epic100.c (44970B)
1/* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */ 2/* 3 Written/copyright 1997-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 This driver is for the SMC83c170/175 "EPIC" series, as used on the 13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards. 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 Information and updates available at 21 http://www.scyld.com/network/epic100.html 22 [this link no longer provides anything useful -jgarzik] 23 24 --------------------------------------------------------------------- 25 26*/ 27 28#define DRV_NAME "epic100" 29#define DRV_VERSION "2.1" 30#define DRV_RELDATE "Sept 11, 2006" 31 32/* The user-configurable values. 33 These may be modified when a driver module is loaded.*/ 34 35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 36 37/* Used to pass the full-duplex flag, etc. */ 38#define MAX_UNITS 8 /* More are supported, limit only on options */ 39static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 40static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 41 42/* Set the copy breakpoint for the copy-only-tiny-frames scheme. 43 Setting to > 1518 effectively disables this feature. */ 44static int rx_copybreak; 45 46/* Operational parameters that are set at compile time. */ 47 48/* Keep the ring sizes a power of two for operational efficiency. 49 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 50 Making the Tx ring too large decreases the effectiveness of channel 51 bonding and packet priority. 52 There are no ill effects from too-large receive rings. */ 53#define TX_RING_SIZE 256 54#define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */ 55#define RX_RING_SIZE 256 56#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc) 57#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc) 58 59/* Operational parameters that usually are not changed. */ 60/* Time in jiffies before concluding the transmitter is hung. */ 61#define TX_TIMEOUT (2*HZ) 62 63#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 64 65/* Bytes transferred to chip before transmission starts. */ 66/* Initial threshold, increased on underflow, rounded down to 4 byte units. */ 67#define TX_FIFO_THRESH 256 68#define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */ 69 70#include <linux/module.h> 71#include <linux/kernel.h> 72#include <linux/string.h> 73#include <linux/timer.h> 74#include <linux/errno.h> 75#include <linux/ioport.h> 76#include <linux/interrupt.h> 77#include <linux/pci.h> 78#include <linux/delay.h> 79#include <linux/netdevice.h> 80#include <linux/etherdevice.h> 81#include <linux/skbuff.h> 82#include <linux/init.h> 83#include <linux/spinlock.h> 84#include <linux/ethtool.h> 85#include <linux/mii.h> 86#include <linux/crc32.h> 87#include <linux/bitops.h> 88#include <asm/io.h> 89#include <linux/uaccess.h> 90#include <asm/byteorder.h> 91 92/* These identify the driver base version and may not be removed. */ 93static char version[] = 94DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>"; 95static char version2[] = 96" (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")"; 97 98MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 99MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver"); 100MODULE_LICENSE("GPL"); 101 102module_param(debug, int, 0); 103module_param(rx_copybreak, int, 0); 104module_param_array(options, int, NULL, 0); 105module_param_array(full_duplex, int, NULL, 0); 106MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)"); 107MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex"); 108MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames"); 109MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)"); 110 111/* 112 Theory of Operation 113 114I. Board Compatibility 115 116This device driver is designed for the SMC "EPIC/100", the SMC 117single-chip Ethernet controllers for PCI. This chip is used on 118the SMC EtherPower II boards. 119 120II. Board-specific settings 121 122PCI bus devices are configured by the system at boot time, so no jumpers 123need to be set on the board. The system BIOS will assign the 124PCI INTA signal to a (preferably otherwise unused) system IRQ line. 125Note: Kernel versions earlier than 1.3.73 do not support shared PCI 126interrupt lines. 127 128III. Driver operation 129 130IIIa. Ring buffers 131 132IVb. References 133 134http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf 135http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf 136http://scyld.com/expert/NWay.html 137http://www.national.com/pf/DP/DP83840A.html 138 139IVc. Errata 140 141*/ 142 143 144enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 }; 145 146#define EPIC_TOTAL_SIZE 0x100 147#define USE_IO_OPS 1 148 149#ifdef USE_IO_OPS 150#define EPIC_BAR 0 151#else 152#define EPIC_BAR 1 153#endif 154 155typedef enum { 156 SMSC_83C170_0, 157 SMSC_83C170, 158 SMSC_83C175, 159} chip_t; 160 161 162struct epic_chip_info { 163 const char *name; 164 int drv_flags; /* Driver use, intended as capability flags. */ 165}; 166 167 168/* indexed by chip_t */ 169static const struct epic_chip_info pci_id_tbl[] = { 170 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN }, 171 { "SMSC EPIC/100 83c170", TYPE2_INTR }, 172 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN }, 173}; 174 175 176static const struct pci_device_id epic_pci_tbl[] = { 177 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 }, 178 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 }, 179 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID, 180 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 }, 181 { 0,} 182}; 183MODULE_DEVICE_TABLE (pci, epic_pci_tbl); 184 185#define ew16(reg, val) iowrite16(val, ioaddr + (reg)) 186#define ew32(reg, val) iowrite32(val, ioaddr + (reg)) 187#define er8(reg) ioread8(ioaddr + (reg)) 188#define er16(reg) ioread16(ioaddr + (reg)) 189#define er32(reg) ioread32(ioaddr + (reg)) 190 191/* Offsets to registers, using the (ugh) SMC names. */ 192enum epic_registers { 193 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14, 194 PCIBurstCnt=0x18, 195 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */ 196 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38, 197 LAN0=64, /* MAC address. */ 198 MC0=80, /* Multicast filter table. */ 199 RxCtrl=96, TxCtrl=112, TxSTAT=0x74, 200 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC, 201}; 202 203/* Interrupt register bits, using my own meaningful names. */ 204enum IntrStatus { 205 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000, 206 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000, 207 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100, 208 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010, 209 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001, 210}; 211enum CommandBits { 212 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8, 213 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80, 214}; 215 216#define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */ 217 218#define EpicNapiEvent (TxEmpty | TxDone | \ 219 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull) 220#define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent) 221 222static const u16 media2miictl[16] = { 223 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0, 224 0, 0, 0, 0, 0, 0, 0, 0 }; 225 226/* 227 * The EPIC100 Rx and Tx buffer descriptors. Note that these 228 * really ARE host-endian; it's not a misannotation. We tell 229 * the card to byteswap them internally on big-endian hosts - 230 * look for #ifdef __BIG_ENDIAN in epic_open(). 231 */ 232 233struct epic_tx_desc { 234 u32 txstatus; 235 u32 bufaddr; 236 u32 buflength; 237 u32 next; 238}; 239 240struct epic_rx_desc { 241 u32 rxstatus; 242 u32 bufaddr; 243 u32 buflength; 244 u32 next; 245}; 246 247enum desc_status_bits { 248 DescOwn=0x8000, 249}; 250 251#define PRIV_ALIGN 15 /* Required alignment mask */ 252struct epic_private { 253 struct epic_rx_desc *rx_ring; 254 struct epic_tx_desc *tx_ring; 255 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 256 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 257 /* The addresses of receive-in-place skbuffs. */ 258 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 259 260 dma_addr_t tx_ring_dma; 261 dma_addr_t rx_ring_dma; 262 263 /* Ring pointers. */ 264 spinlock_t lock; /* Group with Tx control cache line. */ 265 spinlock_t napi_lock; 266 struct napi_struct napi; 267 unsigned int cur_tx, dirty_tx; 268 269 unsigned int cur_rx, dirty_rx; 270 u32 irq_mask; 271 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 272 273 void __iomem *ioaddr; 274 struct pci_dev *pci_dev; /* PCI bus location. */ 275 int chip_id, chip_flags; 276 277 struct timer_list timer; /* Media selection timer. */ 278 int tx_threshold; 279 unsigned char mc_filter[8]; 280 signed char phys[4]; /* MII device addresses. */ 281 u16 advertising; /* NWay media advertisement */ 282 int mii_phy_cnt; 283 u32 ethtool_ops_nesting; 284 struct mii_if_info mii; 285 unsigned int tx_full:1; /* The Tx queue is full. */ 286 unsigned int default_port:4; /* Last dev->if_port value. */ 287}; 288 289static int epic_open(struct net_device *dev); 290static int read_eeprom(struct epic_private *, int); 291static int mdio_read(struct net_device *dev, int phy_id, int location); 292static void mdio_write(struct net_device *dev, int phy_id, int loc, int val); 293static void epic_restart(struct net_device *dev); 294static void epic_timer(struct timer_list *t); 295static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue); 296static void epic_init_ring(struct net_device *dev); 297static netdev_tx_t epic_start_xmit(struct sk_buff *skb, 298 struct net_device *dev); 299static int epic_rx(struct net_device *dev, int budget); 300static int epic_poll(struct napi_struct *napi, int budget); 301static irqreturn_t epic_interrupt(int irq, void *dev_instance); 302static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 303static const struct ethtool_ops netdev_ethtool_ops; 304static int epic_close(struct net_device *dev); 305static struct net_device_stats *epic_get_stats(struct net_device *dev); 306static void set_rx_mode(struct net_device *dev); 307 308static const struct net_device_ops epic_netdev_ops = { 309 .ndo_open = epic_open, 310 .ndo_stop = epic_close, 311 .ndo_start_xmit = epic_start_xmit, 312 .ndo_tx_timeout = epic_tx_timeout, 313 .ndo_get_stats = epic_get_stats, 314 .ndo_set_rx_mode = set_rx_mode, 315 .ndo_eth_ioctl = netdev_ioctl, 316 .ndo_set_mac_address = eth_mac_addr, 317 .ndo_validate_addr = eth_validate_addr, 318}; 319 320static int epic_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 321{ 322 static int card_idx = -1; 323 void __iomem *ioaddr; 324 int chip_idx = (int) ent->driver_data; 325 struct net_device *dev; 326 struct epic_private *ep; 327 int i, ret, option = 0, duplex = 0; 328 __le16 addr[ETH_ALEN / 2]; 329 void *ring_space; 330 dma_addr_t ring_dma; 331 332/* when built into the kernel, we only print version if device is found */ 333#ifndef MODULE 334 pr_info_once("%s%s\n", version, version2); 335#endif 336 337 card_idx++; 338 339 ret = pci_enable_device(pdev); 340 if (ret) 341 goto out; 342 343 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) { 344 dev_err(&pdev->dev, "no PCI region space\n"); 345 ret = -ENODEV; 346 goto err_out_disable; 347 } 348 349 pci_set_master(pdev); 350 351 ret = pci_request_regions(pdev, DRV_NAME); 352 if (ret < 0) 353 goto err_out_disable; 354 355 ret = -ENOMEM; 356 357 dev = alloc_etherdev(sizeof (*ep)); 358 if (!dev) 359 goto err_out_free_res; 360 361 SET_NETDEV_DEV(dev, &pdev->dev); 362 363 ioaddr = pci_iomap(pdev, EPIC_BAR, 0); 364 if (!ioaddr) { 365 dev_err(&pdev->dev, "ioremap failed\n"); 366 goto err_out_free_netdev; 367 } 368 369 pci_set_drvdata(pdev, dev); 370 ep = netdev_priv(dev); 371 ep->ioaddr = ioaddr; 372 ep->mii.dev = dev; 373 ep->mii.mdio_read = mdio_read; 374 ep->mii.mdio_write = mdio_write; 375 ep->mii.phy_id_mask = 0x1f; 376 ep->mii.reg_num_mask = 0x1f; 377 378 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 379 GFP_KERNEL); 380 if (!ring_space) 381 goto err_out_iounmap; 382 ep->tx_ring = ring_space; 383 ep->tx_ring_dma = ring_dma; 384 385 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 386 GFP_KERNEL); 387 if (!ring_space) 388 goto err_out_unmap_tx; 389 ep->rx_ring = ring_space; 390 ep->rx_ring_dma = ring_dma; 391 392 if (dev->mem_start) { 393 option = dev->mem_start; 394 duplex = (dev->mem_start & 16) ? 1 : 0; 395 } else if (card_idx >= 0 && card_idx < MAX_UNITS) { 396 if (options[card_idx] >= 0) 397 option = options[card_idx]; 398 if (full_duplex[card_idx] >= 0) 399 duplex = full_duplex[card_idx]; 400 } 401 402 spin_lock_init(&ep->lock); 403 spin_lock_init(&ep->napi_lock); 404 405 /* Bring the chip out of low-power mode. */ 406 ew32(GENCTL, 0x4200); 407 /* Magic?! If we don't set this bit the MII interface won't work. */ 408 /* This magic is documented in SMSC app note 7.15 */ 409 for (i = 16; i > 0; i--) 410 ew32(TEST1, 0x0008); 411 412 /* Turn on the MII transceiver. */ 413 ew32(MIICfg, 0x12); 414 if (chip_idx == 1) 415 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 416 ew32(GENCTL, 0x0200); 417 418 /* Note: the '175 does not have a serial EEPROM. */ 419 for (i = 0; i < 3; i++) 420 addr[i] = cpu_to_le16(er16(LAN0 + i*4)); 421 eth_hw_addr_set(dev, (u8 *)addr); 422 423 if (debug > 2) { 424 dev_dbg(&pdev->dev, "EEPROM contents:\n"); 425 for (i = 0; i < 64; i++) 426 pr_cont(" %4.4x%s", read_eeprom(ep, i), 427 i % 16 == 15 ? "\n" : ""); 428 } 429 430 ep->pci_dev = pdev; 431 ep->chip_id = chip_idx; 432 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags; 433 ep->irq_mask = 434 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) 435 | CntFull | TxUnderrun | EpicNapiEvent; 436 437 /* Find the connected MII xcvrs. 438 Doing this in open() would allow detecting external xcvrs later, but 439 takes much time and no cards have external MII. */ 440 { 441 int phy, phy_idx = 0; 442 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) { 443 int mii_status = mdio_read(dev, phy, MII_BMSR); 444 if (mii_status != 0xffff && mii_status != 0x0000) { 445 ep->phys[phy_idx++] = phy; 446 dev_info(&pdev->dev, 447 "MII transceiver #%d control " 448 "%4.4x status %4.4x.\n", 449 phy, mdio_read(dev, phy, 0), mii_status); 450 } 451 } 452 ep->mii_phy_cnt = phy_idx; 453 if (phy_idx != 0) { 454 phy = ep->phys[0]; 455 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE); 456 dev_info(&pdev->dev, 457 "Autonegotiation advertising %4.4x link " 458 "partner %4.4x.\n", 459 ep->mii.advertising, mdio_read(dev, phy, 5)); 460 } else if ( ! (ep->chip_flags & NO_MII)) { 461 dev_warn(&pdev->dev, 462 "***WARNING***: No MII transceiver found!\n"); 463 /* Use the known PHY address of the EPII. */ 464 ep->phys[0] = 3; 465 } 466 ep->mii.phy_id = ep->phys[0]; 467 } 468 469 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */ 470 if (ep->chip_flags & MII_PWRDWN) 471 ew32(NVCTL, er32(NVCTL) & ~0x483c); 472 ew32(GENCTL, 0x0008); 473 474 /* The lower four bits are the media type. */ 475 if (duplex) { 476 ep->mii.force_media = ep->mii.full_duplex = 1; 477 dev_info(&pdev->dev, "Forced full duplex requested.\n"); 478 } 479 dev->if_port = ep->default_port = option; 480 481 /* The Epic-specific entries in the device structure. */ 482 dev->netdev_ops = &epic_netdev_ops; 483 dev->ethtool_ops = &netdev_ethtool_ops; 484 dev->watchdog_timeo = TX_TIMEOUT; 485 netif_napi_add(dev, &ep->napi, epic_poll, 64); 486 487 ret = register_netdev(dev); 488 if (ret < 0) 489 goto err_out_unmap_rx; 490 491 netdev_info(dev, "%s at %lx, IRQ %d, %pM\n", 492 pci_id_tbl[chip_idx].name, 493 (long)pci_resource_start(pdev, EPIC_BAR), pdev->irq, 494 dev->dev_addr); 495 496out: 497 return ret; 498 499err_out_unmap_rx: 500 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring, 501 ep->rx_ring_dma); 502err_out_unmap_tx: 503 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring, 504 ep->tx_ring_dma); 505err_out_iounmap: 506 pci_iounmap(pdev, ioaddr); 507err_out_free_netdev: 508 free_netdev(dev); 509err_out_free_res: 510 pci_release_regions(pdev); 511err_out_disable: 512 pci_disable_device(pdev); 513 goto out; 514} 515 516/* Serial EEPROM section. */ 517 518/* EEPROM_Ctrl bits. */ 519#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 520#define EE_CS 0x02 /* EEPROM chip select. */ 521#define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ 522#define EE_WRITE_0 0x01 523#define EE_WRITE_1 0x09 524#define EE_DATA_READ 0x10 /* EEPROM chip data out. */ 525#define EE_ENB (0x0001 | EE_CS) 526 527/* Delay between EEPROM clock transitions. 528 This serves to flush the operation to the PCI bus. 529 */ 530 531#define eeprom_delay() er32(EECTL) 532 533/* The EEPROM commands include the alway-set leading bit. */ 534#define EE_WRITE_CMD (5 << 6) 535#define EE_READ64_CMD (6 << 6) 536#define EE_READ256_CMD (6 << 8) 537#define EE_ERASE_CMD (7 << 6) 538 539static void epic_disable_int(struct net_device *dev, struct epic_private *ep) 540{ 541 void __iomem *ioaddr = ep->ioaddr; 542 543 ew32(INTMASK, 0x00000000); 544} 545 546static inline void __epic_pci_commit(void __iomem *ioaddr) 547{ 548#ifndef USE_IO_OPS 549 er32(INTMASK); 550#endif 551} 552 553static inline void epic_napi_irq_off(struct net_device *dev, 554 struct epic_private *ep) 555{ 556 void __iomem *ioaddr = ep->ioaddr; 557 558 ew32(INTMASK, ep->irq_mask & ~EpicNapiEvent); 559 __epic_pci_commit(ioaddr); 560} 561 562static inline void epic_napi_irq_on(struct net_device *dev, 563 struct epic_private *ep) 564{ 565 void __iomem *ioaddr = ep->ioaddr; 566 567 /* No need to commit possible posted write */ 568 ew32(INTMASK, ep->irq_mask | EpicNapiEvent); 569} 570 571static int read_eeprom(struct epic_private *ep, int location) 572{ 573 void __iomem *ioaddr = ep->ioaddr; 574 int i; 575 int retval = 0; 576 int read_cmd = location | 577 (er32(EECTL) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD); 578 579 ew32(EECTL, EE_ENB & ~EE_CS); 580 ew32(EECTL, EE_ENB); 581 582 /* Shift the read command bits out. */ 583 for (i = 12; i >= 0; i--) { 584 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0; 585 ew32(EECTL, EE_ENB | dataval); 586 eeprom_delay(); 587 ew32(EECTL, EE_ENB | dataval | EE_SHIFT_CLK); 588 eeprom_delay(); 589 } 590 ew32(EECTL, EE_ENB); 591 592 for (i = 16; i > 0; i--) { 593 ew32(EECTL, EE_ENB | EE_SHIFT_CLK); 594 eeprom_delay(); 595 retval = (retval << 1) | ((er32(EECTL) & EE_DATA_READ) ? 1 : 0); 596 ew32(EECTL, EE_ENB); 597 eeprom_delay(); 598 } 599 600 /* Terminate the EEPROM access. */ 601 ew32(EECTL, EE_ENB & ~EE_CS); 602 return retval; 603} 604 605#define MII_READOP 1 606#define MII_WRITEOP 2 607static int mdio_read(struct net_device *dev, int phy_id, int location) 608{ 609 struct epic_private *ep = netdev_priv(dev); 610 void __iomem *ioaddr = ep->ioaddr; 611 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP; 612 int i; 613 614 ew32(MIICtrl, read_cmd); 615 /* Typical operation takes 25 loops. */ 616 for (i = 400; i > 0; i--) { 617 barrier(); 618 if ((er32(MIICtrl) & MII_READOP) == 0) { 619 /* Work around read failure bug. */ 620 if (phy_id == 1 && location < 6 && 621 er16(MIIData) == 0xffff) { 622 ew32(MIICtrl, read_cmd); 623 continue; 624 } 625 return er16(MIIData); 626 } 627 } 628 return 0xffff; 629} 630 631static void mdio_write(struct net_device *dev, int phy_id, int loc, int value) 632{ 633 struct epic_private *ep = netdev_priv(dev); 634 void __iomem *ioaddr = ep->ioaddr; 635 int i; 636 637 ew16(MIIData, value); 638 ew32(MIICtrl, (phy_id << 9) | (loc << 4) | MII_WRITEOP); 639 for (i = 10000; i > 0; i--) { 640 barrier(); 641 if ((er32(MIICtrl) & MII_WRITEOP) == 0) 642 break; 643 } 644} 645 646 647static int epic_open(struct net_device *dev) 648{ 649 struct epic_private *ep = netdev_priv(dev); 650 void __iomem *ioaddr = ep->ioaddr; 651 const int irq = ep->pci_dev->irq; 652 int rc, i; 653 654 /* Soft reset the chip. */ 655 ew32(GENCTL, 0x4001); 656 657 napi_enable(&ep->napi); 658 rc = request_irq(irq, epic_interrupt, IRQF_SHARED, dev->name, dev); 659 if (rc) { 660 napi_disable(&ep->napi); 661 return rc; 662 } 663 664 epic_init_ring(dev); 665 666 ew32(GENCTL, 0x4000); 667 /* This magic is documented in SMSC app note 7.15 */ 668 for (i = 16; i > 0; i--) 669 ew32(TEST1, 0x0008); 670 671 /* Pull the chip out of low-power mode, enable interrupts, and set for 672 PCI read multiple. The MIIcfg setting and strange write order are 673 required by the details of which bits are reset and the transceiver 674 wiring on the Ositech CardBus card. 675 */ 676#if 0 677 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 678#endif 679 if (ep->chip_flags & MII_PWRDWN) 680 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 681 682 /* Tell the chip to byteswap descriptors on big-endian hosts */ 683#ifdef __BIG_ENDIAN 684 ew32(GENCTL, 0x4432 | (RX_FIFO_THRESH << 8)); 685 er32(GENCTL); 686 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 687#else 688 ew32(GENCTL, 0x4412 | (RX_FIFO_THRESH << 8)); 689 er32(GENCTL); 690 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 691#endif 692 693 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */ 694 695 for (i = 0; i < 3; i++) 696 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 697 698 ep->tx_threshold = TX_FIFO_THRESH; 699 ew32(TxThresh, ep->tx_threshold); 700 701 if (media2miictl[dev->if_port & 15]) { 702 if (ep->mii_phy_cnt) 703 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]); 704 if (dev->if_port == 1) { 705 if (debug > 1) 706 netdev_info(dev, "Using the 10base2 transceiver, MII status %4.4x.\n", 707 mdio_read(dev, ep->phys[0], MII_BMSR)); 708 } 709 } else { 710 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA); 711 if (mii_lpa != 0xffff) { 712 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL) 713 ep->mii.full_duplex = 1; 714 else if (! (mii_lpa & LPA_LPACK)) 715 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 716 if (debug > 1) 717 netdev_info(dev, "Setting %s-duplex based on MII xcvr %d register read of %4.4x.\n", 718 ep->mii.full_duplex ? "full" 719 : "half", 720 ep->phys[0], mii_lpa); 721 } 722 } 723 724 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 725 ew32(PRxCDAR, ep->rx_ring_dma); 726 ew32(PTxCDAR, ep->tx_ring_dma); 727 728 /* Start the chip's Rx process. */ 729 set_rx_mode(dev); 730 ew32(COMMAND, StartRx | RxQueued); 731 732 netif_start_queue(dev); 733 734 /* Enable interrupts by setting the interrupt mask. */ 735 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 736 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 737 TxUnderrun); 738 739 if (debug > 1) { 740 netdev_dbg(dev, "epic_open() ioaddr %p IRQ %d status %4.4x %s-duplex.\n", 741 ioaddr, irq, er32(GENCTL), 742 ep->mii.full_duplex ? "full" : "half"); 743 } 744 745 /* Set the timer to switch to check for link beat and perhaps switch 746 to an alternate media type. */ 747 timer_setup(&ep->timer, epic_timer, 0); 748 ep->timer.expires = jiffies + 3*HZ; 749 add_timer(&ep->timer); 750 751 return rc; 752} 753 754/* Reset the chip to recover from a PCI transaction error. 755 This may occur at interrupt time. */ 756static void epic_pause(struct net_device *dev) 757{ 758 struct net_device_stats *stats = &dev->stats; 759 struct epic_private *ep = netdev_priv(dev); 760 void __iomem *ioaddr = ep->ioaddr; 761 762 netif_stop_queue (dev); 763 764 /* Disable interrupts by clearing the interrupt mask. */ 765 ew32(INTMASK, 0x00000000); 766 /* Stop the chip's Tx and Rx DMA processes. */ 767 ew16(COMMAND, StopRx | StopTxDMA | StopRxDMA); 768 769 /* Update the error counts. */ 770 if (er16(COMMAND) != 0xffff) { 771 stats->rx_missed_errors += er8(MPCNT); 772 stats->rx_frame_errors += er8(ALICNT); 773 stats->rx_crc_errors += er8(CRCCNT); 774 } 775 776 /* Remove the packets on the Rx queue. */ 777 epic_rx(dev, RX_RING_SIZE); 778} 779 780static void epic_restart(struct net_device *dev) 781{ 782 struct epic_private *ep = netdev_priv(dev); 783 void __iomem *ioaddr = ep->ioaddr; 784 int i; 785 786 /* Soft reset the chip. */ 787 ew32(GENCTL, 0x4001); 788 789 netdev_dbg(dev, "Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n", 790 ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx); 791 udelay(1); 792 793 /* This magic is documented in SMSC app note 7.15 */ 794 for (i = 16; i > 0; i--) 795 ew32(TEST1, 0x0008); 796 797#ifdef __BIG_ENDIAN 798 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8)); 799#else 800 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8)); 801#endif 802 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12); 803 if (ep->chip_flags & MII_PWRDWN) 804 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 805 806 for (i = 0; i < 3; i++) 807 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i])); 808 809 ep->tx_threshold = TX_FIFO_THRESH; 810 ew32(TxThresh, ep->tx_threshold); 811 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79); 812 ew32(PRxCDAR, ep->rx_ring_dma + 813 (ep->cur_rx % RX_RING_SIZE) * sizeof(struct epic_rx_desc)); 814 ew32(PTxCDAR, ep->tx_ring_dma + 815 (ep->dirty_tx % TX_RING_SIZE) * sizeof(struct epic_tx_desc)); 816 817 /* Start the chip's Rx process. */ 818 set_rx_mode(dev); 819 ew32(COMMAND, StartRx | RxQueued); 820 821 /* Enable interrupts by setting the interrupt mask. */ 822 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull | 823 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) | 824 TxUnderrun); 825 826 netdev_dbg(dev, "epic_restart() done, cmd status %4.4x, ctl %4.4x interrupt %4.4x.\n", 827 er32(COMMAND), er32(GENCTL), er32(INTSTAT)); 828} 829 830static void check_media(struct net_device *dev) 831{ 832 struct epic_private *ep = netdev_priv(dev); 833 void __iomem *ioaddr = ep->ioaddr; 834 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0; 835 int negotiated = mii_lpa & ep->mii.advertising; 836 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 837 838 if (ep->mii.force_media) 839 return; 840 if (mii_lpa == 0xffff) /* Bogus read */ 841 return; 842 if (ep->mii.full_duplex != duplex) { 843 ep->mii.full_duplex = duplex; 844 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner capability of %4.4x.\n", 845 ep->mii.full_duplex ? "full" : "half", 846 ep->phys[0], mii_lpa); 847 ew32(TxCtrl, ep->mii.full_duplex ? 0x7F : 0x79); 848 } 849} 850 851static void epic_timer(struct timer_list *t) 852{ 853 struct epic_private *ep = from_timer(ep, t, timer); 854 struct net_device *dev = ep->mii.dev; 855 void __iomem *ioaddr = ep->ioaddr; 856 int next_tick = 5*HZ; 857 858 if (debug > 3) { 859 netdev_dbg(dev, "Media monitor tick, Tx status %8.8x.\n", 860 er32(TxSTAT)); 861 netdev_dbg(dev, "Other registers are IntMask %4.4x IntStatus %4.4x RxStatus %4.4x.\n", 862 er32(INTMASK), er32(INTSTAT), er32(RxSTAT)); 863 } 864 865 check_media(dev); 866 867 ep->timer.expires = jiffies + next_tick; 868 add_timer(&ep->timer); 869} 870 871static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue) 872{ 873 struct epic_private *ep = netdev_priv(dev); 874 void __iomem *ioaddr = ep->ioaddr; 875 876 if (debug > 0) { 877 netdev_warn(dev, "Transmit timeout using MII device, Tx status %4.4x.\n", 878 er16(TxSTAT)); 879 if (debug > 1) { 880 netdev_dbg(dev, "Tx indices: dirty_tx %d, cur_tx %d.\n", 881 ep->dirty_tx, ep->cur_tx); 882 } 883 } 884 if (er16(TxSTAT) & 0x10) { /* Tx FIFO underflow. */ 885 dev->stats.tx_fifo_errors++; 886 ew32(COMMAND, RestartTx); 887 } else { 888 epic_restart(dev); 889 ew32(COMMAND, TxQueued); 890 } 891 892 netif_trans_update(dev); /* prevent tx timeout */ 893 dev->stats.tx_errors++; 894 if (!ep->tx_full) 895 netif_wake_queue(dev); 896} 897 898/* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 899static void epic_init_ring(struct net_device *dev) 900{ 901 struct epic_private *ep = netdev_priv(dev); 902 int i; 903 904 ep->tx_full = 0; 905 ep->dirty_tx = ep->cur_tx = 0; 906 ep->cur_rx = ep->dirty_rx = 0; 907 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 908 909 /* Initialize all Rx descriptors. */ 910 for (i = 0; i < RX_RING_SIZE; i++) { 911 ep->rx_ring[i].rxstatus = 0; 912 ep->rx_ring[i].buflength = ep->rx_buf_sz; 913 ep->rx_ring[i].next = ep->rx_ring_dma + 914 (i+1)*sizeof(struct epic_rx_desc); 915 ep->rx_skbuff[i] = NULL; 916 } 917 /* Mark the last entry as wrapping the ring. */ 918 ep->rx_ring[i-1].next = ep->rx_ring_dma; 919 920 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 921 for (i = 0; i < RX_RING_SIZE; i++) { 922 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 923 ep->rx_skbuff[i] = skb; 924 if (skb == NULL) 925 break; 926 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 927 ep->rx_ring[i].bufaddr = dma_map_single(&ep->pci_dev->dev, 928 skb->data, 929 ep->rx_buf_sz, 930 DMA_FROM_DEVICE); 931 ep->rx_ring[i].rxstatus = DescOwn; 932 } 933 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 934 935 /* The Tx buffer descriptor is filled in as needed, but we 936 do need to clear the ownership bit. */ 937 for (i = 0; i < TX_RING_SIZE; i++) { 938 ep->tx_skbuff[i] = NULL; 939 ep->tx_ring[i].txstatus = 0x0000; 940 ep->tx_ring[i].next = ep->tx_ring_dma + 941 (i+1)*sizeof(struct epic_tx_desc); 942 } 943 ep->tx_ring[i-1].next = ep->tx_ring_dma; 944} 945 946static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev) 947{ 948 struct epic_private *ep = netdev_priv(dev); 949 void __iomem *ioaddr = ep->ioaddr; 950 int entry, free_count; 951 u32 ctrl_word; 952 unsigned long flags; 953 954 if (skb_padto(skb, ETH_ZLEN)) 955 return NETDEV_TX_OK; 956 957 /* Caution: the write order is important here, set the field with the 958 "ownership" bit last. */ 959 960 /* Calculate the next Tx descriptor entry. */ 961 spin_lock_irqsave(&ep->lock, flags); 962 free_count = ep->cur_tx - ep->dirty_tx; 963 entry = ep->cur_tx % TX_RING_SIZE; 964 965 ep->tx_skbuff[entry] = skb; 966 ep->tx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev, 967 skb->data, skb->len, 968 DMA_TO_DEVICE); 969 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */ 970 ctrl_word = 0x100000; /* No interrupt */ 971 } else if (free_count == TX_QUEUE_LEN/2) { 972 ctrl_word = 0x140000; /* Tx-done intr. */ 973 } else if (free_count < TX_QUEUE_LEN - 1) { 974 ctrl_word = 0x100000; /* No Tx-done intr. */ 975 } else { 976 /* Leave room for an additional entry. */ 977 ctrl_word = 0x140000; /* Tx-done intr. */ 978 ep->tx_full = 1; 979 } 980 ep->tx_ring[entry].buflength = ctrl_word | skb->len; 981 ep->tx_ring[entry].txstatus = 982 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16) 983 | DescOwn; 984 985 ep->cur_tx++; 986 if (ep->tx_full) 987 netif_stop_queue(dev); 988 989 spin_unlock_irqrestore(&ep->lock, flags); 990 /* Trigger an immediate transmit demand. */ 991 ew32(COMMAND, TxQueued); 992 993 if (debug > 4) 994 netdev_dbg(dev, "Queued Tx packet size %d to slot %d, flag %2.2x Tx status %8.8x.\n", 995 skb->len, entry, ctrl_word, er32(TxSTAT)); 996 997 return NETDEV_TX_OK; 998} 999 1000static void epic_tx_error(struct net_device *dev, struct epic_private *ep, 1001 int status) 1002{ 1003 struct net_device_stats *stats = &dev->stats; 1004 1005#ifndef final_version 1006 /* There was an major error, log it. */ 1007 if (debug > 1) 1008 netdev_dbg(dev, "Transmit error, Tx status %8.8x.\n", 1009 status); 1010#endif 1011 stats->tx_errors++; 1012 if (status & 0x1050) 1013 stats->tx_aborted_errors++; 1014 if (status & 0x0008) 1015 stats->tx_carrier_errors++; 1016 if (status & 0x0040) 1017 stats->tx_window_errors++; 1018 if (status & 0x0010) 1019 stats->tx_fifo_errors++; 1020} 1021 1022static void epic_tx(struct net_device *dev, struct epic_private *ep) 1023{ 1024 unsigned int dirty_tx, cur_tx; 1025 1026 /* 1027 * Note: if this lock becomes a problem we can narrow the locked 1028 * region at the cost of occasionally grabbing the lock more times. 1029 */ 1030 cur_tx = ep->cur_tx; 1031 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) { 1032 struct sk_buff *skb; 1033 int entry = dirty_tx % TX_RING_SIZE; 1034 int txstatus = ep->tx_ring[entry].txstatus; 1035 1036 if (txstatus & DescOwn) 1037 break; /* It still hasn't been Txed */ 1038 1039 if (likely(txstatus & 0x0001)) { 1040 dev->stats.collisions += (txstatus >> 8) & 15; 1041 dev->stats.tx_packets++; 1042 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len; 1043 } else 1044 epic_tx_error(dev, ep, txstatus); 1045 1046 /* Free the original skb. */ 1047 skb = ep->tx_skbuff[entry]; 1048 dma_unmap_single(&ep->pci_dev->dev, 1049 ep->tx_ring[entry].bufaddr, skb->len, 1050 DMA_TO_DEVICE); 1051 dev_consume_skb_irq(skb); 1052 ep->tx_skbuff[entry] = NULL; 1053 } 1054 1055#ifndef final_version 1056 if (cur_tx - dirty_tx > TX_RING_SIZE) { 1057 netdev_warn(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", 1058 dirty_tx, cur_tx, ep->tx_full); 1059 dirty_tx += TX_RING_SIZE; 1060 } 1061#endif 1062 ep->dirty_tx = dirty_tx; 1063 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) { 1064 /* The ring is no longer full, allow new TX entries. */ 1065 ep->tx_full = 0; 1066 netif_wake_queue(dev); 1067 } 1068} 1069 1070/* The interrupt handler does all of the Rx thread work and cleans up 1071 after the Tx thread. */ 1072static irqreturn_t epic_interrupt(int irq, void *dev_instance) 1073{ 1074 struct net_device *dev = dev_instance; 1075 struct epic_private *ep = netdev_priv(dev); 1076 void __iomem *ioaddr = ep->ioaddr; 1077 unsigned int handled = 0; 1078 int status; 1079 1080 status = er32(INTSTAT); 1081 /* Acknowledge all of the current interrupt sources ASAP. */ 1082 ew32(INTSTAT, status & EpicNormalEvent); 1083 1084 if (debug > 4) { 1085 netdev_dbg(dev, "Interrupt, status=%#8.8x new intstat=%#8.8x.\n", 1086 status, er32(INTSTAT)); 1087 } 1088 1089 if ((status & IntrSummary) == 0) 1090 goto out; 1091 1092 handled = 1; 1093 1094 if (status & EpicNapiEvent) { 1095 spin_lock(&ep->napi_lock); 1096 if (napi_schedule_prep(&ep->napi)) { 1097 epic_napi_irq_off(dev, ep); 1098 __napi_schedule(&ep->napi); 1099 } 1100 spin_unlock(&ep->napi_lock); 1101 } 1102 status &= ~EpicNapiEvent; 1103 1104 /* Check uncommon events all at once. */ 1105 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) { 1106 struct net_device_stats *stats = &dev->stats; 1107 1108 if (status == EpicRemoved) 1109 goto out; 1110 1111 /* Always update the error counts to avoid overhead later. */ 1112 stats->rx_missed_errors += er8(MPCNT); 1113 stats->rx_frame_errors += er8(ALICNT); 1114 stats->rx_crc_errors += er8(CRCCNT); 1115 1116 if (status & TxUnderrun) { /* Tx FIFO underflow. */ 1117 stats->tx_fifo_errors++; 1118 ew32(TxThresh, ep->tx_threshold += 128); 1119 /* Restart the transmit process. */ 1120 ew32(COMMAND, RestartTx); 1121 } 1122 if (status & PCIBusErr170) { 1123 netdev_err(dev, "PCI Bus Error! status %4.4x.\n", 1124 status); 1125 epic_pause(dev); 1126 epic_restart(dev); 1127 } 1128 /* Clear all error sources. */ 1129 ew32(INTSTAT, status & 0x7f18); 1130 } 1131 1132out: 1133 if (debug > 3) { 1134 netdev_dbg(dev, "exit interrupt, intr_status=%#4.4x.\n", 1135 status); 1136 } 1137 1138 return IRQ_RETVAL(handled); 1139} 1140 1141static int epic_rx(struct net_device *dev, int budget) 1142{ 1143 struct epic_private *ep = netdev_priv(dev); 1144 int entry = ep->cur_rx % RX_RING_SIZE; 1145 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx; 1146 int work_done = 0; 1147 1148 if (debug > 4) 1149 netdev_dbg(dev, " In epic_rx(), entry %d %8.8x.\n", entry, 1150 ep->rx_ring[entry].rxstatus); 1151 1152 if (rx_work_limit > budget) 1153 rx_work_limit = budget; 1154 1155 /* If we own the next entry, it's a new packet. Send it up. */ 1156 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) { 1157 int status = ep->rx_ring[entry].rxstatus; 1158 1159 if (debug > 4) 1160 netdev_dbg(dev, " epic_rx() status was %8.8x.\n", 1161 status); 1162 if (--rx_work_limit < 0) 1163 break; 1164 if (status & 0x2006) { 1165 if (debug > 2) 1166 netdev_dbg(dev, "epic_rx() error status was %8.8x.\n", 1167 status); 1168 if (status & 0x2000) { 1169 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %4.4x!\n", 1170 status); 1171 dev->stats.rx_length_errors++; 1172 } else if (status & 0x0006) 1173 /* Rx Frame errors are counted in hardware. */ 1174 dev->stats.rx_errors++; 1175 } else { 1176 /* Malloc up new buffer, compatible with net-2e. */ 1177 /* Omit the four octet CRC from the length. */ 1178 short pkt_len = (status >> 16) - 4; 1179 struct sk_buff *skb; 1180 1181 if (pkt_len > PKT_BUF_SZ - 4) { 1182 netdev_err(dev, "Oversized Ethernet frame, status %x %d bytes.\n", 1183 status, pkt_len); 1184 pkt_len = 1514; 1185 } 1186 /* Check if the packet is long enough to accept without copying 1187 to a minimally-sized skbuff. */ 1188 if (pkt_len < rx_copybreak && 1189 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1190 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1191 dma_sync_single_for_cpu(&ep->pci_dev->dev, 1192 ep->rx_ring[entry].bufaddr, 1193 ep->rx_buf_sz, 1194 DMA_FROM_DEVICE); 1195 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len); 1196 skb_put(skb, pkt_len); 1197 dma_sync_single_for_device(&ep->pci_dev->dev, 1198 ep->rx_ring[entry].bufaddr, 1199 ep->rx_buf_sz, 1200 DMA_FROM_DEVICE); 1201 } else { 1202 dma_unmap_single(&ep->pci_dev->dev, 1203 ep->rx_ring[entry].bufaddr, 1204 ep->rx_buf_sz, 1205 DMA_FROM_DEVICE); 1206 skb_put(skb = ep->rx_skbuff[entry], pkt_len); 1207 ep->rx_skbuff[entry] = NULL; 1208 } 1209 skb->protocol = eth_type_trans(skb, dev); 1210 netif_receive_skb(skb); 1211 dev->stats.rx_packets++; 1212 dev->stats.rx_bytes += pkt_len; 1213 } 1214 work_done++; 1215 entry = (++ep->cur_rx) % RX_RING_SIZE; 1216 } 1217 1218 /* Refill the Rx ring buffers. */ 1219 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) { 1220 entry = ep->dirty_rx % RX_RING_SIZE; 1221 if (ep->rx_skbuff[entry] == NULL) { 1222 struct sk_buff *skb; 1223 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2); 1224 if (skb == NULL) 1225 break; 1226 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1227 ep->rx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev, 1228 skb->data, 1229 ep->rx_buf_sz, 1230 DMA_FROM_DEVICE); 1231 work_done++; 1232 } 1233 /* AV: shouldn't we add a barrier here? */ 1234 ep->rx_ring[entry].rxstatus = DescOwn; 1235 } 1236 return work_done; 1237} 1238 1239static void epic_rx_err(struct net_device *dev, struct epic_private *ep) 1240{ 1241 void __iomem *ioaddr = ep->ioaddr; 1242 int status; 1243 1244 status = er32(INTSTAT); 1245 1246 if (status == EpicRemoved) 1247 return; 1248 if (status & RxOverflow) /* Missed a Rx frame. */ 1249 dev->stats.rx_errors++; 1250 if (status & (RxOverflow | RxFull)) 1251 ew16(COMMAND, RxQueued); 1252} 1253 1254static int epic_poll(struct napi_struct *napi, int budget) 1255{ 1256 struct epic_private *ep = container_of(napi, struct epic_private, napi); 1257 struct net_device *dev = ep->mii.dev; 1258 void __iomem *ioaddr = ep->ioaddr; 1259 int work_done; 1260 1261 epic_tx(dev, ep); 1262 1263 work_done = epic_rx(dev, budget); 1264 1265 epic_rx_err(dev, ep); 1266 1267 if (work_done < budget && napi_complete_done(napi, work_done)) { 1268 unsigned long flags; 1269 1270 spin_lock_irqsave(&ep->napi_lock, flags); 1271 1272 ew32(INTSTAT, EpicNapiEvent); 1273 epic_napi_irq_on(dev, ep); 1274 spin_unlock_irqrestore(&ep->napi_lock, flags); 1275 } 1276 1277 return work_done; 1278} 1279 1280static int epic_close(struct net_device *dev) 1281{ 1282 struct epic_private *ep = netdev_priv(dev); 1283 struct pci_dev *pdev = ep->pci_dev; 1284 void __iomem *ioaddr = ep->ioaddr; 1285 struct sk_buff *skb; 1286 int i; 1287 1288 netif_stop_queue(dev); 1289 napi_disable(&ep->napi); 1290 1291 if (debug > 1) 1292 netdev_dbg(dev, "Shutting down ethercard, status was %2.2x.\n", 1293 er32(INTSTAT)); 1294 1295 del_timer_sync(&ep->timer); 1296 1297 epic_disable_int(dev, ep); 1298 1299 free_irq(pdev->irq, dev); 1300 1301 epic_pause(dev); 1302 1303 /* Free all the skbuffs in the Rx queue. */ 1304 for (i = 0; i < RX_RING_SIZE; i++) { 1305 skb = ep->rx_skbuff[i]; 1306 ep->rx_skbuff[i] = NULL; 1307 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */ 1308 ep->rx_ring[i].buflength = 0; 1309 if (skb) { 1310 dma_unmap_single(&pdev->dev, ep->rx_ring[i].bufaddr, 1311 ep->rx_buf_sz, DMA_FROM_DEVICE); 1312 dev_kfree_skb(skb); 1313 } 1314 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */ 1315 } 1316 for (i = 0; i < TX_RING_SIZE; i++) { 1317 skb = ep->tx_skbuff[i]; 1318 ep->tx_skbuff[i] = NULL; 1319 if (!skb) 1320 continue; 1321 dma_unmap_single(&pdev->dev, ep->tx_ring[i].bufaddr, skb->len, 1322 DMA_TO_DEVICE); 1323 dev_kfree_skb(skb); 1324 } 1325 1326 /* Green! Leave the chip in low-power mode. */ 1327 ew32(GENCTL, 0x0008); 1328 1329 return 0; 1330} 1331 1332static struct net_device_stats *epic_get_stats(struct net_device *dev) 1333{ 1334 struct epic_private *ep = netdev_priv(dev); 1335 void __iomem *ioaddr = ep->ioaddr; 1336 1337 if (netif_running(dev)) { 1338 struct net_device_stats *stats = &dev->stats; 1339 1340 stats->rx_missed_errors += er8(MPCNT); 1341 stats->rx_frame_errors += er8(ALICNT); 1342 stats->rx_crc_errors += er8(CRCCNT); 1343 } 1344 1345 return &dev->stats; 1346} 1347 1348/* Set or clear the multicast filter for this adaptor. 1349 Note that we only use exclusion around actually queueing the 1350 new frame, not around filling ep->setup_frame. This is non-deterministic 1351 when re-entered but still correct. */ 1352 1353static void set_rx_mode(struct net_device *dev) 1354{ 1355 struct epic_private *ep = netdev_priv(dev); 1356 void __iomem *ioaddr = ep->ioaddr; 1357 unsigned char mc_filter[8]; /* Multicast hash filter */ 1358 int i; 1359 1360 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1361 ew32(RxCtrl, 0x002c); 1362 /* Unconditionally log net taps. */ 1363 memset(mc_filter, 0xff, sizeof(mc_filter)); 1364 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) { 1365 /* There is apparently a chip bug, so the multicast filter 1366 is never enabled. */ 1367 /* Too many to filter perfectly -- accept all multicasts. */ 1368 memset(mc_filter, 0xff, sizeof(mc_filter)); 1369 ew32(RxCtrl, 0x000c); 1370 } else if (netdev_mc_empty(dev)) { 1371 ew32(RxCtrl, 0x0004); 1372 return; 1373 } else { /* Never executed, for now. */ 1374 struct netdev_hw_addr *ha; 1375 1376 memset(mc_filter, 0, sizeof(mc_filter)); 1377 netdev_for_each_mc_addr(ha, dev) { 1378 unsigned int bit_nr = 1379 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f; 1380 mc_filter[bit_nr >> 3] |= (1 << bit_nr); 1381 } 1382 } 1383 /* ToDo: perhaps we need to stop the Tx and Rx process here? */ 1384 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) { 1385 for (i = 0; i < 4; i++) 1386 ew16(MC0 + i*4, ((u16 *)mc_filter)[i]); 1387 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter)); 1388 } 1389} 1390 1391static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1392{ 1393 struct epic_private *np = netdev_priv(dev); 1394 1395 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1396 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1397 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1398} 1399 1400static int netdev_get_link_ksettings(struct net_device *dev, 1401 struct ethtool_link_ksettings *cmd) 1402{ 1403 struct epic_private *np = netdev_priv(dev); 1404 1405 spin_lock_irq(&np->lock); 1406 mii_ethtool_get_link_ksettings(&np->mii, cmd); 1407 spin_unlock_irq(&np->lock); 1408 1409 return 0; 1410} 1411 1412static int netdev_set_link_ksettings(struct net_device *dev, 1413 const struct ethtool_link_ksettings *cmd) 1414{ 1415 struct epic_private *np = netdev_priv(dev); 1416 int rc; 1417 1418 spin_lock_irq(&np->lock); 1419 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd); 1420 spin_unlock_irq(&np->lock); 1421 1422 return rc; 1423} 1424 1425static int netdev_nway_reset(struct net_device *dev) 1426{ 1427 struct epic_private *np = netdev_priv(dev); 1428 return mii_nway_restart(&np->mii); 1429} 1430 1431static u32 netdev_get_link(struct net_device *dev) 1432{ 1433 struct epic_private *np = netdev_priv(dev); 1434 return mii_link_ok(&np->mii); 1435} 1436 1437static u32 netdev_get_msglevel(struct net_device *dev) 1438{ 1439 return debug; 1440} 1441 1442static void netdev_set_msglevel(struct net_device *dev, u32 value) 1443{ 1444 debug = value; 1445} 1446 1447static int ethtool_begin(struct net_device *dev) 1448{ 1449 struct epic_private *ep = netdev_priv(dev); 1450 void __iomem *ioaddr = ep->ioaddr; 1451 1452 if (ep->ethtool_ops_nesting == U32_MAX) 1453 return -EBUSY; 1454 /* power-up, if interface is down */ 1455 if (!ep->ethtool_ops_nesting++ && !netif_running(dev)) { 1456 ew32(GENCTL, 0x0200); 1457 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1458 } 1459 return 0; 1460} 1461 1462static void ethtool_complete(struct net_device *dev) 1463{ 1464 struct epic_private *ep = netdev_priv(dev); 1465 void __iomem *ioaddr = ep->ioaddr; 1466 1467 /* power-down, if interface is down */ 1468 if (!--ep->ethtool_ops_nesting && !netif_running(dev)) { 1469 ew32(GENCTL, 0x0008); 1470 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1471 } 1472} 1473 1474static const struct ethtool_ops netdev_ethtool_ops = { 1475 .get_drvinfo = netdev_get_drvinfo, 1476 .nway_reset = netdev_nway_reset, 1477 .get_link = netdev_get_link, 1478 .get_msglevel = netdev_get_msglevel, 1479 .set_msglevel = netdev_set_msglevel, 1480 .begin = ethtool_begin, 1481 .complete = ethtool_complete, 1482 .get_link_ksettings = netdev_get_link_ksettings, 1483 .set_link_ksettings = netdev_set_link_ksettings, 1484}; 1485 1486static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1487{ 1488 struct epic_private *np = netdev_priv(dev); 1489 void __iomem *ioaddr = np->ioaddr; 1490 struct mii_ioctl_data *data = if_mii(rq); 1491 int rc; 1492 1493 /* power-up, if interface is down */ 1494 if (! netif_running(dev)) { 1495 ew32(GENCTL, 0x0200); 1496 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800); 1497 } 1498 1499 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */ 1500 spin_lock_irq(&np->lock); 1501 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL); 1502 spin_unlock_irq(&np->lock); 1503 1504 /* power-down, if interface is down */ 1505 if (! netif_running(dev)) { 1506 ew32(GENCTL, 0x0008); 1507 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000); 1508 } 1509 return rc; 1510} 1511 1512 1513static void epic_remove_one(struct pci_dev *pdev) 1514{ 1515 struct net_device *dev = pci_get_drvdata(pdev); 1516 struct epic_private *ep = netdev_priv(dev); 1517 1518 unregister_netdev(dev); 1519 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring, 1520 ep->tx_ring_dma); 1521 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring, 1522 ep->rx_ring_dma); 1523 pci_iounmap(pdev, ep->ioaddr); 1524 free_netdev(dev); 1525 pci_release_regions(pdev); 1526 pci_disable_device(pdev); 1527 /* pci_power_off(pdev, -1); */ 1528} 1529 1530static int __maybe_unused epic_suspend(struct device *dev_d) 1531{ 1532 struct net_device *dev = dev_get_drvdata(dev_d); 1533 struct epic_private *ep = netdev_priv(dev); 1534 void __iomem *ioaddr = ep->ioaddr; 1535 1536 if (!netif_running(dev)) 1537 return 0; 1538 epic_pause(dev); 1539 /* Put the chip into low-power mode. */ 1540 ew32(GENCTL, 0x0008); 1541 /* pci_power_off(pdev, -1); */ 1542 return 0; 1543} 1544 1545 1546static int __maybe_unused epic_resume(struct device *dev_d) 1547{ 1548 struct net_device *dev = dev_get_drvdata(dev_d); 1549 1550 if (!netif_running(dev)) 1551 return 0; 1552 epic_restart(dev); 1553 /* pci_power_on(pdev); */ 1554 return 0; 1555} 1556 1557static SIMPLE_DEV_PM_OPS(epic_pm_ops, epic_suspend, epic_resume); 1558 1559static struct pci_driver epic_driver = { 1560 .name = DRV_NAME, 1561 .id_table = epic_pci_tbl, 1562 .probe = epic_init_one, 1563 .remove = epic_remove_one, 1564 .driver.pm = &epic_pm_ops, 1565}; 1566 1567 1568static int __init epic_init (void) 1569{ 1570/* when a module, this is printed whether or not devices are found in probe */ 1571#ifdef MODULE 1572 pr_info("%s%s\n", version, version2); 1573#endif 1574 1575 return pci_register_driver(&epic_driver); 1576} 1577 1578 1579static void __exit epic_cleanup (void) 1580{ 1581 pci_unregister_driver (&epic_driver); 1582} 1583 1584 1585module_init(epic_init); 1586module_exit(epic_cleanup);