cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tx.c (18170B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2005-2013 Solarflare Communications Inc.
      6 */
      7
      8#include <linux/pci.h>
      9#include <linux/tcp.h>
     10#include <linux/ip.h>
     11#include <linux/in.h>
     12#include <linux/ipv6.h>
     13#include <linux/slab.h>
     14#include <net/ipv6.h>
     15#include <linux/if_ether.h>
     16#include <linux/highmem.h>
     17#include <linux/cache.h>
     18#include "net_driver.h"
     19#include "efx.h"
     20#include "io.h"
     21#include "nic.h"
     22#include "tx.h"
     23#include "tx_common.h"
     24#include "workarounds.h"
     25#include "ef10_regs.h"
     26
     27#ifdef EFX_USE_PIO
     28
     29#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
     30unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
     31
     32#endif /* EFX_USE_PIO */
     33
     34static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
     35					 struct efx_tx_buffer *buffer)
     36{
     37	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
     38	struct efx_buffer *page_buf =
     39		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
     40	unsigned int offset =
     41		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
     42
     43	if (unlikely(!page_buf->addr) &&
     44	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
     45				 GFP_ATOMIC))
     46		return NULL;
     47	buffer->dma_addr = page_buf->dma_addr + offset;
     48	buffer->unmap_len = 0;
     49	return (u8 *)page_buf->addr + offset;
     50}
     51
     52u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
     53				   struct efx_tx_buffer *buffer, size_t len)
     54{
     55	if (len > EFX_TX_CB_SIZE)
     56		return NULL;
     57	return efx_tx_get_copy_buffer(tx_queue, buffer);
     58}
     59
     60static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
     61{
     62	/* We need to consider all queues that the net core sees as one */
     63	struct efx_nic *efx = txq1->efx;
     64	struct efx_tx_queue *txq2;
     65	unsigned int fill_level;
     66
     67	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
     68	if (likely(fill_level < efx->txq_stop_thresh))
     69		return;
     70
     71	/* We used the stale old_read_count above, which gives us a
     72	 * pessimistic estimate of the fill level (which may even
     73	 * validly be >= efx->txq_entries).  Now try again using
     74	 * read_count (more likely to be a cache miss).
     75	 *
     76	 * If we read read_count and then conditionally stop the
     77	 * queue, it is possible for the completion path to race with
     78	 * us and complete all outstanding descriptors in the middle,
     79	 * after which there will be no more completions to wake it.
     80	 * Therefore we stop the queue first, then read read_count
     81	 * (with a memory barrier to ensure the ordering), then
     82	 * restart the queue if the fill level turns out to be low
     83	 * enough.
     84	 */
     85	netif_tx_stop_queue(txq1->core_txq);
     86	smp_mb();
     87	efx_for_each_channel_tx_queue(txq2, txq1->channel)
     88		txq2->old_read_count = READ_ONCE(txq2->read_count);
     89
     90	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
     91	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
     92	if (likely(fill_level < efx->txq_stop_thresh)) {
     93		smp_mb();
     94		if (likely(!efx->loopback_selftest))
     95			netif_tx_start_queue(txq1->core_txq);
     96	}
     97}
     98
     99static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
    100				struct sk_buff *skb)
    101{
    102	unsigned int copy_len = skb->len;
    103	struct efx_tx_buffer *buffer;
    104	u8 *copy_buffer;
    105	int rc;
    106
    107	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
    108
    109	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
    110
    111	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
    112	if (unlikely(!copy_buffer))
    113		return -ENOMEM;
    114
    115	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
    116	EFX_WARN_ON_PARANOID(rc);
    117	buffer->len = copy_len;
    118
    119	buffer->skb = skb;
    120	buffer->flags = EFX_TX_BUF_SKB;
    121
    122	++tx_queue->insert_count;
    123	return rc;
    124}
    125
    126#ifdef EFX_USE_PIO
    127
    128struct efx_short_copy_buffer {
    129	int used;
    130	u8 buf[L1_CACHE_BYTES];
    131};
    132
    133/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
    134 * Advances piobuf pointer. Leaves additional data in the copy buffer.
    135 */
    136static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
    137				    u8 *data, int len,
    138				    struct efx_short_copy_buffer *copy_buf)
    139{
    140	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
    141
    142	__iowrite64_copy(*piobuf, data, block_len >> 3);
    143	*piobuf += block_len;
    144	len -= block_len;
    145
    146	if (len) {
    147		data += block_len;
    148		BUG_ON(copy_buf->used);
    149		BUG_ON(len > sizeof(copy_buf->buf));
    150		memcpy(copy_buf->buf, data, len);
    151		copy_buf->used = len;
    152	}
    153}
    154
    155/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
    156 * Advances piobuf pointer. Leaves additional data in the copy buffer.
    157 */
    158static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
    159				       u8 *data, int len,
    160				       struct efx_short_copy_buffer *copy_buf)
    161{
    162	if (copy_buf->used) {
    163		/* if the copy buffer is partially full, fill it up and write */
    164		int copy_to_buf =
    165			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
    166
    167		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
    168		copy_buf->used += copy_to_buf;
    169
    170		/* if we didn't fill it up then we're done for now */
    171		if (copy_buf->used < sizeof(copy_buf->buf))
    172			return;
    173
    174		__iowrite64_copy(*piobuf, copy_buf->buf,
    175				 sizeof(copy_buf->buf) >> 3);
    176		*piobuf += sizeof(copy_buf->buf);
    177		data += copy_to_buf;
    178		len -= copy_to_buf;
    179		copy_buf->used = 0;
    180	}
    181
    182	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
    183}
    184
    185static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
    186				  struct efx_short_copy_buffer *copy_buf)
    187{
    188	/* if there's anything in it, write the whole buffer, including junk */
    189	if (copy_buf->used)
    190		__iowrite64_copy(piobuf, copy_buf->buf,
    191				 sizeof(copy_buf->buf) >> 3);
    192}
    193
    194/* Traverse skb structure and copy fragments in to PIO buffer.
    195 * Advances piobuf pointer.
    196 */
    197static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
    198				     u8 __iomem **piobuf,
    199				     struct efx_short_copy_buffer *copy_buf)
    200{
    201	int i;
    202
    203	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
    204				copy_buf);
    205
    206	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
    207		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
    208		u8 *vaddr;
    209
    210		vaddr = kmap_atomic(skb_frag_page(f));
    211
    212		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
    213					   skb_frag_size(f), copy_buf);
    214		kunmap_atomic(vaddr);
    215	}
    216
    217	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
    218}
    219
    220static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
    221			       struct sk_buff *skb)
    222{
    223	struct efx_tx_buffer *buffer =
    224		efx_tx_queue_get_insert_buffer(tx_queue);
    225	u8 __iomem *piobuf = tx_queue->piobuf;
    226
    227	/* Copy to PIO buffer. Ensure the writes are padded to the end
    228	 * of a cache line, as this is required for write-combining to be
    229	 * effective on at least x86.
    230	 */
    231
    232	if (skb_shinfo(skb)->nr_frags) {
    233		/* The size of the copy buffer will ensure all writes
    234		 * are the size of a cache line.
    235		 */
    236		struct efx_short_copy_buffer copy_buf;
    237
    238		copy_buf.used = 0;
    239
    240		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
    241					 &piobuf, &copy_buf);
    242		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
    243	} else {
    244		/* Pad the write to the size of a cache line.
    245		 * We can do this because we know the skb_shared_info struct is
    246		 * after the source, and the destination buffer is big enough.
    247		 */
    248		BUILD_BUG_ON(L1_CACHE_BYTES >
    249			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
    250		__iowrite64_copy(tx_queue->piobuf, skb->data,
    251				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
    252	}
    253
    254	buffer->skb = skb;
    255	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
    256
    257	EFX_POPULATE_QWORD_5(buffer->option,
    258			     ESF_DZ_TX_DESC_IS_OPT, 1,
    259			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
    260			     ESF_DZ_TX_PIO_CONT, 0,
    261			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
    262			     ESF_DZ_TX_PIO_BUF_ADDR,
    263			     tx_queue->piobuf_offset);
    264	++tx_queue->insert_count;
    265	return 0;
    266}
    267
    268/* Decide whether we can use TX PIO, ie. write packet data directly into
    269 * a buffer on the device.  This can reduce latency at the expense of
    270 * throughput, so we only do this if both hardware and software TX rings
    271 * are empty, including all queues for the channel.  This also ensures that
    272 * only one packet at a time can be using the PIO buffer. If the xmit_more
    273 * flag is set then we don't use this - there'll be another packet along
    274 * shortly and we want to hold off the doorbell.
    275 */
    276static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
    277{
    278	struct efx_channel *channel = tx_queue->channel;
    279
    280	if (!tx_queue->piobuf)
    281		return false;
    282
    283	EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
    284
    285	efx_for_each_channel_tx_queue(tx_queue, channel)
    286		if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
    287			return false;
    288
    289	return true;
    290}
    291#endif /* EFX_USE_PIO */
    292
    293/* Send any pending traffic for a channel. xmit_more is shared across all
    294 * queues for a channel, so we must check all of them.
    295 */
    296static void efx_tx_send_pending(struct efx_channel *channel)
    297{
    298	struct efx_tx_queue *q;
    299
    300	efx_for_each_channel_tx_queue(q, channel) {
    301		if (q->xmit_pending)
    302			efx_nic_push_buffers(q);
    303	}
    304}
    305
    306/*
    307 * Add a socket buffer to a TX queue
    308 *
    309 * This maps all fragments of a socket buffer for DMA and adds them to
    310 * the TX queue.  The queue's insert pointer will be incremented by
    311 * the number of fragments in the socket buffer.
    312 *
    313 * If any DMA mapping fails, any mapped fragments will be unmapped,
    314 * the queue's insert pointer will be restored to its original value.
    315 *
    316 * This function is split out from efx_hard_start_xmit to allow the
    317 * loopback test to direct packets via specific TX queues.
    318 *
    319 * Returns NETDEV_TX_OK.
    320 * You must hold netif_tx_lock() to call this function.
    321 */
    322netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
    323{
    324	unsigned int old_insert_count = tx_queue->insert_count;
    325	bool xmit_more = netdev_xmit_more();
    326	bool data_mapped = false;
    327	unsigned int segments;
    328	unsigned int skb_len;
    329	int rc;
    330
    331	skb_len = skb->len;
    332	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
    333	if (segments == 1)
    334		segments = 0; /* Don't use TSO for a single segment. */
    335
    336	/* Handle TSO first - it's *possible* (although unlikely) that we might
    337	 * be passed a packet to segment that's smaller than the copybreak/PIO
    338	 * size limit.
    339	 */
    340	if (segments) {
    341		switch (tx_queue->tso_version) {
    342		case 1:
    343			rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
    344			break;
    345		case 2:
    346			rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
    347			break;
    348		case 0: /* No TSO on this queue, SW fallback needed */
    349		default:
    350			rc = -EINVAL;
    351			break;
    352		}
    353		if (rc == -EINVAL) {
    354			rc = efx_tx_tso_fallback(tx_queue, skb);
    355			tx_queue->tso_fallbacks++;
    356			if (rc == 0)
    357				return 0;
    358		}
    359		if (rc)
    360			goto err;
    361#ifdef EFX_USE_PIO
    362	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
    363		   efx_tx_may_pio(tx_queue)) {
    364		/* Use PIO for short packets with an empty queue. */
    365		if (efx_enqueue_skb_pio(tx_queue, skb))
    366			goto err;
    367		tx_queue->pio_packets++;
    368		data_mapped = true;
    369#endif
    370	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
    371		/* Pad short packets or coalesce short fragmented packets. */
    372		if (efx_enqueue_skb_copy(tx_queue, skb))
    373			goto err;
    374		tx_queue->cb_packets++;
    375		data_mapped = true;
    376	}
    377
    378	/* Map for DMA and create descriptors if we haven't done so already. */
    379	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
    380		goto err;
    381
    382	efx_tx_maybe_stop_queue(tx_queue);
    383
    384	tx_queue->xmit_pending = true;
    385
    386	/* Pass off to hardware */
    387	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
    388		efx_tx_send_pending(tx_queue->channel);
    389
    390	if (segments) {
    391		tx_queue->tso_bursts++;
    392		tx_queue->tso_packets += segments;
    393		tx_queue->tx_packets  += segments;
    394	} else {
    395		tx_queue->tx_packets++;
    396	}
    397
    398	return NETDEV_TX_OK;
    399
    400
    401err:
    402	efx_enqueue_unwind(tx_queue, old_insert_count);
    403	dev_kfree_skb_any(skb);
    404
    405	/* If we're not expecting another transmit and we had something to push
    406	 * on this queue or a partner queue then we need to push here to get the
    407	 * previous packets out.
    408	 */
    409	if (!xmit_more)
    410		efx_tx_send_pending(tx_queue->channel);
    411
    412	return NETDEV_TX_OK;
    413}
    414
    415/* Transmit a packet from an XDP buffer
    416 *
    417 * Returns number of packets sent on success, error code otherwise.
    418 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
    419 * (for XDP redirect).
    420 */
    421int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
    422		       bool flush)
    423{
    424	struct efx_tx_buffer *tx_buffer;
    425	struct efx_tx_queue *tx_queue;
    426	struct xdp_frame *xdpf;
    427	dma_addr_t dma_addr;
    428	unsigned int len;
    429	int space;
    430	int cpu;
    431	int i = 0;
    432
    433	if (unlikely(n && !xdpfs))
    434		return -EINVAL;
    435	if (unlikely(!n))
    436		return 0;
    437
    438	cpu = raw_smp_processor_id();
    439	if (unlikely(cpu >= efx->xdp_tx_queue_count))
    440		return -EINVAL;
    441
    442	tx_queue = efx->xdp_tx_queues[cpu];
    443	if (unlikely(!tx_queue))
    444		return -EINVAL;
    445
    446	if (!tx_queue->initialised)
    447		return -EINVAL;
    448
    449	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
    450		HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
    451
    452	/* If we're borrowing net stack queues we have to handle stop-restart
    453	 * or we might block the queue and it will be considered as frozen
    454	 */
    455	if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
    456		if (netif_tx_queue_stopped(tx_queue->core_txq))
    457			goto unlock;
    458		efx_tx_maybe_stop_queue(tx_queue);
    459	}
    460
    461	/* Check for available space. We should never need multiple
    462	 * descriptors per frame.
    463	 */
    464	space = efx->txq_entries +
    465		tx_queue->read_count - tx_queue->insert_count;
    466
    467	for (i = 0; i < n; i++) {
    468		xdpf = xdpfs[i];
    469
    470		if (i >= space)
    471			break;
    472
    473		/* We'll want a descriptor for this tx. */
    474		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
    475
    476		len = xdpf->len;
    477
    478		/* Map for DMA. */
    479		dma_addr = dma_map_single(&efx->pci_dev->dev,
    480					  xdpf->data, len,
    481					  DMA_TO_DEVICE);
    482		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
    483			break;
    484
    485		/*  Create descriptor and set up for unmapping DMA. */
    486		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
    487		tx_buffer->xdpf = xdpf;
    488		tx_buffer->flags = EFX_TX_BUF_XDP |
    489				   EFX_TX_BUF_MAP_SINGLE;
    490		tx_buffer->dma_offset = 0;
    491		tx_buffer->unmap_len = len;
    492		tx_queue->tx_packets++;
    493	}
    494
    495	/* Pass mapped frames to hardware. */
    496	if (flush && i > 0)
    497		efx_nic_push_buffers(tx_queue);
    498
    499unlock:
    500	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
    501		HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
    502
    503	return i == 0 ? -EIO : i;
    504}
    505
    506/* Initiate a packet transmission.  We use one channel per CPU
    507 * (sharing when we have more CPUs than channels).
    508 *
    509 * Context: non-blocking.
    510 * Should always return NETDEV_TX_OK and consume the skb.
    511 */
    512netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
    513				struct net_device *net_dev)
    514{
    515	struct efx_nic *efx = netdev_priv(net_dev);
    516	struct efx_tx_queue *tx_queue;
    517	unsigned index, type;
    518
    519	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
    520
    521	index = skb_get_queue_mapping(skb);
    522	type = efx_tx_csum_type_skb(skb);
    523	if (index >= efx->n_tx_channels) {
    524		index -= efx->n_tx_channels;
    525		type |= EFX_TXQ_TYPE_HIGHPRI;
    526	}
    527
    528	/* PTP "event" packet */
    529	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
    530	    ((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
    531	    unlikely(efx_ptp_is_ptp_tx(efx, skb)))) {
    532		/* There may be existing transmits on the channel that are
    533		 * waiting for this packet to trigger the doorbell write.
    534		 * We need to send the packets at this point.
    535		 */
    536		efx_tx_send_pending(efx_get_tx_channel(efx, index));
    537		return efx_ptp_tx(efx, skb);
    538	}
    539
    540	tx_queue = efx_get_tx_queue(efx, index, type);
    541	if (WARN_ON_ONCE(!tx_queue)) {
    542		/* We don't have a TXQ of the right type.
    543		 * This should never happen, as we don't advertise offload
    544		 * features unless we can support them.
    545		 */
    546		dev_kfree_skb_any(skb);
    547		/* If we're not expecting another transmit and we had something to push
    548		 * on this queue or a partner queue then we need to push here to get the
    549		 * previous packets out.
    550		 */
    551		if (!netdev_xmit_more())
    552			efx_tx_send_pending(tx_queue->channel);
    553		return NETDEV_TX_OK;
    554	}
    555
    556	return __efx_enqueue_skb(tx_queue, skb);
    557}
    558
    559void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
    560{
    561	unsigned int pkts_compl = 0, bytes_compl = 0;
    562	unsigned int read_ptr;
    563	bool finished = false;
    564
    565	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
    566
    567	while (!finished) {
    568		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
    569
    570		if (!efx_tx_buffer_in_use(buffer)) {
    571			struct efx_nic *efx = tx_queue->efx;
    572
    573			netif_err(efx, hw, efx->net_dev,
    574				  "TX queue %d spurious single TX completion\n",
    575				  tx_queue->queue);
    576			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
    577			return;
    578		}
    579
    580		/* Need to check the flag before dequeueing. */
    581		if (buffer->flags & EFX_TX_BUF_SKB)
    582			finished = true;
    583		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
    584
    585		++tx_queue->read_count;
    586		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
    587	}
    588
    589	tx_queue->pkts_compl += pkts_compl;
    590	tx_queue->bytes_compl += bytes_compl;
    591
    592	EFX_WARN_ON_PARANOID(pkts_compl != 1);
    593
    594	efx_xmit_done_check_empty(tx_queue);
    595}
    596
    597void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
    598{
    599	struct efx_nic *efx = tx_queue->efx;
    600
    601	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
    602	tx_queue->core_txq =
    603		netdev_get_tx_queue(efx->net_dev,
    604				    tx_queue->channel->channel +
    605				    ((tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
    606				     efx->n_tx_channels : 0));
    607}
    608
    609int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
    610		 void *type_data)
    611{
    612	struct efx_nic *efx = netdev_priv(net_dev);
    613	struct tc_mqprio_qopt *mqprio = type_data;
    614	unsigned tc, num_tc;
    615
    616	if (type != TC_SETUP_QDISC_MQPRIO)
    617		return -EOPNOTSUPP;
    618
    619	/* Only Siena supported highpri queues */
    620	if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
    621		return -EOPNOTSUPP;
    622
    623	num_tc = mqprio->num_tc;
    624
    625	if (num_tc > EFX_MAX_TX_TC)
    626		return -EINVAL;
    627
    628	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
    629
    630	if (num_tc == net_dev->num_tc)
    631		return 0;
    632
    633	for (tc = 0; tc < num_tc; tc++) {
    634		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
    635		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
    636	}
    637
    638	net_dev->num_tc = num_tc;
    639
    640	return netif_set_real_num_tx_queues(net_dev,
    641					    max_t(int, num_tc, 1) *
    642					    efx->n_tx_channels);
    643}