_345[2] << 8)  |
   1686				   (data[PTP_V1_SEQUENCE_OFFSET +
   1687					 PTP_V1_SEQUENCE_LENGTH - 1] <<
   1688				    16));
   1689	} else {
   1690		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
   1691	}
   1692
   1693	skb_queue_tail(&ptp->rxq, skb);
   1694	queue_work(ptp->workwq, &ptp->work);
   1695
   1696	return true;
   1697}
   1698
   1699/* Transmit a PTP packet.  This has to be transmitted by the MC
   1700 * itself, through an MCDI call.  MCDI calls aren't permitted
   1701 * in the transmit path so defer the actual transmission to a suitable worker.
   1702 */
   1703int efx_siena_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
   1704{
   1705	struct efx_ptp_data *ptp = efx->ptp_data;
   1706
   1707	skb_queue_tail(&ptp->txq, skb);
   1708
   1709	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
   1710	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
   1711		efx_xmit_hwtstamp_pending(skb);
   1712	queue_work(ptp->workwq, &ptp->work);
   1713
   1714	return NETDEV_TX_OK;
   1715}
   1716
   1717int efx_siena_ptp_get_mode(struct efx_nic *efx)
   1718{
   1719	return efx->ptp_data->mode;
   1720}
   1721
   1722int efx_siena_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
   1723			      unsigned int new_mode)
   1724{
   1725	if ((enable_wanted != efx->ptp_data->enabled) ||
   1726	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
   1727		int rc = 0;
   1728
   1729		if (enable_wanted) {
   1730			/* Change of mode requires disable */
   1731			if (efx->ptp_data->enabled &&
   1732			    (efx->ptp_data->mode != new_mode)) {
   1733				efx->ptp_data->enabled = false;
   1734				rc = efx_ptp_stop(efx);
   1735				if (rc != 0)
   1736					return rc;
   1737			}
   1738
   1739			/* Set new operating mode and establish
   1740			 * baseline synchronisation, which must
   1741			 * succeed.
   1742			 */
   1743			efx->ptp_data->mode = new_mode;
   1744			if (netif_running(efx->net_dev))
   1745				rc = efx_ptp_start(efx);
   1746			if (rc == 0) {
   1747				rc = efx_ptp_synchronize(efx,
   1748							 PTP_SYNC_ATTEMPTS * 2);
   1749				if (rc != 0)
   1750					efx_ptp_stop(efx);
   1751			}
   1752		} else {
   1753			rc = efx_ptp_stop(efx);
   1754		}
   1755
   1756		if (rc != 0)
   1757			return rc;
   1758
   1759		efx->ptp_data->enabled = enable_wanted;
   1760	}
   1761
   1762	return 0;
   1763}
   1764
   1765static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
   1766{
   1767	int rc;
   1768
   1769	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
   1770	    (init->tx_type != HWTSTAMP_TX_ON))
   1771		return -ERANGE;
   1772
   1773	rc = efx->type->ptp_set_ts_config(efx, init);
   1774	if (rc)
   1775		return rc;
   1776
   1777	efx->ptp_data->config = *init;
   1778	return 0;
   1779}
   1780
   1781void efx_siena_ptp_get_ts_info(struct efx_nic *efx,
   1782			       struct ethtool_ts_info *ts_info)
   1783{
   1784	struct efx_ptp_data *ptp = efx->ptp_data;
   1785	struct efx_nic *primary = efx->primary;
   1786
   1787	ASSERT_RTNL();
   1788
   1789	if (!ptp)
   1790		return;
   1791
   1792	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
   1793				     SOF_TIMESTAMPING_RX_HARDWARE |
   1794				     SOF_TIMESTAMPING_RAW_HARDWARE);
   1795	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
   1796		ts_info->phc_index =
   1797			ptp_clock_index(primary->ptp_data->phc_clock);
   1798	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
   1799	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
   1800}
   1801
   1802int efx_siena_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
   1803{
   1804	struct hwtstamp_config config;
   1805	int rc;
   1806
   1807	/* Not a PTP enabled port */
   1808	if (!efx->ptp_data)
   1809		return -EOPNOTSUPP;
   1810
   1811	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
   1812		return -EFAULT;
   1813
   1814	rc = efx_ptp_ts_init(efx, &config);
   1815	if (rc != 0)
   1816		return rc;
   1817
   1818	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
   1819		? -EFAULT : 0;
   1820}
   1821
   1822int efx_siena_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
   1823{
   1824	if (!efx->ptp_data)
   1825		return -EOPNOTSUPP;
   1826
   1827	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
   1828			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
   1829}
   1830
   1831static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
   1832{
   1833	struct efx_ptp_data *ptp = efx->ptp_data;
   1834
   1835	netif_err(efx, hw, efx->net_dev,
   1836		"PTP unexpected event length: got %d expected %d\n",
   1837		ptp->evt_frag_idx, expected_frag_len);
   1838	ptp->reset_required = true;
   1839	queue_work(ptp->workwq, &ptp->work);
   1840}
   1841
   1842/* Process a completed receive event.  Put it on the event queue and
   1843 * start worker thread.  This is required because event and their
   1844 * correspoding packets may come in either order.
   1845 */
   1846static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
   1847{
   1848	struct efx_ptp_event_rx *evt = NULL;
   1849
   1850	if (WARN_ON_ONCE(ptp->rx_ts_inline))
   1851		return;
   1852
   1853	if (ptp->evt_frag_idx != 3) {
   1854		ptp_event_failure(efx, 3);
   1855		return;
   1856	}
   1857
   1858	spin_lock_bh(&ptp->evt_lock);
   1859	if (!list_empty(&ptp->evt_free_list)) {
   1860		evt = list_first_entry(&ptp->evt_free_list,
   1861				       struct efx_ptp_event_rx, link);
   1862		list_del(&evt->link);
   1863
   1864		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
   1865		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
   1866					     MCDI_EVENT_SRC)        |
   1867			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
   1868					      MCDI_EVENT_SRC) << 8) |
   1869			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
   1870					      MCDI_EVENT_SRC) << 16));
   1871		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
   1872			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
   1873			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
   1874			ptp->ts_corrections.ptp_rx);
   1875		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
   1876		list_add_tail(&evt->link, &ptp->evt_list);
   1877
   1878		queue_work(ptp->workwq, &ptp->work);
   1879	} else if (net_ratelimit()) {
   1880		/* Log a rate-limited warning message. */
   1881		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
   1882	}
   1883	spin_unlock_bh(&ptp->evt_lock);
   1884}
   1885
   1886static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
   1887{
   1888	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
   1889	if (ptp->evt_frag_idx != 1) {
   1890		ptp_event_failure(efx, 1);
   1891		return;
   1892	}
   1893
   1894	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
   1895}
   1896
   1897static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
   1898{
   1899	if (ptp->nic_ts_enabled)
   1900		queue_work(ptp->pps_workwq, &ptp->pps_work);
   1901}
   1902
   1903void efx_siena_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
   1904{
   1905	struct efx_ptp_data *ptp = efx->ptp_data;
   1906	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
   1907
   1908	if (!ptp) {
   1909		if (!efx->ptp_warned) {
   1910			netif_warn(efx, drv, efx->net_dev,
   1911				   "Received PTP event but PTP not set up\n");
   1912			efx->ptp_warned = true;
   1913		}
   1914		return;
   1915	}
   1916
   1917	if (!ptp->enabled)
   1918		return;
   1919
   1920	if (ptp->evt_frag_idx == 0) {
   1921		ptp->evt_code = code;
   1922	} else if (ptp->evt_code != code) {
   1923		netif_err(efx, hw, efx->net_dev,
   1924			  "PTP out of sequence event %d\n", code);
   1925		ptp->evt_frag_idx = 0;
   1926	}
   1927
   1928	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
   1929	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
   1930		/* Process resulting event */
   1931		switch (code) {
   1932		case MCDI_EVENT_CODE_PTP_RX:
   1933			ptp_event_rx(efx, ptp);
   1934			break;
   1935		case MCDI_EVENT_CODE_PTP_FAULT:
   1936			ptp_event_fault(efx, ptp);
   1937			break;
   1938		case MCDI_EVENT_CODE_PTP_PPS:
   1939			ptp_event_pps(efx, ptp);
   1940			break;
   1941		default:
   1942			netif_err(efx, hw, efx->net_dev,
   1943				  "PTP unknown event %d\n", code);
   1944			break;
   1945		}
   1946		ptp->evt_frag_idx = 0;
   1947	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
   1948		netif_err(efx, hw, efx->net_dev,
   1949			  "PTP too many event fragments\n");
   1950		ptp->evt_frag_idx = 0;
   1951	}
   1952}
   1953
   1954void efx_siena_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
   1955{
   1956	struct efx_nic *efx = channel->efx;
   1957	struct efx_ptp_data *ptp = efx->ptp_data;
   1958
   1959	/* When extracting the sync timestamp minor value, we should discard
   1960	 * the least significant two bits. These are not required in order
   1961	 * to reconstruct full-range timestamps and they are optionally used
   1962	 * to report status depending on the options supplied when subscribing
   1963	 * for sync events.
   1964	 */
   1965	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
   1966	channel->sync_timestamp_minor =
   1967		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
   1968			<< ptp->nic_time.sync_event_minor_shift;
   1969
   1970	/* if sync events have been disabled then we want to silently ignore
   1971	 * this event, so throw away result.
   1972	 */
   1973	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
   1974		       SYNC_EVENTS_VALID);
   1975}
   1976
   1977static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
   1978{
   1979#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
   1980	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
   1981#else
   1982	const u8 *data = eh + efx->rx_packet_ts_offset;
   1983	return (u32)data[0]       |
   1984	       (u32)data[1] << 8  |
   1985	       (u32)data[2] << 16 |
   1986	       (u32)data[3] << 24;
   1987#endif
   1988}
   1989
   1990void __efx_siena_rx_skb_attach_timestamp(struct efx_channel *channel,
   1991					 struct sk_buff *skb)
   1992{
   1993	struct efx_nic *efx = channel->efx;
   1994	struct efx_ptp_data *ptp = efx->ptp_data;
   1995	u32 pkt_timestamp_major, pkt_timestamp_minor;
   1996	u32 diff, carry;
   1997	struct skb_shared_hwtstamps *timestamps;
   1998
   1999	if (channel->sync_events_state != SYNC_EVENTS_VALID)
   2000		return;
   2001
   2002	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
   2003
   2004	/* get the difference between the packet and sync timestamps,
   2005	 * modulo one second
   2006	 */
   2007	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
   2008	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
   2009		diff += ptp->nic_time.minor_max;
   2010
   2011	/* do we roll over a second boundary and need to carry the one? */
   2012	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
   2013		1 : 0;
   2014
   2015	if (diff <= ptp->nic_time.sync_event_diff_max) {
   2016		/* packet is ahead of the sync event by a quarter of a second or
   2017		 * less (allowing for fuzz)
   2018		 */
   2019		pkt_timestamp_major = channel->sync_timestamp_major + carry;
   2020	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
   2021		/* packet is behind the sync event but within the fuzz factor.
   2022		 * This means the RX packet and sync event crossed as they were
   2023		 * placed on the event queue, which can sometimes happen.
   2024		 */
   2025		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
   2026	} else {
   2027		/* it's outside tolerance in both directions. this might be
   2028		 * indicative of us missing sync events for some reason, so
   2029		 * we'll call it an error rather than risk giving a bogus
   2030		 * timestamp.
   2031		 */
   2032		netif_vdbg(efx, drv, efx->net_dev,
   2033			  "packet timestamp %x too far from sync event %x:%x\n",
   2034			  pkt_timestamp_minor, channel->sync_timestamp_major,
   2035			  channel->sync_timestamp_minor);
   2036		return;
   2037	}
   2038
   2039	/* attach the timestamps to the skb */
   2040	timestamps = skb_hwtstamps(skb);
   2041	timestamps->hwtstamp =
   2042		ptp->nic_to_kernel_time(pkt_timestamp_major,
   2043					pkt_timestamp_minor,
   2044					ptp->ts_corrections.general_rx);
   2045}
   2046
   2047static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
   2048{
   2049	struct efx_ptp_data *ptp_data = container_of(ptp,
   2050						     struct efx_ptp_data,
   2051						     phc_clock_info);
   2052	struct efx_nic *efx = ptp_data->efx;
   2053	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
   2054	s64 adjustment_ns;
   2055	int rc;
   2056
   2057	if (delta > MAX_PPB)
   2058		delta = MAX_PPB;
   2059	else if (delta < -MAX_PPB)
   2060		delta = -MAX_PPB;
   2061
   2062	/* Convert ppb to fixed point ns taking care to round correctly. */
   2063	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
   2064			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
   2065			ptp_data->adjfreq_ppb_shift;
   2066
   2067	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
   2068	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
   2069	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
   2070	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
   2071	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
   2072	rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
   2073				NULL, 0, NULL);
   2074	if (rc != 0)
   2075		return rc;
   2076
   2077	ptp_data->current_adjfreq = adjustment_ns;
   2078	return 0;
   2079}
   2080
   2081static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
   2082{
   2083	u32 nic_major, nic_minor;
   2084	struct efx_ptp_data *ptp_data = container_of(ptp,
   2085						     struct efx_ptp_data,
   2086						     phc_clock_info);
   2087	struct efx_nic *efx = ptp_data->efx;
   2088	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
   2089
   2090	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
   2091
   2092	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
   2093	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
   2094	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
   2095	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
   2096	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
   2097	return efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
   2098				  NULL, 0, NULL);
   2099}
   2100
   2101static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
   2102{
   2103	struct efx_ptp_data *ptp_data = container_of(ptp,
   2104						     struct efx_ptp_data,
   2105						     phc_clock_info);
   2106	struct efx_nic *efx = ptp_data->efx;
   2107	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
   2108	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
   2109	int rc;
   2110	ktime_t kt;
   2111
   2112	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
   2113	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
   2114
   2115	rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
   2116				outbuf, sizeof(outbuf), NULL);
   2117	if (rc != 0)
   2118		return rc;
   2119
   2120	kt = ptp_data->nic_to_kernel_time(
   2121		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
   2122		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
   2123	*ts = ktime_to_timespec64(kt);
   2124	return 0;
   2125}
   2126
   2127static int efx_phc_settime(struct ptp_clock_info *ptp,
   2128			   const struct timespec64 *e_ts)
   2129{
   2130	/* Get the current NIC time, efx_phc_gettime.
   2131	 * Subtract from the desired time to get the offset
   2132	 * call efx_phc_adjtime with the offset
   2133	 */
   2134	int rc;
   2135	struct timespec64 time_now;
   2136	struct timespec64 delta;
   2137
   2138	rc = efx_phc_gettime(ptp, &time_now);
   2139	if (rc != 0)
   2140		return rc;
   2141
   2142	delta = timespec64_sub(*e_ts, time_now);
   2143
   2144	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
   2145	if (rc != 0)
   2146		return rc;
   2147
   2148	return 0;
   2149}
   2150
   2151static int efx_phc_enable(struct ptp_clock_info *ptp,
   2152			  struct ptp_clock_request *request,
   2153			  int enable)
   2154{
   2155	struct efx_ptp_data *ptp_data = container_of(ptp,
   2156						     struct efx_ptp_data,
   2157						     phc_clock_info);
   2158	if (request->type != PTP_CLK_REQ_PPS)
   2159		return -EOPNOTSUPP;
   2160
   2161	ptp_data->nic_ts_enabled = !!enable;
   2162	return 0;
   2163}
   2164
   2165static const struct efx_channel_type efx_ptp_channel_type = {
   2166	.handle_no_channel	= efx_ptp_handle_no_channel,
   2167	.pre_probe		= efx_ptp_probe_channel,
   2168	.post_remove		= efx_ptp_remove_channel,
   2169	.get_name		= efx_ptp_get_channel_name,
   2170	/* no copy operation; there is no need to reallocate this channel */
   2171	.receive_skb		= efx_ptp_rx,
   2172	.want_txqs		= efx_ptp_want_txqs,
   2173	.keep_eventq		= false,
   2174};
   2175
   2176void efx_siena_ptp_defer_probe_with_channel(struct efx_nic *efx)
   2177{
   2178	/* Check whether PTP is implemented on this NIC.  The DISABLE
   2179	 * operation will succeed if and only if it is implemented.
   2180	 */
   2181	if (efx_ptp_disable(efx) == 0)
   2182		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
   2183			&efx_ptp_channel_type;
   2184}
   2185
   2186void efx_siena_ptp_start_datapath(struct efx_nic *efx)
   2187{
   2188	if (efx_ptp_restart(efx))
   2189		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
   2190	/* re-enable timestamping if it was previously enabled */
   2191	if (efx->type->ptp_set_ts_sync_events)
   2192		efx->type->ptp_set_ts_sync_events(efx, true, true);
   2193}
   2194
   2195void efx_siena_ptp_stop_datapath(struct efx_nic *efx)
   2196{
   2197	/* temporarily disable timestamping */
   2198	if (efx->type->ptp_set_ts_sync_events)
   2199		efx->type->ptp_set_ts_sync_events(efx, false, true);
   2200	efx_ptp_stop(efx);
   2201}