cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cassini.c (140881B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
      3 *
      4 * Copyright (C) 2004 Sun Microsystems Inc.
      5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
      6 *
      7 * This driver uses the sungem driver (c) David Miller
      8 * (davem@redhat.com) as its basis.
      9 *
     10 * The cassini chip has a number of features that distinguish it from
     11 * the gem chip:
     12 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
     13 *      load balancing (non-VLAN mode)
     14 *  batching of multiple packets
     15 *  multiple CPU dispatching
     16 *  page-based RX descriptor engine with separate completion rings
     17 *  Gigabit support (GMII and PCS interface)
     18 *  MIF link up/down detection works
     19 *
     20 * RX is handled by page sized buffers that are attached as fragments to
     21 * the skb. here's what's done:
     22 *  -- driver allocates pages at a time and keeps reference counts
     23 *     on them.
     24 *  -- the upper protocol layers assume that the header is in the skb
     25 *     itself. as a result, cassini will copy a small amount (64 bytes)
     26 *     to make them happy.
     27 *  -- driver appends the rest of the data pages as frags to skbuffs
     28 *     and increments the reference count
     29 *  -- on page reclamation, the driver swaps the page with a spare page.
     30 *     if that page is still in use, it frees its reference to that page,
     31 *     and allocates a new page for use. otherwise, it just recycles the
     32 *     the page.
     33 *
     34 * NOTE: cassini can parse the header. however, it's not worth it
     35 *       as long as the network stack requires a header copy.
     36 *
     37 * TX has 4 queues. currently these queues are used in a round-robin
     38 * fashion for load balancing. They can also be used for QoS. for that
     39 * to work, however, QoS information needs to be exposed down to the driver
     40 * level so that subqueues get targeted to particular transmit rings.
     41 * alternatively, the queues can be configured via use of the all-purpose
     42 * ioctl.
     43 *
     44 * RX DATA: the rx completion ring has all the info, but the rx desc
     45 * ring has all of the data. RX can conceivably come in under multiple
     46 * interrupts, but the INT# assignment needs to be set up properly by
     47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
     48 * that. also, the two descriptor rings are designed to distinguish between
     49 * encrypted and non-encrypted packets, but we use them for buffering
     50 * instead.
     51 *
     52 * by default, the selective clear mask is set up to process rx packets.
     53 */
     54
     55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     56
     57#include <linux/module.h>
     58#include <linux/kernel.h>
     59#include <linux/types.h>
     60#include <linux/compiler.h>
     61#include <linux/slab.h>
     62#include <linux/delay.h>
     63#include <linux/init.h>
     64#include <linux/interrupt.h>
     65#include <linux/vmalloc.h>
     66#include <linux/ioport.h>
     67#include <linux/pci.h>
     68#include <linux/mm.h>
     69#include <linux/highmem.h>
     70#include <linux/list.h>
     71#include <linux/dma-mapping.h>
     72
     73#include <linux/netdevice.h>
     74#include <linux/etherdevice.h>
     75#include <linux/skbuff.h>
     76#include <linux/ethtool.h>
     77#include <linux/crc32.h>
     78#include <linux/random.h>
     79#include <linux/mii.h>
     80#include <linux/ip.h>
     81#include <linux/tcp.h>
     82#include <linux/mutex.h>
     83#include <linux/firmware.h>
     84
     85#include <net/checksum.h>
     86
     87#include <linux/atomic.h>
     88#include <asm/io.h>
     89#include <asm/byteorder.h>
     90#include <linux/uaccess.h>
     91#include <linux/jiffies.h>
     92
     93#define cas_page_map(x)      kmap_atomic((x))
     94#define cas_page_unmap(x)    kunmap_atomic((x))
     95#define CAS_NCPUS            num_online_cpus()
     96
     97#define cas_skb_release(x)  netif_rx(x)
     98
     99/* select which firmware to use */
    100#define USE_HP_WORKAROUND
    101#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
    102#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
    103
    104#include "cassini.h"
    105
    106#define USE_TX_COMPWB      /* use completion writeback registers */
    107#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
    108#define USE_RX_BLANK       /* hw interrupt mitigation */
    109#undef USE_ENTROPY_DEV     /* don't test for entropy device */
    110
    111/* NOTE: these aren't useable unless PCI interrupts can be assigned.
    112 * also, we need to make cp->lock finer-grained.
    113 */
    114#undef  USE_PCI_INTB
    115#undef  USE_PCI_INTC
    116#undef  USE_PCI_INTD
    117#undef  USE_QOS
    118
    119#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
    120
    121/* rx processing options */
    122#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
    123#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
    124#define RX_COPY_ALWAYS 0    /* if 0, use frags */
    125#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
    126#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
    127
    128#define DRV_MODULE_NAME		"cassini"
    129#define DRV_MODULE_VERSION	"1.6"
    130#define DRV_MODULE_RELDATE	"21 May 2008"
    131
    132#define CAS_DEF_MSG_ENABLE	  \
    133	(NETIF_MSG_DRV		| \
    134	 NETIF_MSG_PROBE	| \
    135	 NETIF_MSG_LINK		| \
    136	 NETIF_MSG_TIMER	| \
    137	 NETIF_MSG_IFDOWN	| \
    138	 NETIF_MSG_IFUP		| \
    139	 NETIF_MSG_RX_ERR	| \
    140	 NETIF_MSG_TX_ERR)
    141
    142/* length of time before we decide the hardware is borked,
    143 * and dev->tx_timeout() should be called to fix the problem
    144 */
    145#define CAS_TX_TIMEOUT			(HZ)
    146#define CAS_LINK_TIMEOUT                (22*HZ/10)
    147#define CAS_LINK_FAST_TIMEOUT           (1)
    148
    149/* timeout values for state changing. these specify the number
    150 * of 10us delays to be used before giving up.
    151 */
    152#define STOP_TRIES_PHY 1000
    153#define STOP_TRIES     5000
    154
    155/* specify a minimum frame size to deal with some fifo issues
    156 * max mtu == 2 * page size - ethernet header - 64 - swivel =
    157 *            2 * page_size - 0x50
    158 */
    159#define CAS_MIN_FRAME			97
    160#define CAS_1000MB_MIN_FRAME            255
    161#define CAS_MIN_MTU                     60
    162#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
    163
    164#if 1
    165/*
    166 * Eliminate these and use separate atomic counters for each, to
    167 * avoid a race condition.
    168 */
    169#else
    170#define CAS_RESET_MTU                   1
    171#define CAS_RESET_ALL                   2
    172#define CAS_RESET_SPARE                 3
    173#endif
    174
    175static char version[] =
    176	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
    177
    178static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
    179static int link_mode;
    180
    181MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
    182MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
    183MODULE_LICENSE("GPL");
    184MODULE_FIRMWARE("sun/cassini.bin");
    185module_param(cassini_debug, int, 0);
    186MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
    187module_param(link_mode, int, 0);
    188MODULE_PARM_DESC(link_mode, "default link mode");
    189
    190/*
    191 * Work around for a PCS bug in which the link goes down due to the chip
    192 * being confused and never showing a link status of "up."
    193 */
    194#define DEFAULT_LINKDOWN_TIMEOUT 5
    195/*
    196 * Value in seconds, for user input.
    197 */
    198static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
    199module_param(linkdown_timeout, int, 0);
    200MODULE_PARM_DESC(linkdown_timeout,
    201"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
    202
    203/*
    204 * value in 'ticks' (units used by jiffies). Set when we init the
    205 * module because 'HZ' in actually a function call on some flavors of
    206 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
    207 */
    208static int link_transition_timeout;
    209
    210
    211
    212static u16 link_modes[] = {
    213	BMCR_ANENABLE,			 /* 0 : autoneg */
    214	0,				 /* 1 : 10bt half duplex */
    215	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
    216	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
    217	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
    218	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
    219};
    220
    221static const struct pci_device_id cas_pci_tbl[] = {
    222	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
    223	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    224	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
    225	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    226	{ 0, }
    227};
    228
    229MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
    230
    231static void cas_set_link_modes(struct cas *cp);
    232
    233static inline void cas_lock_tx(struct cas *cp)
    234{
    235	int i;
    236
    237	for (i = 0; i < N_TX_RINGS; i++)
    238		spin_lock_nested(&cp->tx_lock[i], i);
    239}
    240
    241/* WTZ: QA was finding deadlock problems with the previous
    242 * versions after long test runs with multiple cards per machine.
    243 * See if replacing cas_lock_all with safer versions helps. The
    244 * symptoms QA is reporting match those we'd expect if interrupts
    245 * aren't being properly restored, and we fixed a previous deadlock
    246 * with similar symptoms by using save/restore versions in other
    247 * places.
    248 */
    249#define cas_lock_all_save(cp, flags) \
    250do { \
    251	struct cas *xxxcp = (cp); \
    252	spin_lock_irqsave(&xxxcp->lock, flags); \
    253	cas_lock_tx(xxxcp); \
    254} while (0)
    255
    256static inline void cas_unlock_tx(struct cas *cp)
    257{
    258	int i;
    259
    260	for (i = N_TX_RINGS; i > 0; i--)
    261		spin_unlock(&cp->tx_lock[i - 1]);
    262}
    263
    264#define cas_unlock_all_restore(cp, flags) \
    265do { \
    266	struct cas *xxxcp = (cp); \
    267	cas_unlock_tx(xxxcp); \
    268	spin_unlock_irqrestore(&xxxcp->lock, flags); \
    269} while (0)
    270
    271static void cas_disable_irq(struct cas *cp, const int ring)
    272{
    273	/* Make sure we won't get any more interrupts */
    274	if (ring == 0) {
    275		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
    276		return;
    277	}
    278
    279	/* disable completion interrupts and selectively mask */
    280	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
    281		switch (ring) {
    282#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
    283#ifdef USE_PCI_INTB
    284		case 1:
    285#endif
    286#ifdef USE_PCI_INTC
    287		case 2:
    288#endif
    289#ifdef USE_PCI_INTD
    290		case 3:
    291#endif
    292			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
    293			       cp->regs + REG_PLUS_INTRN_MASK(ring));
    294			break;
    295#endif
    296		default:
    297			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
    298			       REG_PLUS_INTRN_MASK(ring));
    299			break;
    300		}
    301	}
    302}
    303
    304static inline void cas_mask_intr(struct cas *cp)
    305{
    306	int i;
    307
    308	for (i = 0; i < N_RX_COMP_RINGS; i++)
    309		cas_disable_irq(cp, i);
    310}
    311
    312static void cas_enable_irq(struct cas *cp, const int ring)
    313{
    314	if (ring == 0) { /* all but TX_DONE */
    315		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
    316		return;
    317	}
    318
    319	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
    320		switch (ring) {
    321#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
    322#ifdef USE_PCI_INTB
    323		case 1:
    324#endif
    325#ifdef USE_PCI_INTC
    326		case 2:
    327#endif
    328#ifdef USE_PCI_INTD
    329		case 3:
    330#endif
    331			writel(INTRN_MASK_RX_EN, cp->regs +
    332			       REG_PLUS_INTRN_MASK(ring));
    333			break;
    334#endif
    335		default:
    336			break;
    337		}
    338	}
    339}
    340
    341static inline void cas_unmask_intr(struct cas *cp)
    342{
    343	int i;
    344
    345	for (i = 0; i < N_RX_COMP_RINGS; i++)
    346		cas_enable_irq(cp, i);
    347}
    348
    349static inline void cas_entropy_gather(struct cas *cp)
    350{
    351#ifdef USE_ENTROPY_DEV
    352	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
    353		return;
    354
    355	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
    356			    readl(cp->regs + REG_ENTROPY_IV),
    357			    sizeof(uint64_t)*8);
    358#endif
    359}
    360
    361static inline void cas_entropy_reset(struct cas *cp)
    362{
    363#ifdef USE_ENTROPY_DEV
    364	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
    365		return;
    366
    367	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
    368	       cp->regs + REG_BIM_LOCAL_DEV_EN);
    369	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
    370	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
    371
    372	/* if we read back 0x0, we don't have an entropy device */
    373	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
    374		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
    375#endif
    376}
    377
    378/* access to the phy. the following assumes that we've initialized the MIF to
    379 * be in frame rather than bit-bang mode
    380 */
    381static u16 cas_phy_read(struct cas *cp, int reg)
    382{
    383	u32 cmd;
    384	int limit = STOP_TRIES_PHY;
    385
    386	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
    387	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
    388	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
    389	cmd |= MIF_FRAME_TURN_AROUND_MSB;
    390	writel(cmd, cp->regs + REG_MIF_FRAME);
    391
    392	/* poll for completion */
    393	while (limit-- > 0) {
    394		udelay(10);
    395		cmd = readl(cp->regs + REG_MIF_FRAME);
    396		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
    397			return cmd & MIF_FRAME_DATA_MASK;
    398	}
    399	return 0xFFFF; /* -1 */
    400}
    401
    402static int cas_phy_write(struct cas *cp, int reg, u16 val)
    403{
    404	int limit = STOP_TRIES_PHY;
    405	u32 cmd;
    406
    407	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
    408	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
    409	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
    410	cmd |= MIF_FRAME_TURN_AROUND_MSB;
    411	cmd |= val & MIF_FRAME_DATA_MASK;
    412	writel(cmd, cp->regs + REG_MIF_FRAME);
    413
    414	/* poll for completion */
    415	while (limit-- > 0) {
    416		udelay(10);
    417		cmd = readl(cp->regs + REG_MIF_FRAME);
    418		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
    419			return 0;
    420	}
    421	return -1;
    422}
    423
    424static void cas_phy_powerup(struct cas *cp)
    425{
    426	u16 ctl = cas_phy_read(cp, MII_BMCR);
    427
    428	if ((ctl & BMCR_PDOWN) == 0)
    429		return;
    430	ctl &= ~BMCR_PDOWN;
    431	cas_phy_write(cp, MII_BMCR, ctl);
    432}
    433
    434static void cas_phy_powerdown(struct cas *cp)
    435{
    436	u16 ctl = cas_phy_read(cp, MII_BMCR);
    437
    438	if (ctl & BMCR_PDOWN)
    439		return;
    440	ctl |= BMCR_PDOWN;
    441	cas_phy_write(cp, MII_BMCR, ctl);
    442}
    443
    444/* cp->lock held. note: the last put_page will free the buffer */
    445static int cas_page_free(struct cas *cp, cas_page_t *page)
    446{
    447	dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
    448		       DMA_FROM_DEVICE);
    449	__free_pages(page->buffer, cp->page_order);
    450	kfree(page);
    451	return 0;
    452}
    453
    454#ifdef RX_COUNT_BUFFERS
    455#define RX_USED_ADD(x, y)       ((x)->used += (y))
    456#define RX_USED_SET(x, y)       ((x)->used  = (y))
    457#else
    458#define RX_USED_ADD(x, y) do { } while(0)
    459#define RX_USED_SET(x, y) do { } while(0)
    460#endif
    461
    462/* local page allocation routines for the receive buffers. jumbo pages
    463 * require at least 8K contiguous and 8K aligned buffers.
    464 */
    465static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
    466{
    467	cas_page_t *page;
    468
    469	page = kmalloc(sizeof(cas_page_t), flags);
    470	if (!page)
    471		return NULL;
    472
    473	INIT_LIST_HEAD(&page->list);
    474	RX_USED_SET(page, 0);
    475	page->buffer = alloc_pages(flags, cp->page_order);
    476	if (!page->buffer)
    477		goto page_err;
    478	page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
    479				      cp->page_size, DMA_FROM_DEVICE);
    480	return page;
    481
    482page_err:
    483	kfree(page);
    484	return NULL;
    485}
    486
    487/* initialize spare pool of rx buffers, but allocate during the open */
    488static void cas_spare_init(struct cas *cp)
    489{
    490	spin_lock(&cp->rx_inuse_lock);
    491	INIT_LIST_HEAD(&cp->rx_inuse_list);
    492	spin_unlock(&cp->rx_inuse_lock);
    493
    494	spin_lock(&cp->rx_spare_lock);
    495	INIT_LIST_HEAD(&cp->rx_spare_list);
    496	cp->rx_spares_needed = RX_SPARE_COUNT;
    497	spin_unlock(&cp->rx_spare_lock);
    498}
    499
    500/* used on close. free all the spare buffers. */
    501static void cas_spare_free(struct cas *cp)
    502{
    503	struct list_head list, *elem, *tmp;
    504
    505	/* free spare buffers */
    506	INIT_LIST_HEAD(&list);
    507	spin_lock(&cp->rx_spare_lock);
    508	list_splice_init(&cp->rx_spare_list, &list);
    509	spin_unlock(&cp->rx_spare_lock);
    510	list_for_each_safe(elem, tmp, &list) {
    511		cas_page_free(cp, list_entry(elem, cas_page_t, list));
    512	}
    513
    514	INIT_LIST_HEAD(&list);
    515#if 1
    516	/*
    517	 * Looks like Adrian had protected this with a different
    518	 * lock than used everywhere else to manipulate this list.
    519	 */
    520	spin_lock(&cp->rx_inuse_lock);
    521	list_splice_init(&cp->rx_inuse_list, &list);
    522	spin_unlock(&cp->rx_inuse_lock);
    523#else
    524	spin_lock(&cp->rx_spare_lock);
    525	list_splice_init(&cp->rx_inuse_list, &list);
    526	spin_unlock(&cp->rx_spare_lock);
    527#endif
    528	list_for_each_safe(elem, tmp, &list) {
    529		cas_page_free(cp, list_entry(elem, cas_page_t, list));
    530	}
    531}
    532
    533/* replenish spares if needed */
    534static void cas_spare_recover(struct cas *cp, const gfp_t flags)
    535{
    536	struct list_head list, *elem, *tmp;
    537	int needed, i;
    538
    539	/* check inuse list. if we don't need any more free buffers,
    540	 * just free it
    541	 */
    542
    543	/* make a local copy of the list */
    544	INIT_LIST_HEAD(&list);
    545	spin_lock(&cp->rx_inuse_lock);
    546	list_splice_init(&cp->rx_inuse_list, &list);
    547	spin_unlock(&cp->rx_inuse_lock);
    548
    549	list_for_each_safe(elem, tmp, &list) {
    550		cas_page_t *page = list_entry(elem, cas_page_t, list);
    551
    552		/*
    553		 * With the lockless pagecache, cassini buffering scheme gets
    554		 * slightly less accurate: we might find that a page has an
    555		 * elevated reference count here, due to a speculative ref,
    556		 * and skip it as in-use. Ideally we would be able to reclaim
    557		 * it. However this would be such a rare case, it doesn't
    558		 * matter too much as we should pick it up the next time round.
    559		 *
    560		 * Importantly, if we find that the page has a refcount of 1
    561		 * here (our refcount), then we know it is definitely not inuse
    562		 * so we can reuse it.
    563		 */
    564		if (page_count(page->buffer) > 1)
    565			continue;
    566
    567		list_del(elem);
    568		spin_lock(&cp->rx_spare_lock);
    569		if (cp->rx_spares_needed > 0) {
    570			list_add(elem, &cp->rx_spare_list);
    571			cp->rx_spares_needed--;
    572			spin_unlock(&cp->rx_spare_lock);
    573		} else {
    574			spin_unlock(&cp->rx_spare_lock);
    575			cas_page_free(cp, page);
    576		}
    577	}
    578
    579	/* put any inuse buffers back on the list */
    580	if (!list_empty(&list)) {
    581		spin_lock(&cp->rx_inuse_lock);
    582		list_splice(&list, &cp->rx_inuse_list);
    583		spin_unlock(&cp->rx_inuse_lock);
    584	}
    585
    586	spin_lock(&cp->rx_spare_lock);
    587	needed = cp->rx_spares_needed;
    588	spin_unlock(&cp->rx_spare_lock);
    589	if (!needed)
    590		return;
    591
    592	/* we still need spares, so try to allocate some */
    593	INIT_LIST_HEAD(&list);
    594	i = 0;
    595	while (i < needed) {
    596		cas_page_t *spare = cas_page_alloc(cp, flags);
    597		if (!spare)
    598			break;
    599		list_add(&spare->list, &list);
    600		i++;
    601	}
    602
    603	spin_lock(&cp->rx_spare_lock);
    604	list_splice(&list, &cp->rx_spare_list);
    605	cp->rx_spares_needed -= i;
    606	spin_unlock(&cp->rx_spare_lock);
    607}
    608
    609/* pull a page from the list. */
    610static cas_page_t *cas_page_dequeue(struct cas *cp)
    611{
    612	struct list_head *entry;
    613	int recover;
    614
    615	spin_lock(&cp->rx_spare_lock);
    616	if (list_empty(&cp->rx_spare_list)) {
    617		/* try to do a quick recovery */
    618		spin_unlock(&cp->rx_spare_lock);
    619		cas_spare_recover(cp, GFP_ATOMIC);
    620		spin_lock(&cp->rx_spare_lock);
    621		if (list_empty(&cp->rx_spare_list)) {
    622			netif_err(cp, rx_err, cp->dev,
    623				  "no spare buffers available\n");
    624			spin_unlock(&cp->rx_spare_lock);
    625			return NULL;
    626		}
    627	}
    628
    629	entry = cp->rx_spare_list.next;
    630	list_del(entry);
    631	recover = ++cp->rx_spares_needed;
    632	spin_unlock(&cp->rx_spare_lock);
    633
    634	/* trigger the timer to do the recovery */
    635	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
    636#if 1
    637		atomic_inc(&cp->reset_task_pending);
    638		atomic_inc(&cp->reset_task_pending_spare);
    639		schedule_work(&cp->reset_task);
    640#else
    641		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
    642		schedule_work(&cp->reset_task);
    643#endif
    644	}
    645	return list_entry(entry, cas_page_t, list);
    646}
    647
    648
    649static void cas_mif_poll(struct cas *cp, const int enable)
    650{
    651	u32 cfg;
    652
    653	cfg  = readl(cp->regs + REG_MIF_CFG);
    654	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
    655
    656	if (cp->phy_type & CAS_PHY_MII_MDIO1)
    657		cfg |= MIF_CFG_PHY_SELECT;
    658
    659	/* poll and interrupt on link status change. */
    660	if (enable) {
    661		cfg |= MIF_CFG_POLL_EN;
    662		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
    663		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
    664	}
    665	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
    666	       cp->regs + REG_MIF_MASK);
    667	writel(cfg, cp->regs + REG_MIF_CFG);
    668}
    669
    670/* Must be invoked under cp->lock */
    671static void cas_begin_auto_negotiation(struct cas *cp,
    672				       const struct ethtool_link_ksettings *ep)
    673{
    674	u16 ctl;
    675#if 1
    676	int lcntl;
    677	int changed = 0;
    678	int oldstate = cp->lstate;
    679	int link_was_not_down = !(oldstate == link_down);
    680#endif
    681	/* Setup link parameters */
    682	if (!ep)
    683		goto start_aneg;
    684	lcntl = cp->link_cntl;
    685	if (ep->base.autoneg == AUTONEG_ENABLE) {
    686		cp->link_cntl = BMCR_ANENABLE;
    687	} else {
    688		u32 speed = ep->base.speed;
    689		cp->link_cntl = 0;
    690		if (speed == SPEED_100)
    691			cp->link_cntl |= BMCR_SPEED100;
    692		else if (speed == SPEED_1000)
    693			cp->link_cntl |= CAS_BMCR_SPEED1000;
    694		if (ep->base.duplex == DUPLEX_FULL)
    695			cp->link_cntl |= BMCR_FULLDPLX;
    696	}
    697#if 1
    698	changed = (lcntl != cp->link_cntl);
    699#endif
    700start_aneg:
    701	if (cp->lstate == link_up) {
    702		netdev_info(cp->dev, "PCS link down\n");
    703	} else {
    704		if (changed) {
    705			netdev_info(cp->dev, "link configuration changed\n");
    706		}
    707	}
    708	cp->lstate = link_down;
    709	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
    710	if (!cp->hw_running)
    711		return;
    712#if 1
    713	/*
    714	 * WTZ: If the old state was link_up, we turn off the carrier
    715	 * to replicate everything we do elsewhere on a link-down
    716	 * event when we were already in a link-up state..
    717	 */
    718	if (oldstate == link_up)
    719		netif_carrier_off(cp->dev);
    720	if (changed  && link_was_not_down) {
    721		/*
    722		 * WTZ: This branch will simply schedule a full reset after
    723		 * we explicitly changed link modes in an ioctl. See if this
    724		 * fixes the link-problems we were having for forced mode.
    725		 */
    726		atomic_inc(&cp->reset_task_pending);
    727		atomic_inc(&cp->reset_task_pending_all);
    728		schedule_work(&cp->reset_task);
    729		cp->timer_ticks = 0;
    730		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
    731		return;
    732	}
    733#endif
    734	if (cp->phy_type & CAS_PHY_SERDES) {
    735		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
    736
    737		if (cp->link_cntl & BMCR_ANENABLE) {
    738			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
    739			cp->lstate = link_aneg;
    740		} else {
    741			if (cp->link_cntl & BMCR_FULLDPLX)
    742				val |= PCS_MII_CTRL_DUPLEX;
    743			val &= ~PCS_MII_AUTONEG_EN;
    744			cp->lstate = link_force_ok;
    745		}
    746		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
    747		writel(val, cp->regs + REG_PCS_MII_CTRL);
    748
    749	} else {
    750		cas_mif_poll(cp, 0);
    751		ctl = cas_phy_read(cp, MII_BMCR);
    752		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
    753			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
    754		ctl |= cp->link_cntl;
    755		if (ctl & BMCR_ANENABLE) {
    756			ctl |= BMCR_ANRESTART;
    757			cp->lstate = link_aneg;
    758		} else {
    759			cp->lstate = link_force_ok;
    760		}
    761		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
    762		cas_phy_write(cp, MII_BMCR, ctl);
    763		cas_mif_poll(cp, 1);
    764	}
    765
    766	cp->timer_ticks = 0;
    767	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
    768}
    769
    770/* Must be invoked under cp->lock. */
    771static int cas_reset_mii_phy(struct cas *cp)
    772{
    773	int limit = STOP_TRIES_PHY;
    774	u16 val;
    775
    776	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
    777	udelay(100);
    778	while (--limit) {
    779		val = cas_phy_read(cp, MII_BMCR);
    780		if ((val & BMCR_RESET) == 0)
    781			break;
    782		udelay(10);
    783	}
    784	return limit <= 0;
    785}
    786
    787static void cas_saturn_firmware_init(struct cas *cp)
    788{
    789	const struct firmware *fw;
    790	const char fw_name[] = "sun/cassini.bin";
    791	int err;
    792
    793	if (PHY_NS_DP83065 != cp->phy_id)
    794		return;
    795
    796	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
    797	if (err) {
    798		pr_err("Failed to load firmware \"%s\"\n",
    799		       fw_name);
    800		return;
    801	}
    802	if (fw->size < 2) {
    803		pr_err("bogus length %zu in \"%s\"\n",
    804		       fw->size, fw_name);
    805		goto out;
    806	}
    807	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
    808	cp->fw_size = fw->size - 2;
    809	cp->fw_data = vmalloc(cp->fw_size);
    810	if (!cp->fw_data)
    811		goto out;
    812	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
    813out:
    814	release_firmware(fw);
    815}
    816
    817static void cas_saturn_firmware_load(struct cas *cp)
    818{
    819	int i;
    820
    821	if (!cp->fw_data)
    822		return;
    823
    824	cas_phy_powerdown(cp);
    825
    826	/* expanded memory access mode */
    827	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
    828
    829	/* pointer configuration for new firmware */
    830	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
    831	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
    832	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
    833	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
    834	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
    835	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
    836	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
    837	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
    838
    839	/* download new firmware */
    840	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
    841	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
    842	for (i = 0; i < cp->fw_size; i++)
    843		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
    844
    845	/* enable firmware */
    846	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
    847	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
    848}
    849
    850
    851/* phy initialization */
    852static void cas_phy_init(struct cas *cp)
    853{
    854	u16 val;
    855
    856	/* if we're in MII/GMII mode, set up phy */
    857	if (CAS_PHY_MII(cp->phy_type)) {
    858		writel(PCS_DATAPATH_MODE_MII,
    859		       cp->regs + REG_PCS_DATAPATH_MODE);
    860
    861		cas_mif_poll(cp, 0);
    862		cas_reset_mii_phy(cp); /* take out of isolate mode */
    863
    864		if (PHY_LUCENT_B0 == cp->phy_id) {
    865			/* workaround link up/down issue with lucent */
    866			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
    867			cas_phy_write(cp, MII_BMCR, 0x00f1);
    868			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
    869
    870		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
    871			/* workarounds for broadcom phy */
    872			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
    873			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
    874			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
    875			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
    876			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
    877			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
    878			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
    879			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
    880			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
    881			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
    882			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
    883
    884		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
    885			val = cas_phy_read(cp, BROADCOM_MII_REG4);
    886			val = cas_phy_read(cp, BROADCOM_MII_REG4);
    887			if (val & 0x0080) {
    888				/* link workaround */
    889				cas_phy_write(cp, BROADCOM_MII_REG4,
    890					      val & ~0x0080);
    891			}
    892
    893		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
    894			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
    895			       SATURN_PCFG_FSI : 0x0,
    896			       cp->regs + REG_SATURN_PCFG);
    897
    898			/* load firmware to address 10Mbps auto-negotiation
    899			 * issue. NOTE: this will need to be changed if the
    900			 * default firmware gets fixed.
    901			 */
    902			if (PHY_NS_DP83065 == cp->phy_id) {
    903				cas_saturn_firmware_load(cp);
    904			}
    905			cas_phy_powerup(cp);
    906		}
    907
    908		/* advertise capabilities */
    909		val = cas_phy_read(cp, MII_BMCR);
    910		val &= ~BMCR_ANENABLE;
    911		cas_phy_write(cp, MII_BMCR, val);
    912		udelay(10);
    913
    914		cas_phy_write(cp, MII_ADVERTISE,
    915			      cas_phy_read(cp, MII_ADVERTISE) |
    916			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
    917			       ADVERTISE_100HALF | ADVERTISE_100FULL |
    918			       CAS_ADVERTISE_PAUSE |
    919			       CAS_ADVERTISE_ASYM_PAUSE));
    920
    921		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
    922			/* make sure that we don't advertise half
    923			 * duplex to avoid a chip issue
    924			 */
    925			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
    926			val &= ~CAS_ADVERTISE_1000HALF;
    927			val |= CAS_ADVERTISE_1000FULL;
    928			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
    929		}
    930
    931	} else {
    932		/* reset pcs for serdes */
    933		u32 val;
    934		int limit;
    935
    936		writel(PCS_DATAPATH_MODE_SERDES,
    937		       cp->regs + REG_PCS_DATAPATH_MODE);
    938
    939		/* enable serdes pins on saturn */
    940		if (cp->cas_flags & CAS_FLAG_SATURN)
    941			writel(0, cp->regs + REG_SATURN_PCFG);
    942
    943		/* Reset PCS unit. */
    944		val = readl(cp->regs + REG_PCS_MII_CTRL);
    945		val |= PCS_MII_RESET;
    946		writel(val, cp->regs + REG_PCS_MII_CTRL);
    947
    948		limit = STOP_TRIES;
    949		while (--limit > 0) {
    950			udelay(10);
    951			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
    952			     PCS_MII_RESET) == 0)
    953				break;
    954		}
    955		if (limit <= 0)
    956			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
    957				    readl(cp->regs + REG_PCS_STATE_MACHINE));
    958
    959		/* Make sure PCS is disabled while changing advertisement
    960		 * configuration.
    961		 */
    962		writel(0x0, cp->regs + REG_PCS_CFG);
    963
    964		/* Advertise all capabilities except half-duplex. */
    965		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
    966		val &= ~PCS_MII_ADVERT_HD;
    967		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
    968			PCS_MII_ADVERT_ASYM_PAUSE);
    969		writel(val, cp->regs + REG_PCS_MII_ADVERT);
    970
    971		/* enable PCS */
    972		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
    973
    974		/* pcs workaround: enable sync detect */
    975		writel(PCS_SERDES_CTRL_SYNCD_EN,
    976		       cp->regs + REG_PCS_SERDES_CTRL);
    977	}
    978}
    979
    980
    981static int cas_pcs_link_check(struct cas *cp)
    982{
    983	u32 stat, state_machine;
    984	int retval = 0;
    985
    986	/* The link status bit latches on zero, so you must
    987	 * read it twice in such a case to see a transition
    988	 * to the link being up.
    989	 */
    990	stat = readl(cp->regs + REG_PCS_MII_STATUS);
    991	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
    992		stat = readl(cp->regs + REG_PCS_MII_STATUS);
    993
    994	/* The remote-fault indication is only valid
    995	 * when autoneg has completed.
    996	 */
    997	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
    998		     PCS_MII_STATUS_REMOTE_FAULT)) ==
    999	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
   1000		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
   1001
   1002	/* work around link detection issue by querying the PCS state
   1003	 * machine directly.
   1004	 */
   1005	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
   1006	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
   1007		stat &= ~PCS_MII_STATUS_LINK_STATUS;
   1008	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
   1009		stat |= PCS_MII_STATUS_LINK_STATUS;
   1010	}
   1011
   1012	if (stat & PCS_MII_STATUS_LINK_STATUS) {
   1013		if (cp->lstate != link_up) {
   1014			if (cp->opened) {
   1015				cp->lstate = link_up;
   1016				cp->link_transition = LINK_TRANSITION_LINK_UP;
   1017
   1018				cas_set_link_modes(cp);
   1019				netif_carrier_on(cp->dev);
   1020			}
   1021		}
   1022	} else if (cp->lstate == link_up) {
   1023		cp->lstate = link_down;
   1024		if (link_transition_timeout != 0 &&
   1025		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
   1026		    !cp->link_transition_jiffies_valid) {
   1027			/*
   1028			 * force a reset, as a workaround for the
   1029			 * link-failure problem. May want to move this to a
   1030			 * point a bit earlier in the sequence. If we had
   1031			 * generated a reset a short time ago, we'll wait for
   1032			 * the link timer to check the status until a
   1033			 * timer expires (link_transistion_jiffies_valid is
   1034			 * true when the timer is running.)  Instead of using
   1035			 * a system timer, we just do a check whenever the
   1036			 * link timer is running - this clears the flag after
   1037			 * a suitable delay.
   1038			 */
   1039			retval = 1;
   1040			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
   1041			cp->link_transition_jiffies = jiffies;
   1042			cp->link_transition_jiffies_valid = 1;
   1043		} else {
   1044			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
   1045		}
   1046		netif_carrier_off(cp->dev);
   1047		if (cp->opened)
   1048			netif_info(cp, link, cp->dev, "PCS link down\n");
   1049
   1050		/* Cassini only: if you force a mode, there can be
   1051		 * sync problems on link down. to fix that, the following
   1052		 * things need to be checked:
   1053		 * 1) read serialink state register
   1054		 * 2) read pcs status register to verify link down.
   1055		 * 3) if link down and serial link == 0x03, then you need
   1056		 *    to global reset the chip.
   1057		 */
   1058		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
   1059			/* should check to see if we're in a forced mode */
   1060			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
   1061			if (stat == 0x03)
   1062				return 1;
   1063		}
   1064	} else if (cp->lstate == link_down) {
   1065		if (link_transition_timeout != 0 &&
   1066		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
   1067		    !cp->link_transition_jiffies_valid) {
   1068			/* force a reset, as a workaround for the
   1069			 * link-failure problem.  May want to move
   1070			 * this to a point a bit earlier in the
   1071			 * sequence.
   1072			 */
   1073			retval = 1;
   1074			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
   1075			cp->link_transition_jiffies = jiffies;
   1076			cp->link_transition_jiffies_valid = 1;
   1077		} else {
   1078			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
   1079		}
   1080	}
   1081
   1082	return retval;
   1083}
   1084
   1085static int cas_pcs_interrupt(struct net_device *dev,
   1086			     struct cas *cp, u32 status)
   1087{
   1088	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
   1089
   1090	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
   1091		return 0;
   1092	return cas_pcs_link_check(cp);
   1093}
   1094
   1095static int cas_txmac_interrupt(struct net_device *dev,
   1096			       struct cas *cp, u32 status)
   1097{
   1098	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
   1099
   1100	if (!txmac_stat)
   1101		return 0;
   1102
   1103	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
   1104		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
   1105
   1106	/* Defer timer expiration is quite normal,
   1107	 * don't even log the event.
   1108	 */
   1109	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
   1110	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
   1111		return 0;
   1112
   1113	spin_lock(&cp->stat_lock[0]);
   1114	if (txmac_stat & MAC_TX_UNDERRUN) {
   1115		netdev_err(dev, "TX MAC xmit underrun\n");
   1116		cp->net_stats[0].tx_fifo_errors++;
   1117	}
   1118
   1119	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
   1120		netdev_err(dev, "TX MAC max packet size error\n");
   1121		cp->net_stats[0].tx_errors++;
   1122	}
   1123
   1124	/* The rest are all cases of one of the 16-bit TX
   1125	 * counters expiring.
   1126	 */
   1127	if (txmac_stat & MAC_TX_COLL_NORMAL)
   1128		cp->net_stats[0].collisions += 0x10000;
   1129
   1130	if (txmac_stat & MAC_TX_COLL_EXCESS) {
   1131		cp->net_stats[0].tx_aborted_errors += 0x10000;
   1132		cp->net_stats[0].collisions += 0x10000;
   1133	}
   1134
   1135	if (txmac_stat & MAC_TX_COLL_LATE) {
   1136		cp->net_stats[0].tx_aborted_errors += 0x10000;
   1137		cp->net_stats[0].collisions += 0x10000;
   1138	}
   1139	spin_unlock(&cp->stat_lock[0]);
   1140
   1141	/* We do not keep track of MAC_TX_COLL_FIRST and
   1142	 * MAC_TX_PEAK_ATTEMPTS events.
   1143	 */
   1144	return 0;
   1145}
   1146
   1147static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
   1148{
   1149	cas_hp_inst_t *inst;
   1150	u32 val;
   1151	int i;
   1152
   1153	i = 0;
   1154	while ((inst = firmware) && inst->note) {
   1155		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
   1156
   1157		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
   1158		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
   1159		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
   1160
   1161		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
   1162		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
   1163		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
   1164		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
   1165		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
   1166		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
   1167		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
   1168		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
   1169
   1170		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
   1171		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
   1172		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
   1173		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
   1174		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
   1175		++firmware;
   1176		++i;
   1177	}
   1178}
   1179
   1180static void cas_init_rx_dma(struct cas *cp)
   1181{
   1182	u64 desc_dma = cp->block_dvma;
   1183	u32 val;
   1184	int i, size;
   1185
   1186	/* rx free descriptors */
   1187	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
   1188	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
   1189	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
   1190	if ((N_RX_DESC_RINGS > 1) &&
   1191	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
   1192		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
   1193	writel(val, cp->regs + REG_RX_CFG);
   1194
   1195	val = (unsigned long) cp->init_rxds[0] -
   1196		(unsigned long) cp->init_block;
   1197	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
   1198	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
   1199	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
   1200
   1201	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
   1202		/* rx desc 2 is for IPSEC packets. however,
   1203		 * we don't it that for that purpose.
   1204		 */
   1205		val = (unsigned long) cp->init_rxds[1] -
   1206			(unsigned long) cp->init_block;
   1207		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
   1208		writel((desc_dma + val) & 0xffffffff, cp->regs +
   1209		       REG_PLUS_RX_DB1_LOW);
   1210		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
   1211		       REG_PLUS_RX_KICK1);
   1212	}
   1213
   1214	/* rx completion registers */
   1215	val = (unsigned long) cp->init_rxcs[0] -
   1216		(unsigned long) cp->init_block;
   1217	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
   1218	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
   1219
   1220	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
   1221		/* rx comp 2-4 */
   1222		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
   1223			val = (unsigned long) cp->init_rxcs[i] -
   1224				(unsigned long) cp->init_block;
   1225			writel((desc_dma + val) >> 32, cp->regs +
   1226			       REG_PLUS_RX_CBN_HI(i));
   1227			writel((desc_dma + val) & 0xffffffff, cp->regs +
   1228			       REG_PLUS_RX_CBN_LOW(i));
   1229		}
   1230	}
   1231
   1232	/* read selective clear regs to prevent spurious interrupts
   1233	 * on reset because complete == kick.
   1234	 * selective clear set up to prevent interrupts on resets
   1235	 */
   1236	readl(cp->regs + REG_INTR_STATUS_ALIAS);
   1237	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
   1238
   1239	/* set up pause thresholds */
   1240	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
   1241			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
   1242	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
   1243			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
   1244	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
   1245
   1246	/* zero out dma reassembly buffers */
   1247	for (i = 0; i < 64; i++) {
   1248		writel(i, cp->regs + REG_RX_TABLE_ADDR);
   1249		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
   1250		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
   1251		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
   1252	}
   1253
   1254	/* make sure address register is 0 for normal operation */
   1255	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
   1256	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
   1257
   1258	/* interrupt mitigation */
   1259#ifdef USE_RX_BLANK
   1260	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
   1261	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
   1262	writel(val, cp->regs + REG_RX_BLANK);
   1263#else
   1264	writel(0x0, cp->regs + REG_RX_BLANK);
   1265#endif
   1266
   1267	/* interrupt generation as a function of low water marks for
   1268	 * free desc and completion entries. these are used to trigger
   1269	 * housekeeping for rx descs. we don't use the free interrupt
   1270	 * as it's not very useful
   1271	 */
   1272	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
   1273	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
   1274	writel(val, cp->regs + REG_RX_AE_THRESH);
   1275	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
   1276		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
   1277		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
   1278	}
   1279
   1280	/* Random early detect registers. useful for congestion avoidance.
   1281	 * this should be tunable.
   1282	 */
   1283	writel(0x0, cp->regs + REG_RX_RED);
   1284
   1285	/* receive page sizes. default == 2K (0x800) */
   1286	val = 0;
   1287	if (cp->page_size == 0x1000)
   1288		val = 0x1;
   1289	else if (cp->page_size == 0x2000)
   1290		val = 0x2;
   1291	else if (cp->page_size == 0x4000)
   1292		val = 0x3;
   1293
   1294	/* round mtu + offset. constrain to page size. */
   1295	size = cp->dev->mtu + 64;
   1296	if (size > cp->page_size)
   1297		size = cp->page_size;
   1298
   1299	if (size <= 0x400)
   1300		i = 0x0;
   1301	else if (size <= 0x800)
   1302		i = 0x1;
   1303	else if (size <= 0x1000)
   1304		i = 0x2;
   1305	else
   1306		i = 0x3;
   1307
   1308	cp->mtu_stride = 1 << (i + 10);
   1309	val  = CAS_BASE(RX_PAGE_SIZE, val);
   1310	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
   1311	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
   1312	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
   1313	writel(val, cp->regs + REG_RX_PAGE_SIZE);
   1314
   1315	/* enable the header parser if desired */
   1316	if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
   1317		return;
   1318
   1319	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
   1320	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
   1321	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
   1322	writel(val, cp->regs + REG_HP_CFG);
   1323}
   1324
   1325static inline void cas_rxc_init(struct cas_rx_comp *rxc)
   1326{
   1327	memset(rxc, 0, sizeof(*rxc));
   1328	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
   1329}
   1330
   1331/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
   1332 * flipping is protected by the fact that the chip will not
   1333 * hand back the same page index while it's being processed.
   1334 */
   1335static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
   1336{
   1337	cas_page_t *page = cp->rx_pages[1][index];
   1338	cas_page_t *new;
   1339
   1340	if (page_count(page->buffer) == 1)
   1341		return page;
   1342
   1343	new = cas_page_dequeue(cp);
   1344	if (new) {
   1345		spin_lock(&cp->rx_inuse_lock);
   1346		list_add(&page->list, &cp->rx_inuse_list);
   1347		spin_unlock(&cp->rx_inuse_lock);
   1348	}
   1349	return new;
   1350}
   1351
   1352/* this needs to be changed if we actually use the ENC RX DESC ring */
   1353static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
   1354				 const int index)
   1355{
   1356	cas_page_t **page0 = cp->rx_pages[0];
   1357	cas_page_t **page1 = cp->rx_pages[1];
   1358
   1359	/* swap if buffer is in use */
   1360	if (page_count(page0[index]->buffer) > 1) {
   1361		cas_page_t *new = cas_page_spare(cp, index);
   1362		if (new) {
   1363			page1[index] = page0[index];
   1364			page0[index] = new;
   1365		}
   1366	}
   1367	RX_USED_SET(page0[index], 0);
   1368	return page0[index];
   1369}
   1370
   1371static void cas_clean_rxds(struct cas *cp)
   1372{
   1373	/* only clean ring 0 as ring 1 is used for spare buffers */
   1374        struct cas_rx_desc *rxd = cp->init_rxds[0];
   1375	int i, size;
   1376
   1377	/* release all rx flows */
   1378	for (i = 0; i < N_RX_FLOWS; i++) {
   1379		struct sk_buff *skb;
   1380		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
   1381			cas_skb_release(skb);
   1382		}
   1383	}
   1384
   1385	/* initialize descriptors */
   1386	size = RX_DESC_RINGN_SIZE(0);
   1387	for (i = 0; i < size; i++) {
   1388		cas_page_t *page = cas_page_swap(cp, 0, i);
   1389		rxd[i].buffer = cpu_to_le64(page->dma_addr);
   1390		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
   1391					    CAS_BASE(RX_INDEX_RING, 0));
   1392	}
   1393
   1394	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
   1395	cp->rx_last[0] = 0;
   1396	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
   1397}
   1398
   1399static void cas_clean_rxcs(struct cas *cp)
   1400{
   1401	int i, j;
   1402
   1403	/* take ownership of rx comp descriptors */
   1404	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
   1405	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
   1406	for (i = 0; i < N_RX_COMP_RINGS; i++) {
   1407		struct cas_rx_comp *rxc = cp->init_rxcs[i];
   1408		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
   1409			cas_rxc_init(rxc + j);
   1410		}
   1411	}
   1412}
   1413
   1414#if 0
   1415/* When we get a RX fifo overflow, the RX unit is probably hung
   1416 * so we do the following.
   1417 *
   1418 * If any part of the reset goes wrong, we return 1 and that causes the
   1419 * whole chip to be reset.
   1420 */
   1421static int cas_rxmac_reset(struct cas *cp)
   1422{
   1423	struct net_device *dev = cp->dev;
   1424	int limit;
   1425	u32 val;
   1426
   1427	/* First, reset MAC RX. */
   1428	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
   1429	for (limit = 0; limit < STOP_TRIES; limit++) {
   1430		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
   1431			break;
   1432		udelay(10);
   1433	}
   1434	if (limit == STOP_TRIES) {
   1435		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
   1436		return 1;
   1437	}
   1438
   1439	/* Second, disable RX DMA. */
   1440	writel(0, cp->regs + REG_RX_CFG);
   1441	for (limit = 0; limit < STOP_TRIES; limit++) {
   1442		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
   1443			break;
   1444		udelay(10);
   1445	}
   1446	if (limit == STOP_TRIES) {
   1447		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
   1448		return 1;
   1449	}
   1450
   1451	mdelay(5);
   1452
   1453	/* Execute RX reset command. */
   1454	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
   1455	for (limit = 0; limit < STOP_TRIES; limit++) {
   1456		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
   1457			break;
   1458		udelay(10);
   1459	}
   1460	if (limit == STOP_TRIES) {
   1461		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
   1462		return 1;
   1463	}
   1464
   1465	/* reset driver rx state */
   1466	cas_clean_rxds(cp);
   1467	cas_clean_rxcs(cp);
   1468
   1469	/* Now, reprogram the rest of RX unit. */
   1470	cas_init_rx_dma(cp);
   1471
   1472	/* re-enable */
   1473	val = readl(cp->regs + REG_RX_CFG);
   1474	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
   1475	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
   1476	val = readl(cp->regs + REG_MAC_RX_CFG);
   1477	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
   1478	return 0;
   1479}
   1480#endif
   1481
   1482static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
   1483			       u32 status)
   1484{
   1485	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
   1486
   1487	if (!stat)
   1488		return 0;
   1489
   1490	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
   1491
   1492	/* these are all rollovers */
   1493	spin_lock(&cp->stat_lock[0]);
   1494	if (stat & MAC_RX_ALIGN_ERR)
   1495		cp->net_stats[0].rx_frame_errors += 0x10000;
   1496
   1497	if (stat & MAC_RX_CRC_ERR)
   1498		cp->net_stats[0].rx_crc_errors += 0x10000;
   1499
   1500	if (stat & MAC_RX_LEN_ERR)
   1501		cp->net_stats[0].rx_length_errors += 0x10000;
   1502
   1503	if (stat & MAC_RX_OVERFLOW) {
   1504		cp->net_stats[0].rx_over_errors++;
   1505		cp->net_stats[0].rx_fifo_errors++;
   1506	}
   1507
   1508	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
   1509	 * events.
   1510	 */
   1511	spin_unlock(&cp->stat_lock[0]);
   1512	return 0;
   1513}
   1514
   1515static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
   1516			     u32 status)
   1517{
   1518	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
   1519
   1520	if (!stat)
   1521		return 0;
   1522
   1523	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
   1524		     "mac interrupt, stat: 0x%x\n", stat);
   1525
   1526	/* This interrupt is just for pause frame and pause
   1527	 * tracking.  It is useful for diagnostics and debug
   1528	 * but probably by default we will mask these events.
   1529	 */
   1530	if (stat & MAC_CTRL_PAUSE_STATE)
   1531		cp->pause_entered++;
   1532
   1533	if (stat & MAC_CTRL_PAUSE_RECEIVED)
   1534		cp->pause_last_time_recvd = (stat >> 16);
   1535
   1536	return 0;
   1537}
   1538
   1539
   1540/* Must be invoked under cp->lock. */
   1541static inline int cas_mdio_link_not_up(struct cas *cp)
   1542{
   1543	u16 val;
   1544
   1545	switch (cp->lstate) {
   1546	case link_force_ret:
   1547		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
   1548		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
   1549		cp->timer_ticks = 5;
   1550		cp->lstate = link_force_ok;
   1551		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
   1552		break;
   1553
   1554	case link_aneg:
   1555		val = cas_phy_read(cp, MII_BMCR);
   1556
   1557		/* Try forced modes. we try things in the following order:
   1558		 * 1000 full -> 100 full/half -> 10 half
   1559		 */
   1560		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
   1561		val |= BMCR_FULLDPLX;
   1562		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
   1563			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
   1564		cas_phy_write(cp, MII_BMCR, val);
   1565		cp->timer_ticks = 5;
   1566		cp->lstate = link_force_try;
   1567		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
   1568		break;
   1569
   1570	case link_force_try:
   1571		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
   1572		val = cas_phy_read(cp, MII_BMCR);
   1573		cp->timer_ticks = 5;
   1574		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
   1575			val &= ~CAS_BMCR_SPEED1000;
   1576			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
   1577			cas_phy_write(cp, MII_BMCR, val);
   1578			break;
   1579		}
   1580
   1581		if (val & BMCR_SPEED100) {
   1582			if (val & BMCR_FULLDPLX) /* fd failed */
   1583				val &= ~BMCR_FULLDPLX;
   1584			else { /* 100Mbps failed */
   1585				val &= ~BMCR_SPEED100;
   1586			}
   1587			cas_phy_write(cp, MII_BMCR, val);
   1588			break;
   1589		}
   1590		break;
   1591	default:
   1592		break;
   1593	}
   1594	return 0;
   1595}
   1596
   1597
   1598/* must be invoked with cp->lock held */
   1599static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
   1600{
   1601	int restart;
   1602
   1603	if (bmsr & BMSR_LSTATUS) {
   1604		/* Ok, here we got a link. If we had it due to a forced
   1605		 * fallback, and we were configured for autoneg, we
   1606		 * retry a short autoneg pass. If you know your hub is
   1607		 * broken, use ethtool ;)
   1608		 */
   1609		if ((cp->lstate == link_force_try) &&
   1610		    (cp->link_cntl & BMCR_ANENABLE)) {
   1611			cp->lstate = link_force_ret;
   1612			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
   1613			cas_mif_poll(cp, 0);
   1614			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
   1615			cp->timer_ticks = 5;
   1616			if (cp->opened)
   1617				netif_info(cp, link, cp->dev,
   1618					   "Got link after fallback, retrying autoneg once...\n");
   1619			cas_phy_write(cp, MII_BMCR,
   1620				      cp->link_fcntl | BMCR_ANENABLE |
   1621				      BMCR_ANRESTART);
   1622			cas_mif_poll(cp, 1);
   1623
   1624		} else if (cp->lstate != link_up) {
   1625			cp->lstate = link_up;
   1626			cp->link_transition = LINK_TRANSITION_LINK_UP;
   1627
   1628			if (cp->opened) {
   1629				cas_set_link_modes(cp);
   1630				netif_carrier_on(cp->dev);
   1631			}
   1632		}
   1633		return 0;
   1634	}
   1635
   1636	/* link not up. if the link was previously up, we restart the
   1637	 * whole process
   1638	 */
   1639	restart = 0;
   1640	if (cp->lstate == link_up) {
   1641		cp->lstate = link_down;
   1642		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
   1643
   1644		netif_carrier_off(cp->dev);
   1645		if (cp->opened)
   1646			netif_info(cp, link, cp->dev, "Link down\n");
   1647		restart = 1;
   1648
   1649	} else if (++cp->timer_ticks > 10)
   1650		cas_mdio_link_not_up(cp);
   1651
   1652	return restart;
   1653}
   1654
   1655static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
   1656			     u32 status)
   1657{
   1658	u32 stat = readl(cp->regs + REG_MIF_STATUS);
   1659	u16 bmsr;
   1660
   1661	/* check for a link change */
   1662	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
   1663		return 0;
   1664
   1665	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
   1666	return cas_mii_link_check(cp, bmsr);
   1667}
   1668
   1669static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
   1670			     u32 status)
   1671{
   1672	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
   1673
   1674	if (!stat)
   1675		return 0;
   1676
   1677	netdev_err(dev, "PCI error [%04x:%04x]",
   1678		   stat, readl(cp->regs + REG_BIM_DIAG));
   1679
   1680	/* cassini+ has this reserved */
   1681	if ((stat & PCI_ERR_BADACK) &&
   1682	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
   1683		pr_cont(" <No ACK64# during ABS64 cycle>");
   1684
   1685	if (stat & PCI_ERR_DTRTO)
   1686		pr_cont(" <Delayed transaction timeout>");
   1687	if (stat & PCI_ERR_OTHER)
   1688		pr_cont(" <other>");
   1689	if (stat & PCI_ERR_BIM_DMA_WRITE)
   1690		pr_cont(" <BIM DMA 0 write req>");
   1691	if (stat & PCI_ERR_BIM_DMA_READ)
   1692		pr_cont(" <BIM DMA 0 read req>");
   1693	pr_cont("\n");
   1694
   1695	if (stat & PCI_ERR_OTHER) {
   1696		int pci_errs;
   1697
   1698		/* Interrogate PCI config space for the
   1699		 * true cause.
   1700		 */
   1701		pci_errs = pci_status_get_and_clear_errors(cp->pdev);
   1702
   1703		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
   1704		if (pci_errs & PCI_STATUS_PARITY)
   1705			netdev_err(dev, "PCI parity error detected\n");
   1706		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
   1707			netdev_err(dev, "PCI target abort\n");
   1708		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
   1709			netdev_err(dev, "PCI master acks target abort\n");
   1710		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
   1711			netdev_err(dev, "PCI master abort\n");
   1712		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
   1713			netdev_err(dev, "PCI system error SERR#\n");
   1714		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
   1715			netdev_err(dev, "PCI parity error\n");
   1716	}
   1717
   1718	/* For all PCI errors, we should reset the chip. */
   1719	return 1;
   1720}
   1721
   1722/* All non-normal interrupt conditions get serviced here.
   1723 * Returns non-zero if we should just exit the interrupt
   1724 * handler right now (ie. if we reset the card which invalidates
   1725 * all of the other original irq status bits).
   1726 */
   1727static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
   1728			    u32 status)
   1729{
   1730	if (status & INTR_RX_TAG_ERROR) {
   1731		/* corrupt RX tag framing */
   1732		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
   1733			     "corrupt rx tag framing\n");
   1734		spin_lock(&cp->stat_lock[0]);
   1735		cp->net_stats[0].rx_errors++;
   1736		spin_unlock(&cp->stat_lock[0]);
   1737		goto do_reset;
   1738	}
   1739
   1740	if (status & INTR_RX_LEN_MISMATCH) {
   1741		/* length mismatch. */
   1742		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
   1743			     "length mismatch for rx frame\n");
   1744		spin_lock(&cp->stat_lock[0]);
   1745		cp->net_stats[0].rx_errors++;
   1746		spin_unlock(&cp->stat_lock[0]);
   1747		goto do_reset;
   1748	}
   1749
   1750	if (status & INTR_PCS_STATUS) {
   1751		if (cas_pcs_interrupt(dev, cp, status))
   1752			goto do_reset;
   1753	}
   1754
   1755	if (status & INTR_TX_MAC_STATUS) {
   1756		if (cas_txmac_interrupt(dev, cp, status))
   1757			goto do_reset;
   1758	}
   1759
   1760	if (status & INTR_RX_MAC_STATUS) {
   1761		if (cas_rxmac_interrupt(dev, cp, status))
   1762			goto do_reset;
   1763	}
   1764
   1765	if (status & INTR_MAC_CTRL_STATUS) {
   1766		if (cas_mac_interrupt(dev, cp, status))
   1767			goto do_reset;
   1768	}
   1769
   1770	if (status & INTR_MIF_STATUS) {
   1771		if (cas_mif_interrupt(dev, cp, status))
   1772			goto do_reset;
   1773	}
   1774
   1775	if (status & INTR_PCI_ERROR_STATUS) {
   1776		if (cas_pci_interrupt(dev, cp, status))
   1777			goto do_reset;
   1778	}
   1779	return 0;
   1780
   1781do_reset:
   1782#if 1
   1783	atomic_inc(&cp->reset_task_pending);
   1784	atomic_inc(&cp->reset_task_pending_all);
   1785	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
   1786	schedule_work(&cp->reset_task);
   1787#else
   1788	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
   1789	netdev_err(dev, "reset called in cas_abnormal_irq\n");
   1790	schedule_work(&cp->reset_task);
   1791#endif
   1792	return 1;
   1793}
   1794
   1795/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
   1796 *       determining whether to do a netif_stop/wakeup
   1797 */
   1798#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
   1799#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
   1800static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
   1801				  const int len)
   1802{
   1803	unsigned long off = addr + len;
   1804
   1805	if (CAS_TABORT(cp) == 1)
   1806		return 0;
   1807	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
   1808		return 0;
   1809	return TX_TARGET_ABORT_LEN;
   1810}
   1811
   1812static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
   1813{
   1814	struct cas_tx_desc *txds;
   1815	struct sk_buff **skbs;
   1816	struct net_device *dev = cp->dev;
   1817	int entry, count;
   1818
   1819	spin_lock(&cp->tx_lock[ring]);
   1820	txds = cp->init_txds[ring];
   1821	skbs = cp->tx_skbs[ring];
   1822	entry = cp->tx_old[ring];
   1823
   1824	count = TX_BUFF_COUNT(ring, entry, limit);
   1825	while (entry != limit) {
   1826		struct sk_buff *skb = skbs[entry];
   1827		dma_addr_t daddr;
   1828		u32 dlen;
   1829		int frag;
   1830
   1831		if (!skb) {
   1832			/* this should never occur */
   1833			entry = TX_DESC_NEXT(ring, entry);
   1834			continue;
   1835		}
   1836
   1837		/* however, we might get only a partial skb release. */
   1838		count -= skb_shinfo(skb)->nr_frags +
   1839			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
   1840		if (count < 0)
   1841			break;
   1842
   1843		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
   1844			     "tx[%d] done, slot %d\n", ring, entry);
   1845
   1846		skbs[entry] = NULL;
   1847		cp->tx_tiny_use[ring][entry].nbufs = 0;
   1848
   1849		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
   1850			struct cas_tx_desc *txd = txds + entry;
   1851
   1852			daddr = le64_to_cpu(txd->buffer);
   1853			dlen = CAS_VAL(TX_DESC_BUFLEN,
   1854				       le64_to_cpu(txd->control));
   1855			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
   1856				       DMA_TO_DEVICE);
   1857			entry = TX_DESC_NEXT(ring, entry);
   1858
   1859			/* tiny buffer may follow */
   1860			if (cp->tx_tiny_use[ring][entry].used) {
   1861				cp->tx_tiny_use[ring][entry].used = 0;
   1862				entry = TX_DESC_NEXT(ring, entry);
   1863			}
   1864		}
   1865
   1866		spin_lock(&cp->stat_lock[ring]);
   1867		cp->net_stats[ring].tx_packets++;
   1868		cp->net_stats[ring].tx_bytes += skb->len;
   1869		spin_unlock(&cp->stat_lock[ring]);
   1870		dev_consume_skb_irq(skb);
   1871	}
   1872	cp->tx_old[ring] = entry;
   1873
   1874	/* this is wrong for multiple tx rings. the net device needs
   1875	 * multiple queues for this to do the right thing.  we wait
   1876	 * for 2*packets to be available when using tiny buffers
   1877	 */
   1878	if (netif_queue_stopped(dev) &&
   1879	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
   1880		netif_wake_queue(dev);
   1881	spin_unlock(&cp->tx_lock[ring]);
   1882}
   1883
   1884static void cas_tx(struct net_device *dev, struct cas *cp,
   1885		   u32 status)
   1886{
   1887        int limit, ring;
   1888#ifdef USE_TX_COMPWB
   1889	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
   1890#endif
   1891	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
   1892		     "tx interrupt, status: 0x%x, %llx\n",
   1893		     status, (unsigned long long)compwb);
   1894	/* process all the rings */
   1895	for (ring = 0; ring < N_TX_RINGS; ring++) {
   1896#ifdef USE_TX_COMPWB
   1897		/* use the completion writeback registers */
   1898		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
   1899			CAS_VAL(TX_COMPWB_LSB, compwb);
   1900		compwb = TX_COMPWB_NEXT(compwb);
   1901#else
   1902		limit = readl(cp->regs + REG_TX_COMPN(ring));
   1903#endif
   1904		if (cp->tx_old[ring] != limit)
   1905			cas_tx_ringN(cp, ring, limit);
   1906	}
   1907}
   1908
   1909
   1910static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
   1911			      int entry, const u64 *words,
   1912			      struct sk_buff **skbref)
   1913{
   1914	int dlen, hlen, len, i, alloclen;
   1915	int off, swivel = RX_SWIVEL_OFF_VAL;
   1916	struct cas_page *page;
   1917	struct sk_buff *skb;
   1918	void *addr, *crcaddr;
   1919	__sum16 csum;
   1920	char *p;
   1921
   1922	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
   1923	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
   1924	len  = hlen + dlen;
   1925
   1926	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
   1927		alloclen = len;
   1928	else
   1929		alloclen = max(hlen, RX_COPY_MIN);
   1930
   1931	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
   1932	if (skb == NULL)
   1933		return -1;
   1934
   1935	*skbref = skb;
   1936	skb_reserve(skb, swivel);
   1937
   1938	p = skb->data;
   1939	addr = crcaddr = NULL;
   1940	if (hlen) { /* always copy header pages */
   1941		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
   1942		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
   1943		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
   1944			swivel;
   1945
   1946		i = hlen;
   1947		if (!dlen) /* attach FCS */
   1948			i += cp->crc_size;
   1949		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
   1950					i, DMA_FROM_DEVICE);
   1951		addr = cas_page_map(page->buffer);
   1952		memcpy(p, addr + off, i);
   1953		dma_sync_single_for_device(&cp->pdev->dev,
   1954					   page->dma_addr + off, i,
   1955					   DMA_FROM_DEVICE);
   1956		cas_page_unmap(addr);
   1957		RX_USED_ADD(page, 0x100);
   1958		p += hlen;
   1959		swivel = 0;
   1960	}
   1961
   1962
   1963	if (alloclen < (hlen + dlen)) {
   1964		skb_frag_t *frag = skb_shinfo(skb)->frags;
   1965
   1966		/* normal or jumbo packets. we use frags */
   1967		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
   1968		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
   1969		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
   1970
   1971		hlen = min(cp->page_size - off, dlen);
   1972		if (hlen < 0) {
   1973			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
   1974				     "rx page overflow: %d\n", hlen);
   1975			dev_kfree_skb_irq(skb);
   1976			return -1;
   1977		}
   1978		i = hlen;
   1979		if (i == dlen)  /* attach FCS */
   1980			i += cp->crc_size;
   1981		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
   1982					i, DMA_FROM_DEVICE);
   1983
   1984		/* make sure we always copy a header */
   1985		swivel = 0;
   1986		if (p == (char *) skb->data) { /* not split */
   1987			addr = cas_page_map(page->buffer);
   1988			memcpy(p, addr + off, RX_COPY_MIN);
   1989			dma_sync_single_for_device(&cp->pdev->dev,
   1990						   page->dma_addr + off, i,
   1991						   DMA_FROM_DEVICE);
   1992			cas_page_unmap(addr);
   1993			off += RX_COPY_MIN;
   1994			swivel = RX_COPY_MIN;
   1995			RX_USED_ADD(page, cp->mtu_stride);
   1996		} else {
   1997			RX_USED_ADD(page, hlen);
   1998		}
   1999		skb_put(skb, alloclen);
   2000
   2001		skb_shinfo(skb)->nr_frags++;
   2002		skb->data_len += hlen - swivel;
   2003		skb->truesize += hlen - swivel;
   2004		skb->len      += hlen - swivel;
   2005
   2006		__skb_frag_set_page(frag, page->buffer);
   2007		__skb_frag_ref(frag);
   2008		skb_frag_off_set(frag, off);
   2009		skb_frag_size_set(frag, hlen - swivel);
   2010
   2011		/* any more data? */
   2012		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
   2013			hlen = dlen;
   2014			off = 0;
   2015
   2016			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
   2017			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
   2018			dma_sync_single_for_cpu(&cp->pdev->dev,
   2019						page->dma_addr,
   2020						hlen + cp->crc_size,
   2021						DMA_FROM_DEVICE);
   2022			dma_sync_single_for_device(&cp->pdev->dev,
   2023						   page->dma_addr,
   2024						   hlen + cp->crc_size,
   2025						   DMA_FROM_DEVICE);
   2026
   2027			skb_shinfo(skb)->nr_frags++;
   2028			skb->data_len += hlen;
   2029			skb->len      += hlen;
   2030			frag++;
   2031
   2032			__skb_frag_set_page(frag, page->buffer);
   2033			__skb_frag_ref(frag);
   2034			skb_frag_off_set(frag, 0);
   2035			skb_frag_size_set(frag, hlen);
   2036			RX_USED_ADD(page, hlen + cp->crc_size);
   2037		}
   2038
   2039		if (cp->crc_size) {
   2040			addr = cas_page_map(page->buffer);
   2041			crcaddr  = addr + off + hlen;
   2042		}
   2043
   2044	} else {
   2045		/* copying packet */
   2046		if (!dlen)
   2047			goto end_copy_pkt;
   2048
   2049		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
   2050		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
   2051		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
   2052		hlen = min(cp->page_size - off, dlen);
   2053		if (hlen < 0) {
   2054			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
   2055				     "rx page overflow: %d\n", hlen);
   2056			dev_kfree_skb_irq(skb);
   2057			return -1;
   2058		}
   2059		i = hlen;
   2060		if (i == dlen) /* attach FCS */
   2061			i += cp->crc_size;
   2062		dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
   2063					i, DMA_FROM_DEVICE);
   2064		addr = cas_page_map(page->buffer);
   2065		memcpy(p, addr + off, i);
   2066		dma_sync_single_for_device(&cp->pdev->dev,
   2067					   page->dma_addr + off, i,
   2068					   DMA_FROM_DEVICE);
   2069		cas_page_unmap(addr);
   2070		if (p == (char *) skb->data) /* not split */
   2071			RX_USED_ADD(page, cp->mtu_stride);
   2072		else
   2073			RX_USED_ADD(page, i);
   2074
   2075		/* any more data? */
   2076		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
   2077			p += hlen;
   2078			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
   2079			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
   2080			dma_sync_single_for_cpu(&cp->pdev->dev,
   2081						page->dma_addr,
   2082						dlen + cp->crc_size,
   2083						DMA_FROM_DEVICE);
   2084			addr = cas_page_map(page->buffer);
   2085			memcpy(p, addr, dlen + cp->crc_size);
   2086			dma_sync_single_for_device(&cp->pdev->dev,
   2087						   page->dma_addr,
   2088						   dlen + cp->crc_size,
   2089						   DMA_FROM_DEVICE);
   2090			cas_page_unmap(addr);
   2091			RX_USED_ADD(page, dlen + cp->crc_size);
   2092		}
   2093end_copy_pkt:
   2094		if (cp->crc_size) {
   2095			addr    = NULL;
   2096			crcaddr = skb->data + alloclen;
   2097		}
   2098		skb_put(skb, alloclen);
   2099	}
   2100
   2101	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
   2102	if (cp->crc_size) {
   2103		/* checksum includes FCS. strip it out. */
   2104		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
   2105					      csum_unfold(csum)));
   2106		if (addr)
   2107			cas_page_unmap(addr);
   2108	}
   2109	skb->protocol = eth_type_trans(skb, cp->dev);
   2110	if (skb->protocol == htons(ETH_P_IP)) {
   2111		skb->csum = csum_unfold(~csum);
   2112		skb->ip_summed = CHECKSUM_COMPLETE;
   2113	} else
   2114		skb_checksum_none_assert(skb);
   2115	return len;
   2116}
   2117
   2118
   2119/* we can handle up to 64 rx flows at a time. we do the same thing
   2120 * as nonreassm except that we batch up the buffers.
   2121 * NOTE: we currently just treat each flow as a bunch of packets that
   2122 *       we pass up. a better way would be to coalesce the packets
   2123 *       into a jumbo packet. to do that, we need to do the following:
   2124 *       1) the first packet will have a clean split between header and
   2125 *          data. save both.
   2126 *       2) each time the next flow packet comes in, extend the
   2127 *          data length and merge the checksums.
   2128 *       3) on flow release, fix up the header.
   2129 *       4) make sure the higher layer doesn't care.
   2130 * because packets get coalesced, we shouldn't run into fragment count
   2131 * issues.
   2132 */
   2133static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
   2134				   struct sk_buff *skb)
   2135{
   2136	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
   2137	struct sk_buff_head *flow = &cp->rx_flows[flowid];
   2138
   2139	/* this is protected at a higher layer, so no need to
   2140	 * do any additional locking here. stick the buffer
   2141	 * at the end.
   2142	 */
   2143	__skb_queue_tail(flow, skb);
   2144	if (words[0] & RX_COMP1_RELEASE_FLOW) {
   2145		while ((skb = __skb_dequeue(flow))) {
   2146			cas_skb_release(skb);
   2147		}
   2148	}
   2149}
   2150
   2151/* put rx descriptor back on ring. if a buffer is in use by a higher
   2152 * layer, this will need to put in a replacement.
   2153 */
   2154static void cas_post_page(struct cas *cp, const int ring, const int index)
   2155{
   2156	cas_page_t *new;
   2157	int entry;
   2158
   2159	entry = cp->rx_old[ring];
   2160
   2161	new = cas_page_swap(cp, ring, index);
   2162	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
   2163	cp->init_rxds[ring][entry].index  =
   2164		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
   2165			    CAS_BASE(RX_INDEX_RING, ring));
   2166
   2167	entry = RX_DESC_ENTRY(ring, entry + 1);
   2168	cp->rx_old[ring] = entry;
   2169
   2170	if (entry % 4)
   2171		return;
   2172
   2173	if (ring == 0)
   2174		writel(entry, cp->regs + REG_RX_KICK);
   2175	else if ((N_RX_DESC_RINGS > 1) &&
   2176		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
   2177		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
   2178}
   2179
   2180
   2181/* only when things are bad */
   2182static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
   2183{
   2184	unsigned int entry, last, count, released;
   2185	int cluster;
   2186	cas_page_t **page = cp->rx_pages[ring];
   2187
   2188	entry = cp->rx_old[ring];
   2189
   2190	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
   2191		     "rxd[%d] interrupt, done: %d\n", ring, entry);
   2192
   2193	cluster = -1;
   2194	count = entry & 0x3;
   2195	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
   2196	released = 0;
   2197	while (entry != last) {
   2198		/* make a new buffer if it's still in use */
   2199		if (page_count(page[entry]->buffer) > 1) {
   2200			cas_page_t *new = cas_page_dequeue(cp);
   2201			if (!new) {
   2202				/* let the timer know that we need to
   2203				 * do this again
   2204				 */
   2205				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
   2206				if (!timer_pending(&cp->link_timer))
   2207					mod_timer(&cp->link_timer, jiffies +
   2208						  CAS_LINK_FAST_TIMEOUT);
   2209				cp->rx_old[ring]  = entry;
   2210				cp->rx_last[ring] = num ? num - released : 0;
   2211				return -ENOMEM;
   2212			}
   2213			spin_lock(&cp->rx_inuse_lock);
   2214			list_add(&page[entry]->list, &cp->rx_inuse_list);
   2215			spin_unlock(&cp->rx_inuse_lock);
   2216			cp->init_rxds[ring][entry].buffer =
   2217				cpu_to_le64(new->dma_addr);
   2218			page[entry] = new;
   2219
   2220		}
   2221
   2222		if (++count == 4) {
   2223			cluster = entry;
   2224			count = 0;
   2225		}
   2226		released++;
   2227		entry = RX_DESC_ENTRY(ring, entry + 1);
   2228	}
   2229	cp->rx_old[ring] = entry;
   2230
   2231	if (cluster < 0)
   2232		return 0;
   2233
   2234	if (ring == 0)
   2235		writel(cluster, cp->regs + REG_RX_KICK);
   2236	else if ((N_RX_DESC_RINGS > 1) &&
   2237		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
   2238		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
   2239	return 0;
   2240}
   2241
   2242
   2243/* process a completion ring. packets are set up in three basic ways:
   2244 * small packets: should be copied header + data in single buffer.
   2245 * large packets: header and data in a single buffer.
   2246 * split packets: header in a separate buffer from data.
   2247 *                data may be in multiple pages. data may be > 256
   2248 *                bytes but in a single page.
   2249 *
   2250 * NOTE: RX page posting is done in this routine as well. while there's
   2251 *       the capability of using multiple RX completion rings, it isn't
   2252 *       really worthwhile due to the fact that the page posting will
   2253 *       force serialization on the single descriptor ring.
   2254 */
   2255static int cas_rx_ringN(struct cas *cp, int ring, int budget)
   2256{
   2257	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
   2258	int entry, drops;
   2259	int npackets = 0;
   2260
   2261	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
   2262		     "rx[%d] interrupt, done: %d/%d\n",
   2263		     ring,
   2264		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
   2265
   2266	entry = cp->rx_new[ring];
   2267	drops = 0;
   2268	while (1) {
   2269		struct cas_rx_comp *rxc = rxcs + entry;
   2270		struct sk_buff *skb;
   2271		int type, len;
   2272		u64 words[4];
   2273		int i, dring;
   2274
   2275		words[0] = le64_to_cpu(rxc->word1);
   2276		words[1] = le64_to_cpu(rxc->word2);
   2277		words[2] = le64_to_cpu(rxc->word3);
   2278		words[3] = le64_to_cpu(rxc->word4);
   2279
   2280		/* don't touch if still owned by hw */
   2281		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
   2282		if (type == 0)
   2283			break;
   2284
   2285		/* hw hasn't cleared the zero bit yet */
   2286		if (words[3] & RX_COMP4_ZERO) {
   2287			break;
   2288		}
   2289
   2290		/* get info on the packet */
   2291		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
   2292			spin_lock(&cp->stat_lock[ring]);
   2293			cp->net_stats[ring].rx_errors++;
   2294			if (words[3] & RX_COMP4_LEN_MISMATCH)
   2295				cp->net_stats[ring].rx_length_errors++;
   2296			if (words[3] & RX_COMP4_BAD)
   2297				cp->net_stats[ring].rx_crc_errors++;
   2298			spin_unlock(&cp->stat_lock[ring]);
   2299
   2300			/* We'll just return it to Cassini. */
   2301		drop_it:
   2302			spin_lock(&cp->stat_lock[ring]);
   2303			++cp->net_stats[ring].rx_dropped;
   2304			spin_unlock(&cp->stat_lock[ring]);
   2305			goto next;
   2306		}
   2307
   2308		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
   2309		if (len < 0) {
   2310			++drops;
   2311			goto drop_it;
   2312		}
   2313
   2314		/* see if it's a flow re-assembly or not. the driver
   2315		 * itself handles release back up.
   2316		 */
   2317		if (RX_DONT_BATCH || (type == 0x2)) {
   2318			/* non-reassm: these always get released */
   2319			cas_skb_release(skb);
   2320		} else {
   2321			cas_rx_flow_pkt(cp, words, skb);
   2322		}
   2323
   2324		spin_lock(&cp->stat_lock[ring]);
   2325		cp->net_stats[ring].rx_packets++;
   2326		cp->net_stats[ring].rx_bytes += len;
   2327		spin_unlock(&cp->stat_lock[ring]);
   2328
   2329	next:
   2330		npackets++;
   2331
   2332		/* should it be released? */
   2333		if (words[0] & RX_COMP1_RELEASE_HDR) {
   2334			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
   2335			dring = CAS_VAL(RX_INDEX_RING, i);
   2336			i = CAS_VAL(RX_INDEX_NUM, i);
   2337			cas_post_page(cp, dring, i);
   2338		}
   2339
   2340		if (words[0] & RX_COMP1_RELEASE_DATA) {
   2341			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
   2342			dring = CAS_VAL(RX_INDEX_RING, i);
   2343			i = CAS_VAL(RX_INDEX_NUM, i);
   2344			cas_post_page(cp, dring, i);
   2345		}
   2346
   2347		if (words[0] & RX_COMP1_RELEASE_NEXT) {
   2348			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
   2349			dring = CAS_VAL(RX_INDEX_RING, i);
   2350			i = CAS_VAL(RX_INDEX_NUM, i);
   2351			cas_post_page(cp, dring, i);
   2352		}
   2353
   2354		/* skip to the next entry */
   2355		entry = RX_COMP_ENTRY(ring, entry + 1 +
   2356				      CAS_VAL(RX_COMP1_SKIP, words[0]));
   2357#ifdef USE_NAPI
   2358		if (budget && (npackets >= budget))
   2359			break;
   2360#endif
   2361	}
   2362	cp->rx_new[ring] = entry;
   2363
   2364	if (drops)
   2365		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
   2366	return npackets;
   2367}
   2368
   2369
   2370/* put completion entries back on the ring */
   2371static void cas_post_rxcs_ringN(struct net_device *dev,
   2372				struct cas *cp, int ring)
   2373{
   2374	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
   2375	int last, entry;
   2376
   2377	last = cp->rx_cur[ring];
   2378	entry = cp->rx_new[ring];
   2379	netif_printk(cp, intr, KERN_DEBUG, dev,
   2380		     "rxc[%d] interrupt, done: %d/%d\n",
   2381		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
   2382
   2383	/* zero and re-mark descriptors */
   2384	while (last != entry) {
   2385		cas_rxc_init(rxc + last);
   2386		last = RX_COMP_ENTRY(ring, last + 1);
   2387	}
   2388	cp->rx_cur[ring] = last;
   2389
   2390	if (ring == 0)
   2391		writel(last, cp->regs + REG_RX_COMP_TAIL);
   2392	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
   2393		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
   2394}
   2395
   2396
   2397
   2398/* cassini can use all four PCI interrupts for the completion ring.
   2399 * rings 3 and 4 are identical
   2400 */
   2401#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
   2402static inline void cas_handle_irqN(struct net_device *dev,
   2403				   struct cas *cp, const u32 status,
   2404				   const int ring)
   2405{
   2406	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
   2407		cas_post_rxcs_ringN(dev, cp, ring);
   2408}
   2409
   2410static irqreturn_t cas_interruptN(int irq, void *dev_id)
   2411{
   2412	struct net_device *dev = dev_id;
   2413	struct cas *cp = netdev_priv(dev);
   2414	unsigned long flags;
   2415	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
   2416	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
   2417
   2418	/* check for shared irq */
   2419	if (status == 0)
   2420		return IRQ_NONE;
   2421
   2422	spin_lock_irqsave(&cp->lock, flags);
   2423	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
   2424#ifdef USE_NAPI
   2425		cas_mask_intr(cp);
   2426		napi_schedule(&cp->napi);
   2427#else
   2428		cas_rx_ringN(cp, ring, 0);
   2429#endif
   2430		status &= ~INTR_RX_DONE_ALT;
   2431	}
   2432
   2433	if (status)
   2434		cas_handle_irqN(dev, cp, status, ring);
   2435	spin_unlock_irqrestore(&cp->lock, flags);
   2436	return IRQ_HANDLED;
   2437}
   2438#endif
   2439
   2440#ifdef USE_PCI_INTB
   2441/* everything but rx packets */
   2442static inline void cas_handle_irq1(struct cas *cp, const u32 status)
   2443{
   2444	if (status & INTR_RX_BUF_UNAVAIL_1) {
   2445		/* Frame arrived, no free RX buffers available.
   2446		 * NOTE: we can get this on a link transition. */
   2447		cas_post_rxds_ringN(cp, 1, 0);
   2448		spin_lock(&cp->stat_lock[1]);
   2449		cp->net_stats[1].rx_dropped++;
   2450		spin_unlock(&cp->stat_lock[1]);
   2451	}
   2452
   2453	if (status & INTR_RX_BUF_AE_1)
   2454		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
   2455				    RX_AE_FREEN_VAL(1));
   2456
   2457	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
   2458		cas_post_rxcs_ringN(cp, 1);
   2459}
   2460
   2461/* ring 2 handles a few more events than 3 and 4 */
   2462static irqreturn_t cas_interrupt1(int irq, void *dev_id)
   2463{
   2464	struct net_device *dev = dev_id;
   2465	struct cas *cp = netdev_priv(dev);
   2466	unsigned long flags;
   2467	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
   2468
   2469	/* check for shared interrupt */
   2470	if (status == 0)
   2471		return IRQ_NONE;
   2472
   2473	spin_lock_irqsave(&cp->lock, flags);
   2474	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
   2475#ifdef USE_NAPI
   2476		cas_mask_intr(cp);
   2477		napi_schedule(&cp->napi);
   2478#else
   2479		cas_rx_ringN(cp, 1, 0);
   2480#endif
   2481		status &= ~INTR_RX_DONE_ALT;
   2482	}
   2483	if (status)
   2484		cas_handle_irq1(cp, status);
   2485	spin_unlock_irqrestore(&cp->lock, flags);
   2486	return IRQ_HANDLED;
   2487}
   2488#endif
   2489
   2490static inline void cas_handle_irq(struct net_device *dev,
   2491				  struct cas *cp, const u32 status)
   2492{
   2493	/* housekeeping interrupts */
   2494	if (status & INTR_ERROR_MASK)
   2495		cas_abnormal_irq(dev, cp, status);
   2496
   2497	if (status & INTR_RX_BUF_UNAVAIL) {
   2498		/* Frame arrived, no free RX buffers available.
   2499		 * NOTE: we can get this on a link transition.
   2500		 */
   2501		cas_post_rxds_ringN(cp, 0, 0);
   2502		spin_lock(&cp->stat_lock[0]);
   2503		cp->net_stats[0].rx_dropped++;
   2504		spin_unlock(&cp->stat_lock[0]);
   2505	} else if (status & INTR_RX_BUF_AE) {
   2506		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
   2507				    RX_AE_FREEN_VAL(0));
   2508	}
   2509
   2510	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
   2511		cas_post_rxcs_ringN(dev, cp, 0);
   2512}
   2513
   2514static irqreturn_t cas_interrupt(int irq, void *dev_id)
   2515{
   2516	struct net_device *dev = dev_id;
   2517	struct cas *cp = netdev_priv(dev);
   2518	unsigned long flags;
   2519	u32 status = readl(cp->regs + REG_INTR_STATUS);
   2520
   2521	if (status == 0)
   2522		return IRQ_NONE;
   2523
   2524	spin_lock_irqsave(&cp->lock, flags);
   2525	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
   2526		cas_tx(dev, cp, status);
   2527		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
   2528	}
   2529
   2530	if (status & INTR_RX_DONE) {
   2531#ifdef USE_NAPI
   2532		cas_mask_intr(cp);
   2533		napi_schedule(&cp->napi);
   2534#else
   2535		cas_rx_ringN(cp, 0, 0);
   2536#endif
   2537		status &= ~INTR_RX_DONE;
   2538	}
   2539
   2540	if (status)
   2541		cas_handle_irq(dev, cp, status);
   2542	spin_unlock_irqrestore(&cp->lock, flags);
   2543	return IRQ_HANDLED;
   2544}
   2545
   2546
   2547#ifdef USE_NAPI
   2548static int cas_poll(struct napi_struct *napi, int budget)
   2549{
   2550	struct cas *cp = container_of(napi, struct cas, napi);
   2551	struct net_device *dev = cp->dev;
   2552	int i, enable_intr, credits;
   2553	u32 status = readl(cp->regs + REG_INTR_STATUS);
   2554	unsigned long flags;
   2555
   2556	spin_lock_irqsave(&cp->lock, flags);
   2557	cas_tx(dev, cp, status);
   2558	spin_unlock_irqrestore(&cp->lock, flags);
   2559
   2560	/* NAPI rx packets. we spread the credits across all of the
   2561	 * rxc rings
   2562	 *
   2563	 * to make sure we're fair with the work we loop through each
   2564	 * ring N_RX_COMP_RING times with a request of
   2565	 * budget / N_RX_COMP_RINGS
   2566	 */
   2567	enable_intr = 1;
   2568	credits = 0;
   2569	for (i = 0; i < N_RX_COMP_RINGS; i++) {
   2570		int j;
   2571		for (j = 0; j < N_RX_COMP_RINGS; j++) {
   2572			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
   2573			if (credits >= budget) {
   2574				enable_intr = 0;
   2575				goto rx_comp;
   2576			}
   2577		}
   2578	}
   2579
   2580rx_comp:
   2581	/* final rx completion */
   2582	spin_lock_irqsave(&cp->lock, flags);
   2583	if (status)
   2584		cas_handle_irq(dev, cp, status);
   2585
   2586#ifdef USE_PCI_INTB
   2587	if (N_RX_COMP_RINGS > 1) {
   2588		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
   2589		if (status)
   2590			cas_handle_irq1(dev, cp, status);
   2591	}
   2592#endif
   2593
   2594#ifdef USE_PCI_INTC
   2595	if (N_RX_COMP_RINGS > 2) {
   2596		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
   2597		if (status)
   2598			cas_handle_irqN(dev, cp, status, 2);
   2599	}
   2600#endif
   2601
   2602#ifdef USE_PCI_INTD
   2603	if (N_RX_COMP_RINGS > 3) {
   2604		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
   2605		if (status)
   2606			cas_handle_irqN(dev, cp, status, 3);
   2607	}
   2608#endif
   2609	spin_unlock_irqrestore(&cp->lock, flags);
   2610	if (enable_intr) {
   2611		napi_complete(napi);
   2612		cas_unmask_intr(cp);
   2613	}
   2614	return credits;
   2615}
   2616#endif
   2617
   2618#ifdef CONFIG_NET_POLL_CONTROLLER
   2619static void cas_netpoll(struct net_device *dev)
   2620{
   2621	struct cas *cp = netdev_priv(dev);
   2622
   2623	cas_disable_irq(cp, 0);
   2624	cas_interrupt(cp->pdev->irq, dev);
   2625	cas_enable_irq(cp, 0);
   2626
   2627#ifdef USE_PCI_INTB
   2628	if (N_RX_COMP_RINGS > 1) {
   2629		/* cas_interrupt1(); */
   2630	}
   2631#endif
   2632#ifdef USE_PCI_INTC
   2633	if (N_RX_COMP_RINGS > 2) {
   2634		/* cas_interruptN(); */
   2635	}
   2636#endif
   2637#ifdef USE_PCI_INTD
   2638	if (N_RX_COMP_RINGS > 3) {
   2639		/* cas_interruptN(); */
   2640	}
   2641#endif
   2642}
   2643#endif
   2644
   2645static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
   2646{
   2647	struct cas *cp = netdev_priv(dev);
   2648
   2649	netdev_err(dev, "transmit timed out, resetting\n");
   2650	if (!cp->hw_running) {
   2651		netdev_err(dev, "hrm.. hw not running!\n");
   2652		return;
   2653	}
   2654
   2655	netdev_err(dev, "MIF_STATE[%08x]\n",
   2656		   readl(cp->regs + REG_MIF_STATE_MACHINE));
   2657
   2658	netdev_err(dev, "MAC_STATE[%08x]\n",
   2659		   readl(cp->regs + REG_MAC_STATE_MACHINE));
   2660
   2661	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
   2662		   readl(cp->regs + REG_TX_CFG),
   2663		   readl(cp->regs + REG_MAC_TX_STATUS),
   2664		   readl(cp->regs + REG_MAC_TX_CFG),
   2665		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
   2666		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
   2667		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
   2668		   readl(cp->regs + REG_TX_SM_1),
   2669		   readl(cp->regs + REG_TX_SM_2));
   2670
   2671	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
   2672		   readl(cp->regs + REG_RX_CFG),
   2673		   readl(cp->regs + REG_MAC_RX_STATUS),
   2674		   readl(cp->regs + REG_MAC_RX_CFG));
   2675
   2676	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
   2677		   readl(cp->regs + REG_HP_STATE_MACHINE),
   2678		   readl(cp->regs + REG_HP_STATUS0),
   2679		   readl(cp->regs + REG_HP_STATUS1),
   2680		   readl(cp->regs + REG_HP_STATUS2));
   2681
   2682#if 1
   2683	atomic_inc(&cp->reset_task_pending);
   2684	atomic_inc(&cp->reset_task_pending_all);
   2685	schedule_work(&cp->reset_task);
   2686#else
   2687	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
   2688	schedule_work(&cp->reset_task);
   2689#endif
   2690}
   2691
   2692static inline int cas_intme(int ring, int entry)
   2693{
   2694	/* Algorithm: IRQ every 1/2 of descriptors. */
   2695	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
   2696		return 1;
   2697	return 0;
   2698}
   2699
   2700
   2701static void cas_write_txd(struct cas *cp, int ring, int entry,
   2702			  dma_addr_t mapping, int len, u64 ctrl, int last)
   2703{
   2704	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
   2705
   2706	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
   2707	if (cas_intme(ring, entry))
   2708		ctrl |= TX_DESC_INTME;
   2709	if (last)
   2710		ctrl |= TX_DESC_EOF;
   2711	txd->control = cpu_to_le64(ctrl);
   2712	txd->buffer = cpu_to_le64(mapping);
   2713}
   2714
   2715static inline void *tx_tiny_buf(struct cas *cp, const int ring,
   2716				const int entry)
   2717{
   2718	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
   2719}
   2720
   2721static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
   2722				     const int entry, const int tentry)
   2723{
   2724	cp->tx_tiny_use[ring][tentry].nbufs++;
   2725	cp->tx_tiny_use[ring][entry].used = 1;
   2726	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
   2727}
   2728
   2729static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
   2730				    struct sk_buff *skb)
   2731{
   2732	struct net_device *dev = cp->dev;
   2733	int entry, nr_frags, frag, tabort, tentry;
   2734	dma_addr_t mapping;
   2735	unsigned long flags;
   2736	u64 ctrl;
   2737	u32 len;
   2738
   2739	spin_lock_irqsave(&cp->tx_lock[ring], flags);
   2740
   2741	/* This is a hard error, log it. */
   2742	if (TX_BUFFS_AVAIL(cp, ring) <=
   2743	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
   2744		netif_stop_queue(dev);
   2745		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
   2746		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
   2747		return 1;
   2748	}
   2749
   2750	ctrl = 0;
   2751	if (skb->ip_summed == CHECKSUM_PARTIAL) {
   2752		const u64 csum_start_off = skb_checksum_start_offset(skb);
   2753		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
   2754
   2755		ctrl =  TX_DESC_CSUM_EN |
   2756			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
   2757			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
   2758	}
   2759
   2760	entry = cp->tx_new[ring];
   2761	cp->tx_skbs[ring][entry] = skb;
   2762
   2763	nr_frags = skb_shinfo(skb)->nr_frags;
   2764	len = skb_headlen(skb);
   2765	mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
   2766			       offset_in_page(skb->data), len, DMA_TO_DEVICE);
   2767
   2768	tentry = entry;
   2769	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
   2770	if (unlikely(tabort)) {
   2771		/* NOTE: len is always >  tabort */
   2772		cas_write_txd(cp, ring, entry, mapping, len - tabort,
   2773			      ctrl | TX_DESC_SOF, 0);
   2774		entry = TX_DESC_NEXT(ring, entry);
   2775
   2776		skb_copy_from_linear_data_offset(skb, len - tabort,
   2777			      tx_tiny_buf(cp, ring, entry), tabort);
   2778		mapping = tx_tiny_map(cp, ring, entry, tentry);
   2779		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
   2780			      (nr_frags == 0));
   2781	} else {
   2782		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
   2783			      TX_DESC_SOF, (nr_frags == 0));
   2784	}
   2785	entry = TX_DESC_NEXT(ring, entry);
   2786
   2787	for (frag = 0; frag < nr_frags; frag++) {
   2788		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
   2789
   2790		len = skb_frag_size(fragp);
   2791		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
   2792					   DMA_TO_DEVICE);
   2793
   2794		tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
   2795		if (unlikely(tabort)) {
   2796			void *addr;
   2797
   2798			/* NOTE: len is always > tabort */
   2799			cas_write_txd(cp, ring, entry, mapping, len - tabort,
   2800				      ctrl, 0);
   2801			entry = TX_DESC_NEXT(ring, entry);
   2802
   2803			addr = cas_page_map(skb_frag_page(fragp));
   2804			memcpy(tx_tiny_buf(cp, ring, entry),
   2805			       addr + skb_frag_off(fragp) + len - tabort,
   2806			       tabort);
   2807			cas_page_unmap(addr);
   2808			mapping = tx_tiny_map(cp, ring, entry, tentry);
   2809			len     = tabort;
   2810		}
   2811
   2812		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
   2813			      (frag + 1 == nr_frags));
   2814		entry = TX_DESC_NEXT(ring, entry);
   2815	}
   2816
   2817	cp->tx_new[ring] = entry;
   2818	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
   2819		netif_stop_queue(dev);
   2820
   2821	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
   2822		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
   2823		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
   2824	writel(entry, cp->regs + REG_TX_KICKN(ring));
   2825	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
   2826	return 0;
   2827}
   2828
   2829static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
   2830{
   2831	struct cas *cp = netdev_priv(dev);
   2832
   2833	/* this is only used as a load-balancing hint, so it doesn't
   2834	 * need to be SMP safe
   2835	 */
   2836	static int ring;
   2837
   2838	if (skb_padto(skb, cp->min_frame_size))
   2839		return NETDEV_TX_OK;
   2840
   2841	/* XXX: we need some higher-level QoS hooks to steer packets to
   2842	 *      individual queues.
   2843	 */
   2844	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
   2845		return NETDEV_TX_BUSY;
   2846	return NETDEV_TX_OK;
   2847}
   2848
   2849static void cas_init_tx_dma(struct cas *cp)
   2850{
   2851	u64 desc_dma = cp->block_dvma;
   2852	unsigned long off;
   2853	u32 val;
   2854	int i;
   2855
   2856	/* set up tx completion writeback registers. must be 8-byte aligned */
   2857#ifdef USE_TX_COMPWB
   2858	off = offsetof(struct cas_init_block, tx_compwb);
   2859	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
   2860	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
   2861#endif
   2862
   2863	/* enable completion writebacks, enable paced mode,
   2864	 * disable read pipe, and disable pre-interrupt compwbs
   2865	 */
   2866	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
   2867		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
   2868		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
   2869		TX_CFG_INTR_COMPWB_DIS;
   2870
   2871	/* write out tx ring info and tx desc bases */
   2872	for (i = 0; i < MAX_TX_RINGS; i++) {
   2873		off = (unsigned long) cp->init_txds[i] -
   2874			(unsigned long) cp->init_block;
   2875
   2876		val |= CAS_TX_RINGN_BASE(i);
   2877		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
   2878		writel((desc_dma + off) & 0xffffffff, cp->regs +
   2879		       REG_TX_DBN_LOW(i));
   2880		/* don't zero out the kick register here as the system
   2881		 * will wedge
   2882		 */
   2883	}
   2884	writel(val, cp->regs + REG_TX_CFG);
   2885
   2886	/* program max burst sizes. these numbers should be different
   2887	 * if doing QoS.
   2888	 */
   2889#ifdef USE_QOS
   2890	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
   2891	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
   2892	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
   2893	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
   2894#else
   2895	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
   2896	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
   2897	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
   2898	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
   2899#endif
   2900}
   2901
   2902/* Must be invoked under cp->lock. */
   2903static inline void cas_init_dma(struct cas *cp)
   2904{
   2905	cas_init_tx_dma(cp);
   2906	cas_init_rx_dma(cp);
   2907}
   2908
   2909static void cas_process_mc_list(struct cas *cp)
   2910{
   2911	u16 hash_table[16];
   2912	u32 crc;
   2913	struct netdev_hw_addr *ha;
   2914	int i = 1;
   2915
   2916	memset(hash_table, 0, sizeof(hash_table));
   2917	netdev_for_each_mc_addr(ha, cp->dev) {
   2918		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
   2919			/* use the alternate mac address registers for the
   2920			 * first 15 multicast addresses
   2921			 */
   2922			writel((ha->addr[4] << 8) | ha->addr[5],
   2923			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
   2924			writel((ha->addr[2] << 8) | ha->addr[3],
   2925			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
   2926			writel((ha->addr[0] << 8) | ha->addr[1],
   2927			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
   2928			i++;
   2929		}
   2930		else {
   2931			/* use hw hash table for the next series of
   2932			 * multicast addresses
   2933			 */
   2934			crc = ether_crc_le(ETH_ALEN, ha->addr);
   2935			crc >>= 24;
   2936			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
   2937		}
   2938	}
   2939	for (i = 0; i < 16; i++)
   2940		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
   2941}
   2942
   2943/* Must be invoked under cp->lock. */
   2944static u32 cas_setup_multicast(struct cas *cp)
   2945{
   2946	u32 rxcfg = 0;
   2947	int i;
   2948
   2949	if (cp->dev->flags & IFF_PROMISC) {
   2950		rxcfg |= MAC_RX_CFG_PROMISC_EN;
   2951
   2952	} else if (cp->dev->flags & IFF_ALLMULTI) {
   2953	    	for (i=0; i < 16; i++)
   2954			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
   2955		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
   2956
   2957	} else {
   2958		cas_process_mc_list(cp);
   2959		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
   2960	}
   2961
   2962	return rxcfg;
   2963}
   2964
   2965/* must be invoked under cp->stat_lock[N_TX_RINGS] */
   2966static void cas_clear_mac_err(struct cas *cp)
   2967{
   2968	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
   2969	writel(0, cp->regs + REG_MAC_COLL_FIRST);
   2970	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
   2971	writel(0, cp->regs + REG_MAC_COLL_LATE);
   2972	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
   2973	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
   2974	writel(0, cp->regs + REG_MAC_RECV_FRAME);
   2975	writel(0, cp->regs + REG_MAC_LEN_ERR);
   2976	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
   2977	writel(0, cp->regs + REG_MAC_FCS_ERR);
   2978	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
   2979}
   2980
   2981
   2982static void cas_mac_reset(struct cas *cp)
   2983{
   2984	int i;
   2985
   2986	/* do both TX and RX reset */
   2987	writel(0x1, cp->regs + REG_MAC_TX_RESET);
   2988	writel(0x1, cp->regs + REG_MAC_RX_RESET);
   2989
   2990	/* wait for TX */
   2991	i = STOP_TRIES;
   2992	while (i-- > 0) {
   2993		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
   2994			break;
   2995		udelay(10);
   2996	}
   2997
   2998	/* wait for RX */
   2999	i = STOP_TRIES;
   3000	while (i-- > 0) {
   3001		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
   3002			break;
   3003		udelay(10);
   3004	}
   3005
   3006	if (readl(cp->regs + REG_MAC_TX_RESET) |
   3007	    readl(cp->regs + REG_MAC_RX_RESET))
   3008		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
   3009			   readl(cp->regs + REG_MAC_TX_RESET),
   3010			   readl(cp->regs + REG_MAC_RX_RESET),
   3011			   readl(cp->regs + REG_MAC_STATE_MACHINE));
   3012}
   3013
   3014
   3015/* Must be invoked under cp->lock. */
   3016static void cas_init_mac(struct cas *cp)
   3017{
   3018	const unsigned char *e = &cp->dev->dev_addr[0];
   3019	int i;
   3020	cas_mac_reset(cp);
   3021
   3022	/* setup core arbitration weight register */
   3023	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
   3024
   3025#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
   3026	/* set the infinite burst register for chips that don't have
   3027	 * pci issues.
   3028	 */
   3029	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
   3030		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
   3031#endif
   3032
   3033	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
   3034
   3035	writel(0x00, cp->regs + REG_MAC_IPG0);
   3036	writel(0x08, cp->regs + REG_MAC_IPG1);
   3037	writel(0x04, cp->regs + REG_MAC_IPG2);
   3038
   3039	/* change later for 802.3z */
   3040	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
   3041
   3042	/* min frame + FCS */
   3043	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
   3044
   3045	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
   3046	 * specify the maximum frame size to prevent RX tag errors on
   3047	 * oversized frames.
   3048	 */
   3049	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
   3050	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
   3051			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
   3052	       cp->regs + REG_MAC_FRAMESIZE_MAX);
   3053
   3054	/* NOTE: crc_size is used as a surrogate for half-duplex.
   3055	 * workaround saturn half-duplex issue by increasing preamble
   3056	 * size to 65 bytes.
   3057	 */
   3058	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
   3059		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
   3060	else
   3061		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
   3062	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
   3063	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
   3064	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
   3065
   3066	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
   3067
   3068	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
   3069	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
   3070	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
   3071	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
   3072	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
   3073
   3074	/* setup mac address in perfect filter array */
   3075	for (i = 0; i < 45; i++)
   3076		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
   3077
   3078	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
   3079	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
   3080	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
   3081
   3082	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
   3083	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
   3084	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
   3085
   3086	cp->mac_rx_cfg = cas_setup_multicast(cp);
   3087
   3088	spin_lock(&cp->stat_lock[N_TX_RINGS]);
   3089	cas_clear_mac_err(cp);
   3090	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
   3091
   3092	/* Setup MAC interrupts.  We want to get all of the interesting
   3093	 * counter expiration events, but we do not want to hear about
   3094	 * normal rx/tx as the DMA engine tells us that.
   3095	 */
   3096	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
   3097	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
   3098
   3099	/* Don't enable even the PAUSE interrupts for now, we
   3100	 * make no use of those events other than to record them.
   3101	 */
   3102	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
   3103}
   3104
   3105/* Must be invoked under cp->lock. */
   3106static void cas_init_pause_thresholds(struct cas *cp)
   3107{
   3108	/* Calculate pause thresholds.  Setting the OFF threshold to the
   3109	 * full RX fifo size effectively disables PAUSE generation
   3110	 */
   3111	if (cp->rx_fifo_size <= (2 * 1024)) {
   3112		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
   3113	} else {
   3114		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
   3115		if (max_frame * 3 > cp->rx_fifo_size) {
   3116			cp->rx_pause_off = 7104;
   3117			cp->rx_pause_on  = 960;
   3118		} else {
   3119			int off = (cp->rx_fifo_size - (max_frame * 2));
   3120			int on = off - max_frame;
   3121			cp->rx_pause_off = off;
   3122			cp->rx_pause_on = on;
   3123		}
   3124	}
   3125}
   3126
   3127static int cas_vpd_match(const void __iomem *p, const char *str)
   3128{
   3129	int len = strlen(str) + 1;
   3130	int i;
   3131
   3132	for (i = 0; i < len; i++) {
   3133		if (readb(p + i) != str[i])
   3134			return 0;
   3135	}
   3136	return 1;
   3137}
   3138
   3139
   3140/* get the mac address by reading the vpd information in the rom.
   3141 * also get the phy type and determine if there's an entropy generator.
   3142 * NOTE: this is a bit convoluted for the following reasons:
   3143 *  1) vpd info has order-dependent mac addresses for multinic cards
   3144 *  2) the only way to determine the nic order is to use the slot
   3145 *     number.
   3146 *  3) fiber cards don't have bridges, so their slot numbers don't
   3147 *     mean anything.
   3148 *  4) we don't actually know we have a fiber card until after
   3149 *     the mac addresses are parsed.
   3150 */
   3151static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
   3152			    const int offset)
   3153{
   3154	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
   3155	void __iomem *base, *kstart;
   3156	int i, len;
   3157	int found = 0;
   3158#define VPD_FOUND_MAC        0x01
   3159#define VPD_FOUND_PHY        0x02
   3160
   3161	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
   3162	int mac_off  = 0;
   3163
   3164#if defined(CONFIG_SPARC)
   3165	const unsigned char *addr;
   3166#endif
   3167
   3168	/* give us access to the PROM */
   3169	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
   3170	       cp->regs + REG_BIM_LOCAL_DEV_EN);
   3171
   3172	/* check for an expansion rom */
   3173	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
   3174		goto use_random_mac_addr;
   3175
   3176	/* search for beginning of vpd */
   3177	base = NULL;
   3178	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
   3179		/* check for PCIR */
   3180		if ((readb(p + i + 0) == 0x50) &&
   3181		    (readb(p + i + 1) == 0x43) &&
   3182		    (readb(p + i + 2) == 0x49) &&
   3183		    (readb(p + i + 3) == 0x52)) {
   3184			base = p + (readb(p + i + 8) |
   3185				    (readb(p + i + 9) << 8));
   3186			break;
   3187		}
   3188	}
   3189
   3190	if (!base || (readb(base) != 0x82))
   3191		goto use_random_mac_addr;
   3192
   3193	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
   3194	while (i < EXPANSION_ROM_SIZE) {
   3195		if (readb(base + i) != 0x90) /* no vpd found */
   3196			goto use_random_mac_addr;
   3197
   3198		/* found a vpd field */
   3199		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
   3200
   3201		/* extract keywords */
   3202		kstart = base + i + 3;
   3203		p = kstart;
   3204		while ((p - kstart) < len) {
   3205			int klen = readb(p + 2);
   3206			int j;
   3207			char type;
   3208
   3209			p += 3;
   3210
   3211			/* look for the following things:
   3212			 * -- correct length == 29
   3213			 * 3 (type) + 2 (size) +
   3214			 * 18 (strlen("local-mac-address") + 1) +
   3215			 * 6 (mac addr)
   3216			 * -- VPD Instance 'I'
   3217			 * -- VPD Type Bytes 'B'
   3218			 * -- VPD data length == 6
   3219			 * -- property string == local-mac-address
   3220			 *
   3221			 * -- correct length == 24
   3222			 * 3 (type) + 2 (size) +
   3223			 * 12 (strlen("entropy-dev") + 1) +
   3224			 * 7 (strlen("vms110") + 1)
   3225			 * -- VPD Instance 'I'
   3226			 * -- VPD Type String 'B'
   3227			 * -- VPD data length == 7
   3228			 * -- property string == entropy-dev
   3229			 *
   3230			 * -- correct length == 18
   3231			 * 3 (type) + 2 (size) +
   3232			 * 9 (strlen("phy-type") + 1) +
   3233			 * 4 (strlen("pcs") + 1)
   3234			 * -- VPD Instance 'I'
   3235			 * -- VPD Type String 'S'
   3236			 * -- VPD data length == 4
   3237			 * -- property string == phy-type
   3238			 *
   3239			 * -- correct length == 23
   3240			 * 3 (type) + 2 (size) +
   3241			 * 14 (strlen("phy-interface") + 1) +
   3242			 * 4 (strlen("pcs") + 1)
   3243			 * -- VPD Instance 'I'
   3244			 * -- VPD Type String 'S'
   3245			 * -- VPD data length == 4
   3246			 * -- property string == phy-interface
   3247			 */
   3248			if (readb(p) != 'I')
   3249				goto next;
   3250
   3251			/* finally, check string and length */
   3252			type = readb(p + 3);
   3253			if (type == 'B') {
   3254				if ((klen == 29) && readb(p + 4) == 6 &&
   3255				    cas_vpd_match(p + 5,
   3256						  "local-mac-address")) {
   3257					if (mac_off++ > offset)
   3258						goto next;
   3259
   3260					/* set mac address */
   3261					for (j = 0; j < 6; j++)
   3262						dev_addr[j] =
   3263							readb(p + 23 + j);
   3264					goto found_mac;
   3265				}
   3266			}
   3267
   3268			if (type != 'S')
   3269				goto next;
   3270
   3271#ifdef USE_ENTROPY_DEV
   3272			if ((klen == 24) &&
   3273			    cas_vpd_match(p + 5, "entropy-dev") &&
   3274			    cas_vpd_match(p + 17, "vms110")) {
   3275				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
   3276				goto next;
   3277			}
   3278#endif
   3279
   3280			if (found & VPD_FOUND_PHY)
   3281				goto next;
   3282
   3283			if ((klen == 18) && readb(p + 4) == 4 &&
   3284			    cas_vpd_match(p + 5, "phy-type")) {
   3285				if (cas_vpd_match(p + 14, "pcs")) {
   3286					phy_type = CAS_PHY_SERDES;
   3287					goto found_phy;
   3288				}
   3289			}
   3290
   3291			if ((klen == 23) && readb(p + 4) == 4 &&
   3292			    cas_vpd_match(p + 5, "phy-interface")) {
   3293				if (cas_vpd_match(p + 19, "pcs")) {
   3294					phy_type = CAS_PHY_SERDES;
   3295					goto found_phy;
   3296				}
   3297			}
   3298found_mac:
   3299			found |= VPD_FOUND_MAC;
   3300			goto next;
   3301
   3302found_phy:
   3303			found |= VPD_FOUND_PHY;
   3304
   3305next:
   3306			p += klen;
   3307		}
   3308		i += len + 3;
   3309	}
   3310
   3311use_random_mac_addr:
   3312	if (found & VPD_FOUND_MAC)
   3313		goto done;
   3314
   3315#if defined(CONFIG_SPARC)
   3316	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
   3317	if (addr != NULL) {
   3318		memcpy(dev_addr, addr, ETH_ALEN);
   3319		goto done;
   3320	}
   3321#endif
   3322
   3323	/* Sun MAC prefix then 3 random bytes. */
   3324	pr_info("MAC address not found in ROM VPD\n");
   3325	dev_addr[0] = 0x08;
   3326	dev_addr[1] = 0x00;
   3327	dev_addr[2] = 0x20;
   3328	get_random_bytes(dev_addr + 3, 3);
   3329
   3330done:
   3331	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
   3332	return phy_type;
   3333}
   3334
   3335/* check pci invariants */
   3336static void cas_check_pci_invariants(struct cas *cp)
   3337{
   3338	struct pci_dev *pdev = cp->pdev;
   3339
   3340	cp->cas_flags = 0;
   3341	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
   3342	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
   3343		if (pdev->revision >= CAS_ID_REVPLUS)
   3344			cp->cas_flags |= CAS_FLAG_REG_PLUS;
   3345		if (pdev->revision < CAS_ID_REVPLUS02u)
   3346			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
   3347
   3348		/* Original Cassini supports HW CSUM, but it's not
   3349		 * enabled by default as it can trigger TX hangs.
   3350		 */
   3351		if (pdev->revision < CAS_ID_REV2)
   3352			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
   3353	} else {
   3354		/* Only sun has original cassini chips.  */
   3355		cp->cas_flags |= CAS_FLAG_REG_PLUS;
   3356
   3357		/* We use a flag because the same phy might be externally
   3358		 * connected.
   3359		 */
   3360		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
   3361		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
   3362			cp->cas_flags |= CAS_FLAG_SATURN;
   3363	}
   3364}
   3365
   3366
   3367static int cas_check_invariants(struct cas *cp)
   3368{
   3369	struct pci_dev *pdev = cp->pdev;
   3370	u8 addr[ETH_ALEN];
   3371	u32 cfg;
   3372	int i;
   3373
   3374	/* get page size for rx buffers. */
   3375	cp->page_order = 0;
   3376#ifdef USE_PAGE_ORDER
   3377	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
   3378		/* see if we can allocate larger pages */
   3379		struct page *page = alloc_pages(GFP_ATOMIC,
   3380						CAS_JUMBO_PAGE_SHIFT -
   3381						PAGE_SHIFT);
   3382		if (page) {
   3383			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
   3384			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
   3385		} else {
   3386			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
   3387		}
   3388	}
   3389#endif
   3390	cp->page_size = (PAGE_SIZE << cp->page_order);
   3391
   3392	/* Fetch the FIFO configurations. */
   3393	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
   3394	cp->rx_fifo_size = RX_FIFO_SIZE;
   3395
   3396	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
   3397	 * they're both connected.
   3398	 */
   3399	cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
   3400	eth_hw_addr_set(cp->dev, addr);
   3401	if (cp->phy_type & CAS_PHY_SERDES) {
   3402		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
   3403		return 0; /* no more checking needed */
   3404	}
   3405
   3406	/* MII */
   3407	cfg = readl(cp->regs + REG_MIF_CFG);
   3408	if (cfg & MIF_CFG_MDIO_1) {
   3409		cp->phy_type = CAS_PHY_MII_MDIO1;
   3410	} else if (cfg & MIF_CFG_MDIO_0) {
   3411		cp->phy_type = CAS_PHY_MII_MDIO0;
   3412	}
   3413
   3414	cas_mif_poll(cp, 0);
   3415	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
   3416
   3417	for (i = 0; i < 32; i++) {
   3418		u32 phy_id;
   3419		int j;
   3420
   3421		for (j = 0; j < 3; j++) {
   3422			cp->phy_addr = i;
   3423			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
   3424			phy_id |= cas_phy_read(cp, MII_PHYSID2);
   3425			if (phy_id && (phy_id != 0xFFFFFFFF)) {
   3426				cp->phy_id = phy_id;
   3427				goto done;
   3428			}
   3429		}
   3430	}
   3431	pr_err("MII phy did not respond [%08x]\n",
   3432	       readl(cp->regs + REG_MIF_STATE_MACHINE));
   3433	return -1;
   3434
   3435done:
   3436	/* see if we can do gigabit */
   3437	cfg = cas_phy_read(cp, MII_BMSR);
   3438	if ((cfg & CAS_BMSR_1000_EXTEND) &&
   3439	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
   3440		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
   3441	return 0;
   3442}
   3443
   3444/* Must be invoked under cp->lock. */
   3445static inline void cas_start_dma(struct cas *cp)
   3446{
   3447	int i;
   3448	u32 val;
   3449	int txfailed = 0;
   3450
   3451	/* enable dma */
   3452	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
   3453	writel(val, cp->regs + REG_TX_CFG);
   3454	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
   3455	writel(val, cp->regs + REG_RX_CFG);
   3456
   3457	/* enable the mac */
   3458	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
   3459	writel(val, cp->regs + REG_MAC_TX_CFG);
   3460	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
   3461	writel(val, cp->regs + REG_MAC_RX_CFG);
   3462
   3463	i = STOP_TRIES;
   3464	while (i-- > 0) {
   3465		val = readl(cp->regs + REG_MAC_TX_CFG);
   3466		if ((val & MAC_TX_CFG_EN))
   3467			break;
   3468		udelay(10);
   3469	}
   3470	if (i < 0) txfailed = 1;
   3471	i = STOP_TRIES;
   3472	while (i-- > 0) {
   3473		val = readl(cp->regs + REG_MAC_RX_CFG);
   3474		if ((val & MAC_RX_CFG_EN)) {
   3475			if (txfailed) {
   3476				netdev_err(cp->dev,
   3477					   "enabling mac failed [tx:%08x:%08x]\n",
   3478					   readl(cp->regs + REG_MIF_STATE_MACHINE),
   3479					   readl(cp->regs + REG_MAC_STATE_MACHINE));
   3480			}
   3481			goto enable_rx_done;
   3482		}
   3483		udelay(10);
   3484	}
   3485	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
   3486		   (txfailed ? "tx,rx" : "rx"),
   3487		   readl(cp->regs + REG_MIF_STATE_MACHINE),
   3488		   readl(cp->regs + REG_MAC_STATE_MACHINE));
   3489
   3490enable_rx_done:
   3491	cas_unmask_intr(cp); /* enable interrupts */
   3492	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
   3493	writel(0, cp->regs + REG_RX_COMP_TAIL);
   3494
   3495	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
   3496		if (N_RX_DESC_RINGS > 1)
   3497			writel(RX_DESC_RINGN_SIZE(1) - 4,
   3498			       cp->regs + REG_PLUS_RX_KICK1);
   3499	}
   3500}
   3501
   3502/* Must be invoked under cp->lock. */
   3503static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
   3504				   int *pause)
   3505{
   3506	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
   3507	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
   3508	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
   3509	if (val & PCS_MII_LPA_ASYM_PAUSE)
   3510		*pause |= 0x10;
   3511	*spd = 1000;
   3512}
   3513
   3514/* Must be invoked under cp->lock. */
   3515static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
   3516				   int *pause)
   3517{
   3518	u32 val;
   3519
   3520	*fd = 0;
   3521	*spd = 10;
   3522	*pause = 0;
   3523
   3524	/* use GMII registers */
   3525	val = cas_phy_read(cp, MII_LPA);
   3526	if (val & CAS_LPA_PAUSE)
   3527		*pause = 0x01;
   3528
   3529	if (val & CAS_LPA_ASYM_PAUSE)
   3530		*pause |= 0x10;
   3531
   3532	if (val & LPA_DUPLEX)
   3533		*fd = 1;
   3534	if (val & LPA_100)
   3535		*spd = 100;
   3536
   3537	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
   3538		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
   3539		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
   3540			*spd = 1000;
   3541		if (val & CAS_LPA_1000FULL)
   3542			*fd = 1;
   3543	}
   3544}
   3545
   3546/* A link-up condition has occurred, initialize and enable the
   3547 * rest of the chip.
   3548 *
   3549 * Must be invoked under cp->lock.
   3550 */
   3551static void cas_set_link_modes(struct cas *cp)
   3552{
   3553	u32 val;
   3554	int full_duplex, speed, pause;
   3555
   3556	full_duplex = 0;
   3557	speed = 10;
   3558	pause = 0;
   3559
   3560	if (CAS_PHY_MII(cp->phy_type)) {
   3561		cas_mif_poll(cp, 0);
   3562		val = cas_phy_read(cp, MII_BMCR);
   3563		if (val & BMCR_ANENABLE) {
   3564			cas_read_mii_link_mode(cp, &full_duplex, &speed,
   3565					       &pause);
   3566		} else {
   3567			if (val & BMCR_FULLDPLX)
   3568				full_duplex = 1;
   3569
   3570			if (val & BMCR_SPEED100)
   3571				speed = 100;
   3572			else if (val & CAS_BMCR_SPEED1000)
   3573				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
   3574					1000 : 100;
   3575		}
   3576		cas_mif_poll(cp, 1);
   3577
   3578	} else {
   3579		val = readl(cp->regs + REG_PCS_MII_CTRL);
   3580		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
   3581		if ((val & PCS_MII_AUTONEG_EN) == 0) {
   3582			if (val & PCS_MII_CTRL_DUPLEX)
   3583				full_duplex = 1;
   3584		}
   3585	}
   3586
   3587	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
   3588		   speed, full_duplex ? "full" : "half");
   3589
   3590	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
   3591	if (CAS_PHY_MII(cp->phy_type)) {
   3592		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
   3593		if (!full_duplex)
   3594			val |= MAC_XIF_DISABLE_ECHO;
   3595	}
   3596	if (full_duplex)
   3597		val |= MAC_XIF_FDPLX_LED;
   3598	if (speed == 1000)
   3599		val |= MAC_XIF_GMII_MODE;
   3600	writel(val, cp->regs + REG_MAC_XIF_CFG);
   3601
   3602	/* deal with carrier and collision detect. */
   3603	val = MAC_TX_CFG_IPG_EN;
   3604	if (full_duplex) {
   3605		val |= MAC_TX_CFG_IGNORE_CARRIER;
   3606		val |= MAC_TX_CFG_IGNORE_COLL;
   3607	} else {
   3608#ifndef USE_CSMA_CD_PROTO
   3609		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
   3610		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
   3611#endif
   3612	}
   3613	/* val now set up for REG_MAC_TX_CFG */
   3614
   3615	/* If gigabit and half-duplex, enable carrier extension
   3616	 * mode.  increase slot time to 512 bytes as well.
   3617	 * else, disable it and make sure slot time is 64 bytes.
   3618	 * also activate checksum bug workaround
   3619	 */
   3620	if ((speed == 1000) && !full_duplex) {
   3621		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
   3622		       cp->regs + REG_MAC_TX_CFG);
   3623
   3624		val = readl(cp->regs + REG_MAC_RX_CFG);
   3625		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
   3626		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
   3627		       cp->regs + REG_MAC_RX_CFG);
   3628
   3629		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
   3630
   3631		cp->crc_size = 4;
   3632		/* minimum size gigabit frame at half duplex */
   3633		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
   3634
   3635	} else {
   3636		writel(val, cp->regs + REG_MAC_TX_CFG);
   3637
   3638		/* checksum bug workaround. don't strip FCS when in
   3639		 * half-duplex mode
   3640		 */
   3641		val = readl(cp->regs + REG_MAC_RX_CFG);
   3642		if (full_duplex) {
   3643			val |= MAC_RX_CFG_STRIP_FCS;
   3644			cp->crc_size = 0;
   3645			cp->min_frame_size = CAS_MIN_MTU;
   3646		} else {
   3647			val &= ~MAC_RX_CFG_STRIP_FCS;
   3648			cp->crc_size = 4;
   3649			cp->min_frame_size = CAS_MIN_FRAME;
   3650		}
   3651		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
   3652		       cp->regs + REG_MAC_RX_CFG);
   3653		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
   3654	}
   3655
   3656	if (netif_msg_link(cp)) {
   3657		if (pause & 0x01) {
   3658			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
   3659				    cp->rx_fifo_size,
   3660				    cp->rx_pause_off,
   3661				    cp->rx_pause_on);
   3662		} else if (pause & 0x10) {
   3663			netdev_info(cp->dev, "TX pause enabled\n");
   3664		} else {
   3665			netdev_info(cp->dev, "Pause is disabled\n");
   3666		}
   3667	}
   3668
   3669	val = readl(cp->regs + REG_MAC_CTRL_CFG);
   3670	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
   3671	if (pause) { /* symmetric or asymmetric pause */
   3672		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
   3673		if (pause & 0x01) { /* symmetric pause */
   3674			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
   3675		}
   3676	}
   3677	writel(val, cp->regs + REG_MAC_CTRL_CFG);
   3678	cas_start_dma(cp);
   3679}
   3680
   3681/* Must be invoked under cp->lock. */
   3682static void cas_init_hw(struct cas *cp, int restart_link)
   3683{
   3684	if (restart_link)
   3685		cas_phy_init(cp);
   3686
   3687	cas_init_pause_thresholds(cp);
   3688	cas_init_mac(cp);
   3689	cas_init_dma(cp);
   3690
   3691	if (restart_link) {
   3692		/* Default aneg parameters */
   3693		cp->timer_ticks = 0;
   3694		cas_begin_auto_negotiation(cp, NULL);
   3695	} else if (cp->lstate == link_up) {
   3696		cas_set_link_modes(cp);
   3697		netif_carrier_on(cp->dev);
   3698	}
   3699}
   3700
   3701/* Must be invoked under cp->lock. on earlier cassini boards,
   3702 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
   3703 * let it settle out, and then restore pci state.
   3704 */
   3705static void cas_hard_reset(struct cas *cp)
   3706{
   3707	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
   3708	udelay(20);
   3709	pci_restore_state(cp->pdev);
   3710}
   3711
   3712
   3713static void cas_global_reset(struct cas *cp, int blkflag)
   3714{
   3715	int limit;
   3716
   3717	/* issue a global reset. don't use RSTOUT. */
   3718	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
   3719		/* For PCS, when the blkflag is set, we should set the
   3720		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
   3721		 * the last autonegotiation from being cleared.  We'll
   3722		 * need some special handling if the chip is set into a
   3723		 * loopback mode.
   3724		 */
   3725		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
   3726		       cp->regs + REG_SW_RESET);
   3727	} else {
   3728		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
   3729	}
   3730
   3731	/* need to wait at least 3ms before polling register */
   3732	mdelay(3);
   3733
   3734	limit = STOP_TRIES;
   3735	while (limit-- > 0) {
   3736		u32 val = readl(cp->regs + REG_SW_RESET);
   3737		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
   3738			goto done;
   3739		udelay(10);
   3740	}
   3741	netdev_err(cp->dev, "sw reset failed\n");
   3742
   3743done:
   3744	/* enable various BIM interrupts */
   3745	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
   3746	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
   3747
   3748	/* clear out pci error status mask for handled errors.
   3749	 * we don't deal with DMA counter overflows as they happen
   3750	 * all the time.
   3751	 */
   3752	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
   3753			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
   3754			       PCI_ERR_BIM_DMA_READ), cp->regs +
   3755	       REG_PCI_ERR_STATUS_MASK);
   3756
   3757	/* set up for MII by default to address mac rx reset timeout
   3758	 * issue
   3759	 */
   3760	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
   3761}
   3762
   3763static void cas_reset(struct cas *cp, int blkflag)
   3764{
   3765	u32 val;
   3766
   3767	cas_mask_intr(cp);
   3768	cas_global_reset(cp, blkflag);
   3769	cas_mac_reset(cp);
   3770	cas_entropy_reset(cp);
   3771
   3772	/* disable dma engines. */
   3773	val = readl(cp->regs + REG_TX_CFG);
   3774	val &= ~TX_CFG_DMA_EN;
   3775	writel(val, cp->regs + REG_TX_CFG);
   3776
   3777	val = readl(cp->regs + REG_RX_CFG);
   3778	val &= ~RX_CFG_DMA_EN;
   3779	writel(val, cp->regs + REG_RX_CFG);
   3780
   3781	/* program header parser */
   3782	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
   3783	    (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
   3784		cas_load_firmware(cp, CAS_HP_FIRMWARE);
   3785	} else {
   3786		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
   3787	}
   3788
   3789	/* clear out error registers */
   3790	spin_lock(&cp->stat_lock[N_TX_RINGS]);
   3791	cas_clear_mac_err(cp);
   3792	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
   3793}
   3794
   3795/* Shut down the chip, must be called with pm_mutex held.  */
   3796static void cas_shutdown(struct cas *cp)
   3797{
   3798	unsigned long flags;
   3799
   3800	/* Make us not-running to avoid timers respawning */
   3801	cp->hw_running = 0;
   3802
   3803	del_timer_sync(&cp->link_timer);
   3804
   3805	/* Stop the reset task */
   3806#if 0
   3807	while (atomic_read(&cp->reset_task_pending_mtu) ||
   3808	       atomic_read(&cp->reset_task_pending_spare) ||
   3809	       atomic_read(&cp->reset_task_pending_all))
   3810		schedule();
   3811
   3812#else
   3813	while (atomic_read(&cp->reset_task_pending))
   3814		schedule();
   3815#endif
   3816	/* Actually stop the chip */
   3817	cas_lock_all_save(cp, flags);
   3818	cas_reset(cp, 0);
   3819	if (cp->cas_flags & CAS_FLAG_SATURN)
   3820		cas_phy_powerdown(cp);
   3821	cas_unlock_all_restore(cp, flags);
   3822}
   3823
   3824static int cas_change_mtu(struct net_device *dev, int new_mtu)
   3825{
   3826	struct cas *cp = netdev_priv(dev);
   3827
   3828	dev->mtu = new_mtu;
   3829	if (!netif_running(dev) || !netif_device_present(dev))
   3830		return 0;
   3831
   3832	/* let the reset task handle it */
   3833#if 1
   3834	atomic_inc(&cp->reset_task_pending);
   3835	if ((cp->phy_type & CAS_PHY_SERDES)) {
   3836		atomic_inc(&cp->reset_task_pending_all);
   3837	} else {
   3838		atomic_inc(&cp->reset_task_pending_mtu);
   3839	}
   3840	schedule_work(&cp->reset_task);
   3841#else
   3842	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
   3843		   CAS_RESET_ALL : CAS_RESET_MTU);
   3844	pr_err("reset called in cas_change_mtu\n");
   3845	schedule_work(&cp->reset_task);
   3846#endif
   3847
   3848	flush_work(&cp->reset_task);
   3849	return 0;
   3850}
   3851
   3852static void cas_clean_txd(struct cas *cp, int ring)
   3853{
   3854	struct cas_tx_desc *txd = cp->init_txds[ring];
   3855	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
   3856	u64 daddr, dlen;
   3857	int i, size;
   3858
   3859	size = TX_DESC_RINGN_SIZE(ring);
   3860	for (i = 0; i < size; i++) {
   3861		int frag;
   3862
   3863		if (skbs[i] == NULL)
   3864			continue;
   3865
   3866		skb = skbs[i];
   3867		skbs[i] = NULL;
   3868
   3869		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
   3870			int ent = i & (size - 1);
   3871
   3872			/* first buffer is never a tiny buffer and so
   3873			 * needs to be unmapped.
   3874			 */
   3875			daddr = le64_to_cpu(txd[ent].buffer);
   3876			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
   3877					 le64_to_cpu(txd[ent].control));
   3878			dma_unmap_page(&cp->pdev->dev, daddr, dlen,
   3879				       DMA_TO_DEVICE);
   3880
   3881			if (frag != skb_shinfo(skb)->nr_frags) {
   3882				i++;
   3883
   3884				/* next buffer might by a tiny buffer.
   3885				 * skip past it.
   3886				 */
   3887				ent = i & (size - 1);
   3888				if (cp->tx_tiny_use[ring][ent].used)
   3889					i++;
   3890			}
   3891		}
   3892		dev_kfree_skb_any(skb);
   3893	}
   3894
   3895	/* zero out tiny buf usage */
   3896	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
   3897}
   3898
   3899/* freed on close */
   3900static inline void cas_free_rx_desc(struct cas *cp, int ring)
   3901{
   3902	cas_page_t **page = cp->rx_pages[ring];
   3903	int i, size;
   3904
   3905	size = RX_DESC_RINGN_SIZE(ring);
   3906	for (i = 0; i < size; i++) {
   3907		if (page[i]) {
   3908			cas_page_free(cp, page[i]);
   3909			page[i] = NULL;
   3910		}
   3911	}
   3912}
   3913
   3914static void cas_free_rxds(struct cas *cp)
   3915{
   3916	int i;
   3917
   3918	for (i = 0; i < N_RX_DESC_RINGS; i++)
   3919		cas_free_rx_desc(cp, i);
   3920}
   3921
   3922/* Must be invoked under cp->lock. */
   3923static void cas_clean_rings(struct cas *cp)
   3924{
   3925	int i;
   3926
   3927	/* need to clean all tx rings */
   3928	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
   3929	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
   3930	for (i = 0; i < N_TX_RINGS; i++)
   3931		cas_clean_txd(cp, i);
   3932
   3933	/* zero out init block */
   3934	memset(cp->init_block, 0, sizeof(struct cas_init_block));
   3935	cas_clean_rxds(cp);
   3936	cas_clean_rxcs(cp);
   3937}
   3938
   3939/* allocated on open */
   3940static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
   3941{
   3942	cas_page_t **page = cp->rx_pages[ring];
   3943	int size, i = 0;
   3944
   3945	size = RX_DESC_RINGN_SIZE(ring);
   3946	for (i = 0; i < size; i++) {
   3947		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
   3948			return -1;
   3949	}
   3950	return 0;
   3951}
   3952
   3953static int cas_alloc_rxds(struct cas *cp)
   3954{
   3955	int i;
   3956
   3957	for (i = 0; i < N_RX_DESC_RINGS; i++) {
   3958		if (cas_alloc_rx_desc(cp, i) < 0) {
   3959			cas_free_rxds(cp);
   3960			return -1;
   3961		}
   3962	}
   3963	return 0;
   3964}
   3965
   3966static void cas_reset_task(struct work_struct *work)
   3967{
   3968	struct cas *cp = container_of(work, struct cas, reset_task);
   3969#if 0
   3970	int pending = atomic_read(&cp->reset_task_pending);
   3971#else
   3972	int pending_all = atomic_read(&cp->reset_task_pending_all);
   3973	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
   3974	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
   3975
   3976	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
   3977		/* We can have more tasks scheduled than actually
   3978		 * needed.
   3979		 */
   3980		atomic_dec(&cp->reset_task_pending);
   3981		return;
   3982	}
   3983#endif
   3984	/* The link went down, we reset the ring, but keep
   3985	 * DMA stopped. Use this function for reset
   3986	 * on error as well.
   3987	 */
   3988	if (cp->hw_running) {
   3989		unsigned long flags;
   3990
   3991		/* Make sure we don't get interrupts or tx packets */
   3992		netif_device_detach(cp->dev);
   3993		cas_lock_all_save(cp, flags);
   3994
   3995		if (cp->opened) {
   3996			/* We call cas_spare_recover when we call cas_open.
   3997			 * but we do not initialize the lists cas_spare_recover
   3998			 * uses until cas_open is called.
   3999			 */
   4000			cas_spare_recover(cp, GFP_ATOMIC);
   4001		}
   4002#if 1
   4003		/* test => only pending_spare set */
   4004		if (!pending_all && !pending_mtu)
   4005			goto done;
   4006#else
   4007		if (pending == CAS_RESET_SPARE)
   4008			goto done;
   4009#endif
   4010		/* when pending == CAS_RESET_ALL, the following
   4011		 * call to cas_init_hw will restart auto negotiation.
   4012		 * Setting the second argument of cas_reset to
   4013		 * !(pending == CAS_RESET_ALL) will set this argument
   4014		 * to 1 (avoiding reinitializing the PHY for the normal
   4015		 * PCS case) when auto negotiation is not restarted.
   4016		 */
   4017#if 1
   4018		cas_reset(cp, !(pending_all > 0));
   4019		if (cp->opened)
   4020			cas_clean_rings(cp);
   4021		cas_init_hw(cp, (pending_all > 0));
   4022#else
   4023		cas_reset(cp, !(pending == CAS_RESET_ALL));
   4024		if (cp->opened)
   4025			cas_clean_rings(cp);
   4026		cas_init_hw(cp, pending == CAS_RESET_ALL);
   4027#endif
   4028
   4029done:
   4030		cas_unlock_all_restore(cp, flags);
   4031		netif_device_attach(cp->dev);
   4032	}
   4033#if 1
   4034	atomic_sub(pending_all, &cp->reset_task_pending_all);
   4035	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
   4036	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
   4037	atomic_dec(&cp->reset_task_pending);
   4038#else
   4039	atomic_set(&cp->reset_task_pending, 0);
   4040#endif
   4041}
   4042
   4043static void cas_link_timer(struct timer_list *t)
   4044{
   4045	struct cas *cp = from_timer(cp, t, link_timer);
   4046	int mask, pending = 0, reset = 0;
   4047	unsigned long flags;
   4048
   4049	if (link_transition_timeout != 0 &&
   4050	    cp->link_transition_jiffies_valid &&
   4051	    time_is_before_jiffies(cp->link_transition_jiffies +
   4052	      link_transition_timeout)) {
   4053		/* One-second counter so link-down workaround doesn't
   4054		 * cause resets to occur so fast as to fool the switch
   4055		 * into thinking the link is down.
   4056		 */
   4057		cp->link_transition_jiffies_valid = 0;
   4058	}
   4059
   4060	if (!cp->hw_running)
   4061		return;
   4062
   4063	spin_lock_irqsave(&cp->lock, flags);
   4064	cas_lock_tx(cp);
   4065	cas_entropy_gather(cp);
   4066
   4067	/* If the link task is still pending, we just
   4068	 * reschedule the link timer
   4069	 */
   4070#if 1
   4071	if (atomic_read(&cp->reset_task_pending_all) ||
   4072	    atomic_read(&cp->reset_task_pending_spare) ||
   4073	    atomic_read(&cp->reset_task_pending_mtu))
   4074		goto done;
   4075#else
   4076	if (atomic_read(&cp->reset_task_pending))
   4077		goto done;
   4078#endif
   4079
   4080	/* check for rx cleaning */
   4081	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
   4082		int i, rmask;
   4083
   4084		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
   4085			rmask = CAS_FLAG_RXD_POST(i);
   4086			if ((mask & rmask) == 0)
   4087				continue;
   4088
   4089			/* post_rxds will do a mod_timer */
   4090			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
   4091				pending = 1;
   4092				continue;
   4093			}
   4094			cp->cas_flags &= ~rmask;
   4095		}
   4096	}
   4097
   4098	if (CAS_PHY_MII(cp->phy_type)) {
   4099		u16 bmsr;
   4100		cas_mif_poll(cp, 0);
   4101		bmsr = cas_phy_read(cp, MII_BMSR);
   4102		/* WTZ: Solaris driver reads this twice, but that
   4103		 * may be due to the PCS case and the use of a
   4104		 * common implementation. Read it twice here to be
   4105		 * safe.
   4106		 */
   4107		bmsr = cas_phy_read(cp, MII_BMSR);
   4108		cas_mif_poll(cp, 1);
   4109		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
   4110		reset = cas_mii_link_check(cp, bmsr);
   4111	} else {
   4112		reset = cas_pcs_link_check(cp);
   4113	}
   4114
   4115	if (reset)
   4116		goto done;
   4117
   4118	/* check for tx state machine confusion */
   4119	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
   4120		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
   4121		u32 wptr, rptr;
   4122		int tlm  = CAS_VAL(MAC_SM_TLM, val);
   4123
   4124		if (((tlm == 0x5) || (tlm == 0x3)) &&
   4125		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
   4126			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
   4127				     "tx err: MAC_STATE[%08x]\n", val);
   4128			reset = 1;
   4129			goto done;
   4130		}
   4131
   4132		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
   4133		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
   4134		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
   4135		if ((val == 0) && (wptr != rptr)) {
   4136			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
   4137				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
   4138				     val, wptr, rptr);
   4139			reset = 1;
   4140		}
   4141
   4142		if (reset)
   4143			cas_hard_reset(cp);
   4144	}
   4145
   4146done:
   4147	if (reset) {
   4148#if 1
   4149		atomic_inc(&cp->reset_task_pending);
   4150		atomic_inc(&cp->reset_task_pending_all);
   4151		schedule_work(&cp->reset_task);
   4152#else
   4153		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
   4154		pr_err("reset called in cas_link_timer\n");
   4155		schedule_work(&cp->reset_task);
   4156#endif
   4157	}
   4158
   4159	if (!pending)
   4160		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
   4161	cas_unlock_tx(cp);
   4162	spin_unlock_irqrestore(&cp->lock, flags);
   4163}
   4164
   4165/* tiny buffers are used to avoid target abort issues with
   4166 * older cassini's
   4167 */
   4168static void cas_tx_tiny_free(struct cas *cp)
   4169{
   4170	struct pci_dev *pdev = cp->pdev;
   4171	int i;
   4172
   4173	for (i = 0; i < N_TX_RINGS; i++) {
   4174		if (!cp->tx_tiny_bufs[i])
   4175			continue;
   4176
   4177		dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
   4178				  cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
   4179		cp->tx_tiny_bufs[i] = NULL;
   4180	}
   4181}
   4182
   4183static int cas_tx_tiny_alloc(struct cas *cp)
   4184{
   4185	struct pci_dev *pdev = cp->pdev;
   4186	int i;
   4187
   4188	for (i = 0; i < N_TX_RINGS; i++) {
   4189		cp->tx_tiny_bufs[i] =
   4190			dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
   4191					   &cp->tx_tiny_dvma[i], GFP_KERNEL);
   4192		if (!cp->tx_tiny_bufs[i]) {
   4193			cas_tx_tiny_free(cp);
   4194			return -1;
   4195		}
   4196	}
   4197	return 0;
   4198}
   4199
   4200
   4201static int cas_open(struct net_device *dev)
   4202{
   4203	struct cas *cp = netdev_priv(dev);
   4204	int hw_was_up, err;
   4205	unsigned long flags;
   4206
   4207	mutex_lock(&cp->pm_mutex);
   4208
   4209	hw_was_up = cp->hw_running;
   4210
   4211	/* The power-management mutex protects the hw_running
   4212	 * etc. state so it is safe to do this bit without cp->lock
   4213	 */
   4214	if (!cp->hw_running) {
   4215		/* Reset the chip */
   4216		cas_lock_all_save(cp, flags);
   4217		/* We set the second arg to cas_reset to zero
   4218		 * because cas_init_hw below will have its second
   4219		 * argument set to non-zero, which will force
   4220		 * autonegotiation to start.
   4221		 */
   4222		cas_reset(cp, 0);
   4223		cp->hw_running = 1;
   4224		cas_unlock_all_restore(cp, flags);
   4225	}
   4226
   4227	err = -ENOMEM;
   4228	if (cas_tx_tiny_alloc(cp) < 0)
   4229		goto err_unlock;
   4230
   4231	/* alloc rx descriptors */
   4232	if (cas_alloc_rxds(cp) < 0)
   4233		goto err_tx_tiny;
   4234
   4235	/* allocate spares */
   4236	cas_spare_init(cp);
   4237	cas_spare_recover(cp, GFP_KERNEL);
   4238
   4239	/* We can now request the interrupt as we know it's masked
   4240	 * on the controller. cassini+ has up to 4 interrupts
   4241	 * that can be used, but you need to do explicit pci interrupt
   4242	 * mapping to expose them
   4243	 */
   4244	if (request_irq(cp->pdev->irq, cas_interrupt,
   4245			IRQF_SHARED, dev->name, (void *) dev)) {
   4246		netdev_err(cp->dev, "failed to request irq !\n");
   4247		err = -EAGAIN;
   4248		goto err_spare;
   4249	}
   4250
   4251#ifdef USE_NAPI
   4252	napi_enable(&cp->napi);
   4253#endif
   4254	/* init hw */
   4255	cas_lock_all_save(cp, flags);
   4256	cas_clean_rings(cp);
   4257	cas_init_hw(cp, !hw_was_up);
   4258	cp->opened = 1;
   4259	cas_unlock_all_restore(cp, flags);
   4260
   4261	netif_start_queue(dev);
   4262	mutex_unlock(&cp->pm_mutex);
   4263	return 0;
   4264
   4265err_spare:
   4266	cas_spare_free(cp);
   4267	cas_free_rxds(cp);
   4268err_tx_tiny:
   4269	cas_tx_tiny_free(cp);
   4270err_unlock:
   4271	mutex_unlock(&cp->pm_mutex);
   4272	return err;
   4273}
   4274
   4275static int cas_close(struct net_device *dev)
   4276{
   4277	unsigned long flags;
   4278	struct cas *cp = netdev_priv(dev);
   4279
   4280#ifdef USE_NAPI
   4281	napi_disable(&cp->napi);
   4282#endif
   4283	/* Make sure we don't get distracted by suspend/resume */
   4284	mutex_lock(&cp->pm_mutex);
   4285
   4286	netif_stop_queue(dev);
   4287
   4288	/* Stop traffic, mark us closed */
   4289	cas_lock_all_save(cp, flags);
   4290	cp->opened = 0;
   4291	cas_reset(cp, 0);
   4292	cas_phy_init(cp);
   4293	cas_begin_auto_negotiation(cp, NULL);
   4294	cas_clean_rings(cp);
   4295	cas_unlock_all_restore(cp, flags);
   4296
   4297	free_irq(cp->pdev->irq, (void *) dev);
   4298	cas_spare_free(cp);
   4299	cas_free_rxds(cp);
   4300	cas_tx_tiny_free(cp);
   4301	mutex_unlock(&cp->pm_mutex);
   4302	return 0;
   4303}
   4304
   4305static struct {
   4306	const char name[ETH_GSTRING_LEN];
   4307} ethtool_cassini_statnames[] = {
   4308	{"collisions"},
   4309	{"rx_bytes"},
   4310	{"rx_crc_errors"},
   4311	{"rx_dropped"},
   4312	{"rx_errors"},
   4313	{"rx_fifo_errors"},
   4314	{"rx_frame_errors"},
   4315	{"rx_length_errors"},
   4316	{"rx_over_errors"},
   4317	{"rx_packets"},
   4318	{"tx_aborted_errors"},
   4319	{"tx_bytes"},
   4320	{"tx_dropped"},
   4321	{"tx_errors"},
   4322	{"tx_fifo_errors"},
   4323	{"tx_packets"}
   4324};
   4325#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
   4326
   4327static struct {
   4328	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
   4329} ethtool_register_table[] = {
   4330	{-MII_BMSR},
   4331	{-MII_BMCR},
   4332	{REG_CAWR},
   4333	{REG_INF_BURST},
   4334	{REG_BIM_CFG},
   4335	{REG_RX_CFG},
   4336	{REG_HP_CFG},
   4337	{REG_MAC_TX_CFG},
   4338	{REG_MAC_RX_CFG},
   4339	{REG_MAC_CTRL_CFG},
   4340	{REG_MAC_XIF_CFG},
   4341	{REG_MIF_CFG},
   4342	{REG_PCS_CFG},
   4343	{REG_SATURN_PCFG},
   4344	{REG_PCS_MII_STATUS},
   4345	{REG_PCS_STATE_MACHINE},
   4346	{REG_MAC_COLL_EXCESS},
   4347	{REG_MAC_COLL_LATE}
   4348};
   4349#define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
   4350#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
   4351
   4352static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
   4353{
   4354	u8 *p;
   4355	int i;
   4356	unsigned long flags;
   4357
   4358	spin_lock_irqsave(&cp->lock, flags);
   4359	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
   4360		u16 hval;
   4361		u32 val;
   4362		if (ethtool_register_table[i].offsets < 0) {
   4363			hval = cas_phy_read(cp,
   4364				    -ethtool_register_table[i].offsets);
   4365			val = hval;
   4366		} else {
   4367			val= readl(cp->regs+ethtool_register_table[i].offsets);
   4368		}
   4369		memcpy(p, (u8 *)&val, sizeof(u32));
   4370	}
   4371	spin_unlock_irqrestore(&cp->lock, flags);
   4372}
   4373
   4374static struct net_device_stats *cas_get_stats(struct net_device *dev)
   4375{
   4376	struct cas *cp = netdev_priv(dev);
   4377	struct net_device_stats *stats = cp->net_stats;
   4378	unsigned long flags;
   4379	int i;
   4380	unsigned long tmp;
   4381
   4382	/* we collate all of the stats into net_stats[N_TX_RING] */
   4383	if (!cp->hw_running)
   4384		return stats + N_TX_RINGS;
   4385
   4386	/* collect outstanding stats */
   4387	/* WTZ: the Cassini spec gives these as 16 bit counters but
   4388	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
   4389	 * in case the chip somehow puts any garbage in the other bits.
   4390	 * Also, counter usage didn't seem to mach what Adrian did
   4391	 * in the parts of the code that set these quantities. Made
   4392	 * that consistent.
   4393	 */
   4394	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
   4395	stats[N_TX_RINGS].rx_crc_errors +=
   4396	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
   4397	stats[N_TX_RINGS].rx_frame_errors +=
   4398		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
   4399	stats[N_TX_RINGS].rx_length_errors +=
   4400		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
   4401#if 1
   4402	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
   4403		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
   4404	stats[N_TX_RINGS].tx_aborted_errors += tmp;
   4405	stats[N_TX_RINGS].collisions +=
   4406	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
   4407#else
   4408	stats[N_TX_RINGS].tx_aborted_errors +=
   4409		readl(cp->regs + REG_MAC_COLL_EXCESS);
   4410	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
   4411		readl(cp->regs + REG_MAC_COLL_LATE);
   4412#endif
   4413	cas_clear_mac_err(cp);
   4414
   4415	/* saved bits that are unique to ring 0 */
   4416	spin_lock(&cp->stat_lock[0]);
   4417	stats[N_TX_RINGS].collisions        += stats[0].collisions;
   4418	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
   4419	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
   4420	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
   4421	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
   4422	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
   4423	spin_unlock(&cp->stat_lock[0]);
   4424
   4425	for (i = 0; i < N_TX_RINGS; i++) {
   4426		spin_lock(&cp->stat_lock[i]);
   4427		stats[N_TX_RINGS].rx_length_errors +=
   4428			stats[i].rx_length_errors;
   4429		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
   4430		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
   4431		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
   4432		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
   4433		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
   4434		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
   4435		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
   4436		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
   4437		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
   4438		memset(stats + i, 0, sizeof(struct net_device_stats));
   4439		spin_unlock(&cp->stat_lock[i]);
   4440	}
   4441	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
   4442	return stats + N_TX_RINGS;
   4443}
   4444
   4445
   4446static void cas_set_multicast(struct net_device *dev)
   4447{
   4448	struct cas *cp = netdev_priv(dev);
   4449	u32 rxcfg, rxcfg_new;
   4450	unsigned long flags;
   4451	int limit = STOP_TRIES;
   4452
   4453	if (!cp->hw_running)
   4454		return;
   4455
   4456	spin_lock_irqsave(&cp->lock, flags);
   4457	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
   4458
   4459	/* disable RX MAC and wait for completion */
   4460	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
   4461	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
   4462		if (!limit--)
   4463			break;
   4464		udelay(10);
   4465	}
   4466
   4467	/* disable hash filter and wait for completion */
   4468	limit = STOP_TRIES;
   4469	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
   4470	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
   4471	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
   4472		if (!limit--)
   4473			break;
   4474		udelay(10);
   4475	}
   4476
   4477	/* program hash filters */
   4478	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
   4479	rxcfg |= rxcfg_new;
   4480	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
   4481	spin_unlock_irqrestore(&cp->lock, flags);
   4482}
   4483
   4484static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
   4485{
   4486	struct cas *cp = netdev_priv(dev);
   4487	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
   4488	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
   4489	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
   4490}
   4491
   4492static int cas_get_link_ksettings(struct net_device *dev,
   4493				  struct ethtool_link_ksettings *cmd)
   4494{
   4495	struct cas *cp = netdev_priv(dev);
   4496	u16 bmcr;
   4497	int full_duplex, speed, pause;
   4498	unsigned long flags;
   4499	enum link_state linkstate = link_up;
   4500	u32 supported, advertising;
   4501
   4502	advertising = 0;
   4503	supported = SUPPORTED_Autoneg;
   4504	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
   4505		supported |= SUPPORTED_1000baseT_Full;
   4506		advertising |= ADVERTISED_1000baseT_Full;
   4507	}
   4508
   4509	/* Record PHY settings if HW is on. */
   4510	spin_lock_irqsave(&cp->lock, flags);
   4511	bmcr = 0;
   4512	linkstate = cp->lstate;
   4513	if (CAS_PHY_MII(cp->phy_type)) {
   4514		cmd->base.port = PORT_MII;
   4515		cmd->base.phy_address = cp->phy_addr;
   4516		advertising |= ADVERTISED_TP | ADVERTISED_MII |
   4517			ADVERTISED_10baseT_Half |
   4518			ADVERTISED_10baseT_Full |
   4519			ADVERTISED_100baseT_Half |
   4520			ADVERTISED_100baseT_Full;
   4521
   4522		supported |=
   4523			(SUPPORTED_10baseT_Half |
   4524			 SUPPORTED_10baseT_Full |
   4525			 SUPPORTED_100baseT_Half |
   4526			 SUPPORTED_100baseT_Full |
   4527			 SUPPORTED_TP | SUPPORTED_MII);
   4528
   4529		if (cp->hw_running) {
   4530			cas_mif_poll(cp, 0);
   4531			bmcr = cas_phy_read(cp, MII_BMCR);
   4532			cas_read_mii_link_mode(cp, &full_duplex,
   4533					       &speed, &pause);
   4534			cas_mif_poll(cp, 1);
   4535		}
   4536
   4537	} else {
   4538		cmd->base.port = PORT_FIBRE;
   4539		cmd->base.phy_address = 0;
   4540		supported   |= SUPPORTED_FIBRE;
   4541		advertising |= ADVERTISED_FIBRE;
   4542
   4543		if (cp->hw_running) {
   4544			/* pcs uses the same bits as mii */
   4545			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
   4546			cas_read_pcs_link_mode(cp, &full_duplex,
   4547					       &speed, &pause);
   4548		}
   4549	}
   4550	spin_unlock_irqrestore(&cp->lock, flags);
   4551
   4552	if (bmcr & BMCR_ANENABLE) {
   4553		advertising |= ADVERTISED_Autoneg;
   4554		cmd->base.autoneg = AUTONEG_ENABLE;
   4555		cmd->base.speed =  ((speed == 10) ?
   4556					    SPEED_10 :
   4557					    ((speed == 1000) ?
   4558					     SPEED_1000 : SPEED_100));
   4559		cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
   4560	} else {
   4561		cmd->base.autoneg = AUTONEG_DISABLE;
   4562		cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
   4563					    SPEED_1000 :
   4564					    ((bmcr & BMCR_SPEED100) ?
   4565					     SPEED_100 : SPEED_10));
   4566		cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
   4567			DUPLEX_FULL : DUPLEX_HALF;
   4568	}
   4569	if (linkstate != link_up) {
   4570		/* Force these to "unknown" if the link is not up and
   4571		 * autonogotiation in enabled. We can set the link
   4572		 * speed to 0, but not cmd->duplex,
   4573		 * because its legal values are 0 and 1.  Ethtool will
   4574		 * print the value reported in parentheses after the
   4575		 * word "Unknown" for unrecognized values.
   4576		 *
   4577		 * If in forced mode, we report the speed and duplex
   4578		 * settings that we configured.
   4579		 */
   4580		if (cp->link_cntl & BMCR_ANENABLE) {
   4581			cmd->base.speed = 0;
   4582			cmd->base.duplex = 0xff;
   4583		} else {
   4584			cmd->base.speed = SPEED_10;
   4585			if (cp->link_cntl & BMCR_SPEED100) {
   4586				cmd->base.speed = SPEED_100;
   4587			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
   4588				cmd->base.speed = SPEED_1000;
   4589			}
   4590			cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
   4591				DUPLEX_FULL : DUPLEX_HALF;
   4592		}
   4593	}
   4594
   4595	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
   4596						supported);
   4597	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
   4598						advertising);
   4599
   4600	return 0;
   4601}
   4602
   4603static int cas_set_link_ksettings(struct net_device *dev,
   4604				  const struct ethtool_link_ksettings *cmd)
   4605{
   4606	struct cas *cp = netdev_priv(dev);
   4607	unsigned long flags;
   4608	u32 speed = cmd->base.speed;
   4609
   4610	/* Verify the settings we care about. */
   4611	if (cmd->base.autoneg != AUTONEG_ENABLE &&
   4612	    cmd->base.autoneg != AUTONEG_DISABLE)
   4613		return -EINVAL;
   4614
   4615	if (cmd->base.autoneg == AUTONEG_DISABLE &&
   4616	    ((speed != SPEED_1000 &&
   4617	      speed != SPEED_100 &&
   4618	      speed != SPEED_10) ||
   4619	     (cmd->base.duplex != DUPLEX_HALF &&
   4620	      cmd->base.duplex != DUPLEX_FULL)))
   4621		return -EINVAL;
   4622
   4623	/* Apply settings and restart link process. */
   4624	spin_lock_irqsave(&cp->lock, flags);
   4625	cas_begin_auto_negotiation(cp, cmd);
   4626	spin_unlock_irqrestore(&cp->lock, flags);
   4627	return 0;
   4628}
   4629
   4630static int cas_nway_reset(struct net_device *dev)
   4631{
   4632	struct cas *cp = netdev_priv(dev);
   4633	unsigned long flags;
   4634
   4635	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
   4636		return -EINVAL;
   4637
   4638	/* Restart link process. */
   4639	spin_lock_irqsave(&cp->lock, flags);
   4640	cas_begin_auto_negotiation(cp, NULL);
   4641	spin_unlock_irqrestore(&cp->lock, flags);
   4642
   4643	return 0;
   4644}
   4645
   4646static u32 cas_get_link(struct net_device *dev)
   4647{
   4648	struct cas *cp = netdev_priv(dev);
   4649	return cp->lstate == link_up;
   4650}
   4651
   4652static u32 cas_get_msglevel(struct net_device *dev)
   4653{
   4654	struct cas *cp = netdev_priv(dev);
   4655	return cp->msg_enable;
   4656}
   4657
   4658static void cas_set_msglevel(struct net_device *dev, u32 value)
   4659{
   4660	struct cas *cp = netdev_priv(dev);
   4661	cp->msg_enable = value;
   4662}
   4663
   4664static int cas_get_regs_len(struct net_device *dev)
   4665{
   4666	struct cas *cp = netdev_priv(dev);
   4667	return min_t(int, cp->casreg_len, CAS_MAX_REGS);
   4668}
   4669
   4670static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
   4671			     void *p)
   4672{
   4673	struct cas *cp = netdev_priv(dev);
   4674	regs->version = 0;
   4675	/* cas_read_regs handles locks (cp->lock).  */
   4676	cas_read_regs(cp, p, regs->len / sizeof(u32));
   4677}
   4678
   4679static int cas_get_sset_count(struct net_device *dev, int sset)
   4680{
   4681	switch (sset) {
   4682	case ETH_SS_STATS:
   4683		return CAS_NUM_STAT_KEYS;
   4684	default:
   4685		return -EOPNOTSUPP;
   4686	}
   4687}
   4688
   4689static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
   4690{
   4691	 memcpy(data, &ethtool_cassini_statnames,
   4692					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
   4693}
   4694
   4695static void cas_get_ethtool_stats(struct net_device *dev,
   4696				      struct ethtool_stats *estats, u64 *data)
   4697{
   4698	struct cas *cp = netdev_priv(dev);
   4699	struct net_device_stats *stats = cas_get_stats(cp->dev);
   4700	int i = 0;
   4701	data[i++] = stats->collisions;
   4702	data[i++] = stats->rx_bytes;
   4703	data[i++] = stats->rx_crc_errors;
   4704	data[i++] = stats->rx_dropped;
   4705	data[i++] = stats->rx_errors;
   4706	data[i++] = stats->rx_fifo_errors;
   4707	data[i++] = stats->rx_frame_errors;
   4708	data[i++] = stats->rx_length_errors;
   4709	data[i++] = stats->rx_over_errors;
   4710	data[i++] = stats->rx_packets;
   4711	data[i++] = stats->tx_aborted_errors;
   4712	data[i++] = stats->tx_bytes;
   4713	data[i++] = stats->tx_dropped;
   4714	data[i++] = stats->tx_errors;
   4715	data[i++] = stats->tx_fifo_errors;
   4716	data[i++] = stats->tx_packets;
   4717	BUG_ON(i != CAS_NUM_STAT_KEYS);
   4718}
   4719
   4720static const struct ethtool_ops cas_ethtool_ops = {
   4721	.get_drvinfo		= cas_get_drvinfo,
   4722	.nway_reset		= cas_nway_reset,
   4723	.get_link		= cas_get_link,
   4724	.get_msglevel		= cas_get_msglevel,
   4725	.set_msglevel		= cas_set_msglevel,
   4726	.get_regs_len		= cas_get_regs_len,
   4727	.get_regs		= cas_get_regs,
   4728	.get_sset_count		= cas_get_sset_count,
   4729	.get_strings		= cas_get_strings,
   4730	.get_ethtool_stats	= cas_get_ethtool_stats,
   4731	.get_link_ksettings	= cas_get_link_ksettings,
   4732	.set_link_ksettings	= cas_set_link_ksettings,
   4733};
   4734
   4735static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
   4736{
   4737	struct cas *cp = netdev_priv(dev);
   4738	struct mii_ioctl_data *data = if_mii(ifr);
   4739	unsigned long flags;
   4740	int rc = -EOPNOTSUPP;
   4741
   4742	/* Hold the PM mutex while doing ioctl's or we may collide
   4743	 * with open/close and power management and oops.
   4744	 */
   4745	mutex_lock(&cp->pm_mutex);
   4746	switch (cmd) {
   4747	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
   4748		data->phy_id = cp->phy_addr;
   4749		fallthrough;
   4750
   4751	case SIOCGMIIREG:		/* Read MII PHY register. */
   4752		spin_lock_irqsave(&cp->lock, flags);
   4753		cas_mif_poll(cp, 0);
   4754		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
   4755		cas_mif_poll(cp, 1);
   4756		spin_unlock_irqrestore(&cp->lock, flags);
   4757		rc = 0;
   4758		break;
   4759
   4760	case SIOCSMIIREG:		/* Write MII PHY register. */
   4761		spin_lock_irqsave(&cp->lock, flags);
   4762		cas_mif_poll(cp, 0);
   4763		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
   4764		cas_mif_poll(cp, 1);
   4765		spin_unlock_irqrestore(&cp->lock, flags);
   4766		break;
   4767	default:
   4768		break;
   4769	}
   4770
   4771	mutex_unlock(&cp->pm_mutex);
   4772	return rc;
   4773}
   4774
   4775/* When this chip sits underneath an Intel 31154 bridge, it is the
   4776 * only subordinate device and we can tweak the bridge settings to
   4777 * reflect that fact.
   4778 */
   4779static void cas_program_bridge(struct pci_dev *cas_pdev)
   4780{
   4781	struct pci_dev *pdev = cas_pdev->bus->self;
   4782	u32 val;
   4783
   4784	if (!pdev)
   4785		return;
   4786
   4787	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
   4788		return;
   4789
   4790	/* Clear bit 10 (Bus Parking Control) in the Secondary
   4791	 * Arbiter Control/Status Register which lives at offset
   4792	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
   4793	 * is much simpler so that's how we do this.
   4794	 */
   4795	pci_read_config_dword(pdev, 0x40, &val);
   4796	val &= ~0x00040000;
   4797	pci_write_config_dword(pdev, 0x40, val);
   4798
   4799	/* Max out the Multi-Transaction Timer settings since
   4800	 * Cassini is the only device present.
   4801	 *
   4802	 * The register is 16-bit and lives at 0x50.  When the
   4803	 * settings are enabled, it extends the GRANT# signal
   4804	 * for a requestor after a transaction is complete.  This
   4805	 * allows the next request to run without first needing
   4806	 * to negotiate the GRANT# signal back.
   4807	 *
   4808	 * Bits 12:10 define the grant duration:
   4809	 *
   4810	 *	1	--	16 clocks
   4811	 *	2	--	32 clocks
   4812	 *	3	--	64 clocks
   4813	 *	4	--	128 clocks
   4814	 *	5	--	256 clocks
   4815	 *
   4816	 * All other values are illegal.
   4817	 *
   4818	 * Bits 09:00 define which REQ/GNT signal pairs get the
   4819	 * GRANT# signal treatment.  We set them all.
   4820	 */
   4821	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
   4822
   4823	/* The Read Prefecth Policy register is 16-bit and sits at
   4824	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
   4825	 * enable it and max out all of the settings since only one
   4826	 * device is sitting underneath and thus bandwidth sharing is
   4827	 * not an issue.
   4828	 *
   4829	 * The register has several 3 bit fields, which indicates a
   4830	 * multiplier applied to the base amount of prefetching the
   4831	 * chip would do.  These fields are at:
   4832	 *
   4833	 *	15:13	---	ReRead Primary Bus
   4834	 *	12:10	---	FirstRead Primary Bus
   4835	 *	09:07	---	ReRead Secondary Bus
   4836	 *	06:04	---	FirstRead Secondary Bus
   4837	 *
   4838	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
   4839	 * get enabled on.  Bit 3 is a grouped enabler which controls
   4840	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
   4841	 * the individual REQ/GNT pairs [2:0].
   4842	 */
   4843	pci_write_config_word(pdev, 0x52,
   4844			      (0x7 << 13) |
   4845			      (0x7 << 10) |
   4846			      (0x7 <<  7) |
   4847			      (0x7 <<  4) |
   4848			      (0xf <<  0));
   4849
   4850	/* Force cacheline size to 0x8 */
   4851	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
   4852
   4853	/* Force latency timer to maximum setting so Cassini can
   4854	 * sit on the bus as long as it likes.
   4855	 */
   4856	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
   4857}
   4858
   4859static const struct net_device_ops cas_netdev_ops = {
   4860	.ndo_open		= cas_open,
   4861	.ndo_stop		= cas_close,
   4862	.ndo_start_xmit		= cas_start_xmit,
   4863	.ndo_get_stats 		= cas_get_stats,
   4864	.ndo_set_rx_mode	= cas_set_multicast,
   4865	.ndo_eth_ioctl		= cas_ioctl,
   4866	.ndo_tx_timeout		= cas_tx_timeout,
   4867	.ndo_change_mtu		= cas_change_mtu,
   4868	.ndo_set_mac_address	= eth_mac_addr,
   4869	.ndo_validate_addr	= eth_validate_addr,
   4870#ifdef CONFIG_NET_POLL_CONTROLLER
   4871	.ndo_poll_controller	= cas_netpoll,
   4872#endif
   4873};
   4874
   4875static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
   4876{
   4877	static int cas_version_printed = 0;
   4878	unsigned long casreg_len;
   4879	struct net_device *dev;
   4880	struct cas *cp;
   4881	u16 pci_cmd;
   4882	int i, err;
   4883	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
   4884
   4885	if (cas_version_printed++ == 0)
   4886		pr_info("%s", version);
   4887
   4888	err = pci_enable_device(pdev);
   4889	if (err) {
   4890		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
   4891		return err;
   4892	}
   4893
   4894	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
   4895		dev_err(&pdev->dev, "Cannot find proper PCI device "
   4896		       "base address, aborting\n");
   4897		err = -ENODEV;
   4898		goto err_out_disable_pdev;
   4899	}
   4900
   4901	dev = alloc_etherdev(sizeof(*cp));
   4902	if (!dev) {
   4903		err = -ENOMEM;
   4904		goto err_out_disable_pdev;
   4905	}
   4906	SET_NETDEV_DEV(dev, &pdev->dev);
   4907
   4908	err = pci_request_regions(pdev, dev->name);
   4909	if (err) {
   4910		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
   4911		goto err_out_free_netdev;
   4912	}
   4913	pci_set_master(pdev);
   4914
   4915	/* we must always turn on parity response or else parity
   4916	 * doesn't get generated properly. disable SERR/PERR as well.
   4917	 * in addition, we want to turn MWI on.
   4918	 */
   4919	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
   4920	pci_cmd &= ~PCI_COMMAND_SERR;
   4921	pci_cmd |= PCI_COMMAND_PARITY;
   4922	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
   4923	if (pci_try_set_mwi(pdev))
   4924		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
   4925
   4926	cas_program_bridge(pdev);
   4927
   4928	/*
   4929	 * On some architectures, the default cache line size set
   4930	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
   4931	 * it for this case.  To start, we'll print some configuration
   4932	 * data.
   4933	 */
   4934#if 1
   4935	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
   4936			     &orig_cacheline_size);
   4937	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
   4938		cas_cacheline_size =
   4939			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
   4940			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
   4941		if (pci_write_config_byte(pdev,
   4942					  PCI_CACHE_LINE_SIZE,
   4943					  cas_cacheline_size)) {
   4944			dev_err(&pdev->dev, "Could not set PCI cache "
   4945			       "line size\n");
   4946			goto err_out_free_res;
   4947		}
   4948	}
   4949#endif
   4950
   4951
   4952	/* Configure DMA attributes. */
   4953	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
   4954	if (err) {
   4955		dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
   4956		goto err_out_free_res;
   4957	}
   4958
   4959	casreg_len = pci_resource_len(pdev, 0);
   4960
   4961	cp = netdev_priv(dev);
   4962	cp->pdev = pdev;
   4963#if 1
   4964	/* A value of 0 indicates we never explicitly set it */
   4965	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
   4966#endif
   4967	cp->dev = dev;
   4968	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
   4969	  cassini_debug;
   4970
   4971#if defined(CONFIG_SPARC)
   4972	cp->of_node = pci_device_to_OF_node(pdev);
   4973#endif
   4974
   4975	cp->link_transition = LINK_TRANSITION_UNKNOWN;
   4976	cp->link_transition_jiffies_valid = 0;
   4977
   4978	spin_lock_init(&cp->lock);
   4979	spin_lock_init(&cp->rx_inuse_lock);
   4980	spin_lock_init(&cp->rx_spare_lock);
   4981	for (i = 0; i < N_TX_RINGS; i++) {
   4982		spin_lock_init(&cp->stat_lock[i]);
   4983		spin_lock_init(&cp->tx_lock[i]);
   4984	}
   4985	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
   4986	mutex_init(&cp->pm_mutex);
   4987
   4988	timer_setup(&cp->link_timer, cas_link_timer, 0);
   4989
   4990#if 1
   4991	/* Just in case the implementation of atomic operations
   4992	 * change so that an explicit initialization is necessary.
   4993	 */
   4994	atomic_set(&cp->reset_task_pending, 0);
   4995	atomic_set(&cp->reset_task_pending_all, 0);
   4996	atomic_set(&cp->reset_task_pending_spare, 0);
   4997	atomic_set(&cp->reset_task_pending_mtu, 0);
   4998#endif
   4999	INIT_WORK(&cp->reset_task, cas_reset_task);
   5000
   5001	/* Default link parameters */
   5002	if (link_mode >= 0 && link_mode < 6)
   5003		cp->link_cntl = link_modes[link_mode];
   5004	else
   5005		cp->link_cntl = BMCR_ANENABLE;
   5006	cp->lstate = link_down;
   5007	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
   5008	netif_carrier_off(cp->dev);
   5009	cp->timer_ticks = 0;
   5010
   5011	/* give us access to cassini registers */
   5012	cp->regs = pci_iomap(pdev, 0, casreg_len);
   5013	if (!cp->regs) {
   5014		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
   5015		goto err_out_free_res;
   5016	}
   5017	cp->casreg_len = casreg_len;
   5018
   5019	pci_save_state(pdev);
   5020	cas_check_pci_invariants(cp);
   5021	cas_hard_reset(cp);
   5022	cas_reset(cp, 0);
   5023	if (cas_check_invariants(cp))
   5024		goto err_out_iounmap;
   5025	if (cp->cas_flags & CAS_FLAG_SATURN)
   5026		cas_saturn_firmware_init(cp);
   5027
   5028	cp->init_block =
   5029		dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
   5030				   &cp->block_dvma, GFP_KERNEL);
   5031	if (!cp->init_block) {
   5032		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
   5033		goto err_out_iounmap;
   5034	}
   5035
   5036	for (i = 0; i < N_TX_RINGS; i++)
   5037		cp->init_txds[i] = cp->init_block->txds[i];
   5038
   5039	for (i = 0; i < N_RX_DESC_RINGS; i++)
   5040		cp->init_rxds[i] = cp->init_block->rxds[i];
   5041
   5042	for (i = 0; i < N_RX_COMP_RINGS; i++)
   5043		cp->init_rxcs[i] = cp->init_block->rxcs[i];
   5044
   5045	for (i = 0; i < N_RX_FLOWS; i++)
   5046		skb_queue_head_init(&cp->rx_flows[i]);
   5047
   5048	dev->netdev_ops = &cas_netdev_ops;
   5049	dev->ethtool_ops = &cas_ethtool_ops;
   5050	dev->watchdog_timeo = CAS_TX_TIMEOUT;
   5051
   5052#ifdef USE_NAPI
   5053	netif_napi_add(dev, &cp->napi, cas_poll, 64);
   5054#endif
   5055	dev->irq = pdev->irq;
   5056	dev->dma = 0;
   5057
   5058	/* Cassini features. */
   5059	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
   5060		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
   5061
   5062	dev->features |= NETIF_F_HIGHDMA;
   5063
   5064	/* MTU range: 60 - varies or 9000 */
   5065	dev->min_mtu = CAS_MIN_MTU;
   5066	dev->max_mtu = CAS_MAX_MTU;
   5067
   5068	if (register_netdev(dev)) {
   5069		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
   5070		goto err_out_free_consistent;
   5071	}
   5072
   5073	i = readl(cp->regs + REG_BIM_CFG);
   5074	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
   5075		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
   5076		    (i & BIM_CFG_32BIT) ? "32" : "64",
   5077		    (i & BIM_CFG_66MHZ) ? "66" : "33",
   5078		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
   5079		    dev->dev_addr);
   5080
   5081	pci_set_drvdata(pdev, dev);
   5082	cp->hw_running = 1;
   5083	cas_entropy_reset(cp);
   5084	cas_phy_init(cp);
   5085	cas_begin_auto_negotiation(cp, NULL);
   5086	return 0;
   5087
   5088err_out_free_consistent:
   5089	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
   5090			  cp->init_block, cp->block_dvma);
   5091
   5092err_out_iounmap:
   5093	mutex_lock(&cp->pm_mutex);
   5094	if (cp->hw_running)
   5095		cas_shutdown(cp);
   5096	mutex_unlock(&cp->pm_mutex);
   5097
   5098	pci_iounmap(pdev, cp->regs);
   5099
   5100
   5101err_out_free_res:
   5102	pci_release_regions(pdev);
   5103
   5104	/* Try to restore it in case the error occurred after we
   5105	 * set it.
   5106	 */
   5107	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
   5108
   5109err_out_free_netdev:
   5110	free_netdev(dev);
   5111
   5112err_out_disable_pdev:
   5113	pci_disable_device(pdev);
   5114	return -ENODEV;
   5115}
   5116
   5117static void cas_remove_one(struct pci_dev *pdev)
   5118{
   5119	struct net_device *dev = pci_get_drvdata(pdev);
   5120	struct cas *cp;
   5121	if (!dev)
   5122		return;
   5123
   5124	cp = netdev_priv(dev);
   5125	unregister_netdev(dev);
   5126
   5127	vfree(cp->fw_data);
   5128
   5129	mutex_lock(&cp->pm_mutex);
   5130	cancel_work_sync(&cp->reset_task);
   5131	if (cp->hw_running)
   5132		cas_shutdown(cp);
   5133	mutex_unlock(&cp->pm_mutex);
   5134
   5135#if 1
   5136	if (cp->orig_cacheline_size) {
   5137		/* Restore the cache line size if we had modified
   5138		 * it.
   5139		 */
   5140		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
   5141				      cp->orig_cacheline_size);
   5142	}
   5143#endif
   5144	dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
   5145			  cp->init_block, cp->block_dvma);
   5146	pci_iounmap(pdev, cp->regs);
   5147	free_netdev(dev);
   5148	pci_release_regions(pdev);
   5149	pci_disable_device(pdev);
   5150}
   5151
   5152static int __maybe_unused cas_suspend(struct device *dev_d)
   5153{
   5154	struct net_device *dev = dev_get_drvdata(dev_d);
   5155	struct cas *cp = netdev_priv(dev);
   5156	unsigned long flags;
   5157
   5158	mutex_lock(&cp->pm_mutex);
   5159
   5160	/* If the driver is opened, we stop the DMA */
   5161	if (cp->opened) {
   5162		netif_device_detach(dev);
   5163
   5164		cas_lock_all_save(cp, flags);
   5165
   5166		/* We can set the second arg of cas_reset to 0
   5167		 * because on resume, we'll call cas_init_hw with
   5168		 * its second arg set so that autonegotiation is
   5169		 * restarted.
   5170		 */
   5171		cas_reset(cp, 0);
   5172		cas_clean_rings(cp);
   5173		cas_unlock_all_restore(cp, flags);
   5174	}
   5175
   5176	if (cp->hw_running)
   5177		cas_shutdown(cp);
   5178	mutex_unlock(&cp->pm_mutex);
   5179
   5180	return 0;
   5181}
   5182
   5183static int __maybe_unused cas_resume(struct device *dev_d)
   5184{
   5185	struct net_device *dev = dev_get_drvdata(dev_d);
   5186	struct cas *cp = netdev_priv(dev);
   5187
   5188	netdev_info(dev, "resuming\n");
   5189
   5190	mutex_lock(&cp->pm_mutex);
   5191	cas_hard_reset(cp);
   5192	if (cp->opened) {
   5193		unsigned long flags;
   5194		cas_lock_all_save(cp, flags);
   5195		cas_reset(cp, 0);
   5196		cp->hw_running = 1;
   5197		cas_clean_rings(cp);
   5198		cas_init_hw(cp, 1);
   5199		cas_unlock_all_restore(cp, flags);
   5200
   5201		netif_device_attach(dev);
   5202	}
   5203	mutex_unlock(&cp->pm_mutex);
   5204	return 0;
   5205}
   5206
   5207static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
   5208
   5209static struct pci_driver cas_driver = {
   5210	.name		= DRV_MODULE_NAME,
   5211	.id_table	= cas_pci_tbl,
   5212	.probe		= cas_init_one,
   5213	.remove		= cas_remove_one,
   5214	.driver.pm	= &cas_pm_ops,
   5215};
   5216
   5217static int __init cas_init(void)
   5218{
   5219	if (linkdown_timeout > 0)
   5220		link_transition_timeout = linkdown_timeout * HZ;
   5221	else
   5222		link_transition_timeout = 0;
   5223
   5224	return pci_register_driver(&cas_driver);
   5225}
   5226
   5227static void __exit cas_cleanup(void)
   5228{
   5229	pci_unregister_driver(&cas_driver);
   5230}
   5231
   5232module_init(cas_init);
   5233module_exit(cas_cleanup);