cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

siena_sriov.c (47856B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2010-2012 Solarflare Communications Inc.
      5 */
      6#include <linux/pci.h>
      7#include <linux/module.h>
      8#include "net_driver.h"
      9#include "efx.h"
     10#include "efx_channels.h"
     11#include "nic.h"
     12#include "io.h"
     13#include "mcdi.h"
     14#include "filter.h"
     15#include "mcdi_pcol.h"
     16#include "farch_regs.h"
     17#include "siena_sriov.h"
     18#include "vfdi.h"
     19
     20/* Number of longs required to track all the VIs in a VF */
     21#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
     22
     23/* Maximum number of RX queues supported */
     24#define VF_MAX_RX_QUEUES 63
     25
     26/**
     27 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
     28 * @VF_TX_FILTER_OFF: Disabled
     29 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
     30 *	2 TX queues allowed per VF.
     31 * @VF_TX_FILTER_ON: Enabled
     32 */
     33enum efx_vf_tx_filter_mode {
     34	VF_TX_FILTER_OFF,
     35	VF_TX_FILTER_AUTO,
     36	VF_TX_FILTER_ON,
     37};
     38
     39/**
     40 * struct siena_vf - Back-end resource and protocol state for a PCI VF
     41 * @efx: The Efx NIC owning this VF
     42 * @pci_rid: The PCI requester ID for this VF
     43 * @pci_name: The PCI name (formatted address) of this VF
     44 * @index: Index of VF within its port and PF.
     45 * @req: VFDI incoming request work item. Incoming USR_EV events are received
     46 *	by the NAPI handler, but must be handled by executing MCDI requests
     47 *	inside a work item.
     48 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
     49 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
     50 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
     51 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
     52 *	@status_lock
     53 * @busy: VFDI request queued to be processed or being processed. Receiving
     54 *	a VFDI request when @busy is set is an error condition.
     55 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
     56 * @buftbl_base: Buffer table entries for this VF start at this index.
     57 * @rx_filtering: Receive filtering has been requested by the VF driver.
     58 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
     59 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
     60 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
     61 * @tx_filter_mode: Transmit MAC filtering mode.
     62 * @tx_filter_id: Transmit MAC filter ID.
     63 * @addr: The MAC address and outer vlan tag of the VF.
     64 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
     65 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
     66 *	@peer_page_addrs and @peer_page_count from simultaneous
     67 *	updates by the VM and consumption by
     68 *	efx_siena_sriov_update_vf_addr()
     69 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
     70 * @peer_page_count: Number of entries in @peer_page_count.
     71 * @evq0_addrs: Array of guest pages backing evq0.
     72 * @evq0_count: Number of entries in @evq0_addrs.
     73 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
     74 *	to wait for flush completions.
     75 * @txq_lock: Mutex for TX queue allocation.
     76 * @txq_mask: Mask of initialized transmit queues.
     77 * @txq_count: Number of initialized transmit queues.
     78 * @rxq_mask: Mask of initialized receive queues.
     79 * @rxq_count: Number of initialized receive queues.
     80 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
     81 *	due to flush failure.
     82 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
     83 * @reset_work: Work item to schedule a VF reset.
     84 */
     85struct siena_vf {
     86	struct efx_nic *efx;
     87	unsigned int pci_rid;
     88	char pci_name[13]; /* dddd:bb:dd.f */
     89	unsigned int index;
     90	struct work_struct req;
     91	u64 req_addr;
     92	int req_type;
     93	unsigned req_seqno;
     94	unsigned msg_seqno;
     95	bool busy;
     96	struct efx_buffer buf;
     97	unsigned buftbl_base;
     98	bool rx_filtering;
     99	enum efx_filter_flags rx_filter_flags;
    100	unsigned rx_filter_qid;
    101	int rx_filter_id;
    102	enum efx_vf_tx_filter_mode tx_filter_mode;
    103	int tx_filter_id;
    104	struct vfdi_endpoint addr;
    105	u64 status_addr;
    106	struct mutex status_lock;
    107	u64 *peer_page_addrs;
    108	unsigned peer_page_count;
    109	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
    110		       EFX_BUF_SIZE];
    111	unsigned evq0_count;
    112	wait_queue_head_t flush_waitq;
    113	struct mutex txq_lock;
    114	unsigned long txq_mask[VI_MASK_LENGTH];
    115	unsigned txq_count;
    116	unsigned long rxq_mask[VI_MASK_LENGTH];
    117	unsigned rxq_count;
    118	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
    119	atomic_t rxq_retry_count;
    120	struct work_struct reset_work;
    121};
    122
    123struct efx_memcpy_req {
    124	unsigned int from_rid;
    125	void *from_buf;
    126	u64 from_addr;
    127	unsigned int to_rid;
    128	u64 to_addr;
    129	unsigned length;
    130};
    131
    132/**
    133 * struct efx_local_addr - A MAC address on the vswitch without a VF.
    134 *
    135 * Siena does not have a switch, so VFs can't transmit data to each
    136 * other. Instead the VFs must be made aware of the local addresses
    137 * on the vswitch, so that they can arrange for an alternative
    138 * software datapath to be used.
    139 *
    140 * @link: List head for insertion into efx->local_addr_list.
    141 * @addr: Ethernet address
    142 */
    143struct efx_local_addr {
    144	struct list_head link;
    145	u8 addr[ETH_ALEN];
    146};
    147
    148/**
    149 * struct efx_endpoint_page - Page of vfdi_endpoint structures
    150 *
    151 * @link: List head for insertion into efx->local_page_list.
    152 * @ptr: Pointer to page.
    153 * @addr: DMA address of page.
    154 */
    155struct efx_endpoint_page {
    156	struct list_head link;
    157	void *ptr;
    158	dma_addr_t addr;
    159};
    160
    161/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
    162#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
    163	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
    164#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
    165	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
    166	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
    167#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
    168	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
    169	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
    170
    171#define EFX_FIELD_MASK(_field)			\
    172	((1 << _field ## _WIDTH) - 1)
    173
    174/* VFs can only use this many transmit channels */
    175static unsigned int vf_max_tx_channels = 2;
    176module_param(vf_max_tx_channels, uint, 0444);
    177MODULE_PARM_DESC(vf_max_tx_channels,
    178		 "Limit the number of TX channels VFs can use");
    179
    180static int max_vfs = -1;
    181module_param(max_vfs, int, 0444);
    182MODULE_PARM_DESC(max_vfs,
    183		 "Reduce the number of VFs initialized by the driver");
    184
    185/* Workqueue used by VFDI communication.  We can't use the global
    186 * workqueue because it may be running the VF driver's probe()
    187 * routine, which will be blocked there waiting for a VFDI response.
    188 */
    189static struct workqueue_struct *vfdi_workqueue;
    190
    191static unsigned abs_index(struct siena_vf *vf, unsigned index)
    192{
    193	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
    194}
    195
    196static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
    197			       unsigned *vi_scale_out, unsigned *vf_total_out)
    198{
    199	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
    200	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
    201	unsigned vi_scale, vf_total;
    202	size_t outlen;
    203	int rc;
    204
    205	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
    206	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
    207	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
    208
    209	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf,
    210				      MC_CMD_SRIOV_IN_LEN, outbuf,
    211				      MC_CMD_SRIOV_OUT_LEN, &outlen);
    212	if (rc)
    213		return rc;
    214	if (outlen < MC_CMD_SRIOV_OUT_LEN)
    215		return -EIO;
    216
    217	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
    218	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
    219	if (vi_scale > EFX_VI_SCALE_MAX)
    220		return -EOPNOTSUPP;
    221
    222	if (vi_scale_out)
    223		*vi_scale_out = vi_scale;
    224	if (vf_total_out)
    225		*vf_total_out = vf_total;
    226
    227	return 0;
    228}
    229
    230static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
    231{
    232	struct siena_nic_data *nic_data = efx->nic_data;
    233	efx_oword_t reg;
    234
    235	EFX_POPULATE_OWORD_2(reg,
    236			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
    237			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
    238	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
    239}
    240
    241static int efx_siena_sriov_memcpy(struct efx_nic *efx,
    242				  struct efx_memcpy_req *req,
    243				  unsigned int count)
    244{
    245	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
    246	MCDI_DECLARE_STRUCT_PTR(record);
    247	unsigned int index, used;
    248	u64 from_addr;
    249	u32 from_rid;
    250	int rc;
    251
    252	mb();	/* Finish writing source/reading dest before DMA starts */
    253
    254	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
    255		return -ENOBUFS;
    256	used = MC_CMD_MEMCPY_IN_LEN(count);
    257
    258	for (index = 0; index < count; index++) {
    259		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
    260		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
    261			       count);
    262		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
    263			       req->to_rid);
    264		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
    265			       req->to_addr);
    266		if (req->from_buf == NULL) {
    267			from_rid = req->from_rid;
    268			from_addr = req->from_addr;
    269		} else {
    270			if (WARN_ON(used + req->length >
    271				    MCDI_CTL_SDU_LEN_MAX_V1)) {
    272				rc = -ENOBUFS;
    273				goto out;
    274			}
    275
    276			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
    277			from_addr = used;
    278			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
    279			       req->length);
    280			used += req->length;
    281		}
    282
    283		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
    284		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
    285			       from_addr);
    286		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
    287			       req->length);
    288
    289		++req;
    290	}
    291
    292	rc = efx_siena_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
    293out:
    294	mb();	/* Don't write source/read dest before DMA is complete */
    295
    296	return rc;
    297}
    298
    299/* The TX filter is entirely controlled by this driver, and is modified
    300 * underneath the feet of the VF
    301 */
    302static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
    303{
    304	struct efx_nic *efx = vf->efx;
    305	struct efx_filter_spec filter;
    306	u16 vlan;
    307	int rc;
    308
    309	if (vf->tx_filter_id != -1) {
    310		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
    311					  vf->tx_filter_id);
    312		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
    313			  vf->pci_name, vf->tx_filter_id);
    314		vf->tx_filter_id = -1;
    315	}
    316
    317	if (is_zero_ether_addr(vf->addr.mac_addr))
    318		return;
    319
    320	/* Turn on TX filtering automatically if not explicitly
    321	 * enabled or disabled.
    322	 */
    323	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
    324		vf->tx_filter_mode = VF_TX_FILTER_ON;
    325
    326	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
    327	efx_filter_init_tx(&filter, abs_index(vf, 0));
    328	rc = efx_filter_set_eth_local(&filter,
    329				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
    330				      vf->addr.mac_addr);
    331	BUG_ON(rc);
    332
    333	rc = efx_filter_insert_filter(efx, &filter, true);
    334	if (rc < 0) {
    335		netif_warn(efx, hw, efx->net_dev,
    336			   "Unable to migrate tx filter for vf %s\n",
    337			   vf->pci_name);
    338	} else {
    339		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
    340			  vf->pci_name, rc);
    341		vf->tx_filter_id = rc;
    342	}
    343}
    344
    345/* The RX filter is managed here on behalf of the VF driver */
    346static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
    347{
    348	struct efx_nic *efx = vf->efx;
    349	struct efx_filter_spec filter;
    350	u16 vlan;
    351	int rc;
    352
    353	if (vf->rx_filter_id != -1) {
    354		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
    355					  vf->rx_filter_id);
    356		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
    357			  vf->pci_name, vf->rx_filter_id);
    358		vf->rx_filter_id = -1;
    359	}
    360
    361	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
    362		return;
    363
    364	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
    365	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
    366			   vf->rx_filter_flags,
    367			   abs_index(vf, vf->rx_filter_qid));
    368	rc = efx_filter_set_eth_local(&filter,
    369				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
    370				      vf->addr.mac_addr);
    371	BUG_ON(rc);
    372
    373	rc = efx_filter_insert_filter(efx, &filter, true);
    374	if (rc < 0) {
    375		netif_warn(efx, hw, efx->net_dev,
    376			   "Unable to insert rx filter for vf %s\n",
    377			   vf->pci_name);
    378	} else {
    379		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
    380			  vf->pci_name, rc);
    381		vf->rx_filter_id = rc;
    382	}
    383}
    384
    385static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
    386{
    387	struct efx_nic *efx = vf->efx;
    388	struct siena_nic_data *nic_data = efx->nic_data;
    389
    390	efx_siena_sriov_reset_tx_filter(vf);
    391	efx_siena_sriov_reset_rx_filter(vf);
    392	queue_work(vfdi_workqueue, &nic_data->peer_work);
    393}
    394
    395/* Push the peer list to this VF. The caller must hold status_lock to interlock
    396 * with VFDI requests, and they must be serialised against manipulation of
    397 * local_page_list, either by acquiring local_lock or by running from
    398 * efx_siena_sriov_peer_work()
    399 */
    400static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
    401{
    402	struct efx_nic *efx = vf->efx;
    403	struct siena_nic_data *nic_data = efx->nic_data;
    404	struct vfdi_status *status = nic_data->vfdi_status.addr;
    405	struct efx_memcpy_req copy[4];
    406	struct efx_endpoint_page *epp;
    407	unsigned int pos, count;
    408	unsigned data_offset;
    409	efx_qword_t event;
    410
    411	WARN_ON(!mutex_is_locked(&vf->status_lock));
    412	WARN_ON(!vf->status_addr);
    413
    414	status->local = vf->addr;
    415	status->generation_end = ++status->generation_start;
    416
    417	memset(copy, '\0', sizeof(copy));
    418	/* Write generation_start */
    419	copy[0].from_buf = &status->generation_start;
    420	copy[0].to_rid = vf->pci_rid;
    421	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
    422						     generation_start);
    423	copy[0].length = sizeof(status->generation_start);
    424	/* DMA the rest of the structure (excluding the generations). This
    425	 * assumes that the non-generation portion of vfdi_status is in
    426	 * one chunk starting at the version member.
    427	 */
    428	data_offset = offsetof(struct vfdi_status, version);
    429	copy[1].from_rid = efx->pci_dev->devfn;
    430	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
    431	copy[1].to_rid = vf->pci_rid;
    432	copy[1].to_addr = vf->status_addr + data_offset;
    433	copy[1].length =  status->length - data_offset;
    434
    435	/* Copy the peer pages */
    436	pos = 2;
    437	count = 0;
    438	list_for_each_entry(epp, &nic_data->local_page_list, link) {
    439		if (count == vf->peer_page_count) {
    440			/* The VF driver will know they need to provide more
    441			 * pages because peer_addr_count is too large.
    442			 */
    443			break;
    444		}
    445		copy[pos].from_buf = NULL;
    446		copy[pos].from_rid = efx->pci_dev->devfn;
    447		copy[pos].from_addr = epp->addr;
    448		copy[pos].to_rid = vf->pci_rid;
    449		copy[pos].to_addr = vf->peer_page_addrs[count];
    450		copy[pos].length = EFX_PAGE_SIZE;
    451
    452		if (++pos == ARRAY_SIZE(copy)) {
    453			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
    454			pos = 0;
    455		}
    456		++count;
    457	}
    458
    459	/* Write generation_end */
    460	copy[pos].from_buf = &status->generation_end;
    461	copy[pos].to_rid = vf->pci_rid;
    462	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
    463						       generation_end);
    464	copy[pos].length = sizeof(status->generation_end);
    465	efx_siena_sriov_memcpy(efx, copy, pos + 1);
    466
    467	/* Notify the guest */
    468	EFX_POPULATE_QWORD_3(event,
    469			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
    470			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
    471			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
    472	++vf->msg_seqno;
    473	efx_farch_generate_event(efx,
    474				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
    475				 &event);
    476}
    477
    478static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
    479				 u64 *addr, unsigned count)
    480{
    481	efx_qword_t buf;
    482	unsigned pos;
    483
    484	for (pos = 0; pos < count; ++pos) {
    485		EFX_POPULATE_QWORD_3(buf,
    486				     FRF_AZ_BUF_ADR_REGION, 0,
    487				     FRF_AZ_BUF_ADR_FBUF,
    488				     addr ? addr[pos] >> 12 : 0,
    489				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
    490		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
    491				&buf, offset + pos);
    492	}
    493}
    494
    495static bool bad_vf_index(struct efx_nic *efx, unsigned index)
    496{
    497	return index >= efx_vf_size(efx);
    498}
    499
    500static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
    501{
    502	unsigned max_buf_count = max_entry_count *
    503		sizeof(efx_qword_t) / EFX_BUF_SIZE;
    504
    505	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
    506}
    507
    508/* Check that VI specified by per-port index belongs to a VF.
    509 * Optionally set VF index and VI index within the VF.
    510 */
    511static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
    512			 struct siena_vf **vf_out, unsigned *rel_index_out)
    513{
    514	struct siena_nic_data *nic_data = efx->nic_data;
    515	unsigned vf_i;
    516
    517	if (abs_index < EFX_VI_BASE)
    518		return true;
    519	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
    520	if (vf_i >= efx->vf_init_count)
    521		return true;
    522
    523	if (vf_out)
    524		*vf_out = nic_data->vf + vf_i;
    525	if (rel_index_out)
    526		*rel_index_out = abs_index % efx_vf_size(efx);
    527	return false;
    528}
    529
    530static int efx_vfdi_init_evq(struct siena_vf *vf)
    531{
    532	struct efx_nic *efx = vf->efx;
    533	struct vfdi_req *req = vf->buf.addr;
    534	unsigned vf_evq = req->u.init_evq.index;
    535	unsigned buf_count = req->u.init_evq.buf_count;
    536	unsigned abs_evq = abs_index(vf, vf_evq);
    537	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
    538	efx_oword_t reg;
    539
    540	if (bad_vf_index(efx, vf_evq) ||
    541	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
    542		if (net_ratelimit())
    543			netif_err(efx, hw, efx->net_dev,
    544				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
    545				  vf->pci_name, vf_evq, buf_count);
    546		return VFDI_RC_EINVAL;
    547	}
    548
    549	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
    550
    551	EFX_POPULATE_OWORD_3(reg,
    552			     FRF_CZ_TIMER_Q_EN, 1,
    553			     FRF_CZ_HOST_NOTIFY_MODE, 0,
    554			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
    555	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
    556	EFX_POPULATE_OWORD_3(reg,
    557			     FRF_AZ_EVQ_EN, 1,
    558			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
    559			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
    560	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
    561
    562	if (vf_evq == 0) {
    563		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
    564		       buf_count * sizeof(u64));
    565		vf->evq0_count = buf_count;
    566	}
    567
    568	return VFDI_RC_SUCCESS;
    569}
    570
    571static int efx_vfdi_init_rxq(struct siena_vf *vf)
    572{
    573	struct efx_nic *efx = vf->efx;
    574	struct vfdi_req *req = vf->buf.addr;
    575	unsigned vf_rxq = req->u.init_rxq.index;
    576	unsigned vf_evq = req->u.init_rxq.evq;
    577	unsigned buf_count = req->u.init_rxq.buf_count;
    578	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
    579	unsigned label;
    580	efx_oword_t reg;
    581
    582	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
    583	    vf_rxq >= VF_MAX_RX_QUEUES ||
    584	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
    585		if (net_ratelimit())
    586			netif_err(efx, hw, efx->net_dev,
    587				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
    588				  "buf_count %d\n", vf->pci_name, vf_rxq,
    589				  vf_evq, buf_count);
    590		return VFDI_RC_EINVAL;
    591	}
    592	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
    593		++vf->rxq_count;
    594	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
    595
    596	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
    597	EFX_POPULATE_OWORD_6(reg,
    598			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
    599			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
    600			     FRF_AZ_RX_DESCQ_LABEL, label,
    601			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
    602			     FRF_AZ_RX_DESCQ_JUMBO,
    603			     !!(req->u.init_rxq.flags &
    604				VFDI_RXQ_FLAG_SCATTER_EN),
    605			     FRF_AZ_RX_DESCQ_EN, 1);
    606	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
    607			 abs_index(vf, vf_rxq));
    608
    609	return VFDI_RC_SUCCESS;
    610}
    611
    612static int efx_vfdi_init_txq(struct siena_vf *vf)
    613{
    614	struct efx_nic *efx = vf->efx;
    615	struct vfdi_req *req = vf->buf.addr;
    616	unsigned vf_txq = req->u.init_txq.index;
    617	unsigned vf_evq = req->u.init_txq.evq;
    618	unsigned buf_count = req->u.init_txq.buf_count;
    619	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
    620	unsigned label, eth_filt_en;
    621	efx_oword_t reg;
    622
    623	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
    624	    vf_txq >= vf_max_tx_channels ||
    625	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
    626		if (net_ratelimit())
    627			netif_err(efx, hw, efx->net_dev,
    628				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
    629				  "buf_count %d\n", vf->pci_name, vf_txq,
    630				  vf_evq, buf_count);
    631		return VFDI_RC_EINVAL;
    632	}
    633
    634	mutex_lock(&vf->txq_lock);
    635	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
    636		++vf->txq_count;
    637	mutex_unlock(&vf->txq_lock);
    638	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
    639
    640	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
    641
    642	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
    643	EFX_POPULATE_OWORD_8(reg,
    644			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
    645			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
    646			     FRF_AZ_TX_DESCQ_EN, 1,
    647			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
    648			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
    649			     FRF_AZ_TX_DESCQ_LABEL, label,
    650			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
    651			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
    652	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
    653			 abs_index(vf, vf_txq));
    654
    655	return VFDI_RC_SUCCESS;
    656}
    657
    658/* Returns true when efx_vfdi_fini_all_queues should wake */
    659static bool efx_vfdi_flush_wake(struct siena_vf *vf)
    660{
    661	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
    662	smp_mb();
    663
    664	return (!vf->txq_count && !vf->rxq_count) ||
    665		atomic_read(&vf->rxq_retry_count);
    666}
    667
    668static void efx_vfdi_flush_clear(struct siena_vf *vf)
    669{
    670	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
    671	vf->txq_count = 0;
    672	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
    673	vf->rxq_count = 0;
    674	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
    675	atomic_set(&vf->rxq_retry_count, 0);
    676}
    677
    678static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
    679{
    680	struct efx_nic *efx = vf->efx;
    681	efx_oword_t reg;
    682	unsigned count = efx_vf_size(efx);
    683	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
    684	unsigned timeout = HZ;
    685	unsigned index, rxqs_count;
    686	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
    687	int rc;
    688
    689	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
    690		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
    691
    692	rtnl_lock();
    693	efx_siena_prepare_flush(efx);
    694	rtnl_unlock();
    695
    696	/* Flush all the initialized queues */
    697	rxqs_count = 0;
    698	for (index = 0; index < count; ++index) {
    699		if (test_bit(index, vf->txq_mask)) {
    700			EFX_POPULATE_OWORD_2(reg,
    701					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
    702					     FRF_AZ_TX_FLUSH_DESCQ,
    703					     vf_offset + index);
    704			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
    705		}
    706		if (test_bit(index, vf->rxq_mask)) {
    707			MCDI_SET_ARRAY_DWORD(
    708				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
    709				rxqs_count, vf_offset + index);
    710			rxqs_count++;
    711		}
    712	}
    713
    714	atomic_set(&vf->rxq_retry_count, 0);
    715	while (timeout && (vf->rxq_count || vf->txq_count)) {
    716		rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
    717				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
    718				  NULL, 0, NULL);
    719		WARN_ON(rc < 0);
    720
    721		timeout = wait_event_timeout(vf->flush_waitq,
    722					     efx_vfdi_flush_wake(vf),
    723					     timeout);
    724		rxqs_count = 0;
    725		for (index = 0; index < count; ++index) {
    726			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
    727				atomic_dec(&vf->rxq_retry_count);
    728				MCDI_SET_ARRAY_DWORD(
    729					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
    730					rxqs_count, vf_offset + index);
    731				rxqs_count++;
    732			}
    733		}
    734	}
    735
    736	rtnl_lock();
    737	siena_finish_flush(efx);
    738	rtnl_unlock();
    739
    740	/* Irrespective of success/failure, fini the queues */
    741	EFX_ZERO_OWORD(reg);
    742	for (index = 0; index < count; ++index) {
    743		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
    744				 vf_offset + index);
    745		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
    746				 vf_offset + index);
    747		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
    748				 vf_offset + index);
    749		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
    750				 vf_offset + index);
    751	}
    752	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
    753			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
    754	efx_vfdi_flush_clear(vf);
    755
    756	vf->evq0_count = 0;
    757
    758	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
    759}
    760
    761static int efx_vfdi_insert_filter(struct siena_vf *vf)
    762{
    763	struct efx_nic *efx = vf->efx;
    764	struct siena_nic_data *nic_data = efx->nic_data;
    765	struct vfdi_req *req = vf->buf.addr;
    766	unsigned vf_rxq = req->u.mac_filter.rxq;
    767	unsigned flags;
    768
    769	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
    770		if (net_ratelimit())
    771			netif_err(efx, hw, efx->net_dev,
    772				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
    773				  "flags 0x%x\n", vf->pci_name, vf_rxq,
    774				  req->u.mac_filter.flags);
    775		return VFDI_RC_EINVAL;
    776	}
    777
    778	flags = 0;
    779	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
    780		flags |= EFX_FILTER_FLAG_RX_RSS;
    781	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
    782		flags |= EFX_FILTER_FLAG_RX_SCATTER;
    783	vf->rx_filter_flags = flags;
    784	vf->rx_filter_qid = vf_rxq;
    785	vf->rx_filtering = true;
    786
    787	efx_siena_sriov_reset_rx_filter(vf);
    788	queue_work(vfdi_workqueue, &nic_data->peer_work);
    789
    790	return VFDI_RC_SUCCESS;
    791}
    792
    793static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
    794{
    795	struct efx_nic *efx = vf->efx;
    796	struct siena_nic_data *nic_data = efx->nic_data;
    797
    798	vf->rx_filtering = false;
    799	efx_siena_sriov_reset_rx_filter(vf);
    800	queue_work(vfdi_workqueue, &nic_data->peer_work);
    801
    802	return VFDI_RC_SUCCESS;
    803}
    804
    805static int efx_vfdi_set_status_page(struct siena_vf *vf)
    806{
    807	struct efx_nic *efx = vf->efx;
    808	struct siena_nic_data *nic_data = efx->nic_data;
    809	struct vfdi_req *req = vf->buf.addr;
    810	u64 page_count = req->u.set_status_page.peer_page_count;
    811	u64 max_page_count =
    812		(EFX_PAGE_SIZE -
    813		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
    814		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
    815
    816	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
    817		if (net_ratelimit())
    818			netif_err(efx, hw, efx->net_dev,
    819				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
    820				  vf->pci_name);
    821		return VFDI_RC_EINVAL;
    822	}
    823
    824	mutex_lock(&nic_data->local_lock);
    825	mutex_lock(&vf->status_lock);
    826	vf->status_addr = req->u.set_status_page.dma_addr;
    827
    828	kfree(vf->peer_page_addrs);
    829	vf->peer_page_addrs = NULL;
    830	vf->peer_page_count = 0;
    831
    832	if (page_count) {
    833		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
    834					      GFP_KERNEL);
    835		if (vf->peer_page_addrs) {
    836			memcpy(vf->peer_page_addrs,
    837			       req->u.set_status_page.peer_page_addr,
    838			       page_count * sizeof(u64));
    839			vf->peer_page_count = page_count;
    840		}
    841	}
    842
    843	__efx_siena_sriov_push_vf_status(vf);
    844	mutex_unlock(&vf->status_lock);
    845	mutex_unlock(&nic_data->local_lock);
    846
    847	return VFDI_RC_SUCCESS;
    848}
    849
    850static int efx_vfdi_clear_status_page(struct siena_vf *vf)
    851{
    852	mutex_lock(&vf->status_lock);
    853	vf->status_addr = 0;
    854	mutex_unlock(&vf->status_lock);
    855
    856	return VFDI_RC_SUCCESS;
    857}
    858
    859typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
    860
    861static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
    862	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
    863	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
    864	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
    865	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
    866	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
    867	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
    868	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
    869	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
    870};
    871
    872static void efx_siena_sriov_vfdi(struct work_struct *work)
    873{
    874	struct siena_vf *vf = container_of(work, struct siena_vf, req);
    875	struct efx_nic *efx = vf->efx;
    876	struct vfdi_req *req = vf->buf.addr;
    877	struct efx_memcpy_req copy[2];
    878	int rc;
    879
    880	/* Copy this page into the local address space */
    881	memset(copy, '\0', sizeof(copy));
    882	copy[0].from_rid = vf->pci_rid;
    883	copy[0].from_addr = vf->req_addr;
    884	copy[0].to_rid = efx->pci_dev->devfn;
    885	copy[0].to_addr = vf->buf.dma_addr;
    886	copy[0].length = EFX_PAGE_SIZE;
    887	rc = efx_siena_sriov_memcpy(efx, copy, 1);
    888	if (rc) {
    889		/* If we can't get the request, we can't reply to the caller */
    890		if (net_ratelimit())
    891			netif_err(efx, hw, efx->net_dev,
    892				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
    893				  vf->pci_name, -rc);
    894		vf->busy = false;
    895		return;
    896	}
    897
    898	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
    899		rc = vfdi_ops[req->op](vf);
    900		if (rc == 0) {
    901			netif_dbg(efx, hw, efx->net_dev,
    902				  "vfdi request %d from %s ok\n",
    903				  req->op, vf->pci_name);
    904		}
    905	} else {
    906		netif_dbg(efx, hw, efx->net_dev,
    907			  "ERROR: Unrecognised request %d from VF %s addr "
    908			  "%llx\n", req->op, vf->pci_name,
    909			  (unsigned long long)vf->req_addr);
    910		rc = VFDI_RC_EOPNOTSUPP;
    911	}
    912
    913	/* Allow subsequent VF requests */
    914	vf->busy = false;
    915	smp_wmb();
    916
    917	/* Respond to the request */
    918	req->rc = rc;
    919	req->op = VFDI_OP_RESPONSE;
    920
    921	memset(copy, '\0', sizeof(copy));
    922	copy[0].from_buf = &req->rc;
    923	copy[0].to_rid = vf->pci_rid;
    924	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
    925	copy[0].length = sizeof(req->rc);
    926	copy[1].from_buf = &req->op;
    927	copy[1].to_rid = vf->pci_rid;
    928	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
    929	copy[1].length = sizeof(req->op);
    930
    931	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
    932}
    933
    934
    935
    936/* After a reset the event queues inside the guests no longer exist. Fill the
    937 * event ring in guest memory with VFDI reset events, then (re-initialise) the
    938 * event queue to raise an interrupt. The guest driver will then recover.
    939 */
    940
    941static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
    942				     struct efx_buffer *buffer)
    943{
    944	struct efx_nic *efx = vf->efx;
    945	struct efx_memcpy_req copy_req[4];
    946	efx_qword_t event;
    947	unsigned int pos, count, k, buftbl, abs_evq;
    948	efx_oword_t reg;
    949	efx_dword_t ptr;
    950	int rc;
    951
    952	BUG_ON(buffer->len != EFX_PAGE_SIZE);
    953
    954	if (!vf->evq0_count)
    955		return;
    956	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
    957
    958	mutex_lock(&vf->status_lock);
    959	EFX_POPULATE_QWORD_3(event,
    960			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
    961			     VFDI_EV_SEQ, vf->msg_seqno,
    962			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
    963	vf->msg_seqno++;
    964	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
    965		memcpy(buffer->addr + pos, &event, sizeof(event));
    966
    967	for (pos = 0; pos < vf->evq0_count; pos += count) {
    968		count = min_t(unsigned, vf->evq0_count - pos,
    969			      ARRAY_SIZE(copy_req));
    970		for (k = 0; k < count; k++) {
    971			copy_req[k].from_buf = NULL;
    972			copy_req[k].from_rid = efx->pci_dev->devfn;
    973			copy_req[k].from_addr = buffer->dma_addr;
    974			copy_req[k].to_rid = vf->pci_rid;
    975			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
    976			copy_req[k].length = EFX_PAGE_SIZE;
    977		}
    978		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
    979		if (rc) {
    980			if (net_ratelimit())
    981				netif_err(efx, hw, efx->net_dev,
    982					  "ERROR: Unable to notify %s of reset"
    983					  ": %d\n", vf->pci_name, -rc);
    984			break;
    985		}
    986	}
    987
    988	/* Reinitialise, arm and trigger evq0 */
    989	abs_evq = abs_index(vf, 0);
    990	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
    991	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
    992
    993	EFX_POPULATE_OWORD_3(reg,
    994			     FRF_CZ_TIMER_Q_EN, 1,
    995			     FRF_CZ_HOST_NOTIFY_MODE, 0,
    996			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
    997	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
    998	EFX_POPULATE_OWORD_3(reg,
    999			     FRF_AZ_EVQ_EN, 1,
   1000			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
   1001			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
   1002	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
   1003	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
   1004	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
   1005
   1006	mutex_unlock(&vf->status_lock);
   1007}
   1008
   1009static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
   1010{
   1011	struct siena_vf *vf = container_of(work, struct siena_vf, req);
   1012	struct efx_nic *efx = vf->efx;
   1013	struct efx_buffer buf;
   1014
   1015	if (!efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
   1016		efx_siena_sriov_reset_vf(vf, &buf);
   1017		efx_siena_free_buffer(efx, &buf);
   1018	}
   1019}
   1020
   1021static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
   1022{
   1023	netif_err(efx, drv, efx->net_dev,
   1024		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
   1025		  "vector. IOV disabled\n");
   1026	efx->vf_count = 0;
   1027}
   1028
   1029static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
   1030{
   1031	struct siena_nic_data *nic_data = channel->efx->nic_data;
   1032	nic_data->vfdi_channel = channel;
   1033
   1034	return 0;
   1035}
   1036
   1037static void
   1038efx_siena_sriov_get_channel_name(struct efx_channel *channel,
   1039				 char *buf, size_t len)
   1040{
   1041	snprintf(buf, len, "%s-iov", channel->efx->name);
   1042}
   1043
   1044static const struct efx_channel_type efx_siena_sriov_channel_type = {
   1045	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
   1046	.pre_probe		= efx_siena_sriov_probe_channel,
   1047	.post_remove		= efx_siena_channel_dummy_op_void,
   1048	.get_name		= efx_siena_sriov_get_channel_name,
   1049	/* no copy operation; channel must not be reallocated */
   1050	.keep_eventq		= true,
   1051};
   1052
   1053void efx_siena_sriov_probe(struct efx_nic *efx)
   1054{
   1055	unsigned count;
   1056
   1057	if (!max_vfs)
   1058		return;
   1059
   1060	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
   1061		pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
   1062		return;
   1063	}
   1064	if (count > 0 && count > max_vfs)
   1065		count = max_vfs;
   1066
   1067	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
   1068	efx->vf_count = count;
   1069
   1070	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
   1071}
   1072
   1073/* Copy the list of individual addresses into the vfdi_status.peers
   1074 * array and auxiliary pages, protected by %local_lock. Drop that lock
   1075 * and then broadcast the address list to every VF.
   1076 */
   1077static void efx_siena_sriov_peer_work(struct work_struct *data)
   1078{
   1079	struct siena_nic_data *nic_data = container_of(data,
   1080						       struct siena_nic_data,
   1081						       peer_work);
   1082	struct efx_nic *efx = nic_data->efx;
   1083	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
   1084	struct siena_vf *vf;
   1085	struct efx_local_addr *local_addr;
   1086	struct vfdi_endpoint *peer;
   1087	struct efx_endpoint_page *epp;
   1088	struct list_head pages;
   1089	unsigned int peer_space;
   1090	unsigned int peer_count;
   1091	unsigned int pos;
   1092
   1093	mutex_lock(&nic_data->local_lock);
   1094
   1095	/* Move the existing peer pages off %local_page_list */
   1096	INIT_LIST_HEAD(&pages);
   1097	list_splice_tail_init(&nic_data->local_page_list, &pages);
   1098
   1099	/* Populate the VF addresses starting from entry 1 (entry 0 is
   1100	 * the PF address)
   1101	 */
   1102	peer = vfdi_status->peers + 1;
   1103	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
   1104	peer_count = 1;
   1105	for (pos = 0; pos < efx->vf_count; ++pos) {
   1106		vf = nic_data->vf + pos;
   1107
   1108		mutex_lock(&vf->status_lock);
   1109		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
   1110			*peer++ = vf->addr;
   1111			++peer_count;
   1112			--peer_space;
   1113			BUG_ON(peer_space == 0);
   1114		}
   1115		mutex_unlock(&vf->status_lock);
   1116	}
   1117
   1118	/* Fill the remaining addresses */
   1119	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
   1120		ether_addr_copy(peer->mac_addr, local_addr->addr);
   1121		peer->tci = 0;
   1122		++peer;
   1123		++peer_count;
   1124		if (--peer_space == 0) {
   1125			if (list_empty(&pages)) {
   1126				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
   1127				if (!epp)
   1128					break;
   1129				epp->ptr = dma_alloc_coherent(
   1130					&efx->pci_dev->dev, EFX_PAGE_SIZE,
   1131					&epp->addr, GFP_KERNEL);
   1132				if (!epp->ptr) {
   1133					kfree(epp);
   1134					break;
   1135				}
   1136			} else {
   1137				epp = list_first_entry(
   1138					&pages, struct efx_endpoint_page, link);
   1139				list_del(&epp->link);
   1140			}
   1141
   1142			list_add_tail(&epp->link, &nic_data->local_page_list);
   1143			peer = (struct vfdi_endpoint *)epp->ptr;
   1144			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
   1145		}
   1146	}
   1147	vfdi_status->peer_count = peer_count;
   1148	mutex_unlock(&nic_data->local_lock);
   1149
   1150	/* Free any now unused endpoint pages */
   1151	while (!list_empty(&pages)) {
   1152		epp = list_first_entry(
   1153			&pages, struct efx_endpoint_page, link);
   1154		list_del(&epp->link);
   1155		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
   1156				  epp->ptr, epp->addr);
   1157		kfree(epp);
   1158	}
   1159
   1160	/* Finally, push the pages */
   1161	for (pos = 0; pos < efx->vf_count; ++pos) {
   1162		vf = nic_data->vf + pos;
   1163
   1164		mutex_lock(&vf->status_lock);
   1165		if (vf->status_addr)
   1166			__efx_siena_sriov_push_vf_status(vf);
   1167		mutex_unlock(&vf->status_lock);
   1168	}
   1169}
   1170
   1171static void efx_siena_sriov_free_local(struct efx_nic *efx)
   1172{
   1173	struct siena_nic_data *nic_data = efx->nic_data;
   1174	struct efx_local_addr *local_addr;
   1175	struct efx_endpoint_page *epp;
   1176
   1177	while (!list_empty(&nic_data->local_addr_list)) {
   1178		local_addr = list_first_entry(&nic_data->local_addr_list,
   1179					      struct efx_local_addr, link);
   1180		list_del(&local_addr->link);
   1181		kfree(local_addr);
   1182	}
   1183
   1184	while (!list_empty(&nic_data->local_page_list)) {
   1185		epp = list_first_entry(&nic_data->local_page_list,
   1186				       struct efx_endpoint_page, link);
   1187		list_del(&epp->link);
   1188		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
   1189				  epp->ptr, epp->addr);
   1190		kfree(epp);
   1191	}
   1192}
   1193
   1194static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
   1195{
   1196	unsigned index;
   1197	struct siena_vf *vf;
   1198	struct siena_nic_data *nic_data = efx->nic_data;
   1199
   1200	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
   1201			       GFP_KERNEL);
   1202	if (!nic_data->vf)
   1203		return -ENOMEM;
   1204
   1205	for (index = 0; index < efx->vf_count; ++index) {
   1206		vf = nic_data->vf + index;
   1207
   1208		vf->efx = efx;
   1209		vf->index = index;
   1210		vf->rx_filter_id = -1;
   1211		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
   1212		vf->tx_filter_id = -1;
   1213		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
   1214		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
   1215		init_waitqueue_head(&vf->flush_waitq);
   1216		mutex_init(&vf->status_lock);
   1217		mutex_init(&vf->txq_lock);
   1218	}
   1219
   1220	return 0;
   1221}
   1222
   1223static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
   1224{
   1225	struct siena_nic_data *nic_data = efx->nic_data;
   1226	struct siena_vf *vf;
   1227	unsigned int pos;
   1228
   1229	for (pos = 0; pos < efx->vf_count; ++pos) {
   1230		vf = nic_data->vf + pos;
   1231
   1232		efx_siena_free_buffer(efx, &vf->buf);
   1233		kfree(vf->peer_page_addrs);
   1234		vf->peer_page_addrs = NULL;
   1235		vf->peer_page_count = 0;
   1236
   1237		vf->evq0_count = 0;
   1238	}
   1239}
   1240
   1241static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
   1242{
   1243	struct pci_dev *pci_dev = efx->pci_dev;
   1244	struct siena_nic_data *nic_data = efx->nic_data;
   1245	unsigned index, devfn, sriov, buftbl_base;
   1246	u16 offset, stride;
   1247	struct siena_vf *vf;
   1248	int rc;
   1249
   1250	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
   1251	if (!sriov)
   1252		return -ENOENT;
   1253
   1254	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
   1255	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
   1256
   1257	buftbl_base = nic_data->vf_buftbl_base;
   1258	devfn = pci_dev->devfn + offset;
   1259	for (index = 0; index < efx->vf_count; ++index) {
   1260		vf = nic_data->vf + index;
   1261
   1262		/* Reserve buffer entries */
   1263		vf->buftbl_base = buftbl_base;
   1264		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
   1265
   1266		vf->pci_rid = devfn;
   1267		snprintf(vf->pci_name, sizeof(vf->pci_name),
   1268			 "%04x:%02x:%02x.%d",
   1269			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
   1270			 PCI_SLOT(devfn), PCI_FUNC(devfn));
   1271
   1272		rc = efx_siena_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
   1273					    GFP_KERNEL);
   1274		if (rc)
   1275			goto fail;
   1276
   1277		devfn += stride;
   1278	}
   1279
   1280	return 0;
   1281
   1282fail:
   1283	efx_siena_sriov_vfs_fini(efx);
   1284	return rc;
   1285}
   1286
   1287int efx_siena_sriov_init(struct efx_nic *efx)
   1288{
   1289	struct net_device *net_dev = efx->net_dev;
   1290	struct siena_nic_data *nic_data = efx->nic_data;
   1291	struct vfdi_status *vfdi_status;
   1292	int rc;
   1293
   1294	/* Ensure there's room for vf_channel */
   1295	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
   1296	/* Ensure that VI_BASE is aligned on VI_SCALE */
   1297	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
   1298
   1299	if (efx->vf_count == 0)
   1300		return 0;
   1301
   1302	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
   1303	if (rc)
   1304		goto fail_cmd;
   1305
   1306	rc = efx_siena_alloc_buffer(efx, &nic_data->vfdi_status,
   1307				    sizeof(*vfdi_status), GFP_KERNEL);
   1308	if (rc)
   1309		goto fail_status;
   1310	vfdi_status = nic_data->vfdi_status.addr;
   1311	memset(vfdi_status, 0, sizeof(*vfdi_status));
   1312	vfdi_status->version = 1;
   1313	vfdi_status->length = sizeof(*vfdi_status);
   1314	vfdi_status->max_tx_channels = vf_max_tx_channels;
   1315	vfdi_status->vi_scale = efx->vi_scale;
   1316	vfdi_status->rss_rxq_count = efx->rss_spread;
   1317	vfdi_status->peer_count = 1 + efx->vf_count;
   1318	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
   1319
   1320	rc = efx_siena_sriov_vf_alloc(efx);
   1321	if (rc)
   1322		goto fail_alloc;
   1323
   1324	mutex_init(&nic_data->local_lock);
   1325	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
   1326	INIT_LIST_HEAD(&nic_data->local_addr_list);
   1327	INIT_LIST_HEAD(&nic_data->local_page_list);
   1328
   1329	rc = efx_siena_sriov_vfs_init(efx);
   1330	if (rc)
   1331		goto fail_vfs;
   1332
   1333	rtnl_lock();
   1334	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
   1335	efx->vf_init_count = efx->vf_count;
   1336	rtnl_unlock();
   1337
   1338	efx_siena_sriov_usrev(efx, true);
   1339
   1340	/* At this point we must be ready to accept VFDI requests */
   1341
   1342	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
   1343	if (rc)
   1344		goto fail_pci;
   1345
   1346	netif_info(efx, probe, net_dev,
   1347		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
   1348		   efx->vf_count, efx_vf_size(efx));
   1349	return 0;
   1350
   1351fail_pci:
   1352	efx_siena_sriov_usrev(efx, false);
   1353	rtnl_lock();
   1354	efx->vf_init_count = 0;
   1355	rtnl_unlock();
   1356	efx_siena_sriov_vfs_fini(efx);
   1357fail_vfs:
   1358	cancel_work_sync(&nic_data->peer_work);
   1359	efx_siena_sriov_free_local(efx);
   1360	kfree(nic_data->vf);
   1361fail_alloc:
   1362	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
   1363fail_status:
   1364	efx_siena_sriov_cmd(efx, false, NULL, NULL);
   1365fail_cmd:
   1366	return rc;
   1367}
   1368
   1369void efx_siena_sriov_fini(struct efx_nic *efx)
   1370{
   1371	struct siena_vf *vf;
   1372	unsigned int pos;
   1373	struct siena_nic_data *nic_data = efx->nic_data;
   1374
   1375	if (efx->vf_init_count == 0)
   1376		return;
   1377
   1378	/* Disable all interfaces to reconfiguration */
   1379	BUG_ON(nic_data->vfdi_channel->enabled);
   1380	efx_siena_sriov_usrev(efx, false);
   1381	rtnl_lock();
   1382	efx->vf_init_count = 0;
   1383	rtnl_unlock();
   1384
   1385	/* Flush all reconfiguration work */
   1386	for (pos = 0; pos < efx->vf_count; ++pos) {
   1387		vf = nic_data->vf + pos;
   1388		cancel_work_sync(&vf->req);
   1389		cancel_work_sync(&vf->reset_work);
   1390	}
   1391	cancel_work_sync(&nic_data->peer_work);
   1392
   1393	pci_disable_sriov(efx->pci_dev);
   1394
   1395	/* Tear down back-end state */
   1396	efx_siena_sriov_vfs_fini(efx);
   1397	efx_siena_sriov_free_local(efx);
   1398	kfree(nic_data->vf);
   1399	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
   1400	efx_siena_sriov_cmd(efx, false, NULL, NULL);
   1401}
   1402
   1403void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
   1404{
   1405	struct efx_nic *efx = channel->efx;
   1406	struct siena_vf *vf;
   1407	unsigned qid, seq, type, data;
   1408
   1409	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
   1410
   1411	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
   1412	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
   1413	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
   1414	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
   1415	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
   1416
   1417	netif_vdbg(efx, hw, efx->net_dev,
   1418		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
   1419		   qid, seq, type, data);
   1420
   1421	if (map_vi_index(efx, qid, &vf, NULL))
   1422		return;
   1423	if (vf->busy)
   1424		goto error;
   1425
   1426	if (type == VFDI_EV_TYPE_REQ_WORD0) {
   1427		/* Resynchronise */
   1428		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
   1429		vf->req_seqno = seq + 1;
   1430		vf->req_addr = 0;
   1431	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
   1432		goto error;
   1433
   1434	switch (vf->req_type) {
   1435	case VFDI_EV_TYPE_REQ_WORD0:
   1436	case VFDI_EV_TYPE_REQ_WORD1:
   1437	case VFDI_EV_TYPE_REQ_WORD2:
   1438		vf->req_addr |= (u64)data << (vf->req_type << 4);
   1439		++vf->req_type;
   1440		return;
   1441
   1442	case VFDI_EV_TYPE_REQ_WORD3:
   1443		vf->req_addr |= (u64)data << 48;
   1444		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
   1445		vf->busy = true;
   1446		queue_work(vfdi_workqueue, &vf->req);
   1447		return;
   1448	}
   1449
   1450error:
   1451	if (net_ratelimit())
   1452		netif_err(efx, hw, efx->net_dev,
   1453			  "ERROR: Screaming VFDI request from %s\n",
   1454			  vf->pci_name);
   1455	/* Reset the request and sequence number */
   1456	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
   1457	vf->req_seqno = seq + 1;
   1458}
   1459
   1460void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
   1461{
   1462	struct siena_nic_data *nic_data = efx->nic_data;
   1463	struct siena_vf *vf;
   1464
   1465	if (vf_i > efx->vf_init_count)
   1466		return;
   1467	vf = nic_data->vf + vf_i;
   1468	netif_info(efx, hw, efx->net_dev,
   1469		   "FLR on VF %s\n", vf->pci_name);
   1470
   1471	vf->status_addr = 0;
   1472	efx_vfdi_remove_all_filters(vf);
   1473	efx_vfdi_flush_clear(vf);
   1474
   1475	vf->evq0_count = 0;
   1476}
   1477
   1478int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
   1479{
   1480	struct siena_nic_data *nic_data = efx->nic_data;
   1481	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
   1482
   1483	if (!efx->vf_init_count)
   1484		return 0;
   1485	ether_addr_copy(vfdi_status->peers[0].mac_addr,
   1486			efx->net_dev->dev_addr);
   1487	queue_work(vfdi_workqueue, &nic_data->peer_work);
   1488
   1489	return 0;
   1490}
   1491
   1492void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
   1493{
   1494	struct siena_vf *vf;
   1495	unsigned queue, qid;
   1496
   1497	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
   1498	if (map_vi_index(efx, queue, &vf, &qid))
   1499		return;
   1500	/* Ignore flush completions triggered by an FLR */
   1501	if (!test_bit(qid, vf->txq_mask))
   1502		return;
   1503
   1504	__clear_bit(qid, vf->txq_mask);
   1505	--vf->txq_count;
   1506
   1507	if (efx_vfdi_flush_wake(vf))
   1508		wake_up(&vf->flush_waitq);
   1509}
   1510
   1511void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
   1512{
   1513	struct siena_vf *vf;
   1514	unsigned ev_failed, queue, qid;
   1515
   1516	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
   1517	ev_failed = EFX_QWORD_FIELD(*event,
   1518				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
   1519	if (map_vi_index(efx, queue, &vf, &qid))
   1520		return;
   1521	if (!test_bit(qid, vf->rxq_mask))
   1522		return;
   1523
   1524	if (ev_failed) {
   1525		set_bit(qid, vf->rxq_retry_mask);
   1526		atomic_inc(&vf->rxq_retry_count);
   1527	} else {
   1528		__clear_bit(qid, vf->rxq_mask);
   1529		--vf->rxq_count;
   1530	}
   1531	if (efx_vfdi_flush_wake(vf))
   1532		wake_up(&vf->flush_waitq);
   1533}
   1534
   1535/* Called from napi. Schedule the reset work item */
   1536void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
   1537{
   1538	struct siena_vf *vf;
   1539	unsigned int rel;
   1540
   1541	if (map_vi_index(efx, dmaq, &vf, &rel))
   1542		return;
   1543
   1544	if (net_ratelimit())
   1545		netif_err(efx, hw, efx->net_dev,
   1546			  "VF %d DMA Q %d reports descriptor fetch error.\n",
   1547			  vf->index, rel);
   1548	queue_work(vfdi_workqueue, &vf->reset_work);
   1549}
   1550
   1551/* Reset all VFs */
   1552void efx_siena_sriov_reset(struct efx_nic *efx)
   1553{
   1554	struct siena_nic_data *nic_data = efx->nic_data;
   1555	unsigned int vf_i;
   1556	struct efx_buffer buf;
   1557	struct siena_vf *vf;
   1558
   1559	ASSERT_RTNL();
   1560
   1561	if (efx->vf_init_count == 0)
   1562		return;
   1563
   1564	efx_siena_sriov_usrev(efx, true);
   1565	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
   1566
   1567	if (efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
   1568		return;
   1569
   1570	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
   1571		vf = nic_data->vf + vf_i;
   1572		efx_siena_sriov_reset_vf(vf, &buf);
   1573	}
   1574
   1575	efx_siena_free_buffer(efx, &buf);
   1576}
   1577
   1578int efx_init_sriov(void)
   1579{
   1580	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
   1581	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
   1582	 * MCDI to complete anyway
   1583	 */
   1584	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
   1585	if (!vfdi_workqueue)
   1586		return -ENOMEM;
   1587	return 0;
   1588}
   1589
   1590void efx_fini_sriov(void)
   1591{
   1592	destroy_workqueue(vfdi_workqueue);
   1593}
   1594
   1595int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, const u8 *mac)
   1596{
   1597	struct siena_nic_data *nic_data = efx->nic_data;
   1598	struct siena_vf *vf;
   1599
   1600	if (vf_i >= efx->vf_init_count)
   1601		return -EINVAL;
   1602	vf = nic_data->vf + vf_i;
   1603
   1604	mutex_lock(&vf->status_lock);
   1605	ether_addr_copy(vf->addr.mac_addr, mac);
   1606	__efx_siena_sriov_update_vf_addr(vf);
   1607	mutex_unlock(&vf->status_lock);
   1608
   1609	return 0;
   1610}
   1611
   1612int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
   1613				u16 vlan, u8 qos)
   1614{
   1615	struct siena_nic_data *nic_data = efx->nic_data;
   1616	struct siena_vf *vf;
   1617	u16 tci;
   1618
   1619	if (vf_i >= efx->vf_init_count)
   1620		return -EINVAL;
   1621	vf = nic_data->vf + vf_i;
   1622
   1623	mutex_lock(&vf->status_lock);
   1624	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
   1625	vf->addr.tci = htons(tci);
   1626	__efx_siena_sriov_update_vf_addr(vf);
   1627	mutex_unlock(&vf->status_lock);
   1628
   1629	return 0;
   1630}
   1631
   1632int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
   1633				    bool spoofchk)
   1634{
   1635	struct siena_nic_data *nic_data = efx->nic_data;
   1636	struct siena_vf *vf;
   1637	int rc;
   1638
   1639	if (vf_i >= efx->vf_init_count)
   1640		return -EINVAL;
   1641	vf = nic_data->vf + vf_i;
   1642
   1643	mutex_lock(&vf->txq_lock);
   1644	if (vf->txq_count == 0) {
   1645		vf->tx_filter_mode =
   1646			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
   1647		rc = 0;
   1648	} else {
   1649		/* This cannot be changed while TX queues are running */
   1650		rc = -EBUSY;
   1651	}
   1652	mutex_unlock(&vf->txq_lock);
   1653	return rc;
   1654}
   1655
   1656int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
   1657				  struct ifla_vf_info *ivi)
   1658{
   1659	struct siena_nic_data *nic_data = efx->nic_data;
   1660	struct siena_vf *vf;
   1661	u16 tci;
   1662
   1663	if (vf_i >= efx->vf_init_count)
   1664		return -EINVAL;
   1665	vf = nic_data->vf + vf_i;
   1666
   1667	ivi->vf = vf_i;
   1668	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
   1669	ivi->max_tx_rate = 0;
   1670	ivi->min_tx_rate = 0;
   1671	tci = ntohs(vf->addr.tci);
   1672	ivi->vlan = tci & VLAN_VID_MASK;
   1673	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
   1674	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
   1675
   1676	return 0;
   1677}
   1678
   1679bool efx_siena_sriov_wanted(struct efx_nic *efx)
   1680{
   1681	return efx->vf_count != 0;
   1682}
   1683
   1684int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
   1685{
   1686	return 0;
   1687}