cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tx_tso.c (12039B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2005-2015 Solarflare Communications Inc.
      6 */
      7
      8#include <linux/pci.h>
      9#include <linux/tcp.h>
     10#include <linux/ip.h>
     11#include <linux/in.h>
     12#include <linux/ipv6.h>
     13#include <linux/slab.h>
     14#include <net/ipv6.h>
     15#include <linux/if_ether.h>
     16#include <linux/highmem.h>
     17#include <linux/moduleparam.h>
     18#include <linux/cache.h>
     19#include "net_driver.h"
     20#include "efx.h"
     21#include "io.h"
     22#include "nic.h"
     23#include "tx.h"
     24#include "workarounds.h"
     25#include "ef10_regs.h"
     26
     27/* Efx legacy TCP segmentation acceleration.
     28 *
     29 * Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
     30 *
     31 * Requires TX checksum offload support.
     32 */
     33
     34#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
     35
     36/**
     37 * struct tso_state - TSO state for an SKB
     38 * @out_len: Remaining length in current segment
     39 * @seqnum: Current sequence number
     40 * @ipv4_id: Current IPv4 ID, host endian
     41 * @packet_space: Remaining space in current packet
     42 * @dma_addr: DMA address of current position
     43 * @in_len: Remaining length in current SKB fragment
     44 * @unmap_len: Length of SKB fragment
     45 * @unmap_addr: DMA address of SKB fragment
     46 * @protocol: Network protocol (after any VLAN header)
     47 * @ip_off: Offset of IP header
     48 * @tcp_off: Offset of TCP header
     49 * @header_len: Number of bytes of header
     50 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
     51 * @header_dma_addr: Header DMA address
     52 * @header_unmap_len: Header DMA mapped length
     53 *
     54 * The state used during segmentation.  It is put into this data structure
     55 * just to make it easy to pass into inline functions.
     56 */
     57struct tso_state {
     58	/* Output position */
     59	unsigned int out_len;
     60	unsigned int seqnum;
     61	u16 ipv4_id;
     62	unsigned int packet_space;
     63
     64	/* Input position */
     65	dma_addr_t dma_addr;
     66	unsigned int in_len;
     67	unsigned int unmap_len;
     68	dma_addr_t unmap_addr;
     69
     70	__be16 protocol;
     71	unsigned int ip_off;
     72	unsigned int tcp_off;
     73	unsigned int header_len;
     74	unsigned int ip_base_len;
     75	dma_addr_t header_dma_addr;
     76	unsigned int header_unmap_len;
     77};
     78
     79static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
     80{
     81	unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
     82	char *ptr;
     83
     84	ptr = (char *) (tx_queue->buffer + insert_ptr);
     85	prefetch(ptr);
     86	prefetch(ptr + 0x80);
     87
     88	ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
     89	prefetch(ptr);
     90	prefetch(ptr + 0x80);
     91}
     92
     93/**
     94 * efx_tx_queue_insert - push descriptors onto the TX queue
     95 * @tx_queue:		Efx TX queue
     96 * @dma_addr:		DMA address of fragment
     97 * @len:		Length of fragment
     98 * @final_buffer:	The final buffer inserted into the queue
     99 *
    100 * Push descriptors onto the TX queue.
    101 */
    102static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
    103				dma_addr_t dma_addr, unsigned int len,
    104				struct efx_tx_buffer **final_buffer)
    105{
    106	struct efx_tx_buffer *buffer;
    107	unsigned int dma_len;
    108
    109	EFX_WARN_ON_ONCE_PARANOID(len <= 0);
    110
    111	while (1) {
    112		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
    113		++tx_queue->insert_count;
    114
    115		EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
    116					  tx_queue->read_count >=
    117					  tx_queue->efx->txq_entries);
    118
    119		buffer->dma_addr = dma_addr;
    120
    121		dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
    122				dma_addr, len);
    123
    124		/* If there's space for everything this is our last buffer. */
    125		if (dma_len >= len)
    126			break;
    127
    128		buffer->len = dma_len;
    129		buffer->flags = EFX_TX_BUF_CONT;
    130		dma_addr += dma_len;
    131		len -= dma_len;
    132	}
    133
    134	EFX_WARN_ON_ONCE_PARANOID(!len);
    135	buffer->len = len;
    136	*final_buffer = buffer;
    137}
    138
    139/*
    140 * Verify that our various assumptions about sk_buffs and the conditions
    141 * under which TSO will be attempted hold true.  Return the protocol number.
    142 */
    143static __be16 efx_tso_check_protocol(struct sk_buff *skb)
    144{
    145	__be16 protocol = skb->protocol;
    146
    147	EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
    148				  protocol);
    149	if (protocol == htons(ETH_P_8021Q)) {
    150		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
    151
    152		protocol = veh->h_vlan_encapsulated_proto;
    153	}
    154
    155	if (protocol == htons(ETH_P_IP)) {
    156		EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
    157	} else {
    158		EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6));
    159		EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
    160	}
    161	EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) +
    162				   (tcp_hdr(skb)->doff << 2u)) >
    163				  skb_headlen(skb));
    164
    165	return protocol;
    166}
    167
    168/* Parse the SKB header and initialise state. */
    169static int tso_start(struct tso_state *st, struct efx_nic *efx,
    170		     struct efx_tx_queue *tx_queue,
    171		     const struct sk_buff *skb)
    172{
    173	struct device *dma_dev = &efx->pci_dev->dev;
    174	unsigned int header_len, in_len;
    175	dma_addr_t dma_addr;
    176
    177	st->ip_off = skb_network_header(skb) - skb->data;
    178	st->tcp_off = skb_transport_header(skb) - skb->data;
    179	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
    180	in_len = skb_headlen(skb) - header_len;
    181	st->header_len = header_len;
    182	st->in_len = in_len;
    183	if (st->protocol == htons(ETH_P_IP)) {
    184		st->ip_base_len = st->header_len - st->ip_off;
    185		st->ipv4_id = ntohs(ip_hdr(skb)->id);
    186	} else {
    187		st->ip_base_len = st->header_len - st->tcp_off;
    188		st->ipv4_id = 0;
    189	}
    190	st->seqnum = ntohl(tcp_hdr(skb)->seq);
    191
    192	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
    193	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
    194	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);
    195
    196	st->out_len = skb->len - header_len;
    197
    198	dma_addr = dma_map_single(dma_dev, skb->data,
    199				  skb_headlen(skb), DMA_TO_DEVICE);
    200	st->header_dma_addr = dma_addr;
    201	st->header_unmap_len = skb_headlen(skb);
    202	st->dma_addr = dma_addr + header_len;
    203	st->unmap_len = 0;
    204
    205	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
    206}
    207
    208static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
    209			    skb_frag_t *frag)
    210{
    211	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
    212					  skb_frag_size(frag), DMA_TO_DEVICE);
    213	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
    214		st->unmap_len = skb_frag_size(frag);
    215		st->in_len = skb_frag_size(frag);
    216		st->dma_addr = st->unmap_addr;
    217		return 0;
    218	}
    219	return -ENOMEM;
    220}
    221
    222
    223/**
    224 * tso_fill_packet_with_fragment - form descriptors for the current fragment
    225 * @tx_queue:		Efx TX queue
    226 * @skb:		Socket buffer
    227 * @st:			TSO state
    228 *
    229 * Form descriptors for the current fragment, until we reach the end
    230 * of fragment or end-of-packet.
    231 */
    232static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
    233					  const struct sk_buff *skb,
    234					  struct tso_state *st)
    235{
    236	struct efx_tx_buffer *buffer;
    237	int n;
    238
    239	if (st->in_len == 0)
    240		return;
    241	if (st->packet_space == 0)
    242		return;
    243
    244	EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
    245	EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);
    246
    247	n = min(st->in_len, st->packet_space);
    248
    249	st->packet_space -= n;
    250	st->out_len -= n;
    251	st->in_len -= n;
    252
    253	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
    254
    255	if (st->out_len == 0) {
    256		/* Transfer ownership of the skb */
    257		buffer->skb = skb;
    258		buffer->flags = EFX_TX_BUF_SKB;
    259	} else if (st->packet_space != 0) {
    260		buffer->flags = EFX_TX_BUF_CONT;
    261	}
    262
    263	if (st->in_len == 0) {
    264		/* Transfer ownership of the DMA mapping */
    265		buffer->unmap_len = st->unmap_len;
    266		buffer->dma_offset = buffer->unmap_len - buffer->len;
    267		st->unmap_len = 0;
    268	}
    269
    270	st->dma_addr += n;
    271}
    272
    273
    274#define TCP_FLAGS_OFFSET 13
    275
    276/**
    277 * tso_start_new_packet - generate a new header and prepare for the new packet
    278 * @tx_queue:		Efx TX queue
    279 * @skb:		Socket buffer
    280 * @st:			TSO state
    281 *
    282 * Generate a new header and prepare for the new packet.  Return 0 on
    283 * success, or -%ENOMEM if failed to alloc header, or other negative error.
    284 */
    285static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
    286				const struct sk_buff *skb,
    287				struct tso_state *st)
    288{
    289	struct efx_tx_buffer *buffer =
    290		efx_tx_queue_get_insert_buffer(tx_queue);
    291	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
    292	u8 tcp_flags_mask, tcp_flags;
    293
    294	if (!is_last) {
    295		st->packet_space = skb_shinfo(skb)->gso_size;
    296		tcp_flags_mask = 0x09; /* mask out FIN and PSH */
    297	} else {
    298		st->packet_space = st->out_len;
    299		tcp_flags_mask = 0x00;
    300	}
    301
    302	if (WARN_ON(!st->header_unmap_len))
    303		return -EINVAL;
    304	/* Send the original headers with a TSO option descriptor
    305	 * in front
    306	 */
    307	tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
    308
    309	buffer->flags = EFX_TX_BUF_OPTION;
    310	buffer->len = 0;
    311	buffer->unmap_len = 0;
    312	EFX_POPULATE_QWORD_5(buffer->option,
    313			     ESF_DZ_TX_DESC_IS_OPT, 1,
    314			     ESF_DZ_TX_OPTION_TYPE,
    315			     ESE_DZ_TX_OPTION_DESC_TSO,
    316			     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
    317			     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
    318			     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
    319	++tx_queue->insert_count;
    320
    321	/* We mapped the headers in tso_start().  Unmap them
    322	 * when the last segment is completed.
    323	 */
    324	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
    325	buffer->dma_addr = st->header_dma_addr;
    326	buffer->len = st->header_len;
    327	if (is_last) {
    328		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
    329		buffer->unmap_len = st->header_unmap_len;
    330		buffer->dma_offset = 0;
    331		/* Ensure we only unmap them once in case of a
    332		 * later DMA mapping error and rollback
    333		 */
    334		st->header_unmap_len = 0;
    335	} else {
    336		buffer->flags = EFX_TX_BUF_CONT;
    337		buffer->unmap_len = 0;
    338	}
    339	++tx_queue->insert_count;
    340
    341	st->seqnum += skb_shinfo(skb)->gso_size;
    342
    343	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
    344	++st->ipv4_id;
    345
    346	return 0;
    347}
    348
    349/**
    350 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
    351 * @tx_queue:		Efx TX queue
    352 * @skb:		Socket buffer
    353 * @data_mapped:        Did we map the data? Always set to true
    354 *                      by this on success.
    355 *
    356 * Context: You must hold netif_tx_lock() to call this function.
    357 *
    358 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
    359 * @skb was not enqueued.  @skb is consumed unless return value is
    360 * %EINVAL.
    361 */
    362int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
    363			struct sk_buff *skb,
    364			bool *data_mapped)
    365{
    366	struct efx_nic *efx = tx_queue->efx;
    367	int frag_i, rc;
    368	struct tso_state state;
    369
    370	if (tx_queue->tso_version != 1)
    371		return -EINVAL;
    372
    373	prefetch(skb->data);
    374
    375	/* Find the packet protocol and sanity-check it */
    376	state.protocol = efx_tso_check_protocol(skb);
    377
    378	EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count);
    379
    380	rc = tso_start(&state, efx, tx_queue, skb);
    381	if (rc)
    382		goto fail;
    383
    384	if (likely(state.in_len == 0)) {
    385		/* Grab the first payload fragment. */
    386		EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
    387		frag_i = 0;
    388		rc = tso_get_fragment(&state, efx,
    389				      skb_shinfo(skb)->frags + frag_i);
    390		if (rc)
    391			goto fail;
    392	} else {
    393		/* Payload starts in the header area. */
    394		frag_i = -1;
    395	}
    396
    397	rc = tso_start_new_packet(tx_queue, skb, &state);
    398	if (rc)
    399		goto fail;
    400
    401	prefetch_ptr(tx_queue);
    402
    403	while (1) {
    404		tso_fill_packet_with_fragment(tx_queue, skb, &state);
    405
    406		/* Move onto the next fragment? */
    407		if (state.in_len == 0) {
    408			if (++frag_i >= skb_shinfo(skb)->nr_frags)
    409				/* End of payload reached. */
    410				break;
    411			rc = tso_get_fragment(&state, efx,
    412					      skb_shinfo(skb)->frags + frag_i);
    413			if (rc)
    414				goto fail;
    415		}
    416
    417		/* Start at new packet? */
    418		if (state.packet_space == 0) {
    419			rc = tso_start_new_packet(tx_queue, skb, &state);
    420			if (rc)
    421				goto fail;
    422		}
    423	}
    424
    425	*data_mapped = true;
    426
    427	return 0;
    428
    429fail:
    430	if (rc == -ENOMEM)
    431		netif_err(efx, tx_err, efx->net_dev,
    432			  "Out of memory for TSO headers, or DMA mapping error\n");
    433	else
    434		netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
    435
    436	/* Free the DMA mapping we were in the process of writing out */
    437	if (state.unmap_len) {
    438		dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
    439			       state.unmap_len, DMA_TO_DEVICE);
    440	}
    441
    442	/* Free the header DMA mapping */
    443	if (state.header_unmap_len)
    444		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
    445				 state.header_unmap_len, DMA_TO_DEVICE);
    446
    447	return rc;
    448}