cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sungem.c (78013B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
      3 * sungem.c: Sun GEM ethernet driver.
      4 *
      5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
      6 *
      7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
      8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
      9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
     10 *
     11 * NAPI and NETPOLL support
     12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
     13 *
     14 */
     15
     16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     17
     18#include <linux/module.h>
     19#include <linux/kernel.h>
     20#include <linux/types.h>
     21#include <linux/fcntl.h>
     22#include <linux/interrupt.h>
     23#include <linux/ioport.h>
     24#include <linux/in.h>
     25#include <linux/sched.h>
     26#include <linux/string.h>
     27#include <linux/delay.h>
     28#include <linux/errno.h>
     29#include <linux/pci.h>
     30#include <linux/dma-mapping.h>
     31#include <linux/netdevice.h>
     32#include <linux/etherdevice.h>
     33#include <linux/skbuff.h>
     34#include <linux/mii.h>
     35#include <linux/ethtool.h>
     36#include <linux/crc32.h>
     37#include <linux/random.h>
     38#include <linux/workqueue.h>
     39#include <linux/if_vlan.h>
     40#include <linux/bitops.h>
     41#include <linux/mm.h>
     42#include <linux/gfp.h>
     43
     44#include <asm/io.h>
     45#include <asm/byteorder.h>
     46#include <linux/uaccess.h>
     47#include <asm/irq.h>
     48
     49#ifdef CONFIG_SPARC
     50#include <asm/idprom.h>
     51#include <asm/prom.h>
     52#endif
     53
     54#ifdef CONFIG_PPC_PMAC
     55#include <asm/machdep.h>
     56#include <asm/pmac_feature.h>
     57#endif
     58
     59#include <linux/sungem_phy.h>
     60#include "sungem.h"
     61
     62#define STRIP_FCS
     63
     64#define DEFAULT_MSG	(NETIF_MSG_DRV		| \
     65			 NETIF_MSG_PROBE	| \
     66			 NETIF_MSG_LINK)
     67
     68#define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
     69			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
     70			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
     71			 SUPPORTED_Pause | SUPPORTED_Autoneg)
     72
     73#define DRV_NAME	"sungem"
     74#define DRV_VERSION	"1.0"
     75#define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
     76
     77static char version[] =
     78        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
     79
     80MODULE_AUTHOR(DRV_AUTHOR);
     81MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
     82MODULE_LICENSE("GPL");
     83
     84#define GEM_MODULE_NAME	"gem"
     85
     86static const struct pci_device_id gem_pci_tbl[] = {
     87	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
     88	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
     89
     90	/* These models only differ from the original GEM in
     91	 * that their tx/rx fifos are of a different size and
     92	 * they only support 10/100 speeds. -DaveM
     93	 *
     94	 * Apple's GMAC does support gigabit on machines with
     95	 * the BCM54xx PHYs. -BenH
     96	 */
     97	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
     98	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
     99	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
    100	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    101	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
    102	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    103	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
    104	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    105	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
    106	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    107	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
    108	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    109	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
    110	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
    111	{0, }
    112};
    113
    114MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
    115
    116static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
    117{
    118	u32 cmd;
    119	int limit = 10000;
    120
    121	cmd  = (1 << 30);
    122	cmd |= (2 << 28);
    123	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
    124	cmd |= (reg << 18) & MIF_FRAME_REGAD;
    125	cmd |= (MIF_FRAME_TAMSB);
    126	writel(cmd, gp->regs + MIF_FRAME);
    127
    128	while (--limit) {
    129		cmd = readl(gp->regs + MIF_FRAME);
    130		if (cmd & MIF_FRAME_TALSB)
    131			break;
    132
    133		udelay(10);
    134	}
    135
    136	if (!limit)
    137		cmd = 0xffff;
    138
    139	return cmd & MIF_FRAME_DATA;
    140}
    141
    142static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
    143{
    144	struct gem *gp = netdev_priv(dev);
    145	return __sungem_phy_read(gp, mii_id, reg);
    146}
    147
    148static inline u16 sungem_phy_read(struct gem *gp, int reg)
    149{
    150	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
    151}
    152
    153static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
    154{
    155	u32 cmd;
    156	int limit = 10000;
    157
    158	cmd  = (1 << 30);
    159	cmd |= (1 << 28);
    160	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
    161	cmd |= (reg << 18) & MIF_FRAME_REGAD;
    162	cmd |= (MIF_FRAME_TAMSB);
    163	cmd |= (val & MIF_FRAME_DATA);
    164	writel(cmd, gp->regs + MIF_FRAME);
    165
    166	while (limit--) {
    167		cmd = readl(gp->regs + MIF_FRAME);
    168		if (cmd & MIF_FRAME_TALSB)
    169			break;
    170
    171		udelay(10);
    172	}
    173}
    174
    175static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
    176{
    177	struct gem *gp = netdev_priv(dev);
    178	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
    179}
    180
    181static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
    182{
    183	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
    184}
    185
    186static inline void gem_enable_ints(struct gem *gp)
    187{
    188	/* Enable all interrupts but TXDONE */
    189	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
    190}
    191
    192static inline void gem_disable_ints(struct gem *gp)
    193{
    194	/* Disable all interrupts, including TXDONE */
    195	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
    196	(void)readl(gp->regs + GREG_IMASK); /* write posting */
    197}
    198
    199static void gem_get_cell(struct gem *gp)
    200{
    201	BUG_ON(gp->cell_enabled < 0);
    202	gp->cell_enabled++;
    203#ifdef CONFIG_PPC_PMAC
    204	if (gp->cell_enabled == 1) {
    205		mb();
    206		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
    207		udelay(10);
    208	}
    209#endif /* CONFIG_PPC_PMAC */
    210}
    211
    212/* Turn off the chip's clock */
    213static void gem_put_cell(struct gem *gp)
    214{
    215	BUG_ON(gp->cell_enabled <= 0);
    216	gp->cell_enabled--;
    217#ifdef CONFIG_PPC_PMAC
    218	if (gp->cell_enabled == 0) {
    219		mb();
    220		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
    221		udelay(10);
    222	}
    223#endif /* CONFIG_PPC_PMAC */
    224}
    225
    226static inline void gem_netif_stop(struct gem *gp)
    227{
    228	netif_trans_update(gp->dev);	/* prevent tx timeout */
    229	napi_disable(&gp->napi);
    230	netif_tx_disable(gp->dev);
    231}
    232
    233static inline void gem_netif_start(struct gem *gp)
    234{
    235	/* NOTE: unconditional netif_wake_queue is only
    236	 * appropriate so long as all callers are assured to
    237	 * have free tx slots.
    238	 */
    239	netif_wake_queue(gp->dev);
    240	napi_enable(&gp->napi);
    241}
    242
    243static void gem_schedule_reset(struct gem *gp)
    244{
    245	gp->reset_task_pending = 1;
    246	schedule_work(&gp->reset_task);
    247}
    248
    249static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
    250{
    251	if (netif_msg_intr(gp))
    252		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
    253}
    254
    255static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
    256{
    257	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
    258	u32 pcs_miistat;
    259
    260	if (netif_msg_intr(gp))
    261		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
    262			gp->dev->name, pcs_istat);
    263
    264	if (!(pcs_istat & PCS_ISTAT_LSC)) {
    265		netdev_err(dev, "PCS irq but no link status change???\n");
    266		return 0;
    267	}
    268
    269	/* The link status bit latches on zero, so you must
    270	 * read it twice in such a case to see a transition
    271	 * to the link being up.
    272	 */
    273	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
    274	if (!(pcs_miistat & PCS_MIISTAT_LS))
    275		pcs_miistat |=
    276			(readl(gp->regs + PCS_MIISTAT) &
    277			 PCS_MIISTAT_LS);
    278
    279	if (pcs_miistat & PCS_MIISTAT_ANC) {
    280		/* The remote-fault indication is only valid
    281		 * when autoneg has completed.
    282		 */
    283		if (pcs_miistat & PCS_MIISTAT_RF)
    284			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
    285		else
    286			netdev_info(dev, "PCS AutoNEG complete\n");
    287	}
    288
    289	if (pcs_miistat & PCS_MIISTAT_LS) {
    290		netdev_info(dev, "PCS link is now up\n");
    291		netif_carrier_on(gp->dev);
    292	} else {
    293		netdev_info(dev, "PCS link is now down\n");
    294		netif_carrier_off(gp->dev);
    295		/* If this happens and the link timer is not running,
    296		 * reset so we re-negotiate.
    297		 */
    298		if (!timer_pending(&gp->link_timer))
    299			return 1;
    300	}
    301
    302	return 0;
    303}
    304
    305static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
    306{
    307	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
    308
    309	if (netif_msg_intr(gp))
    310		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
    311			gp->dev->name, txmac_stat);
    312
    313	/* Defer timer expiration is quite normal,
    314	 * don't even log the event.
    315	 */
    316	if ((txmac_stat & MAC_TXSTAT_DTE) &&
    317	    !(txmac_stat & ~MAC_TXSTAT_DTE))
    318		return 0;
    319
    320	if (txmac_stat & MAC_TXSTAT_URUN) {
    321		netdev_err(dev, "TX MAC xmit underrun\n");
    322		dev->stats.tx_fifo_errors++;
    323	}
    324
    325	if (txmac_stat & MAC_TXSTAT_MPE) {
    326		netdev_err(dev, "TX MAC max packet size error\n");
    327		dev->stats.tx_errors++;
    328	}
    329
    330	/* The rest are all cases of one of the 16-bit TX
    331	 * counters expiring.
    332	 */
    333	if (txmac_stat & MAC_TXSTAT_NCE)
    334		dev->stats.collisions += 0x10000;
    335
    336	if (txmac_stat & MAC_TXSTAT_ECE) {
    337		dev->stats.tx_aborted_errors += 0x10000;
    338		dev->stats.collisions += 0x10000;
    339	}
    340
    341	if (txmac_stat & MAC_TXSTAT_LCE) {
    342		dev->stats.tx_aborted_errors += 0x10000;
    343		dev->stats.collisions += 0x10000;
    344	}
    345
    346	/* We do not keep track of MAC_TXSTAT_FCE and
    347	 * MAC_TXSTAT_PCE events.
    348	 */
    349	return 0;
    350}
    351
    352/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
    353 * so we do the following.
    354 *
    355 * If any part of the reset goes wrong, we return 1 and that causes the
    356 * whole chip to be reset.
    357 */
    358static int gem_rxmac_reset(struct gem *gp)
    359{
    360	struct net_device *dev = gp->dev;
    361	int limit, i;
    362	u64 desc_dma;
    363	u32 val;
    364
    365	/* First, reset & disable MAC RX. */
    366	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
    367	for (limit = 0; limit < 5000; limit++) {
    368		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
    369			break;
    370		udelay(10);
    371	}
    372	if (limit == 5000) {
    373		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
    374		return 1;
    375	}
    376
    377	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
    378	       gp->regs + MAC_RXCFG);
    379	for (limit = 0; limit < 5000; limit++) {
    380		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
    381			break;
    382		udelay(10);
    383	}
    384	if (limit == 5000) {
    385		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
    386		return 1;
    387	}
    388
    389	/* Second, disable RX DMA. */
    390	writel(0, gp->regs + RXDMA_CFG);
    391	for (limit = 0; limit < 5000; limit++) {
    392		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
    393			break;
    394		udelay(10);
    395	}
    396	if (limit == 5000) {
    397		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
    398		return 1;
    399	}
    400
    401	mdelay(5);
    402
    403	/* Execute RX reset command. */
    404	writel(gp->swrst_base | GREG_SWRST_RXRST,
    405	       gp->regs + GREG_SWRST);
    406	for (limit = 0; limit < 5000; limit++) {
    407		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
    408			break;
    409		udelay(10);
    410	}
    411	if (limit == 5000) {
    412		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
    413		return 1;
    414	}
    415
    416	/* Refresh the RX ring. */
    417	for (i = 0; i < RX_RING_SIZE; i++) {
    418		struct gem_rxd *rxd = &gp->init_block->rxd[i];
    419
    420		if (gp->rx_skbs[i] == NULL) {
    421			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
    422			return 1;
    423		}
    424
    425		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
    426	}
    427	gp->rx_new = gp->rx_old = 0;
    428
    429	/* Now we must reprogram the rest of RX unit. */
    430	desc_dma = (u64) gp->gblock_dvma;
    431	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
    432	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
    433	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
    434	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
    435	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
    436	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
    437	writel(val, gp->regs + RXDMA_CFG);
    438	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
    439		writel(((5 & RXDMA_BLANK_IPKTS) |
    440			((8 << 12) & RXDMA_BLANK_ITIME)),
    441		       gp->regs + RXDMA_BLANK);
    442	else
    443		writel(((5 & RXDMA_BLANK_IPKTS) |
    444			((4 << 12) & RXDMA_BLANK_ITIME)),
    445		       gp->regs + RXDMA_BLANK);
    446	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
    447	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
    448	writel(val, gp->regs + RXDMA_PTHRESH);
    449	val = readl(gp->regs + RXDMA_CFG);
    450	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
    451	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
    452	val = readl(gp->regs + MAC_RXCFG);
    453	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
    454
    455	return 0;
    456}
    457
    458static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
    459{
    460	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
    461	int ret = 0;
    462
    463	if (netif_msg_intr(gp))
    464		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
    465			gp->dev->name, rxmac_stat);
    466
    467	if (rxmac_stat & MAC_RXSTAT_OFLW) {
    468		u32 smac = readl(gp->regs + MAC_SMACHINE);
    469
    470		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
    471		dev->stats.rx_over_errors++;
    472		dev->stats.rx_fifo_errors++;
    473
    474		ret = gem_rxmac_reset(gp);
    475	}
    476
    477	if (rxmac_stat & MAC_RXSTAT_ACE)
    478		dev->stats.rx_frame_errors += 0x10000;
    479
    480	if (rxmac_stat & MAC_RXSTAT_CCE)
    481		dev->stats.rx_crc_errors += 0x10000;
    482
    483	if (rxmac_stat & MAC_RXSTAT_LCE)
    484		dev->stats.rx_length_errors += 0x10000;
    485
    486	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
    487	 * events.
    488	 */
    489	return ret;
    490}
    491
    492static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
    493{
    494	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
    495
    496	if (netif_msg_intr(gp))
    497		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
    498			gp->dev->name, mac_cstat);
    499
    500	/* This interrupt is just for pause frame and pause
    501	 * tracking.  It is useful for diagnostics and debug
    502	 * but probably by default we will mask these events.
    503	 */
    504	if (mac_cstat & MAC_CSTAT_PS)
    505		gp->pause_entered++;
    506
    507	if (mac_cstat & MAC_CSTAT_PRCV)
    508		gp->pause_last_time_recvd = (mac_cstat >> 16);
    509
    510	return 0;
    511}
    512
    513static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
    514{
    515	u32 mif_status = readl(gp->regs + MIF_STATUS);
    516	u32 reg_val, changed_bits;
    517
    518	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
    519	changed_bits = (mif_status & MIF_STATUS_STAT);
    520
    521	gem_handle_mif_event(gp, reg_val, changed_bits);
    522
    523	return 0;
    524}
    525
    526static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
    527{
    528	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
    529
    530	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
    531	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
    532		netdev_err(dev, "PCI error [%04x]", pci_estat);
    533
    534		if (pci_estat & GREG_PCIESTAT_BADACK)
    535			pr_cont(" <No ACK64# during ABS64 cycle>");
    536		if (pci_estat & GREG_PCIESTAT_DTRTO)
    537			pr_cont(" <Delayed transaction timeout>");
    538		if (pci_estat & GREG_PCIESTAT_OTHER)
    539			pr_cont(" <other>");
    540		pr_cont("\n");
    541	} else {
    542		pci_estat |= GREG_PCIESTAT_OTHER;
    543		netdev_err(dev, "PCI error\n");
    544	}
    545
    546	if (pci_estat & GREG_PCIESTAT_OTHER) {
    547		int pci_errs;
    548
    549		/* Interrogate PCI config space for the
    550		 * true cause.
    551		 */
    552		pci_errs = pci_status_get_and_clear_errors(gp->pdev);
    553		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
    554		if (pci_errs & PCI_STATUS_PARITY)
    555			netdev_err(dev, "PCI parity error detected\n");
    556		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
    557			netdev_err(dev, "PCI target abort\n");
    558		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
    559			netdev_err(dev, "PCI master acks target abort\n");
    560		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
    561			netdev_err(dev, "PCI master abort\n");
    562		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
    563			netdev_err(dev, "PCI system error SERR#\n");
    564		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
    565			netdev_err(dev, "PCI parity error\n");
    566	}
    567
    568	/* For all PCI errors, we should reset the chip. */
    569	return 1;
    570}
    571
    572/* All non-normal interrupt conditions get serviced here.
    573 * Returns non-zero if we should just exit the interrupt
    574 * handler right now (ie. if we reset the card which invalidates
    575 * all of the other original irq status bits).
    576 */
    577static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
    578{
    579	if (gem_status & GREG_STAT_RXNOBUF) {
    580		/* Frame arrived, no free RX buffers available. */
    581		if (netif_msg_rx_err(gp))
    582			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
    583				gp->dev->name);
    584		dev->stats.rx_dropped++;
    585	}
    586
    587	if (gem_status & GREG_STAT_RXTAGERR) {
    588		/* corrupt RX tag framing */
    589		if (netif_msg_rx_err(gp))
    590			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
    591				gp->dev->name);
    592		dev->stats.rx_errors++;
    593
    594		return 1;
    595	}
    596
    597	if (gem_status & GREG_STAT_PCS) {
    598		if (gem_pcs_interrupt(dev, gp, gem_status))
    599			return 1;
    600	}
    601
    602	if (gem_status & GREG_STAT_TXMAC) {
    603		if (gem_txmac_interrupt(dev, gp, gem_status))
    604			return 1;
    605	}
    606
    607	if (gem_status & GREG_STAT_RXMAC) {
    608		if (gem_rxmac_interrupt(dev, gp, gem_status))
    609			return 1;
    610	}
    611
    612	if (gem_status & GREG_STAT_MAC) {
    613		if (gem_mac_interrupt(dev, gp, gem_status))
    614			return 1;
    615	}
    616
    617	if (gem_status & GREG_STAT_MIF) {
    618		if (gem_mif_interrupt(dev, gp, gem_status))
    619			return 1;
    620	}
    621
    622	if (gem_status & GREG_STAT_PCIERR) {
    623		if (gem_pci_interrupt(dev, gp, gem_status))
    624			return 1;
    625	}
    626
    627	return 0;
    628}
    629
    630static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
    631{
    632	int entry, limit;
    633
    634	entry = gp->tx_old;
    635	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
    636	while (entry != limit) {
    637		struct sk_buff *skb;
    638		struct gem_txd *txd;
    639		dma_addr_t dma_addr;
    640		u32 dma_len;
    641		int frag;
    642
    643		if (netif_msg_tx_done(gp))
    644			printk(KERN_DEBUG "%s: tx done, slot %d\n",
    645				gp->dev->name, entry);
    646		skb = gp->tx_skbs[entry];
    647		if (skb_shinfo(skb)->nr_frags) {
    648			int last = entry + skb_shinfo(skb)->nr_frags;
    649			int walk = entry;
    650			int incomplete = 0;
    651
    652			last &= (TX_RING_SIZE - 1);
    653			for (;;) {
    654				walk = NEXT_TX(walk);
    655				if (walk == limit)
    656					incomplete = 1;
    657				if (walk == last)
    658					break;
    659			}
    660			if (incomplete)
    661				break;
    662		}
    663		gp->tx_skbs[entry] = NULL;
    664		dev->stats.tx_bytes += skb->len;
    665
    666		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
    667			txd = &gp->init_block->txd[entry];
    668
    669			dma_addr = le64_to_cpu(txd->buffer);
    670			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
    671
    672			dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
    673				       DMA_TO_DEVICE);
    674			entry = NEXT_TX(entry);
    675		}
    676
    677		dev->stats.tx_packets++;
    678		dev_consume_skb_any(skb);
    679	}
    680	gp->tx_old = entry;
    681
    682	/* Need to make the tx_old update visible to gem_start_xmit()
    683	 * before checking for netif_queue_stopped().  Without the
    684	 * memory barrier, there is a small possibility that gem_start_xmit()
    685	 * will miss it and cause the queue to be stopped forever.
    686	 */
    687	smp_mb();
    688
    689	if (unlikely(netif_queue_stopped(dev) &&
    690		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
    691		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
    692
    693		__netif_tx_lock(txq, smp_processor_id());
    694		if (netif_queue_stopped(dev) &&
    695		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
    696			netif_wake_queue(dev);
    697		__netif_tx_unlock(txq);
    698	}
    699}
    700
    701static __inline__ void gem_post_rxds(struct gem *gp, int limit)
    702{
    703	int cluster_start, curr, count, kick;
    704
    705	cluster_start = curr = (gp->rx_new & ~(4 - 1));
    706	count = 0;
    707	kick = -1;
    708	dma_wmb();
    709	while (curr != limit) {
    710		curr = NEXT_RX(curr);
    711		if (++count == 4) {
    712			struct gem_rxd *rxd =
    713				&gp->init_block->rxd[cluster_start];
    714			for (;;) {
    715				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
    716				rxd++;
    717				cluster_start = NEXT_RX(cluster_start);
    718				if (cluster_start == curr)
    719					break;
    720			}
    721			kick = curr;
    722			count = 0;
    723		}
    724	}
    725	if (kick >= 0) {
    726		mb();
    727		writel(kick, gp->regs + RXDMA_KICK);
    728	}
    729}
    730
    731#define ALIGNED_RX_SKB_ADDR(addr) \
    732        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
    733static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
    734						gfp_t gfp_flags)
    735{
    736	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
    737
    738	if (likely(skb)) {
    739		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
    740		skb_reserve(skb, offset);
    741	}
    742	return skb;
    743}
    744
    745static int gem_rx(struct gem *gp, int work_to_do)
    746{
    747	struct net_device *dev = gp->dev;
    748	int entry, drops, work_done = 0;
    749	u32 done;
    750
    751	if (netif_msg_rx_status(gp))
    752		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
    753			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
    754
    755	entry = gp->rx_new;
    756	drops = 0;
    757	done = readl(gp->regs + RXDMA_DONE);
    758	for (;;) {
    759		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
    760		struct sk_buff *skb;
    761		u64 status = le64_to_cpu(rxd->status_word);
    762		dma_addr_t dma_addr;
    763		int len;
    764
    765		if ((status & RXDCTRL_OWN) != 0)
    766			break;
    767
    768		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
    769			break;
    770
    771		/* When writing back RX descriptor, GEM writes status
    772		 * then buffer address, possibly in separate transactions.
    773		 * If we don't wait for the chip to write both, we could
    774		 * post a new buffer to this descriptor then have GEM spam
    775		 * on the buffer address.  We sync on the RX completion
    776		 * register to prevent this from happening.
    777		 */
    778		if (entry == done) {
    779			done = readl(gp->regs + RXDMA_DONE);
    780			if (entry == done)
    781				break;
    782		}
    783
    784		/* We can now account for the work we're about to do */
    785		work_done++;
    786
    787		skb = gp->rx_skbs[entry];
    788
    789		len = (status & RXDCTRL_BUFSZ) >> 16;
    790		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
    791			dev->stats.rx_errors++;
    792			if (len < ETH_ZLEN)
    793				dev->stats.rx_length_errors++;
    794			if (len & RXDCTRL_BAD)
    795				dev->stats.rx_crc_errors++;
    796
    797			/* We'll just return it to GEM. */
    798		drop_it:
    799			dev->stats.rx_dropped++;
    800			goto next;
    801		}
    802
    803		dma_addr = le64_to_cpu(rxd->buffer);
    804		if (len > RX_COPY_THRESHOLD) {
    805			struct sk_buff *new_skb;
    806
    807			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
    808			if (new_skb == NULL) {
    809				drops++;
    810				goto drop_it;
    811			}
    812			dma_unmap_page(&gp->pdev->dev, dma_addr,
    813				       RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
    814			gp->rx_skbs[entry] = new_skb;
    815			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
    816			rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
    817							       virt_to_page(new_skb->data),
    818							       offset_in_page(new_skb->data),
    819							       RX_BUF_ALLOC_SIZE(gp),
    820							       DMA_FROM_DEVICE));
    821			skb_reserve(new_skb, RX_OFFSET);
    822
    823			/* Trim the original skb for the netif. */
    824			skb_trim(skb, len);
    825		} else {
    826			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
    827
    828			if (copy_skb == NULL) {
    829				drops++;
    830				goto drop_it;
    831			}
    832
    833			skb_reserve(copy_skb, 2);
    834			skb_put(copy_skb, len);
    835			dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
    836						DMA_FROM_DEVICE);
    837			skb_copy_from_linear_data(skb, copy_skb->data, len);
    838			dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
    839						   len, DMA_FROM_DEVICE);
    840
    841			/* We'll reuse the original ring buffer. */
    842			skb = copy_skb;
    843		}
    844
    845		if (likely(dev->features & NETIF_F_RXCSUM)) {
    846			__sum16 csum;
    847
    848			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
    849			skb->csum = csum_unfold(csum);
    850			skb->ip_summed = CHECKSUM_COMPLETE;
    851		}
    852		skb->protocol = eth_type_trans(skb, gp->dev);
    853
    854		napi_gro_receive(&gp->napi, skb);
    855
    856		dev->stats.rx_packets++;
    857		dev->stats.rx_bytes += len;
    858
    859	next:
    860		entry = NEXT_RX(entry);
    861	}
    862
    863	gem_post_rxds(gp, entry);
    864
    865	gp->rx_new = entry;
    866
    867	if (drops)
    868		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
    869
    870	return work_done;
    871}
    872
    873static int gem_poll(struct napi_struct *napi, int budget)
    874{
    875	struct gem *gp = container_of(napi, struct gem, napi);
    876	struct net_device *dev = gp->dev;
    877	int work_done;
    878
    879	work_done = 0;
    880	do {
    881		/* Handle anomalies */
    882		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
    883			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
    884			int reset;
    885
    886			/* We run the abnormal interrupt handling code with
    887			 * the Tx lock. It only resets the Rx portion of the
    888			 * chip, but we need to guard it against DMA being
    889			 * restarted by the link poll timer
    890			 */
    891			__netif_tx_lock(txq, smp_processor_id());
    892			reset = gem_abnormal_irq(dev, gp, gp->status);
    893			__netif_tx_unlock(txq);
    894			if (reset) {
    895				gem_schedule_reset(gp);
    896				napi_complete(napi);
    897				return work_done;
    898			}
    899		}
    900
    901		/* Run TX completion thread */
    902		gem_tx(dev, gp, gp->status);
    903
    904		/* Run RX thread. We don't use any locking here,
    905		 * code willing to do bad things - like cleaning the
    906		 * rx ring - must call napi_disable(), which
    907		 * schedule_timeout()'s if polling is already disabled.
    908		 */
    909		work_done += gem_rx(gp, budget - work_done);
    910
    911		if (work_done >= budget)
    912			return work_done;
    913
    914		gp->status = readl(gp->regs + GREG_STAT);
    915	} while (gp->status & GREG_STAT_NAPI);
    916
    917	napi_complete_done(napi, work_done);
    918	gem_enable_ints(gp);
    919
    920	return work_done;
    921}
    922
    923static irqreturn_t gem_interrupt(int irq, void *dev_id)
    924{
    925	struct net_device *dev = dev_id;
    926	struct gem *gp = netdev_priv(dev);
    927
    928	if (napi_schedule_prep(&gp->napi)) {
    929		u32 gem_status = readl(gp->regs + GREG_STAT);
    930
    931		if (unlikely(gem_status == 0)) {
    932			napi_enable(&gp->napi);
    933			return IRQ_NONE;
    934		}
    935		if (netif_msg_intr(gp))
    936			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
    937			       gp->dev->name, gem_status);
    938
    939		gp->status = gem_status;
    940		gem_disable_ints(gp);
    941		__napi_schedule(&gp->napi);
    942	}
    943
    944	/* If polling was disabled at the time we received that
    945	 * interrupt, we may return IRQ_HANDLED here while we
    946	 * should return IRQ_NONE. No big deal...
    947	 */
    948	return IRQ_HANDLED;
    949}
    950
    951#ifdef CONFIG_NET_POLL_CONTROLLER
    952static void gem_poll_controller(struct net_device *dev)
    953{
    954	struct gem *gp = netdev_priv(dev);
    955
    956	disable_irq(gp->pdev->irq);
    957	gem_interrupt(gp->pdev->irq, dev);
    958	enable_irq(gp->pdev->irq);
    959}
    960#endif
    961
    962static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
    963{
    964	struct gem *gp = netdev_priv(dev);
    965
    966	netdev_err(dev, "transmit timed out, resetting\n");
    967
    968	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
    969		   readl(gp->regs + TXDMA_CFG),
    970		   readl(gp->regs + MAC_TXSTAT),
    971		   readl(gp->regs + MAC_TXCFG));
    972	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
    973		   readl(gp->regs + RXDMA_CFG),
    974		   readl(gp->regs + MAC_RXSTAT),
    975		   readl(gp->regs + MAC_RXCFG));
    976
    977	gem_schedule_reset(gp);
    978}
    979
    980static __inline__ int gem_intme(int entry)
    981{
    982	/* Algorithm: IRQ every 1/2 of descriptors. */
    983	if (!(entry & ((TX_RING_SIZE>>1)-1)))
    984		return 1;
    985
    986	return 0;
    987}
    988
    989static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
    990				  struct net_device *dev)
    991{
    992	struct gem *gp = netdev_priv(dev);
    993	int entry;
    994	u64 ctrl;
    995
    996	ctrl = 0;
    997	if (skb->ip_summed == CHECKSUM_PARTIAL) {
    998		const u64 csum_start_off = skb_checksum_start_offset(skb);
    999		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
   1000
   1001		ctrl = (TXDCTRL_CENAB |
   1002			(csum_start_off << 15) |
   1003			(csum_stuff_off << 21));
   1004	}
   1005
   1006	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
   1007		/* This is a hard error, log it. */
   1008		if (!netif_queue_stopped(dev)) {
   1009			netif_stop_queue(dev);
   1010			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
   1011		}
   1012		return NETDEV_TX_BUSY;
   1013	}
   1014
   1015	entry = gp->tx_new;
   1016	gp->tx_skbs[entry] = skb;
   1017
   1018	if (skb_shinfo(skb)->nr_frags == 0) {
   1019		struct gem_txd *txd = &gp->init_block->txd[entry];
   1020		dma_addr_t mapping;
   1021		u32 len;
   1022
   1023		len = skb->len;
   1024		mapping = dma_map_page(&gp->pdev->dev,
   1025				       virt_to_page(skb->data),
   1026				       offset_in_page(skb->data),
   1027				       len, DMA_TO_DEVICE);
   1028		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
   1029		if (gem_intme(entry))
   1030			ctrl |= TXDCTRL_INTME;
   1031		txd->buffer = cpu_to_le64(mapping);
   1032		dma_wmb();
   1033		txd->control_word = cpu_to_le64(ctrl);
   1034		entry = NEXT_TX(entry);
   1035	} else {
   1036		struct gem_txd *txd;
   1037		u32 first_len;
   1038		u64 intme;
   1039		dma_addr_t first_mapping;
   1040		int frag, first_entry = entry;
   1041
   1042		intme = 0;
   1043		if (gem_intme(entry))
   1044			intme |= TXDCTRL_INTME;
   1045
   1046		/* We must give this initial chunk to the device last.
   1047		 * Otherwise we could race with the device.
   1048		 */
   1049		first_len = skb_headlen(skb);
   1050		first_mapping = dma_map_page(&gp->pdev->dev,
   1051					     virt_to_page(skb->data),
   1052					     offset_in_page(skb->data),
   1053					     first_len, DMA_TO_DEVICE);
   1054		entry = NEXT_TX(entry);
   1055
   1056		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
   1057			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
   1058			u32 len;
   1059			dma_addr_t mapping;
   1060			u64 this_ctrl;
   1061
   1062			len = skb_frag_size(this_frag);
   1063			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
   1064						   0, len, DMA_TO_DEVICE);
   1065			this_ctrl = ctrl;
   1066			if (frag == skb_shinfo(skb)->nr_frags - 1)
   1067				this_ctrl |= TXDCTRL_EOF;
   1068
   1069			txd = &gp->init_block->txd[entry];
   1070			txd->buffer = cpu_to_le64(mapping);
   1071			dma_wmb();
   1072			txd->control_word = cpu_to_le64(this_ctrl | len);
   1073
   1074			if (gem_intme(entry))
   1075				intme |= TXDCTRL_INTME;
   1076
   1077			entry = NEXT_TX(entry);
   1078		}
   1079		txd = &gp->init_block->txd[first_entry];
   1080		txd->buffer = cpu_to_le64(first_mapping);
   1081		dma_wmb();
   1082		txd->control_word =
   1083			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
   1084	}
   1085
   1086	gp->tx_new = entry;
   1087	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
   1088		netif_stop_queue(dev);
   1089
   1090		/* netif_stop_queue() must be done before checking
   1091		 * checking tx index in TX_BUFFS_AVAIL() below, because
   1092		 * in gem_tx(), we update tx_old before checking for
   1093		 * netif_queue_stopped().
   1094		 */
   1095		smp_mb();
   1096		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
   1097			netif_wake_queue(dev);
   1098	}
   1099	if (netif_msg_tx_queued(gp))
   1100		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
   1101		       dev->name, entry, skb->len);
   1102	mb();
   1103	writel(gp->tx_new, gp->regs + TXDMA_KICK);
   1104
   1105	return NETDEV_TX_OK;
   1106}
   1107
   1108static void gem_pcs_reset(struct gem *gp)
   1109{
   1110	int limit;
   1111	u32 val;
   1112
   1113	/* Reset PCS unit. */
   1114	val = readl(gp->regs + PCS_MIICTRL);
   1115	val |= PCS_MIICTRL_RST;
   1116	writel(val, gp->regs + PCS_MIICTRL);
   1117
   1118	limit = 32;
   1119	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
   1120		udelay(100);
   1121		if (limit-- <= 0)
   1122			break;
   1123	}
   1124	if (limit < 0)
   1125		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
   1126}
   1127
   1128static void gem_pcs_reinit_adv(struct gem *gp)
   1129{
   1130	u32 val;
   1131
   1132	/* Make sure PCS is disabled while changing advertisement
   1133	 * configuration.
   1134	 */
   1135	val = readl(gp->regs + PCS_CFG);
   1136	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
   1137	writel(val, gp->regs + PCS_CFG);
   1138
   1139	/* Advertise all capabilities except asymmetric
   1140	 * pause.
   1141	 */
   1142	val = readl(gp->regs + PCS_MIIADV);
   1143	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
   1144		PCS_MIIADV_SP | PCS_MIIADV_AP);
   1145	writel(val, gp->regs + PCS_MIIADV);
   1146
   1147	/* Enable and restart auto-negotiation, disable wrapback/loopback,
   1148	 * and re-enable PCS.
   1149	 */
   1150	val = readl(gp->regs + PCS_MIICTRL);
   1151	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
   1152	val &= ~PCS_MIICTRL_WB;
   1153	writel(val, gp->regs + PCS_MIICTRL);
   1154
   1155	val = readl(gp->regs + PCS_CFG);
   1156	val |= PCS_CFG_ENABLE;
   1157	writel(val, gp->regs + PCS_CFG);
   1158
   1159	/* Make sure serialink loopback is off.  The meaning
   1160	 * of this bit is logically inverted based upon whether
   1161	 * you are in Serialink or SERDES mode.
   1162	 */
   1163	val = readl(gp->regs + PCS_SCTRL);
   1164	if (gp->phy_type == phy_serialink)
   1165		val &= ~PCS_SCTRL_LOOP;
   1166	else
   1167		val |= PCS_SCTRL_LOOP;
   1168	writel(val, gp->regs + PCS_SCTRL);
   1169}
   1170
   1171#define STOP_TRIES 32
   1172
   1173static void gem_reset(struct gem *gp)
   1174{
   1175	int limit;
   1176	u32 val;
   1177
   1178	/* Make sure we won't get any more interrupts */
   1179	writel(0xffffffff, gp->regs + GREG_IMASK);
   1180
   1181	/* Reset the chip */
   1182	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
   1183	       gp->regs + GREG_SWRST);
   1184
   1185	limit = STOP_TRIES;
   1186
   1187	do {
   1188		udelay(20);
   1189		val = readl(gp->regs + GREG_SWRST);
   1190		if (limit-- <= 0)
   1191			break;
   1192	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
   1193
   1194	if (limit < 0)
   1195		netdev_err(gp->dev, "SW reset is ghetto\n");
   1196
   1197	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
   1198		gem_pcs_reinit_adv(gp);
   1199}
   1200
   1201static void gem_start_dma(struct gem *gp)
   1202{
   1203	u32 val;
   1204
   1205	/* We are ready to rock, turn everything on. */
   1206	val = readl(gp->regs + TXDMA_CFG);
   1207	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
   1208	val = readl(gp->regs + RXDMA_CFG);
   1209	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
   1210	val = readl(gp->regs + MAC_TXCFG);
   1211	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
   1212	val = readl(gp->regs + MAC_RXCFG);
   1213	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
   1214
   1215	(void) readl(gp->regs + MAC_RXCFG);
   1216	udelay(100);
   1217
   1218	gem_enable_ints(gp);
   1219
   1220	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
   1221}
   1222
   1223/* DMA won't be actually stopped before about 4ms tho ...
   1224 */
   1225static void gem_stop_dma(struct gem *gp)
   1226{
   1227	u32 val;
   1228
   1229	/* We are done rocking, turn everything off. */
   1230	val = readl(gp->regs + TXDMA_CFG);
   1231	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
   1232	val = readl(gp->regs + RXDMA_CFG);
   1233	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
   1234	val = readl(gp->regs + MAC_TXCFG);
   1235	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
   1236	val = readl(gp->regs + MAC_RXCFG);
   1237	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
   1238
   1239	(void) readl(gp->regs + MAC_RXCFG);
   1240
   1241	/* Need to wait a bit ... done by the caller */
   1242}
   1243
   1244
   1245// XXX dbl check what that function should do when called on PCS PHY
   1246static void gem_begin_auto_negotiation(struct gem *gp,
   1247				       const struct ethtool_link_ksettings *ep)
   1248{
   1249	u32 advertise, features;
   1250	int autoneg;
   1251	int speed;
   1252	int duplex;
   1253	u32 advertising;
   1254
   1255	if (ep)
   1256		ethtool_convert_link_mode_to_legacy_u32(
   1257			&advertising, ep->link_modes.advertising);
   1258
   1259	if (gp->phy_type != phy_mii_mdio0 &&
   1260	    gp->phy_type != phy_mii_mdio1)
   1261		goto non_mii;
   1262
   1263	/* Setup advertise */
   1264	if (found_mii_phy(gp))
   1265		features = gp->phy_mii.def->features;
   1266	else
   1267		features = 0;
   1268
   1269	advertise = features & ADVERTISE_MASK;
   1270	if (gp->phy_mii.advertising != 0)
   1271		advertise &= gp->phy_mii.advertising;
   1272
   1273	autoneg = gp->want_autoneg;
   1274	speed = gp->phy_mii.speed;
   1275	duplex = gp->phy_mii.duplex;
   1276
   1277	/* Setup link parameters */
   1278	if (!ep)
   1279		goto start_aneg;
   1280	if (ep->base.autoneg == AUTONEG_ENABLE) {
   1281		advertise = advertising;
   1282		autoneg = 1;
   1283	} else {
   1284		autoneg = 0;
   1285		speed = ep->base.speed;
   1286		duplex = ep->base.duplex;
   1287	}
   1288
   1289start_aneg:
   1290	/* Sanitize settings based on PHY capabilities */
   1291	if ((features & SUPPORTED_Autoneg) == 0)
   1292		autoneg = 0;
   1293	if (speed == SPEED_1000 &&
   1294	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
   1295		speed = SPEED_100;
   1296	if (speed == SPEED_100 &&
   1297	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
   1298		speed = SPEED_10;
   1299	if (duplex == DUPLEX_FULL &&
   1300	    !(features & (SUPPORTED_1000baseT_Full |
   1301	    		  SUPPORTED_100baseT_Full |
   1302	    		  SUPPORTED_10baseT_Full)))
   1303	    	duplex = DUPLEX_HALF;
   1304	if (speed == 0)
   1305		speed = SPEED_10;
   1306
   1307	/* If we are asleep, we don't try to actually setup the PHY, we
   1308	 * just store the settings
   1309	 */
   1310	if (!netif_device_present(gp->dev)) {
   1311		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
   1312		gp->phy_mii.speed = speed;
   1313		gp->phy_mii.duplex = duplex;
   1314		return;
   1315	}
   1316
   1317	/* Configure PHY & start aneg */
   1318	gp->want_autoneg = autoneg;
   1319	if (autoneg) {
   1320		if (found_mii_phy(gp))
   1321			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
   1322		gp->lstate = link_aneg;
   1323	} else {
   1324		if (found_mii_phy(gp))
   1325			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
   1326		gp->lstate = link_force_ok;
   1327	}
   1328
   1329non_mii:
   1330	gp->timer_ticks = 0;
   1331	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
   1332}
   1333
   1334/* A link-up condition has occurred, initialize and enable the
   1335 * rest of the chip.
   1336 */
   1337static int gem_set_link_modes(struct gem *gp)
   1338{
   1339	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
   1340	int full_duplex, speed, pause;
   1341	u32 val;
   1342
   1343	full_duplex = 0;
   1344	speed = SPEED_10;
   1345	pause = 0;
   1346
   1347	if (found_mii_phy(gp)) {
   1348	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
   1349	    		return 1;
   1350		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
   1351		speed = gp->phy_mii.speed;
   1352		pause = gp->phy_mii.pause;
   1353	} else if (gp->phy_type == phy_serialink ||
   1354	    	   gp->phy_type == phy_serdes) {
   1355		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
   1356
   1357		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
   1358			full_duplex = 1;
   1359		speed = SPEED_1000;
   1360	}
   1361
   1362	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
   1363		   speed, (full_duplex ? "full" : "half"));
   1364
   1365
   1366	/* We take the tx queue lock to avoid collisions between
   1367	 * this code, the tx path and the NAPI-driven error path
   1368	 */
   1369	__netif_tx_lock(txq, smp_processor_id());
   1370
   1371	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
   1372	if (full_duplex) {
   1373		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
   1374	} else {
   1375		/* MAC_TXCFG_NBO must be zero. */
   1376	}
   1377	writel(val, gp->regs + MAC_TXCFG);
   1378
   1379	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
   1380	if (!full_duplex &&
   1381	    (gp->phy_type == phy_mii_mdio0 ||
   1382	     gp->phy_type == phy_mii_mdio1)) {
   1383		val |= MAC_XIFCFG_DISE;
   1384	} else if (full_duplex) {
   1385		val |= MAC_XIFCFG_FLED;
   1386	}
   1387
   1388	if (speed == SPEED_1000)
   1389		val |= (MAC_XIFCFG_GMII);
   1390
   1391	writel(val, gp->regs + MAC_XIFCFG);
   1392
   1393	/* If gigabit and half-duplex, enable carrier extension
   1394	 * mode.  Else, disable it.
   1395	 */
   1396	if (speed == SPEED_1000 && !full_duplex) {
   1397		val = readl(gp->regs + MAC_TXCFG);
   1398		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
   1399
   1400		val = readl(gp->regs + MAC_RXCFG);
   1401		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
   1402	} else {
   1403		val = readl(gp->regs + MAC_TXCFG);
   1404		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
   1405
   1406		val = readl(gp->regs + MAC_RXCFG);
   1407		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
   1408	}
   1409
   1410	if (gp->phy_type == phy_serialink ||
   1411	    gp->phy_type == phy_serdes) {
   1412		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
   1413
   1414		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
   1415			pause = 1;
   1416	}
   1417
   1418	if (!full_duplex)
   1419		writel(512, gp->regs + MAC_STIME);
   1420	else
   1421		writel(64, gp->regs + MAC_STIME);
   1422	val = readl(gp->regs + MAC_MCCFG);
   1423	if (pause)
   1424		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
   1425	else
   1426		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
   1427	writel(val, gp->regs + MAC_MCCFG);
   1428
   1429	gem_start_dma(gp);
   1430
   1431	__netif_tx_unlock(txq);
   1432
   1433	if (netif_msg_link(gp)) {
   1434		if (pause) {
   1435			netdev_info(gp->dev,
   1436				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
   1437				    gp->rx_fifo_sz,
   1438				    gp->rx_pause_off,
   1439				    gp->rx_pause_on);
   1440		} else {
   1441			netdev_info(gp->dev, "Pause is disabled\n");
   1442		}
   1443	}
   1444
   1445	return 0;
   1446}
   1447
   1448static int gem_mdio_link_not_up(struct gem *gp)
   1449{
   1450	switch (gp->lstate) {
   1451	case link_force_ret:
   1452		netif_info(gp, link, gp->dev,
   1453			   "Autoneg failed again, keeping forced mode\n");
   1454		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
   1455			gp->last_forced_speed, DUPLEX_HALF);
   1456		gp->timer_ticks = 5;
   1457		gp->lstate = link_force_ok;
   1458		return 0;
   1459	case link_aneg:
   1460		/* We try forced modes after a failed aneg only on PHYs that don't
   1461		 * have "magic_aneg" bit set, which means they internally do the
   1462		 * while forced-mode thingy. On these, we just restart aneg
   1463		 */
   1464		if (gp->phy_mii.def->magic_aneg)
   1465			return 1;
   1466		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
   1467		/* Try forced modes. */
   1468		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
   1469			DUPLEX_HALF);
   1470		gp->timer_ticks = 5;
   1471		gp->lstate = link_force_try;
   1472		return 0;
   1473	case link_force_try:
   1474		/* Downgrade from 100 to 10 Mbps if necessary.
   1475		 * If already at 10Mbps, warn user about the
   1476		 * situation every 10 ticks.
   1477		 */
   1478		if (gp->phy_mii.speed == SPEED_100) {
   1479			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
   1480				DUPLEX_HALF);
   1481			gp->timer_ticks = 5;
   1482			netif_info(gp, link, gp->dev,
   1483				   "switching to forced 10bt\n");
   1484			return 0;
   1485		} else
   1486			return 1;
   1487	default:
   1488		return 0;
   1489	}
   1490}
   1491
   1492static void gem_link_timer(struct timer_list *t)
   1493{
   1494	struct gem *gp = from_timer(gp, t, link_timer);
   1495	struct net_device *dev = gp->dev;
   1496	int restart_aneg = 0;
   1497
   1498	/* There's no point doing anything if we're going to be reset */
   1499	if (gp->reset_task_pending)
   1500		return;
   1501
   1502	if (gp->phy_type == phy_serialink ||
   1503	    gp->phy_type == phy_serdes) {
   1504		u32 val = readl(gp->regs + PCS_MIISTAT);
   1505
   1506		if (!(val & PCS_MIISTAT_LS))
   1507			val = readl(gp->regs + PCS_MIISTAT);
   1508
   1509		if ((val & PCS_MIISTAT_LS) != 0) {
   1510			if (gp->lstate == link_up)
   1511				goto restart;
   1512
   1513			gp->lstate = link_up;
   1514			netif_carrier_on(dev);
   1515			(void)gem_set_link_modes(gp);
   1516		}
   1517		goto restart;
   1518	}
   1519	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
   1520		/* Ok, here we got a link. If we had it due to a forced
   1521		 * fallback, and we were configured for autoneg, we do
   1522		 * retry a short autoneg pass. If you know your hub is
   1523		 * broken, use ethtool ;)
   1524		 */
   1525		if (gp->lstate == link_force_try && gp->want_autoneg) {
   1526			gp->lstate = link_force_ret;
   1527			gp->last_forced_speed = gp->phy_mii.speed;
   1528			gp->timer_ticks = 5;
   1529			if (netif_msg_link(gp))
   1530				netdev_info(dev,
   1531					    "Got link after fallback, retrying autoneg once...\n");
   1532			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
   1533		} else if (gp->lstate != link_up) {
   1534			gp->lstate = link_up;
   1535			netif_carrier_on(dev);
   1536			if (gem_set_link_modes(gp))
   1537				restart_aneg = 1;
   1538		}
   1539	} else {
   1540		/* If the link was previously up, we restart the
   1541		 * whole process
   1542		 */
   1543		if (gp->lstate == link_up) {
   1544			gp->lstate = link_down;
   1545			netif_info(gp, link, dev, "Link down\n");
   1546			netif_carrier_off(dev);
   1547			gem_schedule_reset(gp);
   1548			/* The reset task will restart the timer */
   1549			return;
   1550		} else if (++gp->timer_ticks > 10) {
   1551			if (found_mii_phy(gp))
   1552				restart_aneg = gem_mdio_link_not_up(gp);
   1553			else
   1554				restart_aneg = 1;
   1555		}
   1556	}
   1557	if (restart_aneg) {
   1558		gem_begin_auto_negotiation(gp, NULL);
   1559		return;
   1560	}
   1561restart:
   1562	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
   1563}
   1564
   1565static void gem_clean_rings(struct gem *gp)
   1566{
   1567	struct gem_init_block *gb = gp->init_block;
   1568	struct sk_buff *skb;
   1569	int i;
   1570	dma_addr_t dma_addr;
   1571
   1572	for (i = 0; i < RX_RING_SIZE; i++) {
   1573		struct gem_rxd *rxd;
   1574
   1575		rxd = &gb->rxd[i];
   1576		if (gp->rx_skbs[i] != NULL) {
   1577			skb = gp->rx_skbs[i];
   1578			dma_addr = le64_to_cpu(rxd->buffer);
   1579			dma_unmap_page(&gp->pdev->dev, dma_addr,
   1580				       RX_BUF_ALLOC_SIZE(gp),
   1581				       DMA_FROM_DEVICE);
   1582			dev_kfree_skb_any(skb);
   1583			gp->rx_skbs[i] = NULL;
   1584		}
   1585		rxd->status_word = 0;
   1586		dma_wmb();
   1587		rxd->buffer = 0;
   1588	}
   1589
   1590	for (i = 0; i < TX_RING_SIZE; i++) {
   1591		if (gp->tx_skbs[i] != NULL) {
   1592			struct gem_txd *txd;
   1593			int frag;
   1594
   1595			skb = gp->tx_skbs[i];
   1596			gp->tx_skbs[i] = NULL;
   1597
   1598			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
   1599				int ent = i & (TX_RING_SIZE - 1);
   1600
   1601				txd = &gb->txd[ent];
   1602				dma_addr = le64_to_cpu(txd->buffer);
   1603				dma_unmap_page(&gp->pdev->dev, dma_addr,
   1604					       le64_to_cpu(txd->control_word) &
   1605					       TXDCTRL_BUFSZ, DMA_TO_DEVICE);
   1606
   1607				if (frag != skb_shinfo(skb)->nr_frags)
   1608					i++;
   1609			}
   1610			dev_kfree_skb_any(skb);
   1611		}
   1612	}
   1613}
   1614
   1615static void gem_init_rings(struct gem *gp)
   1616{
   1617	struct gem_init_block *gb = gp->init_block;
   1618	struct net_device *dev = gp->dev;
   1619	int i;
   1620	dma_addr_t dma_addr;
   1621
   1622	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
   1623
   1624	gem_clean_rings(gp);
   1625
   1626	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
   1627			    (unsigned)VLAN_ETH_FRAME_LEN);
   1628
   1629	for (i = 0; i < RX_RING_SIZE; i++) {
   1630		struct sk_buff *skb;
   1631		struct gem_rxd *rxd = &gb->rxd[i];
   1632
   1633		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
   1634		if (!skb) {
   1635			rxd->buffer = 0;
   1636			rxd->status_word = 0;
   1637			continue;
   1638		}
   1639
   1640		gp->rx_skbs[i] = skb;
   1641		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
   1642		dma_addr = dma_map_page(&gp->pdev->dev,
   1643					virt_to_page(skb->data),
   1644					offset_in_page(skb->data),
   1645					RX_BUF_ALLOC_SIZE(gp),
   1646					DMA_FROM_DEVICE);
   1647		rxd->buffer = cpu_to_le64(dma_addr);
   1648		dma_wmb();
   1649		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
   1650		skb_reserve(skb, RX_OFFSET);
   1651	}
   1652
   1653	for (i = 0; i < TX_RING_SIZE; i++) {
   1654		struct gem_txd *txd = &gb->txd[i];
   1655
   1656		txd->control_word = 0;
   1657		dma_wmb();
   1658		txd->buffer = 0;
   1659	}
   1660	wmb();
   1661}
   1662
   1663/* Init PHY interface and start link poll state machine */
   1664static void gem_init_phy(struct gem *gp)
   1665{
   1666	u32 mifcfg;
   1667
   1668	/* Revert MIF CFG setting done on stop_phy */
   1669	mifcfg = readl(gp->regs + MIF_CFG);
   1670	mifcfg &= ~MIF_CFG_BBMODE;
   1671	writel(mifcfg, gp->regs + MIF_CFG);
   1672
   1673	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
   1674		int i;
   1675
   1676		/* Those delays sucks, the HW seems to love them though, I'll
   1677		 * seriously consider breaking some locks here to be able
   1678		 * to schedule instead
   1679		 */
   1680		for (i = 0; i < 3; i++) {
   1681#ifdef CONFIG_PPC_PMAC
   1682			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
   1683			msleep(20);
   1684#endif
   1685			/* Some PHYs used by apple have problem getting back to us,
   1686			 * we do an additional reset here
   1687			 */
   1688			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
   1689			msleep(20);
   1690			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
   1691				break;
   1692			if (i == 2)
   1693				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
   1694		}
   1695	}
   1696
   1697	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
   1698	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
   1699		u32 val;
   1700
   1701		/* Init datapath mode register. */
   1702		if (gp->phy_type == phy_mii_mdio0 ||
   1703		    gp->phy_type == phy_mii_mdio1) {
   1704			val = PCS_DMODE_MGM;
   1705		} else if (gp->phy_type == phy_serialink) {
   1706			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
   1707		} else {
   1708			val = PCS_DMODE_ESM;
   1709		}
   1710
   1711		writel(val, gp->regs + PCS_DMODE);
   1712	}
   1713
   1714	if (gp->phy_type == phy_mii_mdio0 ||
   1715	    gp->phy_type == phy_mii_mdio1) {
   1716		/* Reset and detect MII PHY */
   1717		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
   1718
   1719		/* Init PHY */
   1720		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
   1721			gp->phy_mii.def->ops->init(&gp->phy_mii);
   1722	} else {
   1723		gem_pcs_reset(gp);
   1724		gem_pcs_reinit_adv(gp);
   1725	}
   1726
   1727	/* Default aneg parameters */
   1728	gp->timer_ticks = 0;
   1729	gp->lstate = link_down;
   1730	netif_carrier_off(gp->dev);
   1731
   1732	/* Print things out */
   1733	if (gp->phy_type == phy_mii_mdio0 ||
   1734	    gp->phy_type == phy_mii_mdio1)
   1735		netdev_info(gp->dev, "Found %s PHY\n",
   1736			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
   1737
   1738	gem_begin_auto_negotiation(gp, NULL);
   1739}
   1740
   1741static void gem_init_dma(struct gem *gp)
   1742{
   1743	u64 desc_dma = (u64) gp->gblock_dvma;
   1744	u32 val;
   1745
   1746	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
   1747	writel(val, gp->regs + TXDMA_CFG);
   1748
   1749	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
   1750	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
   1751	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
   1752
   1753	writel(0, gp->regs + TXDMA_KICK);
   1754
   1755	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
   1756	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
   1757	writel(val, gp->regs + RXDMA_CFG);
   1758
   1759	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
   1760	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
   1761
   1762	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
   1763
   1764	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
   1765	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
   1766	writel(val, gp->regs + RXDMA_PTHRESH);
   1767
   1768	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
   1769		writel(((5 & RXDMA_BLANK_IPKTS) |
   1770			((8 << 12) & RXDMA_BLANK_ITIME)),
   1771		       gp->regs + RXDMA_BLANK);
   1772	else
   1773		writel(((5 & RXDMA_BLANK_IPKTS) |
   1774			((4 << 12) & RXDMA_BLANK_ITIME)),
   1775		       gp->regs + RXDMA_BLANK);
   1776}
   1777
   1778static u32 gem_setup_multicast(struct gem *gp)
   1779{
   1780	u32 rxcfg = 0;
   1781	int i;
   1782
   1783	if ((gp->dev->flags & IFF_ALLMULTI) ||
   1784	    (netdev_mc_count(gp->dev) > 256)) {
   1785	    	for (i=0; i<16; i++)
   1786			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
   1787		rxcfg |= MAC_RXCFG_HFE;
   1788	} else if (gp->dev->flags & IFF_PROMISC) {
   1789		rxcfg |= MAC_RXCFG_PROM;
   1790	} else {
   1791		u16 hash_table[16];
   1792		u32 crc;
   1793		struct netdev_hw_addr *ha;
   1794		int i;
   1795
   1796		memset(hash_table, 0, sizeof(hash_table));
   1797		netdev_for_each_mc_addr(ha, gp->dev) {
   1798			crc = ether_crc_le(6, ha->addr);
   1799			crc >>= 24;
   1800			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
   1801		}
   1802	    	for (i=0; i<16; i++)
   1803			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
   1804		rxcfg |= MAC_RXCFG_HFE;
   1805	}
   1806
   1807	return rxcfg;
   1808}
   1809
   1810static void gem_init_mac(struct gem *gp)
   1811{
   1812	const unsigned char *e = &gp->dev->dev_addr[0];
   1813
   1814	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
   1815
   1816	writel(0x00, gp->regs + MAC_IPG0);
   1817	writel(0x08, gp->regs + MAC_IPG1);
   1818	writel(0x04, gp->regs + MAC_IPG2);
   1819	writel(0x40, gp->regs + MAC_STIME);
   1820	writel(0x40, gp->regs + MAC_MINFSZ);
   1821
   1822	/* Ethernet payload + header + FCS + optional VLAN tag. */
   1823	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
   1824
   1825	writel(0x07, gp->regs + MAC_PASIZE);
   1826	writel(0x04, gp->regs + MAC_JAMSIZE);
   1827	writel(0x10, gp->regs + MAC_ATTLIM);
   1828	writel(0x8808, gp->regs + MAC_MCTYPE);
   1829
   1830	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
   1831
   1832	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
   1833	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
   1834	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
   1835
   1836	writel(0, gp->regs + MAC_ADDR3);
   1837	writel(0, gp->regs + MAC_ADDR4);
   1838	writel(0, gp->regs + MAC_ADDR5);
   1839
   1840	writel(0x0001, gp->regs + MAC_ADDR6);
   1841	writel(0xc200, gp->regs + MAC_ADDR7);
   1842	writel(0x0180, gp->regs + MAC_ADDR8);
   1843
   1844	writel(0, gp->regs + MAC_AFILT0);
   1845	writel(0, gp->regs + MAC_AFILT1);
   1846	writel(0, gp->regs + MAC_AFILT2);
   1847	writel(0, gp->regs + MAC_AF21MSK);
   1848	writel(0, gp->regs + MAC_AF0MSK);
   1849
   1850	gp->mac_rx_cfg = gem_setup_multicast(gp);
   1851#ifdef STRIP_FCS
   1852	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
   1853#endif
   1854	writel(0, gp->regs + MAC_NCOLL);
   1855	writel(0, gp->regs + MAC_FASUCC);
   1856	writel(0, gp->regs + MAC_ECOLL);
   1857	writel(0, gp->regs + MAC_LCOLL);
   1858	writel(0, gp->regs + MAC_DTIMER);
   1859	writel(0, gp->regs + MAC_PATMPS);
   1860	writel(0, gp->regs + MAC_RFCTR);
   1861	writel(0, gp->regs + MAC_LERR);
   1862	writel(0, gp->regs + MAC_AERR);
   1863	writel(0, gp->regs + MAC_FCSERR);
   1864	writel(0, gp->regs + MAC_RXCVERR);
   1865
   1866	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
   1867	 * them once a link is established.
   1868	 */
   1869	writel(0, gp->regs + MAC_TXCFG);
   1870	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
   1871	writel(0, gp->regs + MAC_MCCFG);
   1872	writel(0, gp->regs + MAC_XIFCFG);
   1873
   1874	/* Setup MAC interrupts.  We want to get all of the interesting
   1875	 * counter expiration events, but we do not want to hear about
   1876	 * normal rx/tx as the DMA engine tells us that.
   1877	 */
   1878	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
   1879	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
   1880
   1881	/* Don't enable even the PAUSE interrupts for now, we
   1882	 * make no use of those events other than to record them.
   1883	 */
   1884	writel(0xffffffff, gp->regs + MAC_MCMASK);
   1885
   1886	/* Don't enable GEM's WOL in normal operations
   1887	 */
   1888	if (gp->has_wol)
   1889		writel(0, gp->regs + WOL_WAKECSR);
   1890}
   1891
   1892static void gem_init_pause_thresholds(struct gem *gp)
   1893{
   1894	u32 cfg;
   1895
   1896	/* Calculate pause thresholds.  Setting the OFF threshold to the
   1897	 * full RX fifo size effectively disables PAUSE generation which
   1898	 * is what we do for 10/100 only GEMs which have FIFOs too small
   1899	 * to make real gains from PAUSE.
   1900	 */
   1901	if (gp->rx_fifo_sz <= (2 * 1024)) {
   1902		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
   1903	} else {
   1904		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
   1905		int off = (gp->rx_fifo_sz - (max_frame * 2));
   1906		int on = off - max_frame;
   1907
   1908		gp->rx_pause_off = off;
   1909		gp->rx_pause_on = on;
   1910	}
   1911
   1912
   1913	/* Configure the chip "burst" DMA mode & enable some
   1914	 * HW bug fixes on Apple version
   1915	 */
   1916	cfg  = 0;
   1917	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
   1918		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
   1919#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
   1920	cfg |= GREG_CFG_IBURST;
   1921#endif
   1922	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
   1923	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
   1924	writel(cfg, gp->regs + GREG_CFG);
   1925
   1926	/* If Infinite Burst didn't stick, then use different
   1927	 * thresholds (and Apple bug fixes don't exist)
   1928	 */
   1929	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
   1930		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
   1931		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
   1932		writel(cfg, gp->regs + GREG_CFG);
   1933	}
   1934}
   1935
   1936static int gem_check_invariants(struct gem *gp)
   1937{
   1938	struct pci_dev *pdev = gp->pdev;
   1939	u32 mif_cfg;
   1940
   1941	/* On Apple's sungem, we can't rely on registers as the chip
   1942	 * was been powered down by the firmware. The PHY is looked
   1943	 * up later on.
   1944	 */
   1945	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
   1946		gp->phy_type = phy_mii_mdio0;
   1947		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
   1948		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
   1949		gp->swrst_base = 0;
   1950
   1951		mif_cfg = readl(gp->regs + MIF_CFG);
   1952		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
   1953		mif_cfg |= MIF_CFG_MDI0;
   1954		writel(mif_cfg, gp->regs + MIF_CFG);
   1955		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
   1956		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
   1957
   1958		/* We hard-code the PHY address so we can properly bring it out of
   1959		 * reset later on, we can't really probe it at this point, though
   1960		 * that isn't an issue.
   1961		 */
   1962		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
   1963			gp->mii_phy_addr = 1;
   1964		else
   1965			gp->mii_phy_addr = 0;
   1966
   1967		return 0;
   1968	}
   1969
   1970	mif_cfg = readl(gp->regs + MIF_CFG);
   1971
   1972	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
   1973	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
   1974		/* One of the MII PHYs _must_ be present
   1975		 * as this chip has no gigabit PHY.
   1976		 */
   1977		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
   1978			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
   1979			       mif_cfg);
   1980			return -1;
   1981		}
   1982	}
   1983
   1984	/* Determine initial PHY interface type guess.  MDIO1 is the
   1985	 * external PHY and thus takes precedence over MDIO0.
   1986	 */
   1987
   1988	if (mif_cfg & MIF_CFG_MDI1) {
   1989		gp->phy_type = phy_mii_mdio1;
   1990		mif_cfg |= MIF_CFG_PSELECT;
   1991		writel(mif_cfg, gp->regs + MIF_CFG);
   1992	} else if (mif_cfg & MIF_CFG_MDI0) {
   1993		gp->phy_type = phy_mii_mdio0;
   1994		mif_cfg &= ~MIF_CFG_PSELECT;
   1995		writel(mif_cfg, gp->regs + MIF_CFG);
   1996	} else {
   1997#ifdef CONFIG_SPARC
   1998		const char *p;
   1999
   2000		p = of_get_property(gp->of_node, "shared-pins", NULL);
   2001		if (p && !strcmp(p, "serdes"))
   2002			gp->phy_type = phy_serdes;
   2003		else
   2004#endif
   2005			gp->phy_type = phy_serialink;
   2006	}
   2007	if (gp->phy_type == phy_mii_mdio1 ||
   2008	    gp->phy_type == phy_mii_mdio0) {
   2009		int i;
   2010
   2011		for (i = 0; i < 32; i++) {
   2012			gp->mii_phy_addr = i;
   2013			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
   2014				break;
   2015		}
   2016		if (i == 32) {
   2017			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
   2018				pr_err("RIO MII phy will not respond\n");
   2019				return -1;
   2020			}
   2021			gp->phy_type = phy_serdes;
   2022		}
   2023	}
   2024
   2025	/* Fetch the FIFO configurations now too. */
   2026	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
   2027	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
   2028
   2029	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
   2030		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
   2031			if (gp->tx_fifo_sz != (9 * 1024) ||
   2032			    gp->rx_fifo_sz != (20 * 1024)) {
   2033				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
   2034				       gp->tx_fifo_sz, gp->rx_fifo_sz);
   2035				return -1;
   2036			}
   2037			gp->swrst_base = 0;
   2038		} else {
   2039			if (gp->tx_fifo_sz != (2 * 1024) ||
   2040			    gp->rx_fifo_sz != (2 * 1024)) {
   2041				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
   2042				       gp->tx_fifo_sz, gp->rx_fifo_sz);
   2043				return -1;
   2044			}
   2045			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
   2046		}
   2047	}
   2048
   2049	return 0;
   2050}
   2051
   2052static void gem_reinit_chip(struct gem *gp)
   2053{
   2054	/* Reset the chip */
   2055	gem_reset(gp);
   2056
   2057	/* Make sure ints are disabled */
   2058	gem_disable_ints(gp);
   2059
   2060	/* Allocate & setup ring buffers */
   2061	gem_init_rings(gp);
   2062
   2063	/* Configure pause thresholds */
   2064	gem_init_pause_thresholds(gp);
   2065
   2066	/* Init DMA & MAC engines */
   2067	gem_init_dma(gp);
   2068	gem_init_mac(gp);
   2069}
   2070
   2071
   2072static void gem_stop_phy(struct gem *gp, int wol)
   2073{
   2074	u32 mifcfg;
   2075
   2076	/* Let the chip settle down a bit, it seems that helps
   2077	 * for sleep mode on some models
   2078	 */
   2079	msleep(10);
   2080
   2081	/* Make sure we aren't polling PHY status change. We
   2082	 * don't currently use that feature though
   2083	 */
   2084	mifcfg = readl(gp->regs + MIF_CFG);
   2085	mifcfg &= ~MIF_CFG_POLL;
   2086	writel(mifcfg, gp->regs + MIF_CFG);
   2087
   2088	if (wol && gp->has_wol) {
   2089		const unsigned char *e = &gp->dev->dev_addr[0];
   2090		u32 csr;
   2091
   2092		/* Setup wake-on-lan for MAGIC packet */
   2093		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
   2094		       gp->regs + MAC_RXCFG);
   2095		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
   2096		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
   2097		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
   2098
   2099		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
   2100		csr = WOL_WAKECSR_ENABLE;
   2101		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
   2102			csr |= WOL_WAKECSR_MII;
   2103		writel(csr, gp->regs + WOL_WAKECSR);
   2104	} else {
   2105		writel(0, gp->regs + MAC_RXCFG);
   2106		(void)readl(gp->regs + MAC_RXCFG);
   2107		/* Machine sleep will die in strange ways if we
   2108		 * dont wait a bit here, looks like the chip takes
   2109		 * some time to really shut down
   2110		 */
   2111		msleep(10);
   2112	}
   2113
   2114	writel(0, gp->regs + MAC_TXCFG);
   2115	writel(0, gp->regs + MAC_XIFCFG);
   2116	writel(0, gp->regs + TXDMA_CFG);
   2117	writel(0, gp->regs + RXDMA_CFG);
   2118
   2119	if (!wol) {
   2120		gem_reset(gp);
   2121		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
   2122		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
   2123
   2124		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
   2125			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
   2126
   2127		/* According to Apple, we must set the MDIO pins to this begnign
   2128		 * state or we may 1) eat more current, 2) damage some PHYs
   2129		 */
   2130		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
   2131		writel(0, gp->regs + MIF_BBCLK);
   2132		writel(0, gp->regs + MIF_BBDATA);
   2133		writel(0, gp->regs + MIF_BBOENAB);
   2134		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
   2135		(void) readl(gp->regs + MAC_XIFCFG);
   2136	}
   2137}
   2138
   2139static int gem_do_start(struct net_device *dev)
   2140{
   2141	struct gem *gp = netdev_priv(dev);
   2142	int rc;
   2143
   2144	pci_set_master(gp->pdev);
   2145
   2146	/* Init & setup chip hardware */
   2147	gem_reinit_chip(gp);
   2148
   2149	/* An interrupt might come in handy */
   2150	rc = request_irq(gp->pdev->irq, gem_interrupt,
   2151			 IRQF_SHARED, dev->name, (void *)dev);
   2152	if (rc) {
   2153		netdev_err(dev, "failed to request irq !\n");
   2154
   2155		gem_reset(gp);
   2156		gem_clean_rings(gp);
   2157		gem_put_cell(gp);
   2158		return rc;
   2159	}
   2160
   2161	/* Mark us as attached again if we come from resume(), this has
   2162	 * no effect if we weren't detached and needs to be done now.
   2163	 */
   2164	netif_device_attach(dev);
   2165
   2166	/* Restart NAPI & queues */
   2167	gem_netif_start(gp);
   2168
   2169	/* Detect & init PHY, start autoneg etc... this will
   2170	 * eventually result in starting DMA operations when
   2171	 * the link is up
   2172	 */
   2173	gem_init_phy(gp);
   2174
   2175	return 0;
   2176}
   2177
   2178static void gem_do_stop(struct net_device *dev, int wol)
   2179{
   2180	struct gem *gp = netdev_priv(dev);
   2181
   2182	/* Stop NAPI and stop tx queue */
   2183	gem_netif_stop(gp);
   2184
   2185	/* Make sure ints are disabled. We don't care about
   2186	 * synchronizing as NAPI is disabled, thus a stray
   2187	 * interrupt will do nothing bad (our irq handler
   2188	 * just schedules NAPI)
   2189	 */
   2190	gem_disable_ints(gp);
   2191
   2192	/* Stop the link timer */
   2193	del_timer_sync(&gp->link_timer);
   2194
   2195	/* We cannot cancel the reset task while holding the
   2196	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
   2197	 * if we did. This is not an issue however as the reset
   2198	 * task is synchronized vs. us (rtnl_lock) and will do
   2199	 * nothing if the device is down or suspended. We do
   2200	 * still clear reset_task_pending to avoid a spurrious
   2201	 * reset later on in case we do resume before it gets
   2202	 * scheduled.
   2203	 */
   2204	gp->reset_task_pending = 0;
   2205
   2206	/* If we are going to sleep with WOL */
   2207	gem_stop_dma(gp);
   2208	msleep(10);
   2209	if (!wol)
   2210		gem_reset(gp);
   2211	msleep(10);
   2212
   2213	/* Get rid of rings */
   2214	gem_clean_rings(gp);
   2215
   2216	/* No irq needed anymore */
   2217	free_irq(gp->pdev->irq, (void *) dev);
   2218
   2219	/* Shut the PHY down eventually and setup WOL */
   2220	gem_stop_phy(gp, wol);
   2221}
   2222
   2223static void gem_reset_task(struct work_struct *work)
   2224{
   2225	struct gem *gp = container_of(work, struct gem, reset_task);
   2226
   2227	/* Lock out the network stack (essentially shield ourselves
   2228	 * against a racing open, close, control call, or suspend
   2229	 */
   2230	rtnl_lock();
   2231
   2232	/* Skip the reset task if suspended or closed, or if it's
   2233	 * been cancelled by gem_do_stop (see comment there)
   2234	 */
   2235	if (!netif_device_present(gp->dev) ||
   2236	    !netif_running(gp->dev) ||
   2237	    !gp->reset_task_pending) {
   2238		rtnl_unlock();
   2239		return;
   2240	}
   2241
   2242	/* Stop the link timer */
   2243	del_timer_sync(&gp->link_timer);
   2244
   2245	/* Stop NAPI and tx */
   2246	gem_netif_stop(gp);
   2247
   2248	/* Reset the chip & rings */
   2249	gem_reinit_chip(gp);
   2250	if (gp->lstate == link_up)
   2251		gem_set_link_modes(gp);
   2252
   2253	/* Restart NAPI and Tx */
   2254	gem_netif_start(gp);
   2255
   2256	/* We are back ! */
   2257	gp->reset_task_pending = 0;
   2258
   2259	/* If the link is not up, restart autoneg, else restart the
   2260	 * polling timer
   2261	 */
   2262	if (gp->lstate != link_up)
   2263		gem_begin_auto_negotiation(gp, NULL);
   2264	else
   2265		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
   2266
   2267	rtnl_unlock();
   2268}
   2269
   2270static int gem_open(struct net_device *dev)
   2271{
   2272	struct gem *gp = netdev_priv(dev);
   2273	int rc;
   2274
   2275	/* We allow open while suspended, we just do nothing,
   2276	 * the chip will be initialized in resume()
   2277	 */
   2278	if (netif_device_present(dev)) {
   2279		/* Enable the cell */
   2280		gem_get_cell(gp);
   2281
   2282		/* Make sure PCI access and bus master are enabled */
   2283		rc = pci_enable_device(gp->pdev);
   2284		if (rc) {
   2285			netdev_err(dev, "Failed to enable chip on PCI bus !\n");
   2286
   2287			/* Put cell and forget it for now, it will be considered
   2288			 *as still asleep, a new sleep cycle may bring it back
   2289			 */
   2290			gem_put_cell(gp);
   2291			return -ENXIO;
   2292		}
   2293		return gem_do_start(dev);
   2294	}
   2295
   2296	return 0;
   2297}
   2298
   2299static int gem_close(struct net_device *dev)
   2300{
   2301	struct gem *gp = netdev_priv(dev);
   2302
   2303	if (netif_device_present(dev)) {
   2304		gem_do_stop(dev, 0);
   2305
   2306		/* Make sure bus master is disabled */
   2307		pci_disable_device(gp->pdev);
   2308
   2309		/* Cell not needed neither if no WOL */
   2310		if (!gp->asleep_wol)
   2311			gem_put_cell(gp);
   2312	}
   2313	return 0;
   2314}
   2315
   2316static int __maybe_unused gem_suspend(struct device *dev_d)
   2317{
   2318	struct net_device *dev = dev_get_drvdata(dev_d);
   2319	struct gem *gp = netdev_priv(dev);
   2320
   2321	/* Lock the network stack first to avoid racing with open/close,
   2322	 * reset task and setting calls
   2323	 */
   2324	rtnl_lock();
   2325
   2326	/* Not running, mark ourselves non-present, no need for
   2327	 * a lock here
   2328	 */
   2329	if (!netif_running(dev)) {
   2330		netif_device_detach(dev);
   2331		rtnl_unlock();
   2332		return 0;
   2333	}
   2334	netdev_info(dev, "suspending, WakeOnLan %s\n",
   2335		    (gp->wake_on_lan && netif_running(dev)) ?
   2336		    "enabled" : "disabled");
   2337
   2338	/* Tell the network stack we're gone. gem_do_stop() below will
   2339	 * synchronize with TX, stop NAPI etc...
   2340	 */
   2341	netif_device_detach(dev);
   2342
   2343	/* Switch off chip, remember WOL setting */
   2344	gp->asleep_wol = !!gp->wake_on_lan;
   2345	gem_do_stop(dev, gp->asleep_wol);
   2346
   2347	/* Cell not needed neither if no WOL */
   2348	if (!gp->asleep_wol)
   2349		gem_put_cell(gp);
   2350
   2351	/* Unlock the network stack */
   2352	rtnl_unlock();
   2353
   2354	return 0;
   2355}
   2356
   2357static int __maybe_unused gem_resume(struct device *dev_d)
   2358{
   2359	struct net_device *dev = dev_get_drvdata(dev_d);
   2360	struct gem *gp = netdev_priv(dev);
   2361
   2362	/* See locking comment in gem_suspend */
   2363	rtnl_lock();
   2364
   2365	/* Not running, mark ourselves present, no need for
   2366	 * a lock here
   2367	 */
   2368	if (!netif_running(dev)) {
   2369		netif_device_attach(dev);
   2370		rtnl_unlock();
   2371		return 0;
   2372	}
   2373
   2374	/* Enable the cell */
   2375	gem_get_cell(gp);
   2376
   2377	/* Restart chip. If that fails there isn't much we can do, we
   2378	 * leave things stopped.
   2379	 */
   2380	gem_do_start(dev);
   2381
   2382	/* If we had WOL enabled, the cell clock was never turned off during
   2383	 * sleep, so we end up beeing unbalanced. Fix that here
   2384	 */
   2385	if (gp->asleep_wol)
   2386		gem_put_cell(gp);
   2387
   2388	/* Unlock the network stack */
   2389	rtnl_unlock();
   2390
   2391	return 0;
   2392}
   2393
   2394static struct net_device_stats *gem_get_stats(struct net_device *dev)
   2395{
   2396	struct gem *gp = netdev_priv(dev);
   2397
   2398	/* I have seen this being called while the PM was in progress,
   2399	 * so we shield against this. Let's also not poke at registers
   2400	 * while the reset task is going on.
   2401	 *
   2402	 * TODO: Move stats collection elsewhere (link timer ?) and
   2403	 * make this a nop to avoid all those synchro issues
   2404	 */
   2405	if (!netif_device_present(dev) || !netif_running(dev))
   2406		goto bail;
   2407
   2408	/* Better safe than sorry... */
   2409	if (WARN_ON(!gp->cell_enabled))
   2410		goto bail;
   2411
   2412	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
   2413	writel(0, gp->regs + MAC_FCSERR);
   2414
   2415	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
   2416	writel(0, gp->regs + MAC_AERR);
   2417
   2418	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
   2419	writel(0, gp->regs + MAC_LERR);
   2420
   2421	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
   2422	dev->stats.collisions +=
   2423		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
   2424	writel(0, gp->regs + MAC_ECOLL);
   2425	writel(0, gp->regs + MAC_LCOLL);
   2426 bail:
   2427	return &dev->stats;
   2428}
   2429
   2430static int gem_set_mac_address(struct net_device *dev, void *addr)
   2431{
   2432	struct sockaddr *macaddr = (struct sockaddr *) addr;
   2433	const unsigned char *e = &dev->dev_addr[0];
   2434	struct gem *gp = netdev_priv(dev);
   2435
   2436	if (!is_valid_ether_addr(macaddr->sa_data))
   2437		return -EADDRNOTAVAIL;
   2438
   2439	eth_hw_addr_set(dev, macaddr->sa_data);
   2440
   2441	/* We'll just catch it later when the device is up'd or resumed */
   2442	if (!netif_running(dev) || !netif_device_present(dev))
   2443		return 0;
   2444
   2445	/* Better safe than sorry... */
   2446	if (WARN_ON(!gp->cell_enabled))
   2447		return 0;
   2448
   2449	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
   2450	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
   2451	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
   2452
   2453	return 0;
   2454}
   2455
   2456static void gem_set_multicast(struct net_device *dev)
   2457{
   2458	struct gem *gp = netdev_priv(dev);
   2459	u32 rxcfg, rxcfg_new;
   2460	int limit = 10000;
   2461
   2462	if (!netif_running(dev) || !netif_device_present(dev))
   2463		return;
   2464
   2465	/* Better safe than sorry... */
   2466	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
   2467		return;
   2468
   2469	rxcfg = readl(gp->regs + MAC_RXCFG);
   2470	rxcfg_new = gem_setup_multicast(gp);
   2471#ifdef STRIP_FCS
   2472	rxcfg_new |= MAC_RXCFG_SFCS;
   2473#endif
   2474	gp->mac_rx_cfg = rxcfg_new;
   2475
   2476	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
   2477	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
   2478		if (!limit--)
   2479			break;
   2480		udelay(10);
   2481	}
   2482
   2483	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
   2484	rxcfg |= rxcfg_new;
   2485
   2486	writel(rxcfg, gp->regs + MAC_RXCFG);
   2487}
   2488
   2489/* Jumbo-grams don't seem to work :-( */
   2490#define GEM_MIN_MTU	ETH_MIN_MTU
   2491#if 1
   2492#define GEM_MAX_MTU	ETH_DATA_LEN
   2493#else
   2494#define GEM_MAX_MTU	9000
   2495#endif
   2496
   2497static int gem_change_mtu(struct net_device *dev, int new_mtu)
   2498{
   2499	struct gem *gp = netdev_priv(dev);
   2500
   2501	dev->mtu = new_mtu;
   2502
   2503	/* We'll just catch it later when the device is up'd or resumed */
   2504	if (!netif_running(dev) || !netif_device_present(dev))
   2505		return 0;
   2506
   2507	/* Better safe than sorry... */
   2508	if (WARN_ON(!gp->cell_enabled))
   2509		return 0;
   2510
   2511	gem_netif_stop(gp);
   2512	gem_reinit_chip(gp);
   2513	if (gp->lstate == link_up)
   2514		gem_set_link_modes(gp);
   2515	gem_netif_start(gp);
   2516
   2517	return 0;
   2518}
   2519
   2520static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
   2521{
   2522	struct gem *gp = netdev_priv(dev);
   2523
   2524	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
   2525	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
   2526	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
   2527}
   2528
   2529static int gem_get_link_ksettings(struct net_device *dev,
   2530				  struct ethtool_link_ksettings *cmd)
   2531{
   2532	struct gem *gp = netdev_priv(dev);
   2533	u32 supported, advertising;
   2534
   2535	if (gp->phy_type == phy_mii_mdio0 ||
   2536	    gp->phy_type == phy_mii_mdio1) {
   2537		if (gp->phy_mii.def)
   2538			supported = gp->phy_mii.def->features;
   2539		else
   2540			supported = (SUPPORTED_10baseT_Half |
   2541					  SUPPORTED_10baseT_Full);
   2542
   2543		/* XXX hardcoded stuff for now */
   2544		cmd->base.port = PORT_MII;
   2545		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
   2546
   2547		/* Return current PHY settings */
   2548		cmd->base.autoneg = gp->want_autoneg;
   2549		cmd->base.speed = gp->phy_mii.speed;
   2550		cmd->base.duplex = gp->phy_mii.duplex;
   2551		advertising = gp->phy_mii.advertising;
   2552
   2553		/* If we started with a forced mode, we don't have a default
   2554		 * advertise set, we need to return something sensible so
   2555		 * userland can re-enable autoneg properly.
   2556		 */
   2557		if (advertising == 0)
   2558			advertising = supported;
   2559	} else { // XXX PCS ?
   2560		supported =
   2561			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
   2562			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
   2563			 SUPPORTED_Autoneg);
   2564		advertising = supported;
   2565		cmd->base.speed = 0;
   2566		cmd->base.duplex = 0;
   2567		cmd->base.port = 0;
   2568		cmd->base.phy_address = 0;
   2569		cmd->base.autoneg = 0;
   2570
   2571		/* serdes means usually a Fibre connector, with most fixed */
   2572		if (gp->phy_type == phy_serdes) {
   2573			cmd->base.port = PORT_FIBRE;
   2574			supported = (SUPPORTED_1000baseT_Half |
   2575				SUPPORTED_1000baseT_Full |
   2576				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
   2577				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
   2578			advertising = supported;
   2579			if (gp->lstate == link_up)
   2580				cmd->base.speed = SPEED_1000;
   2581			cmd->base.duplex = DUPLEX_FULL;
   2582			cmd->base.autoneg = 1;
   2583		}
   2584	}
   2585
   2586	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
   2587						supported);
   2588	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
   2589						advertising);
   2590
   2591	return 0;
   2592}
   2593
   2594static int gem_set_link_ksettings(struct net_device *dev,
   2595				  const struct ethtool_link_ksettings *cmd)
   2596{
   2597	struct gem *gp = netdev_priv(dev);
   2598	u32 speed = cmd->base.speed;
   2599	u32 advertising;
   2600
   2601	ethtool_convert_link_mode_to_legacy_u32(&advertising,
   2602						cmd->link_modes.advertising);
   2603
   2604	/* Verify the settings we care about. */
   2605	if (cmd->base.autoneg != AUTONEG_ENABLE &&
   2606	    cmd->base.autoneg != AUTONEG_DISABLE)
   2607		return -EINVAL;
   2608
   2609	if (cmd->base.autoneg == AUTONEG_ENABLE &&
   2610	    advertising == 0)
   2611		return -EINVAL;
   2612
   2613	if (cmd->base.autoneg == AUTONEG_DISABLE &&
   2614	    ((speed != SPEED_1000 &&
   2615	      speed != SPEED_100 &&
   2616	      speed != SPEED_10) ||
   2617	     (cmd->base.duplex != DUPLEX_HALF &&
   2618	      cmd->base.duplex != DUPLEX_FULL)))
   2619		return -EINVAL;
   2620
   2621	/* Apply settings and restart link process. */
   2622	if (netif_device_present(gp->dev)) {
   2623		del_timer_sync(&gp->link_timer);
   2624		gem_begin_auto_negotiation(gp, cmd);
   2625	}
   2626
   2627	return 0;
   2628}
   2629
   2630static int gem_nway_reset(struct net_device *dev)
   2631{
   2632	struct gem *gp = netdev_priv(dev);
   2633
   2634	if (!gp->want_autoneg)
   2635		return -EINVAL;
   2636
   2637	/* Restart link process  */
   2638	if (netif_device_present(gp->dev)) {
   2639		del_timer_sync(&gp->link_timer);
   2640		gem_begin_auto_negotiation(gp, NULL);
   2641	}
   2642
   2643	return 0;
   2644}
   2645
   2646static u32 gem_get_msglevel(struct net_device *dev)
   2647{
   2648	struct gem *gp = netdev_priv(dev);
   2649	return gp->msg_enable;
   2650}
   2651
   2652static void gem_set_msglevel(struct net_device *dev, u32 value)
   2653{
   2654	struct gem *gp = netdev_priv(dev);
   2655	gp->msg_enable = value;
   2656}
   2657
   2658
   2659/* Add more when I understand how to program the chip */
   2660/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
   2661
   2662#define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
   2663
   2664static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
   2665{
   2666	struct gem *gp = netdev_priv(dev);
   2667
   2668	/* Add more when I understand how to program the chip */
   2669	if (gp->has_wol) {
   2670		wol->supported = WOL_SUPPORTED_MASK;
   2671		wol->wolopts = gp->wake_on_lan;
   2672	} else {
   2673		wol->supported = 0;
   2674		wol->wolopts = 0;
   2675	}
   2676}
   2677
   2678static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
   2679{
   2680	struct gem *gp = netdev_priv(dev);
   2681
   2682	if (!gp->has_wol)
   2683		return -EOPNOTSUPP;
   2684	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
   2685	return 0;
   2686}
   2687
   2688static const struct ethtool_ops gem_ethtool_ops = {
   2689	.get_drvinfo		= gem_get_drvinfo,
   2690	.get_link		= ethtool_op_get_link,
   2691	.nway_reset		= gem_nway_reset,
   2692	.get_msglevel		= gem_get_msglevel,
   2693	.set_msglevel		= gem_set_msglevel,
   2694	.get_wol		= gem_get_wol,
   2695	.set_wol		= gem_set_wol,
   2696	.get_link_ksettings	= gem_get_link_ksettings,
   2697	.set_link_ksettings	= gem_set_link_ksettings,
   2698};
   2699
   2700static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
   2701{
   2702	struct gem *gp = netdev_priv(dev);
   2703	struct mii_ioctl_data *data = if_mii(ifr);
   2704	int rc = -EOPNOTSUPP;
   2705
   2706	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
   2707	 * netif_device_present() is true and holds rtnl_lock for us
   2708	 * so we have nothing to worry about
   2709	 */
   2710
   2711	switch (cmd) {
   2712	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
   2713		data->phy_id = gp->mii_phy_addr;
   2714		fallthrough;
   2715
   2716	case SIOCGMIIREG:		/* Read MII PHY register. */
   2717		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
   2718					   data->reg_num & 0x1f);
   2719		rc = 0;
   2720		break;
   2721
   2722	case SIOCSMIIREG:		/* Write MII PHY register. */
   2723		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
   2724			    data->val_in);
   2725		rc = 0;
   2726		break;
   2727	}
   2728	return rc;
   2729}
   2730
   2731#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
   2732/* Fetch MAC address from vital product data of PCI ROM. */
   2733static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
   2734{
   2735	int this_offset;
   2736
   2737	for (this_offset = 0x20; this_offset < len; this_offset++) {
   2738		void __iomem *p = rom_base + this_offset;
   2739		int i;
   2740
   2741		if (readb(p + 0) != 0x90 ||
   2742		    readb(p + 1) != 0x00 ||
   2743		    readb(p + 2) != 0x09 ||
   2744		    readb(p + 3) != 0x4e ||
   2745		    readb(p + 4) != 0x41 ||
   2746		    readb(p + 5) != 0x06)
   2747			continue;
   2748
   2749		this_offset += 6;
   2750		p += 6;
   2751
   2752		for (i = 0; i < 6; i++)
   2753			dev_addr[i] = readb(p + i);
   2754		return 1;
   2755	}
   2756	return 0;
   2757}
   2758
   2759static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
   2760{
   2761	size_t size;
   2762	void __iomem *p = pci_map_rom(pdev, &size);
   2763
   2764	if (p) {
   2765		int found;
   2766
   2767		found = readb(p) == 0x55 &&
   2768			readb(p + 1) == 0xaa &&
   2769			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
   2770		pci_unmap_rom(pdev, p);
   2771		if (found)
   2772			return;
   2773	}
   2774
   2775	/* Sun MAC prefix then 3 random bytes. */
   2776	dev_addr[0] = 0x08;
   2777	dev_addr[1] = 0x00;
   2778	dev_addr[2] = 0x20;
   2779	get_random_bytes(dev_addr + 3, 3);
   2780}
   2781#endif /* not Sparc and not PPC */
   2782
   2783static int gem_get_device_address(struct gem *gp)
   2784{
   2785#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
   2786	struct net_device *dev = gp->dev;
   2787	const unsigned char *addr;
   2788
   2789	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
   2790	if (addr == NULL) {
   2791#ifdef CONFIG_SPARC
   2792		addr = idprom->id_ethaddr;
   2793#else
   2794		printk("\n");
   2795		pr_err("%s: can't get mac-address\n", dev->name);
   2796		return -1;
   2797#endif
   2798	}
   2799	eth_hw_addr_set(dev, addr);
   2800#else
   2801	u8 addr[ETH_ALEN];
   2802
   2803	get_gem_mac_nonobp(gp->pdev, addr);
   2804	eth_hw_addr_set(gp->dev, addr);
   2805#endif
   2806	return 0;
   2807}
   2808
   2809static void gem_remove_one(struct pci_dev *pdev)
   2810{
   2811	struct net_device *dev = pci_get_drvdata(pdev);
   2812
   2813	if (dev) {
   2814		struct gem *gp = netdev_priv(dev);
   2815
   2816		unregister_netdev(dev);
   2817
   2818		/* Ensure reset task is truly gone */
   2819		cancel_work_sync(&gp->reset_task);
   2820
   2821		/* Free resources */
   2822		dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
   2823				  gp->init_block, gp->gblock_dvma);
   2824		iounmap(gp->regs);
   2825		pci_release_regions(pdev);
   2826		free_netdev(dev);
   2827	}
   2828}
   2829
   2830static const struct net_device_ops gem_netdev_ops = {
   2831	.ndo_open		= gem_open,
   2832	.ndo_stop		= gem_close,
   2833	.ndo_start_xmit		= gem_start_xmit,
   2834	.ndo_get_stats		= gem_get_stats,
   2835	.ndo_set_rx_mode	= gem_set_multicast,
   2836	.ndo_eth_ioctl		= gem_ioctl,
   2837	.ndo_tx_timeout		= gem_tx_timeout,
   2838	.ndo_change_mtu		= gem_change_mtu,
   2839	.ndo_validate_addr	= eth_validate_addr,
   2840	.ndo_set_mac_address    = gem_set_mac_address,
   2841#ifdef CONFIG_NET_POLL_CONTROLLER
   2842	.ndo_poll_controller    = gem_poll_controller,
   2843#endif
   2844};
   2845
   2846static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
   2847{
   2848	unsigned long gemreg_base, gemreg_len;
   2849	struct net_device *dev;
   2850	struct gem *gp;
   2851	int err, pci_using_dac;
   2852
   2853	printk_once(KERN_INFO "%s", version);
   2854
   2855	/* Apple gmac note: during probe, the chip is powered up by
   2856	 * the arch code to allow the code below to work (and to let
   2857	 * the chip be probed on the config space. It won't stay powered
   2858	 * up until the interface is brought up however, so we can't rely
   2859	 * on register configuration done at this point.
   2860	 */
   2861	err = pci_enable_device(pdev);
   2862	if (err) {
   2863		pr_err("Cannot enable MMIO operation, aborting\n");
   2864		return err;
   2865	}
   2866	pci_set_master(pdev);
   2867
   2868	/* Configure DMA attributes. */
   2869
   2870	/* All of the GEM documentation states that 64-bit DMA addressing
   2871	 * is fully supported and should work just fine.  However the
   2872	 * front end for RIO based GEMs is different and only supports
   2873	 * 32-bit addressing.
   2874	 *
   2875	 * For now we assume the various PPC GEMs are 32-bit only as well.
   2876	 */
   2877	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
   2878	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
   2879	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
   2880		pci_using_dac = 1;
   2881	} else {
   2882		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
   2883		if (err) {
   2884			pr_err("No usable DMA configuration, aborting\n");
   2885			goto err_disable_device;
   2886		}
   2887		pci_using_dac = 0;
   2888	}
   2889
   2890	gemreg_base = pci_resource_start(pdev, 0);
   2891	gemreg_len = pci_resource_len(pdev, 0);
   2892
   2893	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
   2894		pr_err("Cannot find proper PCI device base address, aborting\n");
   2895		err = -ENODEV;
   2896		goto err_disable_device;
   2897	}
   2898
   2899	dev = alloc_etherdev(sizeof(*gp));
   2900	if (!dev) {
   2901		err = -ENOMEM;
   2902		goto err_disable_device;
   2903	}
   2904	SET_NETDEV_DEV(dev, &pdev->dev);
   2905
   2906	gp = netdev_priv(dev);
   2907
   2908	err = pci_request_regions(pdev, DRV_NAME);
   2909	if (err) {
   2910		pr_err("Cannot obtain PCI resources, aborting\n");
   2911		goto err_out_free_netdev;
   2912	}
   2913
   2914	gp->pdev = pdev;
   2915	gp->dev = dev;
   2916
   2917	gp->msg_enable = DEFAULT_MSG;
   2918
   2919	timer_setup(&gp->link_timer, gem_link_timer, 0);
   2920
   2921	INIT_WORK(&gp->reset_task, gem_reset_task);
   2922
   2923	gp->lstate = link_down;
   2924	gp->timer_ticks = 0;
   2925	netif_carrier_off(dev);
   2926
   2927	gp->regs = ioremap(gemreg_base, gemreg_len);
   2928	if (!gp->regs) {
   2929		pr_err("Cannot map device registers, aborting\n");
   2930		err = -EIO;
   2931		goto err_out_free_res;
   2932	}
   2933
   2934	/* On Apple, we want a reference to the Open Firmware device-tree
   2935	 * node. We use it for clock control.
   2936	 */
   2937#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
   2938	gp->of_node = pci_device_to_OF_node(pdev);
   2939#endif
   2940
   2941	/* Only Apple version supports WOL afaik */
   2942	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
   2943		gp->has_wol = 1;
   2944
   2945	/* Make sure cell is enabled */
   2946	gem_get_cell(gp);
   2947
   2948	/* Make sure everything is stopped and in init state */
   2949	gem_reset(gp);
   2950
   2951	/* Fill up the mii_phy structure (even if we won't use it) */
   2952	gp->phy_mii.dev = dev;
   2953	gp->phy_mii.mdio_read = _sungem_phy_read;
   2954	gp->phy_mii.mdio_write = _sungem_phy_write;
   2955#ifdef CONFIG_PPC_PMAC
   2956	gp->phy_mii.platform_data = gp->of_node;
   2957#endif
   2958	/* By default, we start with autoneg */
   2959	gp->want_autoneg = 1;
   2960
   2961	/* Check fifo sizes, PHY type, etc... */
   2962	if (gem_check_invariants(gp)) {
   2963		err = -ENODEV;
   2964		goto err_out_iounmap;
   2965	}
   2966
   2967	/* It is guaranteed that the returned buffer will be at least
   2968	 * PAGE_SIZE aligned.
   2969	 */
   2970	gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
   2971					    &gp->gblock_dvma, GFP_KERNEL);
   2972	if (!gp->init_block) {
   2973		pr_err("Cannot allocate init block, aborting\n");
   2974		err = -ENOMEM;
   2975		goto err_out_iounmap;
   2976	}
   2977
   2978	err = gem_get_device_address(gp);
   2979	if (err)
   2980		goto err_out_free_consistent;
   2981
   2982	dev->netdev_ops = &gem_netdev_ops;
   2983	netif_napi_add(dev, &gp->napi, gem_poll, 64);
   2984	dev->ethtool_ops = &gem_ethtool_ops;
   2985	dev->watchdog_timeo = 5 * HZ;
   2986	dev->dma = 0;
   2987
   2988	/* Set that now, in case PM kicks in now */
   2989	pci_set_drvdata(pdev, dev);
   2990
   2991	/* We can do scatter/gather and HW checksum */
   2992	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
   2993	dev->features = dev->hw_features;
   2994	if (pci_using_dac)
   2995		dev->features |= NETIF_F_HIGHDMA;
   2996
   2997	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
   2998	dev->min_mtu = GEM_MIN_MTU;
   2999	dev->max_mtu = GEM_MAX_MTU;
   3000
   3001	/* Register with kernel */
   3002	if (register_netdev(dev)) {
   3003		pr_err("Cannot register net device, aborting\n");
   3004		err = -ENOMEM;
   3005		goto err_out_free_consistent;
   3006	}
   3007
   3008	/* Undo the get_cell with appropriate locking (we could use
   3009	 * ndo_init/uninit but that would be even more clumsy imho)
   3010	 */
   3011	rtnl_lock();
   3012	gem_put_cell(gp);
   3013	rtnl_unlock();
   3014
   3015	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
   3016		    dev->dev_addr);
   3017	return 0;
   3018
   3019err_out_free_consistent:
   3020	gem_remove_one(pdev);
   3021err_out_iounmap:
   3022	gem_put_cell(gp);
   3023	iounmap(gp->regs);
   3024
   3025err_out_free_res:
   3026	pci_release_regions(pdev);
   3027
   3028err_out_free_netdev:
   3029	free_netdev(dev);
   3030err_disable_device:
   3031	pci_disable_device(pdev);
   3032	return err;
   3033
   3034}
   3035
   3036static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
   3037
   3038static struct pci_driver gem_driver = {
   3039	.name		= GEM_MODULE_NAME,
   3040	.id_table	= gem_pci_tbl,
   3041	.probe		= gem_init_one,
   3042	.remove		= gem_remove_one,
   3043	.driver.pm	= &gem_pm_ops,
   3044};
   3045
   3046module_pci_driver(gem_driver);