cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

smc91x.c (65062B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * smc91x.c
      4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
      5 *
      6 * Copyright (C) 1996 by Erik Stahlman
      7 * Copyright (C) 2001 Standard Microsystems Corporation
      8 *	Developed by Simple Network Magic Corporation
      9 * Copyright (C) 2003 Monta Vista Software, Inc.
     10 *	Unified SMC91x driver by Nicolas Pitre
     11 *
     12 * Arguments:
     13 * 	io	= for the base address
     14 *	irq	= for the IRQ
     15 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
     16 *
     17 * original author:
     18 * 	Erik Stahlman <erik@vt.edu>
     19 *
     20 * hardware multicast code:
     21 *    Peter Cammaert <pc@denkart.be>
     22 *
     23 * contributors:
     24 * 	Daris A Nevil <dnevil@snmc.com>
     25 *      Nicolas Pitre <nico@fluxnic.net>
     26 *	Russell King <rmk@arm.linux.org.uk>
     27 *
     28 * History:
     29 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
     30 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
     31 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
     32 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
     33 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
     34 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
     35 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
     36 *                                more bus abstraction, big cleanup, etc.
     37 *   29/09/03  Russell King       - add driver model support
     38 *                                - ethtool support
     39 *                                - convert to use generic MII interface
     40 *                                - add link up/down notification
     41 *                                - don't try to handle full negotiation in
     42 *                                  smc_phy_configure
     43 *                                - clean up (and fix stack overrun) in PHY
     44 *                                  MII read/write functions
     45 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
     46 */
     47static const char version[] =
     48	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
     49
     50/* Debugging level */
     51#ifndef SMC_DEBUG
     52#define SMC_DEBUG		0
     53#endif
     54
     55
     56#include <linux/module.h>
     57#include <linux/kernel.h>
     58#include <linux/sched.h>
     59#include <linux/delay.h>
     60#include <linux/interrupt.h>
     61#include <linux/irq.h>
     62#include <linux/errno.h>
     63#include <linux/ioport.h>
     64#include <linux/crc32.h>
     65#include <linux/platform_device.h>
     66#include <linux/spinlock.h>
     67#include <linux/ethtool.h>
     68#include <linux/mii.h>
     69#include <linux/workqueue.h>
     70#include <linux/of.h>
     71#include <linux/of_device.h>
     72#include <linux/of_gpio.h>
     73
     74#include <linux/netdevice.h>
     75#include <linux/etherdevice.h>
     76#include <linux/skbuff.h>
     77
     78#include <asm/io.h>
     79
     80#include "smc91x.h"
     81
     82#if defined(CONFIG_ASSABET_NEPONSET)
     83#include <mach/assabet.h>
     84#include <mach/neponset.h>
     85#endif
     86
     87#ifndef SMC_NOWAIT
     88# define SMC_NOWAIT		0
     89#endif
     90static int nowait = SMC_NOWAIT;
     91module_param(nowait, int, 0400);
     92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
     93
     94/*
     95 * Transmit timeout, default 5 seconds.
     96 */
     97static int watchdog = 1000;
     98module_param(watchdog, int, 0400);
     99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
    100
    101MODULE_LICENSE("GPL");
    102MODULE_ALIAS("platform:smc91x");
    103
    104/*
    105 * The internal workings of the driver.  If you are changing anything
    106 * here with the SMC stuff, you should have the datasheet and know
    107 * what you are doing.
    108 */
    109#define CARDNAME "smc91x"
    110
    111/*
    112 * Use power-down feature of the chip
    113 */
    114#define POWER_DOWN		1
    115
    116/*
    117 * Wait time for memory to be free.  This probably shouldn't be
    118 * tuned that much, as waiting for this means nothing else happens
    119 * in the system
    120 */
    121#define MEMORY_WAIT_TIME	16
    122
    123/*
    124 * The maximum number of processing loops allowed for each call to the
    125 * IRQ handler.
    126 */
    127#define MAX_IRQ_LOOPS		8
    128
    129/*
    130 * This selects whether TX packets are sent one by one to the SMC91x internal
    131 * memory and throttled until transmission completes.  This may prevent
    132 * RX overruns a litle by keeping much of the memory free for RX packets
    133 * but to the expense of reduced TX throughput and increased IRQ overhead.
    134 * Note this is not a cure for a too slow data bus or too high IRQ latency.
    135 */
    136#define THROTTLE_TX_PKTS	0
    137
    138/*
    139 * The MII clock high/low times.  2x this number gives the MII clock period
    140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
    141 */
    142#define MII_DELAY		1
    143
    144#define DBG(n, dev, fmt, ...)					\
    145	do {							\
    146		if (SMC_DEBUG >= (n))				\
    147			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
    148	} while (0)
    149
    150#define PRINTK(dev, fmt, ...)					\
    151	do {							\
    152		if (SMC_DEBUG > 0)				\
    153			netdev_info(dev, fmt, ##__VA_ARGS__);	\
    154		else						\
    155			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
    156	} while (0)
    157
    158#if SMC_DEBUG > 3
    159static void PRINT_PKT(u_char *buf, int length)
    160{
    161	int i;
    162	int remainder;
    163	int lines;
    164
    165	lines = length / 16;
    166	remainder = length % 16;
    167
    168	for (i = 0; i < lines ; i ++) {
    169		int cur;
    170		printk(KERN_DEBUG);
    171		for (cur = 0; cur < 8; cur++) {
    172			u_char a, b;
    173			a = *buf++;
    174			b = *buf++;
    175			pr_cont("%02x%02x ", a, b);
    176		}
    177		pr_cont("\n");
    178	}
    179	printk(KERN_DEBUG);
    180	for (i = 0; i < remainder/2 ; i++) {
    181		u_char a, b;
    182		a = *buf++;
    183		b = *buf++;
    184		pr_cont("%02x%02x ", a, b);
    185	}
    186	pr_cont("\n");
    187}
    188#else
    189static inline void PRINT_PKT(u_char *buf, int length) { }
    190#endif
    191
    192
    193/* this enables an interrupt in the interrupt mask register */
    194#define SMC_ENABLE_INT(lp, x) do {					\
    195	unsigned char mask;						\
    196	unsigned long smc_enable_flags;					\
    197	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
    198	mask = SMC_GET_INT_MASK(lp);					\
    199	mask |= (x);							\
    200	SMC_SET_INT_MASK(lp, mask);					\
    201	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
    202} while (0)
    203
    204/* this disables an interrupt from the interrupt mask register */
    205#define SMC_DISABLE_INT(lp, x) do {					\
    206	unsigned char mask;						\
    207	unsigned long smc_disable_flags;				\
    208	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
    209	mask = SMC_GET_INT_MASK(lp);					\
    210	mask &= ~(x);							\
    211	SMC_SET_INT_MASK(lp, mask);					\
    212	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
    213} while (0)
    214
    215/*
    216 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
    217 * if at all, but let's avoid deadlocking the system if the hardware
    218 * decides to go south.
    219 */
    220#define SMC_WAIT_MMU_BUSY(lp) do {					\
    221	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
    222		unsigned long timeout = jiffies + 2;			\
    223		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
    224			if (time_after(jiffies, timeout)) {		\
    225				netdev_dbg(dev, "timeout %s line %d\n",	\
    226					   __FILE__, __LINE__);		\
    227				break;					\
    228			}						\
    229			cpu_relax();					\
    230		}							\
    231	}								\
    232} while (0)
    233
    234
    235/*
    236 * this does a soft reset on the device
    237 */
    238static void smc_reset(struct net_device *dev)
    239{
    240	struct smc_local *lp = netdev_priv(dev);
    241	void __iomem *ioaddr = lp->base;
    242	unsigned int ctl, cfg;
    243	struct sk_buff *pending_skb;
    244
    245	DBG(2, dev, "%s\n", __func__);
    246
    247	/* Disable all interrupts, block TX tasklet */
    248	spin_lock_irq(&lp->lock);
    249	SMC_SELECT_BANK(lp, 2);
    250	SMC_SET_INT_MASK(lp, 0);
    251	pending_skb = lp->pending_tx_skb;
    252	lp->pending_tx_skb = NULL;
    253	spin_unlock_irq(&lp->lock);
    254
    255	/* free any pending tx skb */
    256	if (pending_skb) {
    257		dev_kfree_skb(pending_skb);
    258		dev->stats.tx_errors++;
    259		dev->stats.tx_aborted_errors++;
    260	}
    261
    262	/*
    263	 * This resets the registers mostly to defaults, but doesn't
    264	 * affect EEPROM.  That seems unnecessary
    265	 */
    266	SMC_SELECT_BANK(lp, 0);
    267	SMC_SET_RCR(lp, RCR_SOFTRST);
    268
    269	/*
    270	 * Setup the Configuration Register
    271	 * This is necessary because the CONFIG_REG is not affected
    272	 * by a soft reset
    273	 */
    274	SMC_SELECT_BANK(lp, 1);
    275
    276	cfg = CONFIG_DEFAULT;
    277
    278	/*
    279	 * Setup for fast accesses if requested.  If the card/system
    280	 * can't handle it then there will be no recovery except for
    281	 * a hard reset or power cycle
    282	 */
    283	if (lp->cfg.flags & SMC91X_NOWAIT)
    284		cfg |= CONFIG_NO_WAIT;
    285
    286	/*
    287	 * Release from possible power-down state
    288	 * Configuration register is not affected by Soft Reset
    289	 */
    290	cfg |= CONFIG_EPH_POWER_EN;
    291
    292	SMC_SET_CONFIG(lp, cfg);
    293
    294	/* this should pause enough for the chip to be happy */
    295	/*
    296	 * elaborate?  What does the chip _need_? --jgarzik
    297	 *
    298	 * This seems to be undocumented, but something the original
    299	 * driver(s) have always done.  Suspect undocumented timing
    300	 * info/determined empirically. --rmk
    301	 */
    302	udelay(1);
    303
    304	/* Disable transmit and receive functionality */
    305	SMC_SELECT_BANK(lp, 0);
    306	SMC_SET_RCR(lp, RCR_CLEAR);
    307	SMC_SET_TCR(lp, TCR_CLEAR);
    308
    309	SMC_SELECT_BANK(lp, 1);
    310	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
    311
    312	/*
    313	 * Set the control register to automatically release successfully
    314	 * transmitted packets, to make the best use out of our limited
    315	 * memory
    316	 */
    317	if(!THROTTLE_TX_PKTS)
    318		ctl |= CTL_AUTO_RELEASE;
    319	else
    320		ctl &= ~CTL_AUTO_RELEASE;
    321	SMC_SET_CTL(lp, ctl);
    322
    323	/* Reset the MMU */
    324	SMC_SELECT_BANK(lp, 2);
    325	SMC_SET_MMU_CMD(lp, MC_RESET);
    326	SMC_WAIT_MMU_BUSY(lp);
    327}
    328
    329/*
    330 * Enable Interrupts, Receive, and Transmit
    331 */
    332static void smc_enable(struct net_device *dev)
    333{
    334	struct smc_local *lp = netdev_priv(dev);
    335	void __iomem *ioaddr = lp->base;
    336	int mask;
    337
    338	DBG(2, dev, "%s\n", __func__);
    339
    340	/* see the header file for options in TCR/RCR DEFAULT */
    341	SMC_SELECT_BANK(lp, 0);
    342	SMC_SET_TCR(lp, lp->tcr_cur_mode);
    343	SMC_SET_RCR(lp, lp->rcr_cur_mode);
    344
    345	SMC_SELECT_BANK(lp, 1);
    346	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
    347
    348	/* now, enable interrupts */
    349	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
    350	if (lp->version >= (CHIP_91100 << 4))
    351		mask |= IM_MDINT;
    352	SMC_SELECT_BANK(lp, 2);
    353	SMC_SET_INT_MASK(lp, mask);
    354
    355	/*
    356	 * From this point the register bank must _NOT_ be switched away
    357	 * to something else than bank 2 without proper locking against
    358	 * races with any tasklet or interrupt handlers until smc_shutdown()
    359	 * or smc_reset() is called.
    360	 */
    361}
    362
    363/*
    364 * this puts the device in an inactive state
    365 */
    366static void smc_shutdown(struct net_device *dev)
    367{
    368	struct smc_local *lp = netdev_priv(dev);
    369	void __iomem *ioaddr = lp->base;
    370	struct sk_buff *pending_skb;
    371
    372	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
    373
    374	/* no more interrupts for me */
    375	spin_lock_irq(&lp->lock);
    376	SMC_SELECT_BANK(lp, 2);
    377	SMC_SET_INT_MASK(lp, 0);
    378	pending_skb = lp->pending_tx_skb;
    379	lp->pending_tx_skb = NULL;
    380	spin_unlock_irq(&lp->lock);
    381	dev_kfree_skb(pending_skb);
    382
    383	/* and tell the card to stay away from that nasty outside world */
    384	SMC_SELECT_BANK(lp, 0);
    385	SMC_SET_RCR(lp, RCR_CLEAR);
    386	SMC_SET_TCR(lp, TCR_CLEAR);
    387
    388#ifdef POWER_DOWN
    389	/* finally, shut the chip down */
    390	SMC_SELECT_BANK(lp, 1);
    391	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
    392#endif
    393}
    394
    395/*
    396 * This is the procedure to handle the receipt of a packet.
    397 */
    398static inline void  smc_rcv(struct net_device *dev)
    399{
    400	struct smc_local *lp = netdev_priv(dev);
    401	void __iomem *ioaddr = lp->base;
    402	unsigned int packet_number, status, packet_len;
    403
    404	DBG(3, dev, "%s\n", __func__);
    405
    406	packet_number = SMC_GET_RXFIFO(lp);
    407	if (unlikely(packet_number & RXFIFO_REMPTY)) {
    408		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
    409		return;
    410	}
    411
    412	/* read from start of packet */
    413	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
    414
    415	/* First two words are status and packet length */
    416	SMC_GET_PKT_HDR(lp, status, packet_len);
    417	packet_len &= 0x07ff;  /* mask off top bits */
    418	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
    419	    packet_number, status, packet_len, packet_len);
    420
    421	back:
    422	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
    423		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
    424			/* accept VLAN packets */
    425			status &= ~RS_TOOLONG;
    426			goto back;
    427		}
    428		if (packet_len < 6) {
    429			/* bloody hardware */
    430			netdev_err(dev, "fubar (rxlen %u status %x\n",
    431				   packet_len, status);
    432			status |= RS_TOOSHORT;
    433		}
    434		SMC_WAIT_MMU_BUSY(lp);
    435		SMC_SET_MMU_CMD(lp, MC_RELEASE);
    436		dev->stats.rx_errors++;
    437		if (status & RS_ALGNERR)
    438			dev->stats.rx_frame_errors++;
    439		if (status & (RS_TOOSHORT | RS_TOOLONG))
    440			dev->stats.rx_length_errors++;
    441		if (status & RS_BADCRC)
    442			dev->stats.rx_crc_errors++;
    443	} else {
    444		struct sk_buff *skb;
    445		unsigned char *data;
    446		unsigned int data_len;
    447
    448		/* set multicast stats */
    449		if (status & RS_MULTICAST)
    450			dev->stats.multicast++;
    451
    452		/*
    453		 * Actual payload is packet_len - 6 (or 5 if odd byte).
    454		 * We want skb_reserve(2) and the final ctrl word
    455		 * (2 bytes, possibly containing the payload odd byte).
    456		 * Furthermore, we add 2 bytes to allow rounding up to
    457		 * multiple of 4 bytes on 32 bit buses.
    458		 * Hence packet_len - 6 + 2 + 2 + 2.
    459		 */
    460		skb = netdev_alloc_skb(dev, packet_len);
    461		if (unlikely(skb == NULL)) {
    462			SMC_WAIT_MMU_BUSY(lp);
    463			SMC_SET_MMU_CMD(lp, MC_RELEASE);
    464			dev->stats.rx_dropped++;
    465			return;
    466		}
    467
    468		/* Align IP header to 32 bits */
    469		skb_reserve(skb, 2);
    470
    471		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
    472		if (lp->version == 0x90)
    473			status |= RS_ODDFRAME;
    474
    475		/*
    476		 * If odd length: packet_len - 5,
    477		 * otherwise packet_len - 6.
    478		 * With the trailing ctrl byte it's packet_len - 4.
    479		 */
    480		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
    481		data = skb_put(skb, data_len);
    482		SMC_PULL_DATA(lp, data, packet_len - 4);
    483
    484		SMC_WAIT_MMU_BUSY(lp);
    485		SMC_SET_MMU_CMD(lp, MC_RELEASE);
    486
    487		PRINT_PKT(data, packet_len - 4);
    488
    489		skb->protocol = eth_type_trans(skb, dev);
    490		netif_rx(skb);
    491		dev->stats.rx_packets++;
    492		dev->stats.rx_bytes += data_len;
    493	}
    494}
    495
    496#ifdef CONFIG_SMP
    497/*
    498 * On SMP we have the following problem:
    499 *
    500 * 	A = smc_hardware_send_pkt()
    501 * 	B = smc_hard_start_xmit()
    502 * 	C = smc_interrupt()
    503 *
    504 * A and B can never be executed simultaneously.  However, at least on UP,
    505 * it is possible (and even desirable) for C to interrupt execution of
    506 * A or B in order to have better RX reliability and avoid overruns.
    507 * C, just like A and B, must have exclusive access to the chip and
    508 * each of them must lock against any other concurrent access.
    509 * Unfortunately this is not possible to have C suspend execution of A or
    510 * B taking place on another CPU. On UP this is no an issue since A and B
    511 * are run from softirq context and C from hard IRQ context, and there is
    512 * no other CPU where concurrent access can happen.
    513 * If ever there is a way to force at least B and C to always be executed
    514 * on the same CPU then we could use read/write locks to protect against
    515 * any other concurrent access and C would always interrupt B. But life
    516 * isn't that easy in a SMP world...
    517 */
    518#define smc_special_trylock(lock, flags)				\
    519({									\
    520	int __ret;							\
    521	local_irq_save(flags);						\
    522	__ret = spin_trylock(lock);					\
    523	if (!__ret)							\
    524		local_irq_restore(flags);				\
    525	__ret;								\
    526})
    527#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
    528#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
    529#else
    530#define smc_special_trylock(lock, flags)	((void)flags, true)
    531#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
    532#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
    533#endif
    534
    535/*
    536 * This is called to actually send a packet to the chip.
    537 */
    538static void smc_hardware_send_pkt(struct tasklet_struct *t)
    539{
    540	struct smc_local *lp = from_tasklet(lp, t, tx_task);
    541	struct net_device *dev = lp->dev;
    542	void __iomem *ioaddr = lp->base;
    543	struct sk_buff *skb;
    544	unsigned int packet_no, len;
    545	unsigned char *buf;
    546	unsigned long flags;
    547
    548	DBG(3, dev, "%s\n", __func__);
    549
    550	if (!smc_special_trylock(&lp->lock, flags)) {
    551		netif_stop_queue(dev);
    552		tasklet_schedule(&lp->tx_task);
    553		return;
    554	}
    555
    556	skb = lp->pending_tx_skb;
    557	if (unlikely(!skb)) {
    558		smc_special_unlock(&lp->lock, flags);
    559		return;
    560	}
    561	lp->pending_tx_skb = NULL;
    562
    563	packet_no = SMC_GET_AR(lp);
    564	if (unlikely(packet_no & AR_FAILED)) {
    565		netdev_err(dev, "Memory allocation failed.\n");
    566		dev->stats.tx_errors++;
    567		dev->stats.tx_fifo_errors++;
    568		smc_special_unlock(&lp->lock, flags);
    569		goto done;
    570	}
    571
    572	/* point to the beginning of the packet */
    573	SMC_SET_PN(lp, packet_no);
    574	SMC_SET_PTR(lp, PTR_AUTOINC);
    575
    576	buf = skb->data;
    577	len = skb->len;
    578	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
    579	    packet_no, len, len, buf);
    580	PRINT_PKT(buf, len);
    581
    582	/*
    583	 * Send the packet length (+6 for status words, length, and ctl.
    584	 * The card will pad to 64 bytes with zeroes if packet is too small.
    585	 */
    586	SMC_PUT_PKT_HDR(lp, 0, len + 6);
    587
    588	/* send the actual data */
    589	SMC_PUSH_DATA(lp, buf, len & ~1);
    590
    591	/* Send final ctl word with the last byte if there is one */
    592	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
    593		 DATA_REG(lp));
    594
    595	/*
    596	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
    597	 * have the effect of having at most one packet queued for TX
    598	 * in the chip's memory at all time.
    599	 *
    600	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
    601	 * when memory allocation (MC_ALLOC) does not succeed right away.
    602	 */
    603	if (THROTTLE_TX_PKTS)
    604		netif_stop_queue(dev);
    605
    606	/* queue the packet for TX */
    607	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
    608	smc_special_unlock(&lp->lock, flags);
    609
    610	netif_trans_update(dev);
    611	dev->stats.tx_packets++;
    612	dev->stats.tx_bytes += len;
    613
    614	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
    615
    616done:	if (!THROTTLE_TX_PKTS)
    617		netif_wake_queue(dev);
    618
    619	dev_consume_skb_any(skb);
    620}
    621
    622/*
    623 * Since I am not sure if I will have enough room in the chip's ram
    624 * to store the packet, I call this routine which either sends it
    625 * now, or set the card to generates an interrupt when ready
    626 * for the packet.
    627 */
    628static netdev_tx_t
    629smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
    630{
    631	struct smc_local *lp = netdev_priv(dev);
    632	void __iomem *ioaddr = lp->base;
    633	unsigned int numPages, poll_count, status;
    634	unsigned long flags;
    635
    636	DBG(3, dev, "%s\n", __func__);
    637
    638	BUG_ON(lp->pending_tx_skb != NULL);
    639
    640	/*
    641	 * The MMU wants the number of pages to be the number of 256 bytes
    642	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
    643	 *
    644	 * The 91C111 ignores the size bits, but earlier models don't.
    645	 *
    646	 * Pkt size for allocating is data length +6 (for additional status
    647	 * words, length and ctl)
    648	 *
    649	 * If odd size then last byte is included in ctl word.
    650	 */
    651	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
    652	if (unlikely(numPages > 7)) {
    653		netdev_warn(dev, "Far too big packet error.\n");
    654		dev->stats.tx_errors++;
    655		dev->stats.tx_dropped++;
    656		dev_kfree_skb_any(skb);
    657		return NETDEV_TX_OK;
    658	}
    659
    660	smc_special_lock(&lp->lock, flags);
    661
    662	/* now, try to allocate the memory */
    663	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
    664
    665	/*
    666	 * Poll the chip for a short amount of time in case the
    667	 * allocation succeeds quickly.
    668	 */
    669	poll_count = MEMORY_WAIT_TIME;
    670	do {
    671		status = SMC_GET_INT(lp);
    672		if (status & IM_ALLOC_INT) {
    673			SMC_ACK_INT(lp, IM_ALLOC_INT);
    674			break;
    675		}
    676	} while (--poll_count);
    677
    678	smc_special_unlock(&lp->lock, flags);
    679
    680	lp->pending_tx_skb = skb;
    681	if (!poll_count) {
    682		/* oh well, wait until the chip finds memory later */
    683		netif_stop_queue(dev);
    684		DBG(2, dev, "TX memory allocation deferred.\n");
    685		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
    686	} else {
    687		/*
    688		 * Allocation succeeded: push packet to the chip's own memory
    689		 * immediately.
    690		 */
    691		smc_hardware_send_pkt(&lp->tx_task);
    692	}
    693
    694	return NETDEV_TX_OK;
    695}
    696
    697/*
    698 * This handles a TX interrupt, which is only called when:
    699 * - a TX error occurred, or
    700 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
    701 */
    702static void smc_tx(struct net_device *dev)
    703{
    704	struct smc_local *lp = netdev_priv(dev);
    705	void __iomem *ioaddr = lp->base;
    706	unsigned int saved_packet, packet_no, tx_status;
    707	unsigned int pkt_len __always_unused;
    708
    709	DBG(3, dev, "%s\n", __func__);
    710
    711	/* If the TX FIFO is empty then nothing to do */
    712	packet_no = SMC_GET_TXFIFO(lp);
    713	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
    714		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
    715		return;
    716	}
    717
    718	/* select packet to read from */
    719	saved_packet = SMC_GET_PN(lp);
    720	SMC_SET_PN(lp, packet_no);
    721
    722	/* read the first word (status word) from this packet */
    723	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
    724	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
    725	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
    726	    tx_status, packet_no);
    727
    728	if (!(tx_status & ES_TX_SUC))
    729		dev->stats.tx_errors++;
    730
    731	if (tx_status & ES_LOSTCARR)
    732		dev->stats.tx_carrier_errors++;
    733
    734	if (tx_status & (ES_LATCOL | ES_16COL)) {
    735		PRINTK(dev, "%s occurred on last xmit\n",
    736		       (tx_status & ES_LATCOL) ?
    737			"late collision" : "too many collisions");
    738		dev->stats.tx_window_errors++;
    739		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
    740			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
    741		}
    742	}
    743
    744	/* kill the packet */
    745	SMC_WAIT_MMU_BUSY(lp);
    746	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
    747
    748	/* Don't restore Packet Number Reg until busy bit is cleared */
    749	SMC_WAIT_MMU_BUSY(lp);
    750	SMC_SET_PN(lp, saved_packet);
    751
    752	/* re-enable transmit */
    753	SMC_SELECT_BANK(lp, 0);
    754	SMC_SET_TCR(lp, lp->tcr_cur_mode);
    755	SMC_SELECT_BANK(lp, 2);
    756}
    757
    758
    759/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
    760
    761static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
    762{
    763	struct smc_local *lp = netdev_priv(dev);
    764	void __iomem *ioaddr = lp->base;
    765	unsigned int mii_reg, mask;
    766
    767	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
    768	mii_reg |= MII_MDOE;
    769
    770	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
    771		if (val & mask)
    772			mii_reg |= MII_MDO;
    773		else
    774			mii_reg &= ~MII_MDO;
    775
    776		SMC_SET_MII(lp, mii_reg);
    777		udelay(MII_DELAY);
    778		SMC_SET_MII(lp, mii_reg | MII_MCLK);
    779		udelay(MII_DELAY);
    780	}
    781}
    782
    783static unsigned int smc_mii_in(struct net_device *dev, int bits)
    784{
    785	struct smc_local *lp = netdev_priv(dev);
    786	void __iomem *ioaddr = lp->base;
    787	unsigned int mii_reg, mask, val;
    788
    789	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
    790	SMC_SET_MII(lp, mii_reg);
    791
    792	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
    793		if (SMC_GET_MII(lp) & MII_MDI)
    794			val |= mask;
    795
    796		SMC_SET_MII(lp, mii_reg);
    797		udelay(MII_DELAY);
    798		SMC_SET_MII(lp, mii_reg | MII_MCLK);
    799		udelay(MII_DELAY);
    800	}
    801
    802	return val;
    803}
    804
    805/*
    806 * Reads a register from the MII Management serial interface
    807 */
    808static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
    809{
    810	struct smc_local *lp = netdev_priv(dev);
    811	void __iomem *ioaddr = lp->base;
    812	unsigned int phydata;
    813
    814	SMC_SELECT_BANK(lp, 3);
    815
    816	/* Idle - 32 ones */
    817	smc_mii_out(dev, 0xffffffff, 32);
    818
    819	/* Start code (01) + read (10) + phyaddr + phyreg */
    820	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
    821
    822	/* Turnaround (2bits) + phydata */
    823	phydata = smc_mii_in(dev, 18);
    824
    825	/* Return to idle state */
    826	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
    827
    828	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
    829	    __func__, phyaddr, phyreg, phydata);
    830
    831	SMC_SELECT_BANK(lp, 2);
    832	return phydata;
    833}
    834
    835/*
    836 * Writes a register to the MII Management serial interface
    837 */
    838static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
    839			  int phydata)
    840{
    841	struct smc_local *lp = netdev_priv(dev);
    842	void __iomem *ioaddr = lp->base;
    843
    844	SMC_SELECT_BANK(lp, 3);
    845
    846	/* Idle - 32 ones */
    847	smc_mii_out(dev, 0xffffffff, 32);
    848
    849	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
    850	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
    851
    852	/* Return to idle state */
    853	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
    854
    855	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
    856	    __func__, phyaddr, phyreg, phydata);
    857
    858	SMC_SELECT_BANK(lp, 2);
    859}
    860
    861/*
    862 * Finds and reports the PHY address
    863 */
    864static void smc_phy_detect(struct net_device *dev)
    865{
    866	struct smc_local *lp = netdev_priv(dev);
    867	int phyaddr;
    868
    869	DBG(2, dev, "%s\n", __func__);
    870
    871	lp->phy_type = 0;
    872
    873	/*
    874	 * Scan all 32 PHY addresses if necessary, starting at
    875	 * PHY#1 to PHY#31, and then PHY#0 last.
    876	 */
    877	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
    878		unsigned int id1, id2;
    879
    880		/* Read the PHY identifiers */
    881		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
    882		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
    883
    884		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
    885		    id1, id2);
    886
    887		/* Make sure it is a valid identifier */
    888		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
    889		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
    890			/* Save the PHY's address */
    891			lp->mii.phy_id = phyaddr & 31;
    892			lp->phy_type = id1 << 16 | id2;
    893			break;
    894		}
    895	}
    896}
    897
    898/*
    899 * Sets the PHY to a configuration as determined by the user
    900 */
    901static int smc_phy_fixed(struct net_device *dev)
    902{
    903	struct smc_local *lp = netdev_priv(dev);
    904	void __iomem *ioaddr = lp->base;
    905	int phyaddr = lp->mii.phy_id;
    906	int bmcr, cfg1;
    907
    908	DBG(3, dev, "%s\n", __func__);
    909
    910	/* Enter Link Disable state */
    911	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
    912	cfg1 |= PHY_CFG1_LNKDIS;
    913	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
    914
    915	/*
    916	 * Set our fixed capabilities
    917	 * Disable auto-negotiation
    918	 */
    919	bmcr = 0;
    920
    921	if (lp->ctl_rfduplx)
    922		bmcr |= BMCR_FULLDPLX;
    923
    924	if (lp->ctl_rspeed == 100)
    925		bmcr |= BMCR_SPEED100;
    926
    927	/* Write our capabilities to the phy control register */
    928	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
    929
    930	/* Re-Configure the Receive/Phy Control register */
    931	SMC_SELECT_BANK(lp, 0);
    932	SMC_SET_RPC(lp, lp->rpc_cur_mode);
    933	SMC_SELECT_BANK(lp, 2);
    934
    935	return 1;
    936}
    937
    938/**
    939 * smc_phy_reset - reset the phy
    940 * @dev: net device
    941 * @phy: phy address
    942 *
    943 * Issue a software reset for the specified PHY and
    944 * wait up to 100ms for the reset to complete.  We should
    945 * not access the PHY for 50ms after issuing the reset.
    946 *
    947 * The time to wait appears to be dependent on the PHY.
    948 *
    949 * Must be called with lp->lock locked.
    950 */
    951static int smc_phy_reset(struct net_device *dev, int phy)
    952{
    953	struct smc_local *lp = netdev_priv(dev);
    954	unsigned int bmcr;
    955	int timeout;
    956
    957	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
    958
    959	for (timeout = 2; timeout; timeout--) {
    960		spin_unlock_irq(&lp->lock);
    961		msleep(50);
    962		spin_lock_irq(&lp->lock);
    963
    964		bmcr = smc_phy_read(dev, phy, MII_BMCR);
    965		if (!(bmcr & BMCR_RESET))
    966			break;
    967	}
    968
    969	return bmcr & BMCR_RESET;
    970}
    971
    972/**
    973 * smc_phy_powerdown - powerdown phy
    974 * @dev: net device
    975 *
    976 * Power down the specified PHY
    977 */
    978static void smc_phy_powerdown(struct net_device *dev)
    979{
    980	struct smc_local *lp = netdev_priv(dev);
    981	unsigned int bmcr;
    982	int phy = lp->mii.phy_id;
    983
    984	if (lp->phy_type == 0)
    985		return;
    986
    987	/* We need to ensure that no calls to smc_phy_configure are
    988	   pending.
    989	*/
    990	cancel_work_sync(&lp->phy_configure);
    991
    992	bmcr = smc_phy_read(dev, phy, MII_BMCR);
    993	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
    994}
    995
    996/**
    997 * smc_phy_check_media - check the media status and adjust TCR
    998 * @dev: net device
    999 * @init: set true for initialisation
   1000 *
   1001 * Select duplex mode depending on negotiation state.  This
   1002 * also updates our carrier state.
   1003 */
   1004static void smc_phy_check_media(struct net_device *dev, int init)
   1005{
   1006	struct smc_local *lp = netdev_priv(dev);
   1007	void __iomem *ioaddr = lp->base;
   1008
   1009	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
   1010		/* duplex state has changed */
   1011		if (lp->mii.full_duplex) {
   1012			lp->tcr_cur_mode |= TCR_SWFDUP;
   1013		} else {
   1014			lp->tcr_cur_mode &= ~TCR_SWFDUP;
   1015		}
   1016
   1017		SMC_SELECT_BANK(lp, 0);
   1018		SMC_SET_TCR(lp, lp->tcr_cur_mode);
   1019	}
   1020}
   1021
   1022/*
   1023 * Configures the specified PHY through the MII management interface
   1024 * using Autonegotiation.
   1025 * Calls smc_phy_fixed() if the user has requested a certain config.
   1026 * If RPC ANEG bit is set, the media selection is dependent purely on
   1027 * the selection by the MII (either in the MII BMCR reg or the result
   1028 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
   1029 * is controlled by the RPC SPEED and RPC DPLX bits.
   1030 */
   1031static void smc_phy_configure(struct work_struct *work)
   1032{
   1033	struct smc_local *lp =
   1034		container_of(work, struct smc_local, phy_configure);
   1035	struct net_device *dev = lp->dev;
   1036	void __iomem *ioaddr = lp->base;
   1037	int phyaddr = lp->mii.phy_id;
   1038	int my_phy_caps; /* My PHY capabilities */
   1039	int my_ad_caps; /* My Advertised capabilities */
   1040
   1041	DBG(3, dev, "smc_program_phy()\n");
   1042
   1043	spin_lock_irq(&lp->lock);
   1044
   1045	/*
   1046	 * We should not be called if phy_type is zero.
   1047	 */
   1048	if (lp->phy_type == 0)
   1049		goto smc_phy_configure_exit;
   1050
   1051	if (smc_phy_reset(dev, phyaddr)) {
   1052		netdev_info(dev, "PHY reset timed out\n");
   1053		goto smc_phy_configure_exit;
   1054	}
   1055
   1056	/*
   1057	 * Enable PHY Interrupts (for register 18)
   1058	 * Interrupts listed here are disabled
   1059	 */
   1060	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
   1061		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
   1062		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
   1063		PHY_INT_SPDDET | PHY_INT_DPLXDET);
   1064
   1065	/* Configure the Receive/Phy Control register */
   1066	SMC_SELECT_BANK(lp, 0);
   1067	SMC_SET_RPC(lp, lp->rpc_cur_mode);
   1068
   1069	/* If the user requested no auto neg, then go set his request */
   1070	if (lp->mii.force_media) {
   1071		smc_phy_fixed(dev);
   1072		goto smc_phy_configure_exit;
   1073	}
   1074
   1075	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
   1076	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
   1077
   1078	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
   1079		netdev_info(dev, "Auto negotiation NOT supported\n");
   1080		smc_phy_fixed(dev);
   1081		goto smc_phy_configure_exit;
   1082	}
   1083
   1084	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
   1085
   1086	if (my_phy_caps & BMSR_100BASE4)
   1087		my_ad_caps |= ADVERTISE_100BASE4;
   1088	if (my_phy_caps & BMSR_100FULL)
   1089		my_ad_caps |= ADVERTISE_100FULL;
   1090	if (my_phy_caps & BMSR_100HALF)
   1091		my_ad_caps |= ADVERTISE_100HALF;
   1092	if (my_phy_caps & BMSR_10FULL)
   1093		my_ad_caps |= ADVERTISE_10FULL;
   1094	if (my_phy_caps & BMSR_10HALF)
   1095		my_ad_caps |= ADVERTISE_10HALF;
   1096
   1097	/* Disable capabilities not selected by our user */
   1098	if (lp->ctl_rspeed != 100)
   1099		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
   1100
   1101	if (!lp->ctl_rfduplx)
   1102		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
   1103
   1104	/* Update our Auto-Neg Advertisement Register */
   1105	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
   1106	lp->mii.advertising = my_ad_caps;
   1107
   1108	/*
   1109	 * Read the register back.  Without this, it appears that when
   1110	 * auto-negotiation is restarted, sometimes it isn't ready and
   1111	 * the link does not come up.
   1112	 */
   1113	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
   1114
   1115	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
   1116	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
   1117
   1118	/* Restart auto-negotiation process in order to advertise my caps */
   1119	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
   1120
   1121	smc_phy_check_media(dev, 1);
   1122
   1123smc_phy_configure_exit:
   1124	SMC_SELECT_BANK(lp, 2);
   1125	spin_unlock_irq(&lp->lock);
   1126}
   1127
   1128/*
   1129 * smc_phy_interrupt
   1130 *
   1131 * Purpose:  Handle interrupts relating to PHY register 18. This is
   1132 *  called from the "hard" interrupt handler under our private spinlock.
   1133 */
   1134static void smc_phy_interrupt(struct net_device *dev)
   1135{
   1136	struct smc_local *lp = netdev_priv(dev);
   1137	int phyaddr = lp->mii.phy_id;
   1138	int phy18;
   1139
   1140	DBG(2, dev, "%s\n", __func__);
   1141
   1142	if (lp->phy_type == 0)
   1143		return;
   1144
   1145	for(;;) {
   1146		smc_phy_check_media(dev, 0);
   1147
   1148		/* Read PHY Register 18, Status Output */
   1149		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
   1150		if ((phy18 & PHY_INT_INT) == 0)
   1151			break;
   1152	}
   1153}
   1154
   1155/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
   1156
   1157static void smc_10bt_check_media(struct net_device *dev, int init)
   1158{
   1159	struct smc_local *lp = netdev_priv(dev);
   1160	void __iomem *ioaddr = lp->base;
   1161	unsigned int old_carrier, new_carrier;
   1162
   1163	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
   1164
   1165	SMC_SELECT_BANK(lp, 0);
   1166	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
   1167	SMC_SELECT_BANK(lp, 2);
   1168
   1169	if (init || (old_carrier != new_carrier)) {
   1170		if (!new_carrier) {
   1171			netif_carrier_off(dev);
   1172		} else {
   1173			netif_carrier_on(dev);
   1174		}
   1175		if (netif_msg_link(lp))
   1176			netdev_info(dev, "link %s\n",
   1177				    new_carrier ? "up" : "down");
   1178	}
   1179}
   1180
   1181static void smc_eph_interrupt(struct net_device *dev)
   1182{
   1183	struct smc_local *lp = netdev_priv(dev);
   1184	void __iomem *ioaddr = lp->base;
   1185	unsigned int ctl;
   1186
   1187	smc_10bt_check_media(dev, 0);
   1188
   1189	SMC_SELECT_BANK(lp, 1);
   1190	ctl = SMC_GET_CTL(lp);
   1191	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
   1192	SMC_SET_CTL(lp, ctl);
   1193	SMC_SELECT_BANK(lp, 2);
   1194}
   1195
   1196/*
   1197 * This is the main routine of the driver, to handle the device when
   1198 * it needs some attention.
   1199 */
   1200static irqreturn_t smc_interrupt(int irq, void *dev_id)
   1201{
   1202	struct net_device *dev = dev_id;
   1203	struct smc_local *lp = netdev_priv(dev);
   1204	void __iomem *ioaddr = lp->base;
   1205	int status, mask, timeout, card_stats;
   1206	int saved_pointer;
   1207
   1208	DBG(3, dev, "%s\n", __func__);
   1209
   1210	spin_lock(&lp->lock);
   1211
   1212	/* A preamble may be used when there is a potential race
   1213	 * between the interruptible transmit functions and this
   1214	 * ISR. */
   1215	SMC_INTERRUPT_PREAMBLE;
   1216
   1217	saved_pointer = SMC_GET_PTR(lp);
   1218	mask = SMC_GET_INT_MASK(lp);
   1219	SMC_SET_INT_MASK(lp, 0);
   1220
   1221	/* set a timeout value, so I don't stay here forever */
   1222	timeout = MAX_IRQ_LOOPS;
   1223
   1224	do {
   1225		status = SMC_GET_INT(lp);
   1226
   1227		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
   1228		    status, mask,
   1229		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
   1230		       meminfo = SMC_GET_MIR(lp);
   1231		       SMC_SELECT_BANK(lp, 2); meminfo; }),
   1232		    SMC_GET_FIFO(lp));
   1233
   1234		status &= mask;
   1235		if (!status)
   1236			break;
   1237
   1238		if (status & IM_TX_INT) {
   1239			/* do this before RX as it will free memory quickly */
   1240			DBG(3, dev, "TX int\n");
   1241			smc_tx(dev);
   1242			SMC_ACK_INT(lp, IM_TX_INT);
   1243			if (THROTTLE_TX_PKTS)
   1244				netif_wake_queue(dev);
   1245		} else if (status & IM_RCV_INT) {
   1246			DBG(3, dev, "RX irq\n");
   1247			smc_rcv(dev);
   1248		} else if (status & IM_ALLOC_INT) {
   1249			DBG(3, dev, "Allocation irq\n");
   1250			tasklet_hi_schedule(&lp->tx_task);
   1251			mask &= ~IM_ALLOC_INT;
   1252		} else if (status & IM_TX_EMPTY_INT) {
   1253			DBG(3, dev, "TX empty\n");
   1254			mask &= ~IM_TX_EMPTY_INT;
   1255
   1256			/* update stats */
   1257			SMC_SELECT_BANK(lp, 0);
   1258			card_stats = SMC_GET_COUNTER(lp);
   1259			SMC_SELECT_BANK(lp, 2);
   1260
   1261			/* single collisions */
   1262			dev->stats.collisions += card_stats & 0xF;
   1263			card_stats >>= 4;
   1264
   1265			/* multiple collisions */
   1266			dev->stats.collisions += card_stats & 0xF;
   1267		} else if (status & IM_RX_OVRN_INT) {
   1268			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
   1269			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
   1270			       eph_st = SMC_GET_EPH_STATUS(lp);
   1271			       SMC_SELECT_BANK(lp, 2); eph_st; }));
   1272			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
   1273			dev->stats.rx_errors++;
   1274			dev->stats.rx_fifo_errors++;
   1275		} else if (status & IM_EPH_INT) {
   1276			smc_eph_interrupt(dev);
   1277		} else if (status & IM_MDINT) {
   1278			SMC_ACK_INT(lp, IM_MDINT);
   1279			smc_phy_interrupt(dev);
   1280		} else if (status & IM_ERCV_INT) {
   1281			SMC_ACK_INT(lp, IM_ERCV_INT);
   1282			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
   1283		}
   1284	} while (--timeout);
   1285
   1286	/* restore register states */
   1287	SMC_SET_PTR(lp, saved_pointer);
   1288	SMC_SET_INT_MASK(lp, mask);
   1289	spin_unlock(&lp->lock);
   1290
   1291#ifndef CONFIG_NET_POLL_CONTROLLER
   1292	if (timeout == MAX_IRQ_LOOPS)
   1293		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
   1294		       mask);
   1295#endif
   1296	DBG(3, dev, "Interrupt done (%d loops)\n",
   1297	    MAX_IRQ_LOOPS - timeout);
   1298
   1299	/*
   1300	 * We return IRQ_HANDLED unconditionally here even if there was
   1301	 * nothing to do.  There is a possibility that a packet might
   1302	 * get enqueued into the chip right after TX_EMPTY_INT is raised
   1303	 * but just before the CPU acknowledges the IRQ.
   1304	 * Better take an unneeded IRQ in some occasions than complexifying
   1305	 * the code for all cases.
   1306	 */
   1307	return IRQ_HANDLED;
   1308}
   1309
   1310#ifdef CONFIG_NET_POLL_CONTROLLER
   1311/*
   1312 * Polling receive - used by netconsole and other diagnostic tools
   1313 * to allow network i/o with interrupts disabled.
   1314 */
   1315static void smc_poll_controller(struct net_device *dev)
   1316{
   1317	disable_irq(dev->irq);
   1318	smc_interrupt(dev->irq, dev);
   1319	enable_irq(dev->irq);
   1320}
   1321#endif
   1322
   1323/* Our watchdog timed out. Called by the networking layer */
   1324static void smc_timeout(struct net_device *dev, unsigned int txqueue)
   1325{
   1326	struct smc_local *lp = netdev_priv(dev);
   1327	void __iomem *ioaddr = lp->base;
   1328	int status, mask, eph_st, meminfo, fifo;
   1329
   1330	DBG(2, dev, "%s\n", __func__);
   1331
   1332	spin_lock_irq(&lp->lock);
   1333	status = SMC_GET_INT(lp);
   1334	mask = SMC_GET_INT_MASK(lp);
   1335	fifo = SMC_GET_FIFO(lp);
   1336	SMC_SELECT_BANK(lp, 0);
   1337	eph_st = SMC_GET_EPH_STATUS(lp);
   1338	meminfo = SMC_GET_MIR(lp);
   1339	SMC_SELECT_BANK(lp, 2);
   1340	spin_unlock_irq(&lp->lock);
   1341	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
   1342	       status, mask, meminfo, fifo, eph_st);
   1343
   1344	smc_reset(dev);
   1345	smc_enable(dev);
   1346
   1347	/*
   1348	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
   1349	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
   1350	 * which calls schedule().  Hence we use a work queue.
   1351	 */
   1352	if (lp->phy_type != 0)
   1353		schedule_work(&lp->phy_configure);
   1354
   1355	/* We can accept TX packets again */
   1356	netif_trans_update(dev); /* prevent tx timeout */
   1357	netif_wake_queue(dev);
   1358}
   1359
   1360/*
   1361 * This routine will, depending on the values passed to it,
   1362 * either make it accept multicast packets, go into
   1363 * promiscuous mode (for TCPDUMP and cousins) or accept
   1364 * a select set of multicast packets
   1365 */
   1366static void smc_set_multicast_list(struct net_device *dev)
   1367{
   1368	struct smc_local *lp = netdev_priv(dev);
   1369	void __iomem *ioaddr = lp->base;
   1370	unsigned char multicast_table[8];
   1371	int update_multicast = 0;
   1372
   1373	DBG(2, dev, "%s\n", __func__);
   1374
   1375	if (dev->flags & IFF_PROMISC) {
   1376		DBG(2, dev, "RCR_PRMS\n");
   1377		lp->rcr_cur_mode |= RCR_PRMS;
   1378	}
   1379
   1380/* BUG?  I never disable promiscuous mode if multicasting was turned on.
   1381   Now, I turn off promiscuous mode, but I don't do anything to multicasting
   1382   when promiscuous mode is turned on.
   1383*/
   1384
   1385	/*
   1386	 * Here, I am setting this to accept all multicast packets.
   1387	 * I don't need to zero the multicast table, because the flag is
   1388	 * checked before the table is
   1389	 */
   1390	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
   1391		DBG(2, dev, "RCR_ALMUL\n");
   1392		lp->rcr_cur_mode |= RCR_ALMUL;
   1393	}
   1394
   1395	/*
   1396	 * This sets the internal hardware table to filter out unwanted
   1397	 * multicast packets before they take up memory.
   1398	 *
   1399	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
   1400	 * address are the offset into the table.  If that bit is 1, then the
   1401	 * multicast packet is accepted.  Otherwise, it's dropped silently.
   1402	 *
   1403	 * To use the 6 bits as an offset into the table, the high 3 bits are
   1404	 * the number of the 8 bit register, while the low 3 bits are the bit
   1405	 * within that register.
   1406	 */
   1407	else if (!netdev_mc_empty(dev)) {
   1408		struct netdev_hw_addr *ha;
   1409
   1410		/* table for flipping the order of 3 bits */
   1411		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
   1412
   1413		/* start with a table of all zeros: reject all */
   1414		memset(multicast_table, 0, sizeof(multicast_table));
   1415
   1416		netdev_for_each_mc_addr(ha, dev) {
   1417			int position;
   1418
   1419			/* only use the low order bits */
   1420			position = crc32_le(~0, ha->addr, 6) & 0x3f;
   1421
   1422			/* do some messy swapping to put the bit in the right spot */
   1423			multicast_table[invert3[position&7]] |=
   1424				(1<<invert3[(position>>3)&7]);
   1425		}
   1426
   1427		/* be sure I get rid of flags I might have set */
   1428		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
   1429
   1430		/* now, the table can be loaded into the chipset */
   1431		update_multicast = 1;
   1432	} else  {
   1433		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
   1434		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
   1435
   1436		/*
   1437		 * since I'm disabling all multicast entirely, I need to
   1438		 * clear the multicast list
   1439		 */
   1440		memset(multicast_table, 0, sizeof(multicast_table));
   1441		update_multicast = 1;
   1442	}
   1443
   1444	spin_lock_irq(&lp->lock);
   1445	SMC_SELECT_BANK(lp, 0);
   1446	SMC_SET_RCR(lp, lp->rcr_cur_mode);
   1447	if (update_multicast) {
   1448		SMC_SELECT_BANK(lp, 3);
   1449		SMC_SET_MCAST(lp, multicast_table);
   1450	}
   1451	SMC_SELECT_BANK(lp, 2);
   1452	spin_unlock_irq(&lp->lock);
   1453}
   1454
   1455
   1456/*
   1457 * Open and Initialize the board
   1458 *
   1459 * Set up everything, reset the card, etc..
   1460 */
   1461static int
   1462smc_open(struct net_device *dev)
   1463{
   1464	struct smc_local *lp = netdev_priv(dev);
   1465
   1466	DBG(2, dev, "%s\n", __func__);
   1467
   1468	/* Setup the default Register Modes */
   1469	lp->tcr_cur_mode = TCR_DEFAULT;
   1470	lp->rcr_cur_mode = RCR_DEFAULT;
   1471	lp->rpc_cur_mode = RPC_DEFAULT |
   1472				lp->cfg.leda << RPC_LSXA_SHFT |
   1473				lp->cfg.ledb << RPC_LSXB_SHFT;
   1474
   1475	/*
   1476	 * If we are not using a MII interface, we need to
   1477	 * monitor our own carrier signal to detect faults.
   1478	 */
   1479	if (lp->phy_type == 0)
   1480		lp->tcr_cur_mode |= TCR_MON_CSN;
   1481
   1482	/* reset the hardware */
   1483	smc_reset(dev);
   1484	smc_enable(dev);
   1485
   1486	/* Configure the PHY, initialize the link state */
   1487	if (lp->phy_type != 0)
   1488		smc_phy_configure(&lp->phy_configure);
   1489	else {
   1490		spin_lock_irq(&lp->lock);
   1491		smc_10bt_check_media(dev, 1);
   1492		spin_unlock_irq(&lp->lock);
   1493	}
   1494
   1495	netif_start_queue(dev);
   1496	return 0;
   1497}
   1498
   1499/*
   1500 * smc_close
   1501 *
   1502 * this makes the board clean up everything that it can
   1503 * and not talk to the outside world.   Caused by
   1504 * an 'ifconfig ethX down'
   1505 */
   1506static int smc_close(struct net_device *dev)
   1507{
   1508	struct smc_local *lp = netdev_priv(dev);
   1509
   1510	DBG(2, dev, "%s\n", __func__);
   1511
   1512	netif_stop_queue(dev);
   1513	netif_carrier_off(dev);
   1514
   1515	/* clear everything */
   1516	smc_shutdown(dev);
   1517	tasklet_kill(&lp->tx_task);
   1518	smc_phy_powerdown(dev);
   1519	return 0;
   1520}
   1521
   1522/*
   1523 * Ethtool support
   1524 */
   1525static int
   1526smc_ethtool_get_link_ksettings(struct net_device *dev,
   1527			       struct ethtool_link_ksettings *cmd)
   1528{
   1529	struct smc_local *lp = netdev_priv(dev);
   1530
   1531	if (lp->phy_type != 0) {
   1532		spin_lock_irq(&lp->lock);
   1533		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
   1534		spin_unlock_irq(&lp->lock);
   1535	} else {
   1536		u32 supported = SUPPORTED_10baseT_Half |
   1537				 SUPPORTED_10baseT_Full |
   1538				 SUPPORTED_TP | SUPPORTED_AUI;
   1539
   1540		if (lp->ctl_rspeed == 10)
   1541			cmd->base.speed = SPEED_10;
   1542		else if (lp->ctl_rspeed == 100)
   1543			cmd->base.speed = SPEED_100;
   1544
   1545		cmd->base.autoneg = AUTONEG_DISABLE;
   1546		cmd->base.port = 0;
   1547		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
   1548			DUPLEX_FULL : DUPLEX_HALF;
   1549
   1550		ethtool_convert_legacy_u32_to_link_mode(
   1551			cmd->link_modes.supported, supported);
   1552	}
   1553
   1554	return 0;
   1555}
   1556
   1557static int
   1558smc_ethtool_set_link_ksettings(struct net_device *dev,
   1559			       const struct ethtool_link_ksettings *cmd)
   1560{
   1561	struct smc_local *lp = netdev_priv(dev);
   1562	int ret;
   1563
   1564	if (lp->phy_type != 0) {
   1565		spin_lock_irq(&lp->lock);
   1566		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
   1567		spin_unlock_irq(&lp->lock);
   1568	} else {
   1569		if (cmd->base.autoneg != AUTONEG_DISABLE ||
   1570		    cmd->base.speed != SPEED_10 ||
   1571		    (cmd->base.duplex != DUPLEX_HALF &&
   1572		     cmd->base.duplex != DUPLEX_FULL) ||
   1573		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
   1574			return -EINVAL;
   1575
   1576//		lp->port = cmd->base.port;
   1577		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
   1578
   1579//		if (netif_running(dev))
   1580//			smc_set_port(dev);
   1581
   1582		ret = 0;
   1583	}
   1584
   1585	return ret;
   1586}
   1587
   1588static void
   1589smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
   1590{
   1591	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
   1592	strlcpy(info->version, version, sizeof(info->version));
   1593	strlcpy(info->bus_info, dev_name(dev->dev.parent),
   1594		sizeof(info->bus_info));
   1595}
   1596
   1597static int smc_ethtool_nwayreset(struct net_device *dev)
   1598{
   1599	struct smc_local *lp = netdev_priv(dev);
   1600	int ret = -EINVAL;
   1601
   1602	if (lp->phy_type != 0) {
   1603		spin_lock_irq(&lp->lock);
   1604		ret = mii_nway_restart(&lp->mii);
   1605		spin_unlock_irq(&lp->lock);
   1606	}
   1607
   1608	return ret;
   1609}
   1610
   1611static u32 smc_ethtool_getmsglevel(struct net_device *dev)
   1612{
   1613	struct smc_local *lp = netdev_priv(dev);
   1614	return lp->msg_enable;
   1615}
   1616
   1617static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
   1618{
   1619	struct smc_local *lp = netdev_priv(dev);
   1620	lp->msg_enable = level;
   1621}
   1622
   1623static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
   1624{
   1625	u16 ctl;
   1626	struct smc_local *lp = netdev_priv(dev);
   1627	void __iomem *ioaddr = lp->base;
   1628
   1629	spin_lock_irq(&lp->lock);
   1630	/* load word into GP register */
   1631	SMC_SELECT_BANK(lp, 1);
   1632	SMC_SET_GP(lp, word);
   1633	/* set the address to put the data in EEPROM */
   1634	SMC_SELECT_BANK(lp, 2);
   1635	SMC_SET_PTR(lp, addr);
   1636	/* tell it to write */
   1637	SMC_SELECT_BANK(lp, 1);
   1638	ctl = SMC_GET_CTL(lp);
   1639	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
   1640	/* wait for it to finish */
   1641	do {
   1642		udelay(1);
   1643	} while (SMC_GET_CTL(lp) & CTL_STORE);
   1644	/* clean up */
   1645	SMC_SET_CTL(lp, ctl);
   1646	SMC_SELECT_BANK(lp, 2);
   1647	spin_unlock_irq(&lp->lock);
   1648	return 0;
   1649}
   1650
   1651static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
   1652{
   1653	u16 ctl;
   1654	struct smc_local *lp = netdev_priv(dev);
   1655	void __iomem *ioaddr = lp->base;
   1656
   1657	spin_lock_irq(&lp->lock);
   1658	/* set the EEPROM address to get the data from */
   1659	SMC_SELECT_BANK(lp, 2);
   1660	SMC_SET_PTR(lp, addr | PTR_READ);
   1661	/* tell it to load */
   1662	SMC_SELECT_BANK(lp, 1);
   1663	SMC_SET_GP(lp, 0xffff);	/* init to known */
   1664	ctl = SMC_GET_CTL(lp);
   1665	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
   1666	/* wait for it to finish */
   1667	do {
   1668		udelay(1);
   1669	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
   1670	/* read word from GP register */
   1671	*word = SMC_GET_GP(lp);
   1672	/* clean up */
   1673	SMC_SET_CTL(lp, ctl);
   1674	SMC_SELECT_BANK(lp, 2);
   1675	spin_unlock_irq(&lp->lock);
   1676	return 0;
   1677}
   1678
   1679static int smc_ethtool_geteeprom_len(struct net_device *dev)
   1680{
   1681	return 0x23 * 2;
   1682}
   1683
   1684static int smc_ethtool_geteeprom(struct net_device *dev,
   1685		struct ethtool_eeprom *eeprom, u8 *data)
   1686{
   1687	int i;
   1688	int imax;
   1689
   1690	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
   1691		eeprom->len, eeprom->offset, eeprom->offset);
   1692	imax = smc_ethtool_geteeprom_len(dev);
   1693	for (i = 0; i < eeprom->len; i += 2) {
   1694		int ret;
   1695		u16 wbuf;
   1696		int offset = i + eeprom->offset;
   1697		if (offset > imax)
   1698			break;
   1699		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
   1700		if (ret != 0)
   1701			return ret;
   1702		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
   1703		data[i] = (wbuf >> 8) & 0xff;
   1704		data[i+1] = wbuf & 0xff;
   1705	}
   1706	return 0;
   1707}
   1708
   1709static int smc_ethtool_seteeprom(struct net_device *dev,
   1710		struct ethtool_eeprom *eeprom, u8 *data)
   1711{
   1712	int i;
   1713	int imax;
   1714
   1715	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
   1716	    eeprom->len, eeprom->offset, eeprom->offset);
   1717	imax = smc_ethtool_geteeprom_len(dev);
   1718	for (i = 0; i < eeprom->len; i += 2) {
   1719		int ret;
   1720		u16 wbuf;
   1721		int offset = i + eeprom->offset;
   1722		if (offset > imax)
   1723			break;
   1724		wbuf = (data[i] << 8) | data[i + 1];
   1725		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
   1726		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
   1727		if (ret != 0)
   1728			return ret;
   1729	}
   1730	return 0;
   1731}
   1732
   1733
   1734static const struct ethtool_ops smc_ethtool_ops = {
   1735	.get_drvinfo	= smc_ethtool_getdrvinfo,
   1736
   1737	.get_msglevel	= smc_ethtool_getmsglevel,
   1738	.set_msglevel	= smc_ethtool_setmsglevel,
   1739	.nway_reset	= smc_ethtool_nwayreset,
   1740	.get_link	= ethtool_op_get_link,
   1741	.get_eeprom_len = smc_ethtool_geteeprom_len,
   1742	.get_eeprom	= smc_ethtool_geteeprom,
   1743	.set_eeprom	= smc_ethtool_seteeprom,
   1744	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
   1745	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
   1746};
   1747
   1748static const struct net_device_ops smc_netdev_ops = {
   1749	.ndo_open		= smc_open,
   1750	.ndo_stop		= smc_close,
   1751	.ndo_start_xmit		= smc_hard_start_xmit,
   1752	.ndo_tx_timeout		= smc_timeout,
   1753	.ndo_set_rx_mode	= smc_set_multicast_list,
   1754	.ndo_validate_addr	= eth_validate_addr,
   1755	.ndo_set_mac_address 	= eth_mac_addr,
   1756#ifdef CONFIG_NET_POLL_CONTROLLER
   1757	.ndo_poll_controller	= smc_poll_controller,
   1758#endif
   1759};
   1760
   1761/*
   1762 * smc_findirq
   1763 *
   1764 * This routine has a simple purpose -- make the SMC chip generate an
   1765 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
   1766 */
   1767/*
   1768 * does this still work?
   1769 *
   1770 * I just deleted auto_irq.c, since it was never built...
   1771 *   --jgarzik
   1772 */
   1773static int smc_findirq(struct smc_local *lp)
   1774{
   1775	void __iomem *ioaddr = lp->base;
   1776	int timeout = 20;
   1777	unsigned long cookie;
   1778
   1779	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
   1780
   1781	cookie = probe_irq_on();
   1782
   1783	/*
   1784	 * What I try to do here is trigger an ALLOC_INT. This is done
   1785	 * by allocating a small chunk of memory, which will give an interrupt
   1786	 * when done.
   1787	 */
   1788	/* enable ALLOCation interrupts ONLY */
   1789	SMC_SELECT_BANK(lp, 2);
   1790	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
   1791
   1792	/*
   1793	 * Allocate 512 bytes of memory.  Note that the chip was just
   1794	 * reset so all the memory is available
   1795	 */
   1796	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
   1797
   1798	/*
   1799	 * Wait until positive that the interrupt has been generated
   1800	 */
   1801	do {
   1802		int int_status;
   1803		udelay(10);
   1804		int_status = SMC_GET_INT(lp);
   1805		if (int_status & IM_ALLOC_INT)
   1806			break;		/* got the interrupt */
   1807	} while (--timeout);
   1808
   1809	/*
   1810	 * there is really nothing that I can do here if timeout fails,
   1811	 * as autoirq_report will return a 0 anyway, which is what I
   1812	 * want in this case.   Plus, the clean up is needed in both
   1813	 * cases.
   1814	 */
   1815
   1816	/* and disable all interrupts again */
   1817	SMC_SET_INT_MASK(lp, 0);
   1818
   1819	/* and return what I found */
   1820	return probe_irq_off(cookie);
   1821}
   1822
   1823/*
   1824 * Function: smc_probe(unsigned long ioaddr)
   1825 *
   1826 * Purpose:
   1827 *	Tests to see if a given ioaddr points to an SMC91x chip.
   1828 *	Returns a 0 on success
   1829 *
   1830 * Algorithm:
   1831 *	(1) see if the high byte of BANK_SELECT is 0x33
   1832 * 	(2) compare the ioaddr with the base register's address
   1833 *	(3) see if I recognize the chip ID in the appropriate register
   1834 *
   1835 * Here I do typical initialization tasks.
   1836 *
   1837 * o  Initialize the structure if needed
   1838 * o  print out my vanity message if not done so already
   1839 * o  print out what type of hardware is detected
   1840 * o  print out the ethernet address
   1841 * o  find the IRQ
   1842 * o  set up my private data
   1843 * o  configure the dev structure with my subroutines
   1844 * o  actually GRAB the irq.
   1845 * o  GRAB the region
   1846 */
   1847static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
   1848		     unsigned long irq_flags)
   1849{
   1850	struct smc_local *lp = netdev_priv(dev);
   1851	int retval;
   1852	unsigned int val, revision_register;
   1853	const char *version_string;
   1854	u8 addr[ETH_ALEN];
   1855
   1856	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
   1857
   1858	/* First, see if the high byte is 0x33 */
   1859	val = SMC_CURRENT_BANK(lp);
   1860	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
   1861	    CARDNAME, val);
   1862	if ((val & 0xFF00) != 0x3300) {
   1863		if ((val & 0xFF) == 0x33) {
   1864			netdev_warn(dev,
   1865				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
   1866				    CARDNAME, ioaddr);
   1867		}
   1868		retval = -ENODEV;
   1869		goto err_out;
   1870	}
   1871
   1872	/*
   1873	 * The above MIGHT indicate a device, but I need to write to
   1874	 * further test this.
   1875	 */
   1876	SMC_SELECT_BANK(lp, 0);
   1877	val = SMC_CURRENT_BANK(lp);
   1878	if ((val & 0xFF00) != 0x3300) {
   1879		retval = -ENODEV;
   1880		goto err_out;
   1881	}
   1882
   1883	/*
   1884	 * well, we've already written once, so hopefully another
   1885	 * time won't hurt.  This time, I need to switch the bank
   1886	 * register to bank 1, so I can access the base address
   1887	 * register
   1888	 */
   1889	SMC_SELECT_BANK(lp, 1);
   1890	val = SMC_GET_BASE(lp);
   1891	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
   1892	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
   1893		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
   1894			    CARDNAME, ioaddr, val);
   1895	}
   1896
   1897	/*
   1898	 * check if the revision register is something that I
   1899	 * recognize.  These might need to be added to later,
   1900	 * as future revisions could be added.
   1901	 */
   1902	SMC_SELECT_BANK(lp, 3);
   1903	revision_register = SMC_GET_REV(lp);
   1904	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
   1905	version_string = chip_ids[ (revision_register >> 4) & 0xF];
   1906	if (!version_string || (revision_register & 0xff00) != 0x3300) {
   1907		/* I don't recognize this chip, so... */
   1908		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
   1909			    CARDNAME, ioaddr, revision_register);
   1910
   1911		retval = -ENODEV;
   1912		goto err_out;
   1913	}
   1914
   1915	/* At this point I'll assume that the chip is an SMC91x. */
   1916	pr_info_once("%s\n", version);
   1917
   1918	/* fill in some of the fields */
   1919	dev->base_addr = (unsigned long)ioaddr;
   1920	lp->base = ioaddr;
   1921	lp->version = revision_register & 0xff;
   1922	spin_lock_init(&lp->lock);
   1923
   1924	/* Get the MAC address */
   1925	SMC_SELECT_BANK(lp, 1);
   1926	SMC_GET_MAC_ADDR(lp, addr);
   1927	eth_hw_addr_set(dev, addr);
   1928
   1929	/* now, reset the chip, and put it into a known state */
   1930	smc_reset(dev);
   1931
   1932	/*
   1933	 * If dev->irq is 0, then the device has to be banged on to see
   1934	 * what the IRQ is.
   1935	 *
   1936	 * This banging doesn't always detect the IRQ, for unknown reasons.
   1937	 * a workaround is to reset the chip and try again.
   1938	 *
   1939	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
   1940	 * be what is requested on the command line.   I don't do that, mostly
   1941	 * because the card that I have uses a non-standard method of accessing
   1942	 * the IRQs, and because this _should_ work in most configurations.
   1943	 *
   1944	 * Specifying an IRQ is done with the assumption that the user knows
   1945	 * what (s)he is doing.  No checking is done!!!!
   1946	 */
   1947	if (dev->irq < 1) {
   1948		int trials;
   1949
   1950		trials = 3;
   1951		while (trials--) {
   1952			dev->irq = smc_findirq(lp);
   1953			if (dev->irq)
   1954				break;
   1955			/* kick the card and try again */
   1956			smc_reset(dev);
   1957		}
   1958	}
   1959	if (dev->irq == 0) {
   1960		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
   1961		retval = -ENODEV;
   1962		goto err_out;
   1963	}
   1964	dev->irq = irq_canonicalize(dev->irq);
   1965
   1966	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
   1967	dev->netdev_ops = &smc_netdev_ops;
   1968	dev->ethtool_ops = &smc_ethtool_ops;
   1969
   1970	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
   1971	INIT_WORK(&lp->phy_configure, smc_phy_configure);
   1972	lp->dev = dev;
   1973	lp->mii.phy_id_mask = 0x1f;
   1974	lp->mii.reg_num_mask = 0x1f;
   1975	lp->mii.force_media = 0;
   1976	lp->mii.full_duplex = 0;
   1977	lp->mii.dev = dev;
   1978	lp->mii.mdio_read = smc_phy_read;
   1979	lp->mii.mdio_write = smc_phy_write;
   1980
   1981	/*
   1982	 * Locate the phy, if any.
   1983	 */
   1984	if (lp->version >= (CHIP_91100 << 4))
   1985		smc_phy_detect(dev);
   1986
   1987	/* then shut everything down to save power */
   1988	smc_shutdown(dev);
   1989	smc_phy_powerdown(dev);
   1990
   1991	/* Set default parameters */
   1992	lp->msg_enable = NETIF_MSG_LINK;
   1993	lp->ctl_rfduplx = 0;
   1994	lp->ctl_rspeed = 10;
   1995
   1996	if (lp->version >= (CHIP_91100 << 4)) {
   1997		lp->ctl_rfduplx = 1;
   1998		lp->ctl_rspeed = 100;
   1999	}
   2000
   2001	/* Grab the IRQ */
   2002	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
   2003	if (retval)
   2004		goto err_out;
   2005
   2006#ifdef CONFIG_ARCH_PXA
   2007#  ifdef SMC_USE_PXA_DMA
   2008	lp->cfg.flags |= SMC91X_USE_DMA;
   2009#  endif
   2010	if (lp->cfg.flags & SMC91X_USE_DMA) {
   2011		dma_cap_mask_t mask;
   2012
   2013		dma_cap_zero(mask);
   2014		dma_cap_set(DMA_SLAVE, mask);
   2015		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
   2016	}
   2017#endif
   2018
   2019	retval = register_netdev(dev);
   2020	if (retval == 0) {
   2021		/* now, print out the card info, in a short format.. */
   2022		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
   2023			    version_string, revision_register & 0x0f,
   2024			    lp->base, dev->irq);
   2025
   2026		if (lp->dma_chan)
   2027			pr_cont(" DMA %p", lp->dma_chan);
   2028
   2029		pr_cont("%s%s\n",
   2030			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
   2031			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
   2032
   2033		if (!is_valid_ether_addr(dev->dev_addr)) {
   2034			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
   2035		} else {
   2036			/* Print the Ethernet address */
   2037			netdev_info(dev, "Ethernet addr: %pM\n",
   2038				    dev->dev_addr);
   2039		}
   2040
   2041		if (lp->phy_type == 0) {
   2042			PRINTK(dev, "No PHY found\n");
   2043		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
   2044			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
   2045		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
   2046			PRINTK(dev, "PHY LAN83C180\n");
   2047		}
   2048	}
   2049
   2050err_out:
   2051#ifdef CONFIG_ARCH_PXA
   2052	if (retval && lp->dma_chan)
   2053		dma_release_channel(lp->dma_chan);
   2054#endif
   2055	return retval;
   2056}
   2057
   2058static int smc_enable_device(struct platform_device *pdev)
   2059{
   2060	struct net_device *ndev = platform_get_drvdata(pdev);
   2061	struct smc_local *lp = netdev_priv(ndev);
   2062	unsigned long flags;
   2063	unsigned char ecor, ecsr;
   2064	void __iomem *addr;
   2065	struct resource * res;
   2066
   2067	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
   2068	if (!res)
   2069		return 0;
   2070
   2071	/*
   2072	 * Map the attribute space.  This is overkill, but clean.
   2073	 */
   2074	addr = ioremap(res->start, ATTRIB_SIZE);
   2075	if (!addr)
   2076		return -ENOMEM;
   2077
   2078	/*
   2079	 * Reset the device.  We must disable IRQs around this
   2080	 * since a reset causes the IRQ line become active.
   2081	 */
   2082	local_irq_save(flags);
   2083	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
   2084	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
   2085	readb(addr + (ECOR << SMC_IO_SHIFT));
   2086
   2087	/*
   2088	 * Wait 100us for the chip to reset.
   2089	 */
   2090	udelay(100);
   2091
   2092	/*
   2093	 * The device will ignore all writes to the enable bit while
   2094	 * reset is asserted, even if the reset bit is cleared in the
   2095	 * same write.  Must clear reset first, then enable the device.
   2096	 */
   2097	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
   2098	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
   2099
   2100	/*
   2101	 * Set the appropriate byte/word mode.
   2102	 */
   2103	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
   2104	if (!SMC_16BIT(lp))
   2105		ecsr |= ECSR_IOIS8;
   2106	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
   2107	local_irq_restore(flags);
   2108
   2109	iounmap(addr);
   2110
   2111	/*
   2112	 * Wait for the chip to wake up.  We could poll the control
   2113	 * register in the main register space, but that isn't mapped
   2114	 * yet.  We know this is going to take 750us.
   2115	 */
   2116	msleep(1);
   2117
   2118	return 0;
   2119}
   2120
   2121static int smc_request_attrib(struct platform_device *pdev,
   2122			      struct net_device *ndev)
   2123{
   2124	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
   2125	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
   2126
   2127	if (!res)
   2128		return 0;
   2129
   2130	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
   2131		return -EBUSY;
   2132
   2133	return 0;
   2134}
   2135
   2136static void smc_release_attrib(struct platform_device *pdev,
   2137			       struct net_device *ndev)
   2138{
   2139	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
   2140	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
   2141
   2142	if (res)
   2143		release_mem_region(res->start, ATTRIB_SIZE);
   2144}
   2145
   2146static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
   2147{
   2148	if (SMC_CAN_USE_DATACS) {
   2149		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
   2150		struct smc_local *lp = netdev_priv(ndev);
   2151
   2152		if (!res)
   2153			return;
   2154
   2155		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
   2156			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
   2157				    CARDNAME);
   2158			return;
   2159		}
   2160
   2161		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
   2162	}
   2163}
   2164
   2165static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
   2166{
   2167	if (SMC_CAN_USE_DATACS) {
   2168		struct smc_local *lp = netdev_priv(ndev);
   2169		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
   2170
   2171		if (lp->datacs)
   2172			iounmap(lp->datacs);
   2173
   2174		lp->datacs = NULL;
   2175
   2176		if (res)
   2177			release_mem_region(res->start, SMC_DATA_EXTENT);
   2178	}
   2179}
   2180
   2181static const struct acpi_device_id smc91x_acpi_match[] = {
   2182	{ "LNRO0003", 0 },
   2183	{ }
   2184};
   2185MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
   2186
   2187#if IS_BUILTIN(CONFIG_OF)
   2188static const struct of_device_id smc91x_match[] = {
   2189	{ .compatible = "smsc,lan91c94", },
   2190	{ .compatible = "smsc,lan91c111", },
   2191	{},
   2192};
   2193MODULE_DEVICE_TABLE(of, smc91x_match);
   2194
   2195/**
   2196 * try_toggle_control_gpio - configure a gpio if it exists
   2197 * @dev: net device
   2198 * @desc: where to store the GPIO descriptor, if it exists
   2199 * @name: name of the GPIO in DT
   2200 * @index: index of the GPIO in DT
   2201 * @value: set the GPIO to this value
   2202 * @nsdelay: delay before setting the GPIO
   2203 */
   2204static int try_toggle_control_gpio(struct device *dev,
   2205				   struct gpio_desc **desc,
   2206				   const char *name, int index,
   2207				   int value, unsigned int nsdelay)
   2208{
   2209	struct gpio_desc *gpio;
   2210	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
   2211
   2212	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
   2213	if (IS_ERR(gpio))
   2214		return PTR_ERR(gpio);
   2215
   2216	if (gpio) {
   2217		if (nsdelay)
   2218			usleep_range(nsdelay, 2 * nsdelay);
   2219		gpiod_set_value_cansleep(gpio, value);
   2220	}
   2221	*desc = gpio;
   2222
   2223	return 0;
   2224}
   2225#endif
   2226
   2227/*
   2228 * smc_init(void)
   2229 *   Input parameters:
   2230 *	dev->base_addr == 0, try to find all possible locations
   2231 *	dev->base_addr > 0x1ff, this is the address to check
   2232 *	dev->base_addr == <anything else>, return failure code
   2233 *
   2234 *   Output:
   2235 *	0 --> there is a device
   2236 *	anything else, error
   2237 */
   2238static int smc_drv_probe(struct platform_device *pdev)
   2239{
   2240	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
   2241	const struct of_device_id *match = NULL;
   2242	struct smc_local *lp;
   2243	struct net_device *ndev;
   2244	struct resource *res;
   2245	unsigned int __iomem *addr;
   2246	unsigned long irq_flags = SMC_IRQ_FLAGS;
   2247	unsigned long irq_resflags;
   2248	int ret;
   2249
   2250	ndev = alloc_etherdev(sizeof(struct smc_local));
   2251	if (!ndev) {
   2252		ret = -ENOMEM;
   2253		goto out;
   2254	}
   2255	SET_NETDEV_DEV(ndev, &pdev->dev);
   2256
   2257	/* get configuration from platform data, only allow use of
   2258	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
   2259	 */
   2260
   2261	lp = netdev_priv(ndev);
   2262	lp->cfg.flags = 0;
   2263
   2264	if (pd) {
   2265		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
   2266		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
   2267
   2268		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
   2269			dev_err(&pdev->dev,
   2270				"at least one of 8-bit or 16-bit access support is required.\n");
   2271			ret = -ENXIO;
   2272			goto out_free_netdev;
   2273		}
   2274	}
   2275
   2276#if IS_BUILTIN(CONFIG_OF)
   2277	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
   2278	if (match) {
   2279		u32 val;
   2280
   2281		/* Optional pwrdwn GPIO configured? */
   2282		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
   2283					      "power", 0, 0, 100);
   2284		if (ret)
   2285			goto out_free_netdev;
   2286
   2287		/*
   2288		 * Optional reset GPIO configured? Minimum 100 ns reset needed
   2289		 * according to LAN91C96 datasheet page 14.
   2290		 */
   2291		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
   2292					      "reset", 0, 0, 100);
   2293		if (ret)
   2294			goto out_free_netdev;
   2295
   2296		/*
   2297		 * Need to wait for optional EEPROM to load, max 750 us according
   2298		 * to LAN91C96 datasheet page 55.
   2299		 */
   2300		if (lp->reset_gpio)
   2301			usleep_range(750, 1000);
   2302
   2303		/* Combination of IO widths supported, default to 16-bit */
   2304		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
   2305					      &val)) {
   2306			if (val & 1)
   2307				lp->cfg.flags |= SMC91X_USE_8BIT;
   2308			if ((val == 0) || (val & 2))
   2309				lp->cfg.flags |= SMC91X_USE_16BIT;
   2310			if (val & 4)
   2311				lp->cfg.flags |= SMC91X_USE_32BIT;
   2312		} else {
   2313			lp->cfg.flags |= SMC91X_USE_16BIT;
   2314		}
   2315		if (!device_property_read_u32(&pdev->dev, "reg-shift",
   2316					      &val))
   2317			lp->io_shift = val;
   2318		lp->cfg.pxa_u16_align4 =
   2319			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
   2320	}
   2321#endif
   2322
   2323	if (!pd && !match) {
   2324		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
   2325		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
   2326		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
   2327		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
   2328	}
   2329
   2330	if (!lp->cfg.leda && !lp->cfg.ledb) {
   2331		lp->cfg.leda = RPC_LSA_DEFAULT;
   2332		lp->cfg.ledb = RPC_LSB_DEFAULT;
   2333	}
   2334
   2335	ndev->dma = (unsigned char)-1;
   2336
   2337	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
   2338	if (!res)
   2339		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   2340	if (!res) {
   2341		ret = -ENODEV;
   2342		goto out_free_netdev;
   2343	}
   2344
   2345
   2346	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
   2347		ret = -EBUSY;
   2348		goto out_free_netdev;
   2349	}
   2350
   2351	ndev->irq = platform_get_irq(pdev, 0);
   2352	if (ndev->irq < 0) {
   2353		ret = ndev->irq;
   2354		goto out_release_io;
   2355	}
   2356	/*
   2357	 * If this platform does not specify any special irqflags, or if
   2358	 * the resource supplies a trigger, override the irqflags with
   2359	 * the trigger flags from the resource.
   2360	 */
   2361	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
   2362	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
   2363		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
   2364
   2365	ret = smc_request_attrib(pdev, ndev);
   2366	if (ret)
   2367		goto out_release_io;
   2368#if defined(CONFIG_ASSABET_NEPONSET)
   2369	if (machine_is_assabet() && machine_has_neponset())
   2370		neponset_ncr_set(NCR_ENET_OSC_EN);
   2371#endif
   2372	platform_set_drvdata(pdev, ndev);
   2373	ret = smc_enable_device(pdev);
   2374	if (ret)
   2375		goto out_release_attrib;
   2376
   2377	addr = ioremap(res->start, SMC_IO_EXTENT);
   2378	if (!addr) {
   2379		ret = -ENOMEM;
   2380		goto out_release_attrib;
   2381	}
   2382
   2383#ifdef CONFIG_ARCH_PXA
   2384	{
   2385		struct smc_local *lp = netdev_priv(ndev);
   2386		lp->device = &pdev->dev;
   2387		lp->physaddr = res->start;
   2388
   2389	}
   2390#endif
   2391
   2392	ret = smc_probe(ndev, addr, irq_flags);
   2393	if (ret != 0)
   2394		goto out_iounmap;
   2395
   2396	smc_request_datacs(pdev, ndev);
   2397
   2398	return 0;
   2399
   2400 out_iounmap:
   2401	iounmap(addr);
   2402 out_release_attrib:
   2403	smc_release_attrib(pdev, ndev);
   2404 out_release_io:
   2405	release_mem_region(res->start, SMC_IO_EXTENT);
   2406 out_free_netdev:
   2407	free_netdev(ndev);
   2408 out:
   2409	pr_info("%s: not found (%d).\n", CARDNAME, ret);
   2410
   2411	return ret;
   2412}
   2413
   2414static int smc_drv_remove(struct platform_device *pdev)
   2415{
   2416	struct net_device *ndev = platform_get_drvdata(pdev);
   2417	struct smc_local *lp = netdev_priv(ndev);
   2418	struct resource *res;
   2419
   2420	unregister_netdev(ndev);
   2421
   2422	free_irq(ndev->irq, ndev);
   2423
   2424#ifdef CONFIG_ARCH_PXA
   2425	if (lp->dma_chan)
   2426		dma_release_channel(lp->dma_chan);
   2427#endif
   2428	iounmap(lp->base);
   2429
   2430	smc_release_datacs(pdev,ndev);
   2431	smc_release_attrib(pdev,ndev);
   2432
   2433	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
   2434	if (!res)
   2435		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   2436	release_mem_region(res->start, SMC_IO_EXTENT);
   2437
   2438	free_netdev(ndev);
   2439
   2440	return 0;
   2441}
   2442
   2443static int smc_drv_suspend(struct device *dev)
   2444{
   2445	struct net_device *ndev = dev_get_drvdata(dev);
   2446
   2447	if (ndev) {
   2448		if (netif_running(ndev)) {
   2449			netif_device_detach(ndev);
   2450			smc_shutdown(ndev);
   2451			smc_phy_powerdown(ndev);
   2452		}
   2453	}
   2454	return 0;
   2455}
   2456
   2457static int smc_drv_resume(struct device *dev)
   2458{
   2459	struct platform_device *pdev = to_platform_device(dev);
   2460	struct net_device *ndev = platform_get_drvdata(pdev);
   2461
   2462	if (ndev) {
   2463		struct smc_local *lp = netdev_priv(ndev);
   2464		smc_enable_device(pdev);
   2465		if (netif_running(ndev)) {
   2466			smc_reset(ndev);
   2467			smc_enable(ndev);
   2468			if (lp->phy_type != 0)
   2469				smc_phy_configure(&lp->phy_configure);
   2470			netif_device_attach(ndev);
   2471		}
   2472	}
   2473	return 0;
   2474}
   2475
   2476static const struct dev_pm_ops smc_drv_pm_ops = {
   2477	.suspend	= smc_drv_suspend,
   2478	.resume		= smc_drv_resume,
   2479};
   2480
   2481static struct platform_driver smc_driver = {
   2482	.probe		= smc_drv_probe,
   2483	.remove		= smc_drv_remove,
   2484	.driver		= {
   2485		.name	= CARDNAME,
   2486		.pm	= &smc_drv_pm_ops,
   2487		.of_match_table   = of_match_ptr(smc91x_match),
   2488		.acpi_match_table = smc91x_acpi_match,
   2489	},
   2490};
   2491
   2492module_platform_driver(smc_driver);