cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tehuti.c (67086B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Tehuti Networks(R) Network Driver
      4 * ethtool interface implementation
      5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
      6 */
      7
      8/*
      9 * RX HW/SW interaction overview
     10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     11 * There are 2 types of RX communication channels between driver and NIC.
     12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
     13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
     14 * info about buffer's location, size and ID. An ID field is used to identify a
     15 * buffer when it's returned with data via RXD Fifo (see below)
     16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
     17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
     18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
     19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
     20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
     21 *
     22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
     23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
     24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
     25 * filled with data, HW builds new RXD descriptor for it and push it into single
     26 * RXD Fifo.
     27 *
     28 * RX SW Data Structures
     29 * ~~~~~~~~~~~~~~~~~~~~~
     30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
     31 * For RX case, ownership lasts from allocating new empty skb for RXF until
     32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
     33 * skb db. Implemented as array with bitmask.
     34 * fifo - keeps info about fifo's size and location, relevant HW registers,
     35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
     36 * Implemented as simple struct.
     37 *
     38 * RX SW Execution Flow
     39 * ~~~~~~~~~~~~~~~~~~~~
     40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
     41 * relevant registers. At the end of init phase, driver enables interrupts.
     42 * NIC sees that there is no RXF buffers and raises
     43 * RD_INTR interrupt, isr fills skbs and Rx begins.
     44 * Driver has two receive operation modes:
     45 *    NAPI - interrupt-driven mixed with polling
     46 *    interrupt-driven only
     47 *
     48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
     49 * interrupt and isr is called. isr collects all available packets
     50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
     51
     52 * Rx buffer allocation note
     53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
     54 * Driver cares to feed such amount of RxF descriptors that respective amount of
     55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
     56 * overflow check in Bordeaux for RxD fifo free/used size.
     57 * FIXME: this is NOT fully implemented, more work should be done
     58 *
     59 */
     60
     61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     62
     63#include "tehuti.h"
     64
     65static const struct pci_device_id bdx_pci_tbl[] = {
     66	{ PCI_VDEVICE(TEHUTI, 0x3009), },
     67	{ PCI_VDEVICE(TEHUTI, 0x3010), },
     68	{ PCI_VDEVICE(TEHUTI, 0x3014), },
     69	{ 0 }
     70};
     71
     72MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
     73
     74/* Definitions needed by ISR or NAPI functions */
     75static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
     76static void bdx_tx_cleanup(struct bdx_priv *priv);
     77static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
     78
     79/* Definitions needed by FW loading */
     80static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
     81
     82/* Definitions needed by hw_start */
     83static int bdx_tx_init(struct bdx_priv *priv);
     84static int bdx_rx_init(struct bdx_priv *priv);
     85
     86/* Definitions needed by bdx_close */
     87static void bdx_rx_free(struct bdx_priv *priv);
     88static void bdx_tx_free(struct bdx_priv *priv);
     89
     90/* Definitions needed by bdx_probe */
     91static void bdx_set_ethtool_ops(struct net_device *netdev);
     92
     93/*************************************************************************
     94 *    Print Info                                                         *
     95 *************************************************************************/
     96
     97static void print_hw_id(struct pci_dev *pdev)
     98{
     99	struct pci_nic *nic = pci_get_drvdata(pdev);
    100	u16 pci_link_status = 0;
    101	u16 pci_ctrl = 0;
    102
    103	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
    104	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
    105
    106	pr_info("%s%s\n", BDX_NIC_NAME,
    107		nic->port_num == 1 ? "" : ", 2-Port");
    108	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
    109		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
    110		readl(nic->regs + FPGA_SEED),
    111		GET_LINK_STATUS_LANES(pci_link_status),
    112		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
    113}
    114
    115static void print_fw_id(struct pci_nic *nic)
    116{
    117	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
    118}
    119
    120static void print_eth_id(struct net_device *ndev)
    121{
    122	netdev_info(ndev, "%s, Port %c\n",
    123		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
    124
    125}
    126
    127/*************************************************************************
    128 *    Code                                                               *
    129 *************************************************************************/
    130
    131#define bdx_enable_interrupts(priv)	\
    132	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
    133#define bdx_disable_interrupts(priv)	\
    134	do { WRITE_REG(priv, regIMR, 0); } while (0)
    135
    136/**
    137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
    138 * @priv: NIC private structure
    139 * @f: fifo to initialize
    140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
    141 * @reg_CFG0: offsets of registers relative to base address
    142 * @reg_CFG1: offsets of registers relative to base address
    143 * @reg_RPTR: offsets of registers relative to base address
    144 * @reg_WPTR: offsets of registers relative to base address
    145 *
    146 * 1K extra space is allocated at the end of the fifo to simplify
    147 * processing of descriptors that wraps around fifo's end
    148 *
    149 * Returns 0 on success, negative value on failure
    150 *
    151 */
    152static int
    153bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
    154	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
    155{
    156	u16 memsz = FIFO_SIZE * (1 << fsz_type);
    157
    158	memset(f, 0, sizeof(struct fifo));
    159	/* dma_alloc_coherent gives us 4k-aligned memory */
    160	f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE,
    161				   &f->da, GFP_ATOMIC);
    162	if (!f->va) {
    163		pr_err("dma_alloc_coherent failed\n");
    164		RET(-ENOMEM);
    165	}
    166	f->reg_CFG0 = reg_CFG0;
    167	f->reg_CFG1 = reg_CFG1;
    168	f->reg_RPTR = reg_RPTR;
    169	f->reg_WPTR = reg_WPTR;
    170	f->rptr = 0;
    171	f->wptr = 0;
    172	f->memsz = memsz;
    173	f->size_mask = memsz - 1;
    174	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
    175	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
    176
    177	RET(0);
    178}
    179
    180/**
    181 * bdx_fifo_free - free all resources used by fifo
    182 * @priv: NIC private structure
    183 * @f: fifo to release
    184 */
    185static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
    186{
    187	ENTER;
    188	if (f->va) {
    189		dma_free_coherent(&priv->pdev->dev,
    190				  f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
    191		f->va = NULL;
    192	}
    193	RET();
    194}
    195
    196/**
    197 * bdx_link_changed - notifies OS about hw link state.
    198 * @priv: hw adapter structure
    199 */
    200static void bdx_link_changed(struct bdx_priv *priv)
    201{
    202	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
    203
    204	if (!link) {
    205		if (netif_carrier_ok(priv->ndev)) {
    206			netif_stop_queue(priv->ndev);
    207			netif_carrier_off(priv->ndev);
    208			netdev_err(priv->ndev, "Link Down\n");
    209		}
    210	} else {
    211		if (!netif_carrier_ok(priv->ndev)) {
    212			netif_wake_queue(priv->ndev);
    213			netif_carrier_on(priv->ndev);
    214			netdev_err(priv->ndev, "Link Up\n");
    215		}
    216	}
    217}
    218
    219static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
    220{
    221	if (isr & IR_RX_FREE_0) {
    222		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
    223		DBG("RX_FREE_0\n");
    224	}
    225
    226	if (isr & IR_LNKCHG0)
    227		bdx_link_changed(priv);
    228
    229	if (isr & IR_PCIE_LINK)
    230		netdev_err(priv->ndev, "PCI-E Link Fault\n");
    231
    232	if (isr & IR_PCIE_TOUT)
    233		netdev_err(priv->ndev, "PCI-E Time Out\n");
    234
    235}
    236
    237/**
    238 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
    239 * @irq: interrupt number
    240 * @dev: network device
    241 *
    242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
    243 *
    244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
    245 * Reasons of interest are:
    246 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
    247 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
    248 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
    249 */
    250
    251static irqreturn_t bdx_isr_napi(int irq, void *dev)
    252{
    253	struct net_device *ndev = dev;
    254	struct bdx_priv *priv = netdev_priv(ndev);
    255	u32 isr;
    256
    257	ENTER;
    258	isr = (READ_REG(priv, regISR) & IR_RUN);
    259	if (unlikely(!isr)) {
    260		bdx_enable_interrupts(priv);
    261		return IRQ_NONE;	/* Not our interrupt */
    262	}
    263
    264	if (isr & IR_EXTRA)
    265		bdx_isr_extra(priv, isr);
    266
    267	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
    268		if (likely(napi_schedule_prep(&priv->napi))) {
    269			__napi_schedule(&priv->napi);
    270			RET(IRQ_HANDLED);
    271		} else {
    272			/* NOTE: we get here if intr has slipped into window
    273			 * between these lines in bdx_poll:
    274			 *    bdx_enable_interrupts(priv);
    275			 *    return 0;
    276			 * currently intrs are disabled (since we read ISR),
    277			 * and we have failed to register next poll.
    278			 * so we read the regs to trigger chip
    279			 * and allow further interupts. */
    280			READ_REG(priv, regTXF_WPTR_0);
    281			READ_REG(priv, regRXD_WPTR_0);
    282		}
    283	}
    284
    285	bdx_enable_interrupts(priv);
    286	RET(IRQ_HANDLED);
    287}
    288
    289static int bdx_poll(struct napi_struct *napi, int budget)
    290{
    291	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
    292	int work_done;
    293
    294	ENTER;
    295	bdx_tx_cleanup(priv);
    296	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
    297	if ((work_done < budget) ||
    298	    (priv->napi_stop++ >= 30)) {
    299		DBG("rx poll is done. backing to isr-driven\n");
    300
    301		/* from time to time we exit to let NAPI layer release
    302		 * device lock and allow waiting tasks (eg rmmod) to advance) */
    303		priv->napi_stop = 0;
    304
    305		napi_complete_done(napi, work_done);
    306		bdx_enable_interrupts(priv);
    307	}
    308	return work_done;
    309}
    310
    311/**
    312 * bdx_fw_load - loads firmware to NIC
    313 * @priv: NIC private structure
    314 *
    315 * Firmware is loaded via TXD fifo, so it must be initialized first.
    316 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
    317 * can have few of them). So all drivers use semaphore register to choose one
    318 * that will actually load FW to NIC.
    319 */
    320
    321static int bdx_fw_load(struct bdx_priv *priv)
    322{
    323	const struct firmware *fw = NULL;
    324	int master, i;
    325	int rc;
    326
    327	ENTER;
    328	master = READ_REG(priv, regINIT_SEMAPHORE);
    329	if (!READ_REG(priv, regINIT_STATUS) && master) {
    330		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
    331		if (rc)
    332			goto out;
    333		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
    334		mdelay(100);
    335	}
    336	for (i = 0; i < 200; i++) {
    337		if (READ_REG(priv, regINIT_STATUS)) {
    338			rc = 0;
    339			goto out;
    340		}
    341		mdelay(2);
    342	}
    343	rc = -EIO;
    344out:
    345	if (master)
    346		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
    347
    348	release_firmware(fw);
    349
    350	if (rc) {
    351		netdev_err(priv->ndev, "firmware loading failed\n");
    352		if (rc == -EIO)
    353			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
    354			    READ_REG(priv, regVPC),
    355			    READ_REG(priv, regVIC),
    356			    READ_REG(priv, regINIT_STATUS), i);
    357		RET(rc);
    358	} else {
    359		DBG("%s: firmware loading success\n", priv->ndev->name);
    360		RET(0);
    361	}
    362}
    363
    364static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
    365{
    366	u32 val;
    367
    368	ENTER;
    369	DBG("mac0=%x mac1=%x mac2=%x\n",
    370	    READ_REG(priv, regUNC_MAC0_A),
    371	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
    372
    373	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
    374	WRITE_REG(priv, regUNC_MAC2_A, val);
    375	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
    376	WRITE_REG(priv, regUNC_MAC1_A, val);
    377	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
    378	WRITE_REG(priv, regUNC_MAC0_A, val);
    379
    380	DBG("mac0=%x mac1=%x mac2=%x\n",
    381	    READ_REG(priv, regUNC_MAC0_A),
    382	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
    383	RET();
    384}
    385
    386/**
    387 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
    388 * @priv: NIC private structure
    389 */
    390static int bdx_hw_start(struct bdx_priv *priv)
    391{
    392	int rc = -EIO;
    393	struct net_device *ndev = priv->ndev;
    394
    395	ENTER;
    396	bdx_link_changed(priv);
    397
    398	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
    399	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
    400	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
    401	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
    402	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
    403	WRITE_REG(priv, regRX_FULLNESS, 0);
    404	WRITE_REG(priv, regTX_FULLNESS, 0);
    405	WRITE_REG(priv, regCTRLST,
    406		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
    407
    408	WRITE_REG(priv, regVGLB, 0);
    409	WRITE_REG(priv, regMAX_FRAME_A,
    410		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
    411
    412	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
    413	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
    414	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
    415
    416	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
    417	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
    418
    419	/* Enable timer interrupt once in 2 secs. */
    420	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
    421	bdx_restore_mac(priv->ndev, priv);
    422
    423	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
    424		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
    425
    426#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
    427
    428	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
    429			 ndev->name, ndev);
    430	if (rc)
    431		goto err_irq;
    432	bdx_enable_interrupts(priv);
    433
    434	RET(0);
    435
    436err_irq:
    437	RET(rc);
    438}
    439
    440static void bdx_hw_stop(struct bdx_priv *priv)
    441{
    442	ENTER;
    443	bdx_disable_interrupts(priv);
    444	free_irq(priv->pdev->irq, priv->ndev);
    445
    446	netif_carrier_off(priv->ndev);
    447	netif_stop_queue(priv->ndev);
    448
    449	RET();
    450}
    451
    452static int bdx_hw_reset_direct(void __iomem *regs)
    453{
    454	u32 val, i;
    455	ENTER;
    456
    457	/* reset sequences: read, write 1, read, write 0 */
    458	val = readl(regs + regCLKPLL);
    459	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
    460	udelay(50);
    461	val = readl(regs + regCLKPLL);
    462	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
    463
    464	/* check that the PLLs are locked and reset ended */
    465	for (i = 0; i < 70; i++, mdelay(10))
    466		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
    467			/* do any PCI-E read transaction */
    468			readl(regs + regRXD_CFG0_0);
    469			return 0;
    470		}
    471	pr_err("HW reset failed\n");
    472	return 1;		/* failure */
    473}
    474
    475static int bdx_hw_reset(struct bdx_priv *priv)
    476{
    477	u32 val, i;
    478	ENTER;
    479
    480	if (priv->port == 0) {
    481		/* reset sequences: read, write 1, read, write 0 */
    482		val = READ_REG(priv, regCLKPLL);
    483		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
    484		udelay(50);
    485		val = READ_REG(priv, regCLKPLL);
    486		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
    487	}
    488	/* check that the PLLs are locked and reset ended */
    489	for (i = 0; i < 70; i++, mdelay(10))
    490		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
    491			/* do any PCI-E read transaction */
    492			READ_REG(priv, regRXD_CFG0_0);
    493			return 0;
    494		}
    495	pr_err("HW reset failed\n");
    496	return 1;		/* failure */
    497}
    498
    499static int bdx_sw_reset(struct bdx_priv *priv)
    500{
    501	int i;
    502
    503	ENTER;
    504	/* 1. load MAC (obsolete) */
    505	/* 2. disable Rx (and Tx) */
    506	WRITE_REG(priv, regGMAC_RXF_A, 0);
    507	mdelay(100);
    508	/* 3. disable port */
    509	WRITE_REG(priv, regDIS_PORT, 1);
    510	/* 4. disable queue */
    511	WRITE_REG(priv, regDIS_QU, 1);
    512	/* 5. wait until hw is disabled */
    513	for (i = 0; i < 50; i++) {
    514		if (READ_REG(priv, regRST_PORT) & 1)
    515			break;
    516		mdelay(10);
    517	}
    518	if (i == 50)
    519		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
    520
    521	/* 6. disable intrs */
    522	WRITE_REG(priv, regRDINTCM0, 0);
    523	WRITE_REG(priv, regTDINTCM0, 0);
    524	WRITE_REG(priv, regIMR, 0);
    525	READ_REG(priv, regISR);
    526
    527	/* 7. reset queue */
    528	WRITE_REG(priv, regRST_QU, 1);
    529	/* 8. reset port */
    530	WRITE_REG(priv, regRST_PORT, 1);
    531	/* 9. zero all read and write pointers */
    532	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
    533		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
    534	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
    535		WRITE_REG(priv, i, 0);
    536	/* 10. unseet port disable */
    537	WRITE_REG(priv, regDIS_PORT, 0);
    538	/* 11. unset queue disable */
    539	WRITE_REG(priv, regDIS_QU, 0);
    540	/* 12. unset queue reset */
    541	WRITE_REG(priv, regRST_QU, 0);
    542	/* 13. unset port reset */
    543	WRITE_REG(priv, regRST_PORT, 0);
    544	/* 14. enable Rx */
    545	/* skiped. will be done later */
    546	/* 15. save MAC (obsolete) */
    547	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
    548		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
    549
    550	RET(0);
    551}
    552
    553/* bdx_reset - performs right type of reset depending on hw type */
    554static int bdx_reset(struct bdx_priv *priv)
    555{
    556	ENTER;
    557	RET((priv->pdev->device == 0x3009)
    558	    ? bdx_hw_reset(priv)
    559	    : bdx_sw_reset(priv));
    560}
    561
    562/**
    563 * bdx_close - Disables a network interface
    564 * @ndev: network interface device structure
    565 *
    566 * Returns 0, this is not allowed to fail
    567 *
    568 * The close entry point is called when an interface is de-activated
    569 * by the OS.  The hardware is still under the drivers control, but
    570 * needs to be disabled.  A global MAC reset is issued to stop the
    571 * hardware, and all transmit and receive resources are freed.
    572 **/
    573static int bdx_close(struct net_device *ndev)
    574{
    575	struct bdx_priv *priv = NULL;
    576
    577	ENTER;
    578	priv = netdev_priv(ndev);
    579
    580	napi_disable(&priv->napi);
    581
    582	bdx_reset(priv);
    583	bdx_hw_stop(priv);
    584	bdx_rx_free(priv);
    585	bdx_tx_free(priv);
    586	RET(0);
    587}
    588
    589/**
    590 * bdx_open - Called when a network interface is made active
    591 * @ndev: network interface device structure
    592 *
    593 * Returns 0 on success, negative value on failure
    594 *
    595 * The open entry point is called when a network interface is made
    596 * active by the system (IFF_UP).  At this point all resources needed
    597 * for transmit and receive operations are allocated, the interrupt
    598 * handler is registered with the OS, the watchdog timer is started,
    599 * and the stack is notified that the interface is ready.
    600 **/
    601static int bdx_open(struct net_device *ndev)
    602{
    603	struct bdx_priv *priv;
    604	int rc;
    605
    606	ENTER;
    607	priv = netdev_priv(ndev);
    608	bdx_reset(priv);
    609	if (netif_running(ndev))
    610		netif_stop_queue(priv->ndev);
    611
    612	if ((rc = bdx_tx_init(priv)) ||
    613	    (rc = bdx_rx_init(priv)) ||
    614	    (rc = bdx_fw_load(priv)))
    615		goto err;
    616
    617	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
    618
    619	rc = bdx_hw_start(priv);
    620	if (rc)
    621		goto err;
    622
    623	napi_enable(&priv->napi);
    624
    625	print_fw_id(priv->nic);
    626
    627	RET(0);
    628
    629err:
    630	bdx_close(ndev);
    631	RET(rc);
    632}
    633
    634static int bdx_range_check(struct bdx_priv *priv, u32 offset)
    635{
    636	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
    637		-EINVAL : 0;
    638}
    639
    640static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr,
    641			      void __user *udata, int cmd)
    642{
    643	struct bdx_priv *priv = netdev_priv(ndev);
    644	u32 data[3];
    645	int error;
    646
    647	ENTER;
    648
    649	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
    650	if (cmd != SIOCDEVPRIVATE) {
    651		error = copy_from_user(data, udata, sizeof(data));
    652		if (error) {
    653			pr_err("can't copy from user\n");
    654			RET(-EFAULT);
    655		}
    656		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
    657	} else {
    658		return -EOPNOTSUPP;
    659	}
    660
    661	if (!capable(CAP_SYS_RAWIO))
    662		return -EPERM;
    663
    664	switch (data[0]) {
    665
    666	case BDX_OP_READ:
    667		error = bdx_range_check(priv, data[1]);
    668		if (error < 0)
    669			return error;
    670		data[2] = READ_REG(priv, data[1]);
    671		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
    672		    data[2]);
    673		error = copy_to_user(udata, data, sizeof(data));
    674		if (error)
    675			RET(-EFAULT);
    676		break;
    677
    678	case BDX_OP_WRITE:
    679		error = bdx_range_check(priv, data[1]);
    680		if (error < 0)
    681			return error;
    682		WRITE_REG(priv, data[1], data[2]);
    683		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
    684		break;
    685
    686	default:
    687		RET(-EOPNOTSUPP);
    688	}
    689	return 0;
    690}
    691
    692/**
    693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
    694 * @ndev: network device
    695 * @vid:  VLAN vid
    696 * @enable: enable or disable vlan
    697 *
    698 * Passes VLAN filter table to hardware
    699 */
    700static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
    701{
    702	struct bdx_priv *priv = netdev_priv(ndev);
    703	u32 reg, bit, val;
    704
    705	ENTER;
    706	DBG2("vid=%d value=%d\n", (int)vid, enable);
    707	if (unlikely(vid >= 4096)) {
    708		pr_err("invalid VID: %u (> 4096)\n", vid);
    709		RET();
    710	}
    711	reg = regVLAN_0 + (vid / 32) * 4;
    712	bit = 1 << vid % 32;
    713	val = READ_REG(priv, reg);
    714	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
    715	if (enable)
    716		val |= bit;
    717	else
    718		val &= ~bit;
    719	DBG2("new val %x\n", val);
    720	WRITE_REG(priv, reg, val);
    721	RET();
    722}
    723
    724/**
    725 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
    726 * @ndev: network device
    727 * @proto: unused
    728 * @vid:  VLAN vid to add
    729 */
    730static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
    731{
    732	__bdx_vlan_rx_vid(ndev, vid, 1);
    733	return 0;
    734}
    735
    736/**
    737 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
    738 * @ndev: network device
    739 * @proto: unused
    740 * @vid:  VLAN vid to kill
    741 */
    742static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
    743{
    744	__bdx_vlan_rx_vid(ndev, vid, 0);
    745	return 0;
    746}
    747
    748/**
    749 * bdx_change_mtu - Change the Maximum Transfer Unit
    750 * @ndev: network interface device structure
    751 * @new_mtu: new value for maximum frame size
    752 *
    753 * Returns 0 on success, negative on failure
    754 */
    755static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
    756{
    757	ENTER;
    758
    759	ndev->mtu = new_mtu;
    760	if (netif_running(ndev)) {
    761		bdx_close(ndev);
    762		bdx_open(ndev);
    763	}
    764	RET(0);
    765}
    766
    767static void bdx_setmulti(struct net_device *ndev)
    768{
    769	struct bdx_priv *priv = netdev_priv(ndev);
    770
    771	u32 rxf_val =
    772	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
    773	int i;
    774
    775	ENTER;
    776	/* IMF - imperfect (hash) rx multicat filter */
    777	/* PMF - perfect rx multicat filter */
    778
    779	/* FIXME: RXE(OFF) */
    780	if (ndev->flags & IFF_PROMISC) {
    781		rxf_val |= GMAC_RX_FILTER_PRM;
    782	} else if (ndev->flags & IFF_ALLMULTI) {
    783		/* set IMF to accept all multicast frmaes */
    784		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
    785			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
    786	} else if (!netdev_mc_empty(ndev)) {
    787		u8 hash;
    788		struct netdev_hw_addr *ha;
    789		u32 reg, val;
    790
    791		/* set IMF to deny all multicast frames */
    792		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
    793			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
    794		/* set PMF to deny all multicast frames */
    795		for (i = 0; i < MAC_MCST_NUM; i++) {
    796			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
    797			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
    798		}
    799
    800		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
    801		/* TBD: sort addresses and write them in ascending order
    802		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
    803		 * multicast frames throu IMF */
    804		/* accept the rest of addresses throu IMF */
    805		netdev_for_each_mc_addr(ha, ndev) {
    806			hash = 0;
    807			for (i = 0; i < ETH_ALEN; i++)
    808				hash ^= ha->addr[i];
    809			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
    810			val = READ_REG(priv, reg);
    811			val |= (1 << (hash % 32));
    812			WRITE_REG(priv, reg, val);
    813		}
    814
    815	} else {
    816		DBG("only own mac %d\n", netdev_mc_count(ndev));
    817		rxf_val |= GMAC_RX_FILTER_AB;
    818	}
    819	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
    820	/* enable RX */
    821	/* FIXME: RXE(ON) */
    822	RET();
    823}
    824
    825static int bdx_set_mac(struct net_device *ndev, void *p)
    826{
    827	struct bdx_priv *priv = netdev_priv(ndev);
    828	struct sockaddr *addr = p;
    829
    830	ENTER;
    831	/*
    832	   if (netif_running(dev))
    833	   return -EBUSY
    834	 */
    835	eth_hw_addr_set(ndev, addr->sa_data);
    836	bdx_restore_mac(ndev, priv);
    837	RET(0);
    838}
    839
    840static int bdx_read_mac(struct bdx_priv *priv)
    841{
    842	u16 macAddress[3], i;
    843	u8 addr[ETH_ALEN];
    844	ENTER;
    845
    846	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
    847	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
    848	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
    849	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
    850	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
    851	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
    852	for (i = 0; i < 3; i++) {
    853		addr[i * 2 + 1] = macAddress[i];
    854		addr[i * 2] = macAddress[i] >> 8;
    855	}
    856	eth_hw_addr_set(priv->ndev, addr);
    857	RET(0);
    858}
    859
    860static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
    861{
    862	u64 val;
    863
    864	val = READ_REG(priv, reg);
    865	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
    866	return val;
    867}
    868
    869/*Do the statistics-update work*/
    870static void bdx_update_stats(struct bdx_priv *priv)
    871{
    872	struct bdx_stats *stats = &priv->hw_stats;
    873	u64 *stats_vector = (u64 *) stats;
    874	int i;
    875	int addr;
    876
    877	/*Fill HW structure */
    878	addr = 0x7200;
    879	/*First 12 statistics - 0x7200 - 0x72B0 */
    880	for (i = 0; i < 12; i++) {
    881		stats_vector[i] = bdx_read_l2stat(priv, addr);
    882		addr += 0x10;
    883	}
    884	BDX_ASSERT(addr != 0x72C0);
    885	/* 0x72C0-0x72E0 RSRV */
    886	addr = 0x72F0;
    887	for (; i < 16; i++) {
    888		stats_vector[i] = bdx_read_l2stat(priv, addr);
    889		addr += 0x10;
    890	}
    891	BDX_ASSERT(addr != 0x7330);
    892	/* 0x7330-0x7360 RSRV */
    893	addr = 0x7370;
    894	for (; i < 19; i++) {
    895		stats_vector[i] = bdx_read_l2stat(priv, addr);
    896		addr += 0x10;
    897	}
    898	BDX_ASSERT(addr != 0x73A0);
    899	/* 0x73A0-0x73B0 RSRV */
    900	addr = 0x73C0;
    901	for (; i < 23; i++) {
    902		stats_vector[i] = bdx_read_l2stat(priv, addr);
    903		addr += 0x10;
    904	}
    905	BDX_ASSERT(addr != 0x7400);
    906	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
    907}
    908
    909static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
    910		       u16 rxd_vlan);
    911static void print_rxfd(struct rxf_desc *rxfd);
    912
    913/*************************************************************************
    914 *     Rx DB                                                             *
    915 *************************************************************************/
    916
    917static void bdx_rxdb_destroy(struct rxdb *db)
    918{
    919	vfree(db);
    920}
    921
    922static struct rxdb *bdx_rxdb_create(int nelem)
    923{
    924	struct rxdb *db;
    925	int i;
    926
    927	db = vmalloc(sizeof(struct rxdb)
    928		     + (nelem * sizeof(int))
    929		     + (nelem * sizeof(struct rx_map)));
    930	if (likely(db != NULL)) {
    931		db->stack = (int *)(db + 1);
    932		db->elems = (void *)(db->stack + nelem);
    933		db->nelem = nelem;
    934		db->top = nelem;
    935		for (i = 0; i < nelem; i++)
    936			db->stack[i] = nelem - i - 1;	/* to make first allocs
    937							   close to db struct*/
    938	}
    939
    940	return db;
    941}
    942
    943static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
    944{
    945	BDX_ASSERT(db->top <= 0);
    946	return db->stack[--(db->top)];
    947}
    948
    949static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
    950{
    951	BDX_ASSERT((n < 0) || (n >= db->nelem));
    952	return db->elems + n;
    953}
    954
    955static inline int bdx_rxdb_available(struct rxdb *db)
    956{
    957	return db->top;
    958}
    959
    960static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
    961{
    962	BDX_ASSERT((n >= db->nelem) || (n < 0));
    963	db->stack[(db->top)++] = n;
    964}
    965
    966/*************************************************************************
    967 *     Rx Init                                                           *
    968 *************************************************************************/
    969
    970/**
    971 * bdx_rx_init - initialize RX all related HW and SW resources
    972 * @priv: NIC private structure
    973 *
    974 * Returns 0 on success, negative value on failure
    975 *
    976 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
    977 * skb for rx. It assumes that Rx is desabled in HW
    978 * funcs are grouped for better cache usage
    979 *
    980 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
    981 * filled and packets will be dropped by nic without getting into host or
    982 * cousing interrupt. Anyway, in that condition, host has no chance to process
    983 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
    984 */
    985
    986/* TBD: ensure proper packet size */
    987
    988static int bdx_rx_init(struct bdx_priv *priv)
    989{
    990	ENTER;
    991
    992	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
    993			  regRXD_CFG0_0, regRXD_CFG1_0,
    994			  regRXD_RPTR_0, regRXD_WPTR_0))
    995		goto err_mem;
    996	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
    997			  regRXF_CFG0_0, regRXF_CFG1_0,
    998			  regRXF_RPTR_0, regRXF_WPTR_0))
    999		goto err_mem;
   1000	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
   1001				     sizeof(struct rxf_desc));
   1002	if (!priv->rxdb)
   1003		goto err_mem;
   1004
   1005	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
   1006	return 0;
   1007
   1008err_mem:
   1009	netdev_err(priv->ndev, "Rx init failed\n");
   1010	return -ENOMEM;
   1011}
   1012
   1013/**
   1014 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
   1015 * @priv: NIC private structure
   1016 * @f: RXF fifo
   1017 */
   1018static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
   1019{
   1020	struct rx_map *dm;
   1021	struct rxdb *db = priv->rxdb;
   1022	u16 i;
   1023
   1024	ENTER;
   1025	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
   1026	    db->nelem - bdx_rxdb_available(db));
   1027	while (bdx_rxdb_available(db) > 0) {
   1028		i = bdx_rxdb_alloc_elem(db);
   1029		dm = bdx_rxdb_addr_elem(db, i);
   1030		dm->dma = 0;
   1031	}
   1032	for (i = 0; i < db->nelem; i++) {
   1033		dm = bdx_rxdb_addr_elem(db, i);
   1034		if (dm->dma) {
   1035			dma_unmap_single(&priv->pdev->dev, dm->dma,
   1036					 f->m.pktsz, DMA_FROM_DEVICE);
   1037			dev_kfree_skb(dm->skb);
   1038		}
   1039	}
   1040}
   1041
   1042/**
   1043 * bdx_rx_free - release all Rx resources
   1044 * @priv: NIC private structure
   1045 *
   1046 * It assumes that Rx is desabled in HW
   1047 */
   1048static void bdx_rx_free(struct bdx_priv *priv)
   1049{
   1050	ENTER;
   1051	if (priv->rxdb) {
   1052		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
   1053		bdx_rxdb_destroy(priv->rxdb);
   1054		priv->rxdb = NULL;
   1055	}
   1056	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
   1057	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
   1058
   1059	RET();
   1060}
   1061
   1062/*************************************************************************
   1063 *     Rx Engine                                                         *
   1064 *************************************************************************/
   1065
   1066/**
   1067 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
   1068 * @priv: nic's private structure
   1069 * @f: RXF fifo that needs skbs
   1070 *
   1071 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
   1072 * skb's virtual and physical addresses are stored in skb db.
   1073 * To calculate free space, func uses cached values of RPTR and WPTR
   1074 * When needed, it also updates RPTR and WPTR.
   1075 */
   1076
   1077/* TBD: do not update WPTR if no desc were written */
   1078
   1079static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
   1080{
   1081	struct sk_buff *skb;
   1082	struct rxf_desc *rxfd;
   1083	struct rx_map *dm;
   1084	int dno, delta, idx;
   1085	struct rxdb *db = priv->rxdb;
   1086
   1087	ENTER;
   1088	dno = bdx_rxdb_available(db) - 1;
   1089	while (dno > 0) {
   1090		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
   1091		if (!skb)
   1092			break;
   1093
   1094		skb_reserve(skb, NET_IP_ALIGN);
   1095
   1096		idx = bdx_rxdb_alloc_elem(db);
   1097		dm = bdx_rxdb_addr_elem(db, idx);
   1098		dm->dma = dma_map_single(&priv->pdev->dev, skb->data,
   1099					 f->m.pktsz, DMA_FROM_DEVICE);
   1100		dm->skb = skb;
   1101		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
   1102		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
   1103		rxfd->va_lo = idx;
   1104		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
   1105		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
   1106		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
   1107		print_rxfd(rxfd);
   1108
   1109		f->m.wptr += sizeof(struct rxf_desc);
   1110		delta = f->m.wptr - f->m.memsz;
   1111		if (unlikely(delta >= 0)) {
   1112			f->m.wptr = delta;
   1113			if (delta > 0) {
   1114				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
   1115				DBG("wrapped descriptor\n");
   1116			}
   1117		}
   1118		dno--;
   1119	}
   1120	/*TBD: to do - delayed rxf wptr like in txd */
   1121	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
   1122	RET();
   1123}
   1124
   1125static inline void
   1126NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
   1127	     struct sk_buff *skb)
   1128{
   1129	ENTER;
   1130	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
   1131	if (GET_RXD_VTAG(rxd_val1)) {
   1132		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
   1133		    priv->ndev->name,
   1134		    GET_RXD_VLAN_ID(rxd_vlan),
   1135		    GET_RXD_VTAG(rxd_val1));
   1136		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
   1137	}
   1138	netif_receive_skb(skb);
   1139}
   1140
   1141static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
   1142{
   1143	struct rxf_desc *rxfd;
   1144	struct rx_map *dm;
   1145	struct rxf_fifo *f;
   1146	struct rxdb *db;
   1147	int delta;
   1148
   1149	ENTER;
   1150	DBG("priv=%p rxdd=%p\n", priv, rxdd);
   1151	f = &priv->rxf_fifo0;
   1152	db = priv->rxdb;
   1153	DBG("db=%p f=%p\n", db, f);
   1154	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
   1155	DBG("dm=%p\n", dm);
   1156	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
   1157	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
   1158	rxfd->va_lo = rxdd->va_lo;
   1159	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
   1160	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
   1161	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
   1162	print_rxfd(rxfd);
   1163
   1164	f->m.wptr += sizeof(struct rxf_desc);
   1165	delta = f->m.wptr - f->m.memsz;
   1166	if (unlikely(delta >= 0)) {
   1167		f->m.wptr = delta;
   1168		if (delta > 0) {
   1169			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
   1170			DBG("wrapped descriptor\n");
   1171		}
   1172	}
   1173	RET();
   1174}
   1175
   1176/**
   1177 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
   1178 * NOTE: a special treatment is given to non-continuous descriptors
   1179 * that start near the end, wraps around and continue at the beginning. a second
   1180 * part is copied right after the first, and then descriptor is interpreted as
   1181 * normal. fifo has an extra space to allow such operations
   1182 * @priv: nic's private structure
   1183 * @f: RXF fifo that needs skbs
   1184 * @budget: maximum number of packets to receive
   1185 */
   1186
   1187/* TBD: replace memcpy func call by explicite inline asm */
   1188
   1189static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
   1190{
   1191	struct net_device *ndev = priv->ndev;
   1192	struct sk_buff *skb, *skb2;
   1193	struct rxd_desc *rxdd;
   1194	struct rx_map *dm;
   1195	struct rxf_fifo *rxf_fifo;
   1196	int tmp_len, size;
   1197	int done = 0;
   1198	int max_done = BDX_MAX_RX_DONE;
   1199	struct rxdb *db = NULL;
   1200	/* Unmarshalled descriptor - copy of descriptor in host order */
   1201	u32 rxd_val1;
   1202	u16 len;
   1203	u16 rxd_vlan;
   1204
   1205	ENTER;
   1206	max_done = budget;
   1207
   1208	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
   1209
   1210	size = f->m.wptr - f->m.rptr;
   1211	if (size < 0)
   1212		size = f->m.memsz + size;	/* size is negative :-) */
   1213
   1214	while (size > 0) {
   1215
   1216		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
   1217		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
   1218
   1219		len = CPU_CHIP_SWAP16(rxdd->len);
   1220
   1221		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
   1222
   1223		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
   1224
   1225		tmp_len = GET_RXD_BC(rxd_val1) << 3;
   1226		BDX_ASSERT(tmp_len <= 0);
   1227		size -= tmp_len;
   1228		if (size < 0)	/* test for partially arrived descriptor */
   1229			break;
   1230
   1231		f->m.rptr += tmp_len;
   1232
   1233		tmp_len = f->m.rptr - f->m.memsz;
   1234		if (unlikely(tmp_len >= 0)) {
   1235			f->m.rptr = tmp_len;
   1236			if (tmp_len > 0) {
   1237				DBG("wrapped desc rptr=%d tmp_len=%d\n",
   1238				    f->m.rptr, tmp_len);
   1239				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
   1240			}
   1241		}
   1242
   1243		if (unlikely(GET_RXD_ERR(rxd_val1))) {
   1244			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
   1245			ndev->stats.rx_errors++;
   1246			bdx_recycle_skb(priv, rxdd);
   1247			continue;
   1248		}
   1249
   1250		rxf_fifo = &priv->rxf_fifo0;
   1251		db = priv->rxdb;
   1252		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
   1253		skb = dm->skb;
   1254
   1255		if (len < BDX_COPYBREAK &&
   1256		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
   1257			skb_reserve(skb2, NET_IP_ALIGN);
   1258			/*skb_put(skb2, len); */
   1259			dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma,
   1260						rxf_fifo->m.pktsz,
   1261						DMA_FROM_DEVICE);
   1262			memcpy(skb2->data, skb->data, len);
   1263			bdx_recycle_skb(priv, rxdd);
   1264			skb = skb2;
   1265		} else {
   1266			dma_unmap_single(&priv->pdev->dev, dm->dma,
   1267					 rxf_fifo->m.pktsz, DMA_FROM_DEVICE);
   1268			bdx_rxdb_free_elem(db, rxdd->va_lo);
   1269		}
   1270
   1271		ndev->stats.rx_bytes += len;
   1272
   1273		skb_put(skb, len);
   1274		skb->protocol = eth_type_trans(skb, ndev);
   1275
   1276		/* Non-IP packets aren't checksum-offloaded */
   1277		if (GET_RXD_PKT_ID(rxd_val1) == 0)
   1278			skb_checksum_none_assert(skb);
   1279		else
   1280			skb->ip_summed = CHECKSUM_UNNECESSARY;
   1281
   1282		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
   1283
   1284		if (++done >= max_done)
   1285			break;
   1286	}
   1287
   1288	ndev->stats.rx_packets += done;
   1289
   1290	/* FIXME: do smth to minimize pci accesses    */
   1291	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
   1292
   1293	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
   1294
   1295	RET(done);
   1296}
   1297
   1298/*************************************************************************
   1299 * Debug / Temprorary Code                                               *
   1300 *************************************************************************/
   1301static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
   1302		       u16 rxd_vlan)
   1303{
   1304	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
   1305	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
   1306	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
   1307	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
   1308	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
   1309	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
   1310	    rxdd->va_hi);
   1311}
   1312
   1313static void print_rxfd(struct rxf_desc *rxfd)
   1314{
   1315	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
   1316	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
   1317	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
   1318}
   1319
   1320/*
   1321 * TX HW/SW interaction overview
   1322 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   1323 * There are 2 types of TX communication channels between driver and NIC.
   1324 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
   1325 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
   1326 *
   1327 * Currently NIC supports TSO, checksuming and gather DMA
   1328 * UFO and IP fragmentation is on the way
   1329 *
   1330 * RX SW Data Structures
   1331 * ~~~~~~~~~~~~~~~~~~~~~
   1332 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
   1333 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
   1334 * acknowledges sent by TXF descriptors.
   1335 * Implemented as cyclic buffer.
   1336 * fifo - keeps info about fifo's size and location, relevant HW registers,
   1337 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
   1338 * Implemented as simple struct.
   1339 *
   1340 * TX SW Execution Flow
   1341 * ~~~~~~~~~~~~~~~~~~~~
   1342 * OS calls driver's hard_xmit method with packet to sent.
   1343 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
   1344 * by updating TXD WPTR.
   1345 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
   1346 * To prevent TXD fifo overflow without reading HW registers every time,
   1347 * SW deploys "tx level" technique.
   1348 * Upon strart up, tx level is initialized to TXD fifo length.
   1349 * For every sent packet, SW gets its TXD descriptor sizei
   1350 * (from precalculated array) and substructs it from tx level.
   1351 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
   1352 * original TXD descriptor from txdb and adds it to tx level.
   1353 * When Tx level drops under some predefined treshhold, the driver
   1354 * stops the TX queue. When TX level rises above that level,
   1355 * the tx queue is enabled again.
   1356 *
   1357 * This technique avoids eccessive reading of RPTR and WPTR registers.
   1358 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
   1359 */
   1360
   1361/**
   1362 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
   1363 * @db: tx data base
   1364 * @pptr: read or write pointer
   1365 */
   1366static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
   1367{
   1368	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
   1369
   1370	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
   1371		   *pptr != db->wptr);	/* or write pointer */
   1372
   1373	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
   1374		   *pptr >= db->end);	/* in range */
   1375
   1376	++*pptr;
   1377	if (unlikely(*pptr == db->end))
   1378		*pptr = db->start;
   1379}
   1380
   1381/**
   1382 * bdx_tx_db_inc_rptr - increment read pointer
   1383 * @db: tx data base
   1384 */
   1385static inline void bdx_tx_db_inc_rptr(struct txdb *db)
   1386{
   1387	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
   1388	__bdx_tx_db_ptr_next(db, &db->rptr);
   1389}
   1390
   1391/**
   1392 * bdx_tx_db_inc_wptr - increment write pointer
   1393 * @db: tx data base
   1394 */
   1395static inline void bdx_tx_db_inc_wptr(struct txdb *db)
   1396{
   1397	__bdx_tx_db_ptr_next(db, &db->wptr);
   1398	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
   1399						   a result of write */
   1400}
   1401
   1402/**
   1403 * bdx_tx_db_init - creates and initializes tx db
   1404 * @d: tx data base
   1405 * @sz_type: size of tx fifo
   1406 *
   1407 * Returns 0 on success, error code otherwise
   1408 */
   1409static int bdx_tx_db_init(struct txdb *d, int sz_type)
   1410{
   1411	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
   1412
   1413	d->start = vmalloc(memsz);
   1414	if (!d->start)
   1415		return -ENOMEM;
   1416
   1417	/*
   1418	 * In order to differentiate between db is empty and db is full
   1419	 * states at least one element should always be empty in order to
   1420	 * avoid rptr == wptr which means db is empty
   1421	 */
   1422	d->size = memsz / sizeof(struct tx_map) - 1;
   1423	d->end = d->start + d->size + 1;	/* just after last element */
   1424
   1425	/* all dbs are created equally empty */
   1426	d->rptr = d->start;
   1427	d->wptr = d->start;
   1428
   1429	return 0;
   1430}
   1431
   1432/**
   1433 * bdx_tx_db_close - closes tx db and frees all memory
   1434 * @d: tx data base
   1435 */
   1436static void bdx_tx_db_close(struct txdb *d)
   1437{
   1438	BDX_ASSERT(d == NULL);
   1439
   1440	vfree(d->start);
   1441	d->start = NULL;
   1442}
   1443
   1444/*************************************************************************
   1445 *     Tx Engine                                                         *
   1446 *************************************************************************/
   1447
   1448/* sizes of tx desc (including padding if needed) as function
   1449 * of skb's frag number */
   1450static struct {
   1451	u16 bytes;
   1452	u16 qwords;		/* qword = 64 bit */
   1453} txd_sizes[MAX_SKB_FRAGS + 1];
   1454
   1455/**
   1456 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
   1457 * @priv: NIC private structure
   1458 * @skb: socket buffer to map
   1459 * @txdd: TX descriptor to use
   1460 *
   1461 * It makes dma mappings for skb's data blocks and writes them to PBL of
   1462 * new tx descriptor. It also stores them in the tx db, so they could be
   1463 * unmaped after data was sent. It is reponsibility of a caller to make
   1464 * sure that there is enough space in the tx db. Last element holds pointer
   1465 * to skb itself and marked with zero length
   1466 */
   1467static inline void
   1468bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
   1469	       struct txd_desc *txdd)
   1470{
   1471	struct txdb *db = &priv->txdb;
   1472	struct pbl *pbl = &txdd->pbl[0];
   1473	int nr_frags = skb_shinfo(skb)->nr_frags;
   1474	int i;
   1475
   1476	db->wptr->len = skb_headlen(skb);
   1477	db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data,
   1478					    db->wptr->len, DMA_TO_DEVICE);
   1479	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
   1480	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
   1481	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
   1482	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
   1483	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
   1484	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
   1485	bdx_tx_db_inc_wptr(db);
   1486
   1487	for (i = 0; i < nr_frags; i++) {
   1488		const skb_frag_t *frag;
   1489
   1490		frag = &skb_shinfo(skb)->frags[i];
   1491		db->wptr->len = skb_frag_size(frag);
   1492		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
   1493						      0, skb_frag_size(frag),
   1494						      DMA_TO_DEVICE);
   1495
   1496		pbl++;
   1497		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
   1498		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
   1499		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
   1500		bdx_tx_db_inc_wptr(db);
   1501	}
   1502
   1503	/* add skb clean up info. */
   1504	db->wptr->len = -txd_sizes[nr_frags].bytes;
   1505	db->wptr->addr.skb = skb;
   1506	bdx_tx_db_inc_wptr(db);
   1507}
   1508
   1509/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
   1510 * number of frags is used as index to fetch correct descriptors size,
   1511 * instead of calculating it each time */
   1512static void __init init_txd_sizes(void)
   1513{
   1514	int i, lwords;
   1515
   1516	/* 7 - is number of lwords in txd with one phys buffer
   1517	 * 3 - is number of lwords used for every additional phys buffer */
   1518	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
   1519		lwords = 7 + (i * 3);
   1520		if (lwords & 1)
   1521			lwords++;	/* pad it with 1 lword */
   1522		txd_sizes[i].qwords = lwords >> 1;
   1523		txd_sizes[i].bytes = lwords << 2;
   1524	}
   1525}
   1526
   1527/* bdx_tx_init - initialize all Tx related stuff.
   1528 * Namely, TXD and TXF fifos, database etc */
   1529static int bdx_tx_init(struct bdx_priv *priv)
   1530{
   1531	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
   1532			  regTXD_CFG0_0,
   1533			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
   1534		goto err_mem;
   1535	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
   1536			  regTXF_CFG0_0,
   1537			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
   1538		goto err_mem;
   1539
   1540	/* The TX db has to keep mappings for all packets sent (on TxD)
   1541	 * and not yet reclaimed (on TxF) */
   1542	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
   1543		goto err_mem;
   1544
   1545	priv->tx_level = BDX_MAX_TX_LEVEL;
   1546#ifdef BDX_DELAY_WPTR
   1547	priv->tx_update_mark = priv->tx_level - 1024;
   1548#endif
   1549	return 0;
   1550
   1551err_mem:
   1552	netdev_err(priv->ndev, "Tx init failed\n");
   1553	return -ENOMEM;
   1554}
   1555
   1556/**
   1557 * bdx_tx_space - calculates available space in TX fifo
   1558 * @priv: NIC private structure
   1559 *
   1560 * Returns available space in TX fifo in bytes
   1561 */
   1562static inline int bdx_tx_space(struct bdx_priv *priv)
   1563{
   1564	struct txd_fifo *f = &priv->txd_fifo0;
   1565	int fsize;
   1566
   1567	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
   1568	fsize = f->m.rptr - f->m.wptr;
   1569	if (fsize <= 0)
   1570		fsize = f->m.memsz + fsize;
   1571	return fsize;
   1572}
   1573
   1574/**
   1575 * bdx_tx_transmit - send packet to NIC
   1576 * @skb: packet to send
   1577 * @ndev: network device assigned to NIC
   1578 * Return codes:
   1579 * o NETDEV_TX_OK everything ok.
   1580 * o NETDEV_TX_BUSY Cannot transmit packet, try later
   1581 *   Usually a bug, means queue start/stop flow control is broken in
   1582 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
   1583 */
   1584static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
   1585				   struct net_device *ndev)
   1586{
   1587	struct bdx_priv *priv = netdev_priv(ndev);
   1588	struct txd_fifo *f = &priv->txd_fifo0;
   1589	int txd_checksum = 7;	/* full checksum */
   1590	int txd_lgsnd = 0;
   1591	int txd_vlan_id = 0;
   1592	int txd_vtag = 0;
   1593	int txd_mss = 0;
   1594
   1595	int nr_frags = skb_shinfo(skb)->nr_frags;
   1596	struct txd_desc *txdd;
   1597	int len;
   1598	unsigned long flags;
   1599
   1600	ENTER;
   1601	local_irq_save(flags);
   1602	spin_lock(&priv->tx_lock);
   1603
   1604	/* build tx descriptor */
   1605	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
   1606	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
   1607	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
   1608		txd_checksum = 0;
   1609
   1610	if (skb_shinfo(skb)->gso_size) {
   1611		txd_mss = skb_shinfo(skb)->gso_size;
   1612		txd_lgsnd = 1;
   1613		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
   1614		    txd_mss);
   1615	}
   1616
   1617	if (skb_vlan_tag_present(skb)) {
   1618		/*Cut VLAN ID to 12 bits */
   1619		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
   1620		txd_vtag = 1;
   1621	}
   1622
   1623	txdd->length = CPU_CHIP_SWAP16(skb->len);
   1624	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
   1625	txdd->txd_val1 =
   1626	    CPU_CHIP_SWAP32(TXD_W1_VAL
   1627			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
   1628			     txd_lgsnd, txd_vlan_id));
   1629	DBG("=== TxD desc =====================\n");
   1630	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
   1631	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
   1632
   1633	bdx_tx_map_skb(priv, skb, txdd);
   1634
   1635	/* increment TXD write pointer. In case of
   1636	   fifo wrapping copy reminder of the descriptor
   1637	   to the beginning */
   1638	f->m.wptr += txd_sizes[nr_frags].bytes;
   1639	len = f->m.wptr - f->m.memsz;
   1640	if (unlikely(len >= 0)) {
   1641		f->m.wptr = len;
   1642		if (len > 0) {
   1643			BDX_ASSERT(len > f->m.memsz);
   1644			memcpy(f->m.va, f->m.va + f->m.memsz, len);
   1645		}
   1646	}
   1647	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
   1648
   1649	priv->tx_level -= txd_sizes[nr_frags].bytes;
   1650	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
   1651#ifdef BDX_DELAY_WPTR
   1652	if (priv->tx_level > priv->tx_update_mark) {
   1653		/* Force memory writes to complete before letting h/w
   1654		   know there are new descriptors to fetch.
   1655		   (might be needed on platforms like IA64)
   1656		   wmb(); */
   1657		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
   1658	} else {
   1659		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
   1660			priv->tx_noupd = 0;
   1661			WRITE_REG(priv, f->m.reg_WPTR,
   1662				  f->m.wptr & TXF_WPTR_WR_PTR);
   1663		}
   1664	}
   1665#else
   1666	/* Force memory writes to complete before letting h/w
   1667	   know there are new descriptors to fetch.
   1668	   (might be needed on platforms like IA64)
   1669	   wmb(); */
   1670	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
   1671
   1672#endif
   1673#ifdef BDX_LLTX
   1674	netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
   1675#endif
   1676	ndev->stats.tx_packets++;
   1677	ndev->stats.tx_bytes += skb->len;
   1678
   1679	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
   1680		DBG("%s: %s: TX Q STOP level %d\n",
   1681		    BDX_DRV_NAME, ndev->name, priv->tx_level);
   1682		netif_stop_queue(ndev);
   1683	}
   1684
   1685	spin_unlock_irqrestore(&priv->tx_lock, flags);
   1686	return NETDEV_TX_OK;
   1687}
   1688
   1689/**
   1690 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
   1691 * @priv: bdx adapter
   1692 *
   1693 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
   1694 * that those packets were sent
   1695 */
   1696static void bdx_tx_cleanup(struct bdx_priv *priv)
   1697{
   1698	struct txf_fifo *f = &priv->txf_fifo0;
   1699	struct txdb *db = &priv->txdb;
   1700	int tx_level = 0;
   1701
   1702	ENTER;
   1703	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
   1704	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
   1705
   1706	while (f->m.wptr != f->m.rptr) {
   1707		f->m.rptr += BDX_TXF_DESC_SZ;
   1708		f->m.rptr &= f->m.size_mask;
   1709
   1710		/* unmap all the fragments */
   1711		/* first has to come tx_maps containing dma */
   1712		BDX_ASSERT(db->rptr->len == 0);
   1713		do {
   1714			BDX_ASSERT(db->rptr->addr.dma == 0);
   1715			dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
   1716				       db->rptr->len, DMA_TO_DEVICE);
   1717			bdx_tx_db_inc_rptr(db);
   1718		} while (db->rptr->len > 0);
   1719		tx_level -= db->rptr->len;	/* '-' koz len is negative */
   1720
   1721		/* now should come skb pointer - free it */
   1722		dev_consume_skb_irq(db->rptr->addr.skb);
   1723		bdx_tx_db_inc_rptr(db);
   1724	}
   1725
   1726	/* let h/w know which TXF descriptors were cleaned */
   1727	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
   1728	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
   1729
   1730	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
   1731	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
   1732	spin_lock(&priv->tx_lock);
   1733	priv->tx_level += tx_level;
   1734	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
   1735#ifdef BDX_DELAY_WPTR
   1736	if (priv->tx_noupd) {
   1737		priv->tx_noupd = 0;
   1738		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
   1739			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
   1740	}
   1741#endif
   1742
   1743	if (unlikely(netif_queue_stopped(priv->ndev) &&
   1744		     netif_carrier_ok(priv->ndev) &&
   1745		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
   1746		DBG("%s: %s: TX Q WAKE level %d\n",
   1747		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
   1748		netif_wake_queue(priv->ndev);
   1749	}
   1750	spin_unlock(&priv->tx_lock);
   1751}
   1752
   1753/**
   1754 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
   1755 * @priv: NIC private structure
   1756 *
   1757 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
   1758 */
   1759static void bdx_tx_free_skbs(struct bdx_priv *priv)
   1760{
   1761	struct txdb *db = &priv->txdb;
   1762
   1763	ENTER;
   1764	while (db->rptr != db->wptr) {
   1765		if (likely(db->rptr->len))
   1766			dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
   1767				       db->rptr->len, DMA_TO_DEVICE);
   1768		else
   1769			dev_kfree_skb(db->rptr->addr.skb);
   1770		bdx_tx_db_inc_rptr(db);
   1771	}
   1772	RET();
   1773}
   1774
   1775/* bdx_tx_free - frees all Tx resources */
   1776static void bdx_tx_free(struct bdx_priv *priv)
   1777{
   1778	ENTER;
   1779	bdx_tx_free_skbs(priv);
   1780	bdx_fifo_free(priv, &priv->txd_fifo0.m);
   1781	bdx_fifo_free(priv, &priv->txf_fifo0.m);
   1782	bdx_tx_db_close(&priv->txdb);
   1783}
   1784
   1785/**
   1786 * bdx_tx_push_desc - push descriptor to TxD fifo
   1787 * @priv: NIC private structure
   1788 * @data: desc's data
   1789 * @size: desc's size
   1790 *
   1791 * Pushes desc to TxD fifo and overlaps it if needed.
   1792 * NOTE: this func does not check for available space. this is responsibility
   1793 *    of the caller. Neither does it check that data size is smaller than
   1794 *    fifo size.
   1795 */
   1796static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
   1797{
   1798	struct txd_fifo *f = &priv->txd_fifo0;
   1799	int i = f->m.memsz - f->m.wptr;
   1800
   1801	if (size == 0)
   1802		return;
   1803
   1804	if (i > size) {
   1805		memcpy(f->m.va + f->m.wptr, data, size);
   1806		f->m.wptr += size;
   1807	} else {
   1808		memcpy(f->m.va + f->m.wptr, data, i);
   1809		f->m.wptr = size - i;
   1810		memcpy(f->m.va, data + i, f->m.wptr);
   1811	}
   1812	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
   1813}
   1814
   1815/**
   1816 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
   1817 * @priv: NIC private structure
   1818 * @data: desc's data
   1819 * @size: desc's size
   1820 *
   1821 * NOTE: this func does check for available space and, if necessary, waits for
   1822 *   NIC to read existing data before writing new one.
   1823 */
   1824static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
   1825{
   1826	int timer = 0;
   1827	ENTER;
   1828
   1829	while (size > 0) {
   1830		/* we substruct 8 because when fifo is full rptr == wptr
   1831		   which also means that fifo is empty, we can understand
   1832		   the difference, but could hw do the same ??? :) */
   1833		int avail = bdx_tx_space(priv) - 8;
   1834		if (avail <= 0) {
   1835			if (timer++ > 300) {	/* prevent endless loop */
   1836				DBG("timeout while writing desc to TxD fifo\n");
   1837				break;
   1838			}
   1839			udelay(50);	/* give hw a chance to clean fifo */
   1840			continue;
   1841		}
   1842		avail = min(avail, size);
   1843		DBG("about to push  %d bytes starting %p size %d\n", avail,
   1844		    data, size);
   1845		bdx_tx_push_desc(priv, data, avail);
   1846		size -= avail;
   1847		data += avail;
   1848	}
   1849	RET();
   1850}
   1851
   1852static const struct net_device_ops bdx_netdev_ops = {
   1853	.ndo_open		= bdx_open,
   1854	.ndo_stop		= bdx_close,
   1855	.ndo_start_xmit		= bdx_tx_transmit,
   1856	.ndo_validate_addr	= eth_validate_addr,
   1857	.ndo_siocdevprivate	= bdx_siocdevprivate,
   1858	.ndo_set_rx_mode	= bdx_setmulti,
   1859	.ndo_change_mtu		= bdx_change_mtu,
   1860	.ndo_set_mac_address	= bdx_set_mac,
   1861	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
   1862	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
   1863};
   1864
   1865/**
   1866 * bdx_probe - Device Initialization Routine
   1867 * @pdev: PCI device information struct
   1868 * @ent: entry in bdx_pci_tbl
   1869 *
   1870 * Returns 0 on success, negative on failure
   1871 *
   1872 * bdx_probe initializes an adapter identified by a pci_dev structure.
   1873 * The OS initialization, configuring of the adapter private structure,
   1874 * and a hardware reset occur.
   1875 *
   1876 * functions and their order used as explained in
   1877 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
   1878 *
   1879 */
   1880
   1881/* TBD: netif_msg should be checked and implemented. I disable it for now */
   1882static int
   1883bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
   1884{
   1885	struct net_device *ndev;
   1886	struct bdx_priv *priv;
   1887	unsigned long pciaddr;
   1888	u32 regionSize;
   1889	struct pci_nic *nic;
   1890	int err, port;
   1891
   1892	ENTER;
   1893
   1894	nic = vmalloc(sizeof(*nic));
   1895	if (!nic)
   1896		RET(-ENOMEM);
   1897
   1898    /************** pci *****************/
   1899	err = pci_enable_device(pdev);
   1900	if (err)			/* it triggers interrupt, dunno why. */
   1901		goto err_pci;		/* it's not a problem though */
   1902
   1903	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
   1904	if (err) {
   1905		pr_err("No usable DMA configuration, aborting\n");
   1906		goto err_dma;
   1907	}
   1908
   1909	err = pci_request_regions(pdev, BDX_DRV_NAME);
   1910	if (err)
   1911		goto err_dma;
   1912
   1913	pci_set_master(pdev);
   1914
   1915	pciaddr = pci_resource_start(pdev, 0);
   1916	if (!pciaddr) {
   1917		err = -EIO;
   1918		pr_err("no MMIO resource\n");
   1919		goto err_out_res;
   1920	}
   1921	regionSize = pci_resource_len(pdev, 0);
   1922	if (regionSize < BDX_REGS_SIZE) {
   1923		err = -EIO;
   1924		pr_err("MMIO resource (%x) too small\n", regionSize);
   1925		goto err_out_res;
   1926	}
   1927
   1928	nic->regs = ioremap(pciaddr, regionSize);
   1929	if (!nic->regs) {
   1930		err = -EIO;
   1931		pr_err("ioremap failed\n");
   1932		goto err_out_res;
   1933	}
   1934
   1935	if (pdev->irq < 2) {
   1936		err = -EIO;
   1937		pr_err("invalid irq (%d)\n", pdev->irq);
   1938		goto err_out_iomap;
   1939	}
   1940	pci_set_drvdata(pdev, nic);
   1941
   1942	if (pdev->device == 0x3014)
   1943		nic->port_num = 2;
   1944	else
   1945		nic->port_num = 1;
   1946
   1947	print_hw_id(pdev);
   1948
   1949	bdx_hw_reset_direct(nic->regs);
   1950
   1951	nic->irq_type = IRQ_INTX;
   1952#ifdef BDX_MSI
   1953	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
   1954		err = pci_enable_msi(pdev);
   1955		if (err)
   1956			pr_err("Can't enable msi. error is %d\n", err);
   1957		else
   1958			nic->irq_type = IRQ_MSI;
   1959	} else
   1960		DBG("HW does not support MSI\n");
   1961#endif
   1962
   1963    /************** netdev **************/
   1964	for (port = 0; port < nic->port_num; port++) {
   1965		ndev = alloc_etherdev(sizeof(struct bdx_priv));
   1966		if (!ndev) {
   1967			err = -ENOMEM;
   1968			goto err_out_iomap;
   1969		}
   1970
   1971		ndev->netdev_ops = &bdx_netdev_ops;
   1972		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
   1973
   1974		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
   1975
   1976		/* these fields are used for info purposes only
   1977		 * so we can have them same for all ports of the board */
   1978		ndev->if_port = port;
   1979		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO |
   1980		    NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
   1981		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM |
   1982		    NETIF_F_HIGHDMA;
   1983
   1984		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
   1985			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
   1986
   1987	/************** priv ****************/
   1988		priv = nic->priv[port] = netdev_priv(ndev);
   1989
   1990		priv->pBdxRegs = nic->regs + port * 0x8000;
   1991		priv->port = port;
   1992		priv->pdev = pdev;
   1993		priv->ndev = ndev;
   1994		priv->nic = nic;
   1995		priv->msg_enable = BDX_DEF_MSG_ENABLE;
   1996
   1997		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
   1998
   1999		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
   2000			DBG("HW statistics not supported\n");
   2001			priv->stats_flag = 0;
   2002		} else {
   2003			priv->stats_flag = 1;
   2004		}
   2005
   2006		/* Initialize fifo sizes. */
   2007		priv->txd_size = 2;
   2008		priv->txf_size = 2;
   2009		priv->rxd_size = 2;
   2010		priv->rxf_size = 3;
   2011
   2012		/* Initialize the initial coalescing registers. */
   2013		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
   2014		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
   2015
   2016		/* ndev->xmit_lock spinlock is not used.
   2017		 * Private priv->tx_lock is used for synchronization
   2018		 * between transmit and TX irq cleanup.  In addition
   2019		 * set multicast list callback has to use priv->tx_lock.
   2020		 */
   2021#ifdef BDX_LLTX
   2022		ndev->features |= NETIF_F_LLTX;
   2023#endif
   2024		/* MTU range: 60 - 16384 */
   2025		ndev->min_mtu = ETH_ZLEN;
   2026		ndev->max_mtu = BDX_MAX_MTU;
   2027
   2028		spin_lock_init(&priv->tx_lock);
   2029
   2030		/*bdx_hw_reset(priv); */
   2031		if (bdx_read_mac(priv)) {
   2032			pr_err("load MAC address failed\n");
   2033			err = -EFAULT;
   2034			goto err_out_iomap;
   2035		}
   2036		SET_NETDEV_DEV(ndev, &pdev->dev);
   2037		err = register_netdev(ndev);
   2038		if (err) {
   2039			pr_err("register_netdev failed\n");
   2040			goto err_out_free;
   2041		}
   2042		netif_carrier_off(ndev);
   2043		netif_stop_queue(ndev);
   2044
   2045		print_eth_id(ndev);
   2046	}
   2047	RET(0);
   2048
   2049err_out_free:
   2050	free_netdev(ndev);
   2051err_out_iomap:
   2052	iounmap(nic->regs);
   2053err_out_res:
   2054	pci_release_regions(pdev);
   2055err_dma:
   2056	pci_disable_device(pdev);
   2057err_pci:
   2058	vfree(nic);
   2059
   2060	RET(err);
   2061}
   2062
   2063/****************** Ethtool interface *********************/
   2064/* get strings for statistics counters */
   2065static const char
   2066 bdx_stat_names[][ETH_GSTRING_LEN] = {
   2067	"InUCast",		/* 0x7200 */
   2068	"InMCast",		/* 0x7210 */
   2069	"InBCast",		/* 0x7220 */
   2070	"InPkts",		/* 0x7230 */
   2071	"InErrors",		/* 0x7240 */
   2072	"InDropped",		/* 0x7250 */
   2073	"FrameTooLong",		/* 0x7260 */
   2074	"FrameSequenceErrors",	/* 0x7270 */
   2075	"InVLAN",		/* 0x7280 */
   2076	"InDroppedDFE",		/* 0x7290 */
   2077	"InDroppedIntFull",	/* 0x72A0 */
   2078	"InFrameAlignErrors",	/* 0x72B0 */
   2079
   2080	/* 0x72C0-0x72E0 RSRV */
   2081
   2082	"OutUCast",		/* 0x72F0 */
   2083	"OutMCast",		/* 0x7300 */
   2084	"OutBCast",		/* 0x7310 */
   2085	"OutPkts",		/* 0x7320 */
   2086
   2087	/* 0x7330-0x7360 RSRV */
   2088
   2089	"OutVLAN",		/* 0x7370 */
   2090	"InUCastOctects",	/* 0x7380 */
   2091	"OutUCastOctects",	/* 0x7390 */
   2092
   2093	/* 0x73A0-0x73B0 RSRV */
   2094
   2095	"InBCastOctects",	/* 0x73C0 */
   2096	"OutBCastOctects",	/* 0x73D0 */
   2097	"InOctects",		/* 0x73E0 */
   2098	"OutOctects",		/* 0x73F0 */
   2099};
   2100
   2101/*
   2102 * bdx_get_link_ksettings - get device-specific settings
   2103 * @netdev
   2104 * @ecmd
   2105 */
   2106static int bdx_get_link_ksettings(struct net_device *netdev,
   2107				  struct ethtool_link_ksettings *ecmd)
   2108{
   2109	ethtool_link_ksettings_zero_link_mode(ecmd, supported);
   2110	ethtool_link_ksettings_add_link_mode(ecmd, supported,
   2111					     10000baseT_Full);
   2112	ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
   2113	ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
   2114	ethtool_link_ksettings_add_link_mode(ecmd, advertising,
   2115					     10000baseT_Full);
   2116	ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
   2117
   2118	ecmd->base.speed = SPEED_10000;
   2119	ecmd->base.duplex = DUPLEX_FULL;
   2120	ecmd->base.port = PORT_FIBRE;
   2121	ecmd->base.autoneg = AUTONEG_DISABLE;
   2122
   2123	return 0;
   2124}
   2125
   2126/*
   2127 * bdx_get_drvinfo - report driver information
   2128 * @netdev
   2129 * @drvinfo
   2130 */
   2131static void
   2132bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
   2133{
   2134	struct bdx_priv *priv = netdev_priv(netdev);
   2135
   2136	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
   2137	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
   2138	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
   2139	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
   2140		sizeof(drvinfo->bus_info));
   2141}
   2142
   2143/*
   2144 * bdx_get_coalesce - get interrupt coalescing parameters
   2145 * @netdev
   2146 * @ecoal
   2147 */
   2148static int bdx_get_coalesce(struct net_device *netdev,
   2149			    struct ethtool_coalesce *ecoal,
   2150			    struct kernel_ethtool_coalesce *kernel_coal,
   2151			    struct netlink_ext_ack *extack)
   2152{
   2153	u32 rdintcm;
   2154	u32 tdintcm;
   2155	struct bdx_priv *priv = netdev_priv(netdev);
   2156
   2157	rdintcm = priv->rdintcm;
   2158	tdintcm = priv->tdintcm;
   2159
   2160	/* PCK_TH measures in multiples of FIFO bytes
   2161	   We translate to packets */
   2162	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
   2163	ecoal->rx_max_coalesced_frames =
   2164	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
   2165
   2166	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
   2167	ecoal->tx_max_coalesced_frames =
   2168	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
   2169
   2170	/* adaptive parameters ignored */
   2171	return 0;
   2172}
   2173
   2174/*
   2175 * bdx_set_coalesce - set interrupt coalescing parameters
   2176 * @netdev
   2177 * @ecoal
   2178 */
   2179static int bdx_set_coalesce(struct net_device *netdev,
   2180			    struct ethtool_coalesce *ecoal,
   2181			    struct kernel_ethtool_coalesce *kernel_coal,
   2182			    struct netlink_ext_ack *extack)
   2183{
   2184	u32 rdintcm;
   2185	u32 tdintcm;
   2186	struct bdx_priv *priv = netdev_priv(netdev);
   2187	int rx_coal;
   2188	int tx_coal;
   2189	int rx_max_coal;
   2190	int tx_max_coal;
   2191
   2192	/* Check for valid input */
   2193	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
   2194	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
   2195	rx_max_coal = ecoal->rx_max_coalesced_frames;
   2196	tx_max_coal = ecoal->tx_max_coalesced_frames;
   2197
   2198	/* Translate from packets to multiples of FIFO bytes */
   2199	rx_max_coal =
   2200	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
   2201	     / PCK_TH_MULT);
   2202	tx_max_coal =
   2203	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
   2204	     / PCK_TH_MULT);
   2205
   2206	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
   2207	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
   2208		return -EINVAL;
   2209
   2210	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
   2211			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
   2212	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
   2213			      tx_max_coal);
   2214
   2215	priv->rdintcm = rdintcm;
   2216	priv->tdintcm = tdintcm;
   2217
   2218	WRITE_REG(priv, regRDINTCM0, rdintcm);
   2219	WRITE_REG(priv, regTDINTCM0, tdintcm);
   2220
   2221	return 0;
   2222}
   2223
   2224/* Convert RX fifo size to number of pending packets */
   2225static inline int bdx_rx_fifo_size_to_packets(int rx_size)
   2226{
   2227	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
   2228}
   2229
   2230/* Convert TX fifo size to number of pending packets */
   2231static inline int bdx_tx_fifo_size_to_packets(int tx_size)
   2232{
   2233	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
   2234}
   2235
   2236/*
   2237 * bdx_get_ringparam - report ring sizes
   2238 * @netdev
   2239 * @ring
   2240 * @kernel_ring
   2241 * @extack
   2242 */
   2243static void
   2244bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
   2245		  struct kernel_ethtool_ringparam *kernel_ring,
   2246		  struct netlink_ext_ack *extack)
   2247{
   2248	struct bdx_priv *priv = netdev_priv(netdev);
   2249
   2250	/*max_pending - the maximum-sized FIFO we allow */
   2251	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
   2252	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
   2253	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
   2254	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
   2255}
   2256
   2257/*
   2258 * bdx_set_ringparam - set ring sizes
   2259 * @netdev
   2260 * @ring
   2261 * @kernel_ring
   2262 * @extack
   2263 */
   2264static int
   2265bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
   2266		  struct kernel_ethtool_ringparam *kernel_ring,
   2267		  struct netlink_ext_ack *extack)
   2268{
   2269	struct bdx_priv *priv = netdev_priv(netdev);
   2270	int rx_size = 0;
   2271	int tx_size = 0;
   2272
   2273	for (; rx_size < 4; rx_size++) {
   2274		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
   2275			break;
   2276	}
   2277	if (rx_size == 4)
   2278		rx_size = 3;
   2279
   2280	for (; tx_size < 4; tx_size++) {
   2281		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
   2282			break;
   2283	}
   2284	if (tx_size == 4)
   2285		tx_size = 3;
   2286
   2287	/*Is there anything to do? */
   2288	if ((rx_size == priv->rxf_size) &&
   2289	    (tx_size == priv->txd_size))
   2290		return 0;
   2291
   2292	priv->rxf_size = rx_size;
   2293	if (rx_size > 1)
   2294		priv->rxd_size = rx_size - 1;
   2295	else
   2296		priv->rxd_size = rx_size;
   2297
   2298	priv->txf_size = priv->txd_size = tx_size;
   2299
   2300	if (netif_running(netdev)) {
   2301		bdx_close(netdev);
   2302		bdx_open(netdev);
   2303	}
   2304	return 0;
   2305}
   2306
   2307/*
   2308 * bdx_get_strings - return a set of strings that describe the requested objects
   2309 * @netdev
   2310 * @data
   2311 */
   2312static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
   2313{
   2314	switch (stringset) {
   2315	case ETH_SS_STATS:
   2316		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
   2317		break;
   2318	}
   2319}
   2320
   2321/*
   2322 * bdx_get_sset_count - return number of statistics or tests
   2323 * @netdev
   2324 */
   2325static int bdx_get_sset_count(struct net_device *netdev, int stringset)
   2326{
   2327	struct bdx_priv *priv = netdev_priv(netdev);
   2328
   2329	switch (stringset) {
   2330	case ETH_SS_STATS:
   2331		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
   2332			   != sizeof(struct bdx_stats) / sizeof(u64));
   2333		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
   2334	}
   2335
   2336	return -EINVAL;
   2337}
   2338
   2339/*
   2340 * bdx_get_ethtool_stats - return device's hardware L2 statistics
   2341 * @netdev
   2342 * @stats
   2343 * @data
   2344 */
   2345static void bdx_get_ethtool_stats(struct net_device *netdev,
   2346				  struct ethtool_stats *stats, u64 *data)
   2347{
   2348	struct bdx_priv *priv = netdev_priv(netdev);
   2349
   2350	if (priv->stats_flag) {
   2351
   2352		/* Update stats from HW */
   2353		bdx_update_stats(priv);
   2354
   2355		/* Copy data to user buffer */
   2356		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
   2357	}
   2358}
   2359
   2360/*
   2361 * bdx_set_ethtool_ops - ethtool interface implementation
   2362 * @netdev
   2363 */
   2364static void bdx_set_ethtool_ops(struct net_device *netdev)
   2365{
   2366	static const struct ethtool_ops bdx_ethtool_ops = {
   2367		.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
   2368					     ETHTOOL_COALESCE_MAX_FRAMES,
   2369		.get_drvinfo = bdx_get_drvinfo,
   2370		.get_link = ethtool_op_get_link,
   2371		.get_coalesce = bdx_get_coalesce,
   2372		.set_coalesce = bdx_set_coalesce,
   2373		.get_ringparam = bdx_get_ringparam,
   2374		.set_ringparam = bdx_set_ringparam,
   2375		.get_strings = bdx_get_strings,
   2376		.get_sset_count = bdx_get_sset_count,
   2377		.get_ethtool_stats = bdx_get_ethtool_stats,
   2378		.get_link_ksettings = bdx_get_link_ksettings,
   2379	};
   2380
   2381	netdev->ethtool_ops = &bdx_ethtool_ops;
   2382}
   2383
   2384/**
   2385 * bdx_remove - Device Removal Routine
   2386 * @pdev: PCI device information struct
   2387 *
   2388 * bdx_remove is called by the PCI subsystem to alert the driver
   2389 * that it should release a PCI device.  The could be caused by a
   2390 * Hot-Plug event, or because the driver is going to be removed from
   2391 * memory.
   2392 **/
   2393static void bdx_remove(struct pci_dev *pdev)
   2394{
   2395	struct pci_nic *nic = pci_get_drvdata(pdev);
   2396	struct net_device *ndev;
   2397	int port;
   2398
   2399	for (port = 0; port < nic->port_num; port++) {
   2400		ndev = nic->priv[port]->ndev;
   2401		unregister_netdev(ndev);
   2402		free_netdev(ndev);
   2403	}
   2404
   2405	/*bdx_hw_reset_direct(nic->regs); */
   2406#ifdef BDX_MSI
   2407	if (nic->irq_type == IRQ_MSI)
   2408		pci_disable_msi(pdev);
   2409#endif
   2410
   2411	iounmap(nic->regs);
   2412	pci_release_regions(pdev);
   2413	pci_disable_device(pdev);
   2414	vfree(nic);
   2415
   2416	RET();
   2417}
   2418
   2419static struct pci_driver bdx_pci_driver = {
   2420	.name = BDX_DRV_NAME,
   2421	.id_table = bdx_pci_tbl,
   2422	.probe = bdx_probe,
   2423	.remove = bdx_remove,
   2424};
   2425
   2426/*
   2427 * print_driver_id - print parameters of the driver build
   2428 */
   2429static void __init print_driver_id(void)
   2430{
   2431	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
   2432	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
   2433}
   2434
   2435static int __init bdx_module_init(void)
   2436{
   2437	ENTER;
   2438	init_txd_sizes();
   2439	print_driver_id();
   2440	RET(pci_register_driver(&bdx_pci_driver));
   2441}
   2442
   2443module_init(bdx_module_init);
   2444
   2445static void __exit bdx_module_exit(void)
   2446{
   2447	ENTER;
   2448	pci_unregister_driver(&bdx_pci_driver);
   2449	RET();
   2450}
   2451
   2452module_exit(bdx_module_exit);
   2453
   2454MODULE_LICENSE("GPL");
   2455MODULE_AUTHOR(DRIVER_AUTHOR);
   2456MODULE_DESCRIPTION(BDX_DRV_DESC);
   2457MODULE_FIRMWARE("tehuti/bdx.bin");