cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tsi108_eth.c (46666B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*******************************************************************************
      3
      4  Copyright(c) 2006 Tundra Semiconductor Corporation.
      5
      6
      7*******************************************************************************/
      8
      9/* This driver is based on the driver code originally developed
     10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
     11 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
     12 *
     13 * Currently changes from original version are:
     14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
     15 * - modifications to handle two ports independently and support for
     16 *   additional PHY devices (alexandre.bounine@tundra.com)
     17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
     18 *
     19 */
     20
     21#include <linux/module.h>
     22#include <linux/types.h>
     23#include <linux/interrupt.h>
     24#include <linux/net.h>
     25#include <linux/netdevice.h>
     26#include <linux/etherdevice.h>
     27#include <linux/ethtool.h>
     28#include <linux/skbuff.h>
     29#include <linux/spinlock.h>
     30#include <linux/delay.h>
     31#include <linux/crc32.h>
     32#include <linux/mii.h>
     33#include <linux/device.h>
     34#include <linux/pci.h>
     35#include <linux/rtnetlink.h>
     36#include <linux/timer.h>
     37#include <linux/platform_device.h>
     38#include <linux/gfp.h>
     39
     40#include <asm/io.h>
     41#include <asm/tsi108.h>
     42
     43#include "tsi108_eth.h"
     44
     45#define MII_READ_DELAY 10000	/* max link wait time in msec */
     46
     47#define TSI108_RXRING_LEN     256
     48
     49/* NOTE: The driver currently does not support receiving packets
     50 * larger than the buffer size, so don't decrease this (unless you
     51 * want to add such support).
     52 */
     53#define TSI108_RXBUF_SIZE     1536
     54
     55#define TSI108_TXRING_LEN     256
     56
     57#define TSI108_TX_INT_FREQ    64
     58
     59/* Check the phy status every half a second. */
     60#define CHECK_PHY_INTERVAL (HZ/2)
     61
     62static int tsi108_init_one(struct platform_device *pdev);
     63static int tsi108_ether_remove(struct platform_device *pdev);
     64
     65struct tsi108_prv_data {
     66	void  __iomem *regs;	/* Base of normal regs */
     67	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
     68
     69	struct net_device *dev;
     70	struct napi_struct napi;
     71
     72	unsigned int phy;		/* Index of PHY for this interface */
     73	unsigned int irq_num;
     74	unsigned int id;
     75	unsigned int phy_type;
     76
     77	struct timer_list timer;/* Timer that triggers the check phy function */
     78	unsigned int rxtail;	/* Next entry in rxring to read */
     79	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
     80	unsigned int rxfree;	/* Number of free, allocated RX buffers */
     81
     82	unsigned int rxpending;	/* Non-zero if there are still descriptors
     83				 * to be processed from a previous descriptor
     84				 * interrupt condition that has been cleared */
     85
     86	unsigned int txtail;	/* Next TX descriptor to check status on */
     87	unsigned int txhead;	/* Next TX descriptor to use */
     88
     89	/* Number of free TX descriptors.  This could be calculated from
     90	 * rxhead and rxtail if one descriptor were left unused to disambiguate
     91	 * full and empty conditions, but it's simpler to just keep track
     92	 * explicitly. */
     93
     94	unsigned int txfree;
     95
     96	unsigned int phy_ok;		/* The PHY is currently powered on. */
     97
     98	/* PHY status (duplex is 1 for half, 2 for full,
     99	 * so that the default 0 indicates that neither has
    100	 * yet been configured). */
    101
    102	unsigned int link_up;
    103	unsigned int speed;
    104	unsigned int duplex;
    105
    106	tx_desc *txring;
    107	rx_desc *rxring;
    108	struct sk_buff *txskbs[TSI108_TXRING_LEN];
    109	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
    110
    111	dma_addr_t txdma, rxdma;
    112
    113	/* txlock nests in misclock and phy_lock */
    114
    115	spinlock_t txlock, misclock;
    116
    117	/* stats is used to hold the upper bits of each hardware counter,
    118	 * and tmpstats is used to hold the full values for returning
    119	 * to the caller of get_stats().  They must be separate in case
    120	 * an overflow interrupt occurs before the stats are consumed.
    121	 */
    122
    123	struct net_device_stats stats;
    124	struct net_device_stats tmpstats;
    125
    126	/* These stats are kept separate in hardware, thus require individual
    127	 * fields for handling carry.  They are combined in get_stats.
    128	 */
    129
    130	unsigned long rx_fcs;	/* Add to rx_frame_errors */
    131	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
    132	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
    133	unsigned long rx_underruns;	/* Add to rx_length_errors */
    134	unsigned long rx_overruns;	/* Add to rx_length_errors */
    135
    136	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
    137	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
    138
    139	unsigned long mc_hash[16];
    140	u32 msg_enable;			/* debug message level */
    141	struct mii_if_info mii_if;
    142	unsigned int init_media;
    143
    144	struct platform_device *pdev;
    145};
    146
    147/* Structure for a device driver */
    148
    149static struct platform_driver tsi_eth_driver = {
    150	.probe = tsi108_init_one,
    151	.remove = tsi108_ether_remove,
    152	.driver	= {
    153		.name = "tsi-ethernet",
    154	},
    155};
    156
    157static void tsi108_timed_checker(struct timer_list *t);
    158
    159#ifdef DEBUG
    160static void dump_eth_one(struct net_device *dev)
    161{
    162	struct tsi108_prv_data *data = netdev_priv(dev);
    163
    164	printk("Dumping %s...\n", dev->name);
    165	printk("intstat %x intmask %x phy_ok %d"
    166	       " link %d speed %d duplex %d\n",
    167	       TSI_READ(TSI108_EC_INTSTAT),
    168	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
    169	       data->link_up, data->speed, data->duplex);
    170
    171	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
    172	       data->txhead, data->txtail, data->txfree,
    173	       TSI_READ(TSI108_EC_TXSTAT),
    174	       TSI_READ(TSI108_EC_TXESTAT),
    175	       TSI_READ(TSI108_EC_TXERR));
    176
    177	printk("RX: head %d, tail %d, free %d, stat %x,"
    178	       " estat %x, err %x, pending %d\n\n",
    179	       data->rxhead, data->rxtail, data->rxfree,
    180	       TSI_READ(TSI108_EC_RXSTAT),
    181	       TSI_READ(TSI108_EC_RXESTAT),
    182	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
    183}
    184#endif
    185
    186/* Synchronization is needed between the thread and up/down events.
    187 * Note that the PHY is accessed through the same registers for both
    188 * interfaces, so this can't be made interface-specific.
    189 */
    190
    191static DEFINE_SPINLOCK(phy_lock);
    192
    193static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
    194{
    195	unsigned i;
    196
    197	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
    198				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
    199				(reg << TSI108_MAC_MII_ADDR_REG));
    200	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
    201	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
    202	for (i = 0; i < 100; i++) {
    203		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
    204		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
    205			break;
    206		udelay(10);
    207	}
    208
    209	if (i == 100)
    210		return 0xffff;
    211	else
    212		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
    213}
    214
    215static void tsi108_write_mii(struct tsi108_prv_data *data,
    216				int reg, u16 val)
    217{
    218	unsigned i = 100;
    219	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
    220				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
    221				(reg << TSI108_MAC_MII_ADDR_REG));
    222	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
    223	while (i--) {
    224		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
    225			TSI108_MAC_MII_IND_BUSY))
    226			break;
    227		udelay(10);
    228	}
    229}
    230
    231static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
    232{
    233	struct tsi108_prv_data *data = netdev_priv(dev);
    234	return tsi108_read_mii(data, reg);
    235}
    236
    237static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
    238{
    239	struct tsi108_prv_data *data = netdev_priv(dev);
    240	tsi108_write_mii(data, reg, val);
    241}
    242
    243static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
    244					int reg, u16 val)
    245{
    246	unsigned i = 1000;
    247	TSI_WRITE(TSI108_MAC_MII_ADDR,
    248			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
    249			     | (reg << TSI108_MAC_MII_ADDR_REG));
    250	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
    251	while(i--) {
    252		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
    253			return;
    254		udelay(10);
    255	}
    256	printk(KERN_ERR "%s function time out\n", __func__);
    257}
    258
    259static int mii_speed(struct mii_if_info *mii)
    260{
    261	int advert, lpa, val, media;
    262	int lpa2 = 0;
    263	int speed;
    264
    265	if (!mii_link_ok(mii))
    266		return 0;
    267
    268	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
    269	if ((val & BMSR_ANEGCOMPLETE) == 0)
    270		return 0;
    271
    272	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
    273	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
    274	media = mii_nway_result(advert & lpa);
    275
    276	if (mii->supports_gmii)
    277		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
    278
    279	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
    280			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
    281	return speed;
    282}
    283
    284static void tsi108_check_phy(struct net_device *dev)
    285{
    286	struct tsi108_prv_data *data = netdev_priv(dev);
    287	u32 mac_cfg2_reg, portctrl_reg;
    288	u32 duplex;
    289	u32 speed;
    290	unsigned long flags;
    291
    292	spin_lock_irqsave(&phy_lock, flags);
    293
    294	if (!data->phy_ok)
    295		goto out;
    296
    297	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
    298	data->init_media = 0;
    299
    300	if (netif_carrier_ok(dev)) {
    301
    302		speed = mii_speed(&data->mii_if);
    303
    304		if ((speed != data->speed) || duplex) {
    305
    306			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
    307			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
    308
    309			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
    310
    311			if (speed == 1000) {
    312				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
    313				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
    314			} else {
    315				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
    316				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
    317			}
    318
    319			data->speed = speed;
    320
    321			if (data->mii_if.full_duplex) {
    322				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
    323				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
    324				data->duplex = 2;
    325			} else {
    326				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
    327				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
    328				data->duplex = 1;
    329			}
    330
    331			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
    332			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
    333		}
    334
    335		if (data->link_up == 0) {
    336			/* The manual says it can take 3-4 usecs for the speed change
    337			 * to take effect.
    338			 */
    339			udelay(5);
    340
    341			spin_lock(&data->txlock);
    342			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
    343				netif_wake_queue(dev);
    344
    345			data->link_up = 1;
    346			spin_unlock(&data->txlock);
    347		}
    348	} else {
    349		if (data->link_up == 1) {
    350			netif_stop_queue(dev);
    351			data->link_up = 0;
    352			printk(KERN_NOTICE "%s : link is down\n", dev->name);
    353		}
    354
    355		goto out;
    356	}
    357
    358
    359out:
    360	spin_unlock_irqrestore(&phy_lock, flags);
    361}
    362
    363static inline void
    364tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
    365		      unsigned long *upper)
    366{
    367	if (carry & carry_bit)
    368		*upper += carry_shift;
    369}
    370
    371static void tsi108_stat_carry(struct net_device *dev)
    372{
    373	struct tsi108_prv_data *data = netdev_priv(dev);
    374	unsigned long flags;
    375	u32 carry1, carry2;
    376
    377	spin_lock_irqsave(&data->misclock, flags);
    378
    379	carry1 = TSI_READ(TSI108_STAT_CARRY1);
    380	carry2 = TSI_READ(TSI108_STAT_CARRY2);
    381
    382	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
    383	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
    384
    385	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
    386			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
    387
    388	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
    389			      TSI108_STAT_RXPKTS_CARRY,
    390			      &data->stats.rx_packets);
    391
    392	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
    393			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
    394
    395	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
    396			      TSI108_STAT_RXMCAST_CARRY,
    397			      &data->stats.multicast);
    398
    399	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
    400			      TSI108_STAT_RXALIGN_CARRY,
    401			      &data->stats.rx_frame_errors);
    402
    403	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
    404			      TSI108_STAT_RXLENGTH_CARRY,
    405			      &data->stats.rx_length_errors);
    406
    407	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
    408			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
    409
    410	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
    411			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
    412
    413	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
    414			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
    415
    416	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
    417			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
    418
    419	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
    420			      TSI108_STAT_RXDROP_CARRY,
    421			      &data->stats.rx_missed_errors);
    422
    423	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
    424			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
    425
    426	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
    427			      TSI108_STAT_TXPKTS_CARRY,
    428			      &data->stats.tx_packets);
    429
    430	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
    431			      TSI108_STAT_TXEXDEF_CARRY,
    432			      &data->stats.tx_aborted_errors);
    433
    434	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
    435			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
    436
    437	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
    438			      TSI108_STAT_TXTCOL_CARRY,
    439			      &data->stats.collisions);
    440
    441	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
    442			      TSI108_STAT_TXPAUSEDROP_CARRY,
    443			      &data->tx_pause_drop);
    444
    445	spin_unlock_irqrestore(&data->misclock, flags);
    446}
    447
    448/* Read a stat counter atomically with respect to carries.
    449 * data->misclock must be held.
    450 */
    451static inline unsigned long
    452tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
    453		 int carry_shift, unsigned long *upper)
    454{
    455	int carryreg;
    456	unsigned long val;
    457
    458	if (reg < 0xb0)
    459		carryreg = TSI108_STAT_CARRY1;
    460	else
    461		carryreg = TSI108_STAT_CARRY2;
    462
    463      again:
    464	val = TSI_READ(reg) | *upper;
    465
    466	/* Check to see if it overflowed, but the interrupt hasn't
    467	 * been serviced yet.  If so, handle the carry here, and
    468	 * try again.
    469	 */
    470
    471	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
    472		*upper += carry_shift;
    473		TSI_WRITE(carryreg, carry_bit);
    474		goto again;
    475	}
    476
    477	return val;
    478}
    479
    480static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
    481{
    482	unsigned long excol;
    483
    484	struct tsi108_prv_data *data = netdev_priv(dev);
    485	spin_lock_irq(&data->misclock);
    486
    487	data->tmpstats.rx_packets =
    488	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
    489			     TSI108_STAT_CARRY1_RXPKTS,
    490			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
    491
    492	data->tmpstats.tx_packets =
    493	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
    494			     TSI108_STAT_CARRY2_TXPKTS,
    495			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
    496
    497	data->tmpstats.rx_bytes =
    498	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
    499			     TSI108_STAT_CARRY1_RXBYTES,
    500			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
    501
    502	data->tmpstats.tx_bytes =
    503	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
    504			     TSI108_STAT_CARRY2_TXBYTES,
    505			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
    506
    507	data->tmpstats.multicast =
    508	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
    509			     TSI108_STAT_CARRY1_RXMCAST,
    510			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
    511
    512	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
    513				 TSI108_STAT_CARRY2_TXEXCOL,
    514				 TSI108_STAT_TXEXCOL_CARRY,
    515				 &data->tx_coll_abort);
    516
    517	data->tmpstats.collisions =
    518	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
    519			     TSI108_STAT_CARRY2_TXTCOL,
    520			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
    521
    522	data->tmpstats.collisions += excol;
    523
    524	data->tmpstats.rx_length_errors =
    525	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
    526			     TSI108_STAT_CARRY1_RXLENGTH,
    527			     TSI108_STAT_RXLENGTH_CARRY,
    528			     &data->stats.rx_length_errors);
    529
    530	data->tmpstats.rx_length_errors +=
    531	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
    532			     TSI108_STAT_CARRY1_RXRUNT,
    533			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
    534
    535	data->tmpstats.rx_length_errors +=
    536	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
    537			     TSI108_STAT_CARRY1_RXJUMBO,
    538			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
    539
    540	data->tmpstats.rx_frame_errors =
    541	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
    542			     TSI108_STAT_CARRY1_RXALIGN,
    543			     TSI108_STAT_RXALIGN_CARRY,
    544			     &data->stats.rx_frame_errors);
    545
    546	data->tmpstats.rx_frame_errors +=
    547	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
    548			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
    549			     &data->rx_fcs);
    550
    551	data->tmpstats.rx_frame_errors +=
    552	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
    553			     TSI108_STAT_CARRY1_RXFRAG,
    554			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
    555
    556	data->tmpstats.rx_missed_errors =
    557	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
    558			     TSI108_STAT_CARRY1_RXDROP,
    559			     TSI108_STAT_RXDROP_CARRY,
    560			     &data->stats.rx_missed_errors);
    561
    562	/* These three are maintained by software. */
    563	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
    564	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
    565
    566	data->tmpstats.tx_aborted_errors =
    567	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
    568			     TSI108_STAT_CARRY2_TXEXDEF,
    569			     TSI108_STAT_TXEXDEF_CARRY,
    570			     &data->stats.tx_aborted_errors);
    571
    572	data->tmpstats.tx_aborted_errors +=
    573	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
    574			     TSI108_STAT_CARRY2_TXPAUSE,
    575			     TSI108_STAT_TXPAUSEDROP_CARRY,
    576			     &data->tx_pause_drop);
    577
    578	data->tmpstats.tx_aborted_errors += excol;
    579
    580	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
    581	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
    582	    data->tmpstats.rx_crc_errors +
    583	    data->tmpstats.rx_frame_errors +
    584	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
    585
    586	spin_unlock_irq(&data->misclock);
    587	return &data->tmpstats;
    588}
    589
    590static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
    591{
    592	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
    593			     TSI108_EC_RXQ_PTRHIGH_VALID);
    594
    595	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
    596			     | TSI108_EC_RXCTRL_QUEUE0);
    597}
    598
    599static void tsi108_restart_tx(struct tsi108_prv_data * data)
    600{
    601	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
    602			     TSI108_EC_TXQ_PTRHIGH_VALID);
    603
    604	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
    605			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
    606}
    607
    608/* txlock must be held by caller, with IRQs disabled, and
    609 * with permission to re-enable them when the lock is dropped.
    610 */
    611static void tsi108_complete_tx(struct net_device *dev)
    612{
    613	struct tsi108_prv_data *data = netdev_priv(dev);
    614	int tx;
    615	struct sk_buff *skb;
    616	int release = 0;
    617
    618	while (!data->txfree || data->txhead != data->txtail) {
    619		tx = data->txtail;
    620
    621		if (data->txring[tx].misc & TSI108_TX_OWN)
    622			break;
    623
    624		skb = data->txskbs[tx];
    625
    626		if (!(data->txring[tx].misc & TSI108_TX_OK))
    627			printk("%s: bad tx packet, misc %x\n",
    628			       dev->name, data->txring[tx].misc);
    629
    630		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
    631		data->txfree++;
    632
    633		if (data->txring[tx].misc & TSI108_TX_EOF) {
    634			dev_kfree_skb_any(skb);
    635			release++;
    636		}
    637	}
    638
    639	if (release) {
    640		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
    641			netif_wake_queue(dev);
    642	}
    643}
    644
    645static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
    646{
    647	struct tsi108_prv_data *data = netdev_priv(dev);
    648	int frags = skb_shinfo(skb)->nr_frags + 1;
    649	int i;
    650
    651	if (!data->phy_ok && net_ratelimit())
    652		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
    653
    654	if (!data->link_up) {
    655		printk(KERN_ERR "%s: Transmit while link is down!\n",
    656		       dev->name);
    657		netif_stop_queue(dev);
    658		return NETDEV_TX_BUSY;
    659	}
    660
    661	if (data->txfree < MAX_SKB_FRAGS + 1) {
    662		netif_stop_queue(dev);
    663
    664		if (net_ratelimit())
    665			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
    666			       dev->name);
    667		return NETDEV_TX_BUSY;
    668	}
    669
    670	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
    671		netif_stop_queue(dev);
    672	}
    673
    674	spin_lock_irq(&data->txlock);
    675
    676	for (i = 0; i < frags; i++) {
    677		int misc = 0;
    678		int tx = data->txhead;
    679
    680		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
    681		 * the interrupt bit.  TX descriptor-complete interrupts are
    682		 * enabled when the queue fills up, and masked when there is
    683		 * still free space.  This way, when saturating the outbound
    684		 * link, the tx interrupts are kept to a reasonable level.
    685		 * When the queue is not full, reclamation of skbs still occurs
    686		 * as new packets are transmitted, or on a queue-empty
    687		 * interrupt.
    688		 */
    689
    690		if ((tx % TSI108_TX_INT_FREQ == 0) &&
    691		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
    692			misc = TSI108_TX_INT;
    693
    694		data->txskbs[tx] = skb;
    695
    696		if (i == 0) {
    697			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
    698					skb->data, skb_headlen(skb),
    699					DMA_TO_DEVICE);
    700			data->txring[tx].len = skb_headlen(skb);
    701			misc |= TSI108_TX_SOF;
    702		} else {
    703			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
    704
    705			data->txring[tx].buf0 =
    706				skb_frag_dma_map(&data->pdev->dev, frag,
    707						0, skb_frag_size(frag),
    708						DMA_TO_DEVICE);
    709			data->txring[tx].len = skb_frag_size(frag);
    710		}
    711
    712		if (i == frags - 1)
    713			misc |= TSI108_TX_EOF;
    714
    715		if (netif_msg_pktdata(data)) {
    716			int i;
    717			printk("%s: Tx Frame contents (%d)\n", dev->name,
    718			       skb->len);
    719			for (i = 0; i < skb->len; i++)
    720				printk(" %2.2x", skb->data[i]);
    721			printk(".\n");
    722		}
    723		data->txring[tx].misc = misc | TSI108_TX_OWN;
    724
    725		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
    726		data->txfree--;
    727	}
    728
    729	tsi108_complete_tx(dev);
    730
    731	/* This must be done after the check for completed tx descriptors,
    732	 * so that the tail pointer is correct.
    733	 */
    734
    735	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
    736		tsi108_restart_tx(data);
    737
    738	spin_unlock_irq(&data->txlock);
    739	return NETDEV_TX_OK;
    740}
    741
    742static int tsi108_complete_rx(struct net_device *dev, int budget)
    743{
    744	struct tsi108_prv_data *data = netdev_priv(dev);
    745	int done = 0;
    746
    747	while (data->rxfree && done != budget) {
    748		int rx = data->rxtail;
    749		struct sk_buff *skb;
    750
    751		if (data->rxring[rx].misc & TSI108_RX_OWN)
    752			break;
    753
    754		skb = data->rxskbs[rx];
    755		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
    756		data->rxfree--;
    757		done++;
    758
    759		if (data->rxring[rx].misc & TSI108_RX_BAD) {
    760			spin_lock_irq(&data->misclock);
    761
    762			if (data->rxring[rx].misc & TSI108_RX_CRC)
    763				data->stats.rx_crc_errors++;
    764			if (data->rxring[rx].misc & TSI108_RX_OVER)
    765				data->stats.rx_fifo_errors++;
    766
    767			spin_unlock_irq(&data->misclock);
    768
    769			dev_kfree_skb_any(skb);
    770			continue;
    771		}
    772		if (netif_msg_pktdata(data)) {
    773			int i;
    774			printk("%s: Rx Frame contents (%d)\n",
    775			       dev->name, data->rxring[rx].len);
    776			for (i = 0; i < data->rxring[rx].len; i++)
    777				printk(" %2.2x", skb->data[i]);
    778			printk(".\n");
    779		}
    780
    781		skb_put(skb, data->rxring[rx].len);
    782		skb->protocol = eth_type_trans(skb, dev);
    783		netif_receive_skb(skb);
    784	}
    785
    786	return done;
    787}
    788
    789static int tsi108_refill_rx(struct net_device *dev, int budget)
    790{
    791	struct tsi108_prv_data *data = netdev_priv(dev);
    792	int done = 0;
    793
    794	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
    795		int rx = data->rxhead;
    796		struct sk_buff *skb;
    797
    798		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
    799		data->rxskbs[rx] = skb;
    800		if (!skb)
    801			break;
    802
    803		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
    804				skb->data, TSI108_RX_SKB_SIZE,
    805				DMA_FROM_DEVICE);
    806
    807		/* Sometimes the hardware sets blen to zero after packet
    808		 * reception, even though the manual says that it's only ever
    809		 * modified by the driver.
    810		 */
    811
    812		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
    813		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
    814
    815		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
    816		data->rxfree++;
    817		done++;
    818	}
    819
    820	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
    821			   TSI108_EC_RXSTAT_QUEUE0))
    822		tsi108_restart_rx(data, dev);
    823
    824	return done;
    825}
    826
    827static int tsi108_poll(struct napi_struct *napi, int budget)
    828{
    829	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
    830	struct net_device *dev = data->dev;
    831	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
    832	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
    833	int num_received = 0, num_filled = 0;
    834
    835	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
    836	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
    837
    838	TSI_WRITE(TSI108_EC_RXESTAT, estat);
    839	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
    840
    841	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
    842		num_received = tsi108_complete_rx(dev, budget);
    843
    844	/* This should normally fill no more slots than the number of
    845	 * packets received in tsi108_complete_rx().  The exception
    846	 * is when we previously ran out of memory for RX SKBs.  In that
    847	 * case, it's helpful to obey the budget, not only so that the
    848	 * CPU isn't hogged, but so that memory (which may still be low)
    849	 * is not hogged by one device.
    850	 *
    851	 * A work unit is considered to be two SKBs to allow us to catch
    852	 * up when the ring has shrunk due to out-of-memory but we're
    853	 * still removing the full budget's worth of packets each time.
    854	 */
    855
    856	if (data->rxfree < TSI108_RXRING_LEN)
    857		num_filled = tsi108_refill_rx(dev, budget * 2);
    858
    859	if (intstat & TSI108_INT_RXERROR) {
    860		u32 err = TSI_READ(TSI108_EC_RXERR);
    861		TSI_WRITE(TSI108_EC_RXERR, err);
    862
    863		if (err) {
    864			if (net_ratelimit())
    865				printk(KERN_DEBUG "%s: RX error %x\n",
    866				       dev->name, err);
    867
    868			if (!(TSI_READ(TSI108_EC_RXSTAT) &
    869			      TSI108_EC_RXSTAT_QUEUE0))
    870				tsi108_restart_rx(data, dev);
    871		}
    872	}
    873
    874	if (intstat & TSI108_INT_RXOVERRUN) {
    875		spin_lock_irq(&data->misclock);
    876		data->stats.rx_fifo_errors++;
    877		spin_unlock_irq(&data->misclock);
    878	}
    879
    880	if (num_received < budget) {
    881		data->rxpending = 0;
    882		napi_complete_done(napi, num_received);
    883
    884		TSI_WRITE(TSI108_EC_INTMASK,
    885				     TSI_READ(TSI108_EC_INTMASK)
    886				     & ~(TSI108_INT_RXQUEUE0
    887					 | TSI108_INT_RXTHRESH |
    888					 TSI108_INT_RXOVERRUN |
    889					 TSI108_INT_RXERROR |
    890					 TSI108_INT_RXWAIT));
    891	} else {
    892		data->rxpending = 1;
    893	}
    894
    895	return num_received;
    896}
    897
    898static void tsi108_rx_int(struct net_device *dev)
    899{
    900	struct tsi108_prv_data *data = netdev_priv(dev);
    901
    902	/* A race could cause dev to already be scheduled, so it's not an
    903	 * error if that happens (and interrupts shouldn't be re-masked,
    904	 * because that can cause harmful races, if poll has already
    905	 * unmasked them but not cleared LINK_STATE_SCHED).
    906	 *
    907	 * This can happen if this code races with tsi108_poll(), which masks
    908	 * the interrupts after tsi108_irq_one() read the mask, but before
    909	 * napi_schedule is called.  It could also happen due to calls
    910	 * from tsi108_check_rxring().
    911	 */
    912
    913	if (napi_schedule_prep(&data->napi)) {
    914		/* Mask, rather than ack, the receive interrupts.  The ack
    915		 * will happen in tsi108_poll().
    916		 */
    917
    918		TSI_WRITE(TSI108_EC_INTMASK,
    919				     TSI_READ(TSI108_EC_INTMASK) |
    920				     TSI108_INT_RXQUEUE0
    921				     | TSI108_INT_RXTHRESH |
    922				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
    923				     TSI108_INT_RXWAIT);
    924		__napi_schedule(&data->napi);
    925	} else {
    926		if (!netif_running(dev)) {
    927			/* This can happen if an interrupt occurs while the
    928			 * interface is being brought down, as the START
    929			 * bit is cleared before the stop function is called.
    930			 *
    931			 * In this case, the interrupts must be masked, or
    932			 * they will continue indefinitely.
    933			 *
    934			 * There's a race here if the interface is brought down
    935			 * and then up in rapid succession, as the device could
    936			 * be made running after the above check and before
    937			 * the masking below.  This will only happen if the IRQ
    938			 * thread has a lower priority than the task brining
    939			 * up the interface.  Fixing this race would likely
    940			 * require changes in generic code.
    941			 */
    942
    943			TSI_WRITE(TSI108_EC_INTMASK,
    944					     TSI_READ
    945					     (TSI108_EC_INTMASK) |
    946					     TSI108_INT_RXQUEUE0 |
    947					     TSI108_INT_RXTHRESH |
    948					     TSI108_INT_RXOVERRUN |
    949					     TSI108_INT_RXERROR |
    950					     TSI108_INT_RXWAIT);
    951		}
    952	}
    953}
    954
    955/* If the RX ring has run out of memory, try periodically
    956 * to allocate some more, as otherwise poll would never
    957 * get called (apart from the initial end-of-queue condition).
    958 *
    959 * This is called once per second (by default) from the thread.
    960 */
    961
    962static void tsi108_check_rxring(struct net_device *dev)
    963{
    964	struct tsi108_prv_data *data = netdev_priv(dev);
    965
    966	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
    967	 * directly, so as to keep the receive path single-threaded
    968	 * (and thus not needing a lock).
    969	 */
    970
    971	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
    972		tsi108_rx_int(dev);
    973}
    974
    975static void tsi108_tx_int(struct net_device *dev)
    976{
    977	struct tsi108_prv_data *data = netdev_priv(dev);
    978	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
    979
    980	TSI_WRITE(TSI108_EC_TXESTAT, estat);
    981	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
    982			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
    983	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
    984		u32 err = TSI_READ(TSI108_EC_TXERR);
    985		TSI_WRITE(TSI108_EC_TXERR, err);
    986
    987		if (err && net_ratelimit())
    988			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
    989	}
    990
    991	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
    992		spin_lock(&data->txlock);
    993		tsi108_complete_tx(dev);
    994		spin_unlock(&data->txlock);
    995	}
    996}
    997
    998
    999static irqreturn_t tsi108_irq(int irq, void *dev_id)
   1000{
   1001	struct net_device *dev = dev_id;
   1002	struct tsi108_prv_data *data = netdev_priv(dev);
   1003	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
   1004
   1005	if (!(stat & TSI108_INT_ANY))
   1006		return IRQ_NONE;	/* Not our interrupt */
   1007
   1008	stat &= ~TSI_READ(TSI108_EC_INTMASK);
   1009
   1010	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
   1011		    TSI108_INT_TXERROR))
   1012		tsi108_tx_int(dev);
   1013	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
   1014		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
   1015		    TSI108_INT_RXERROR))
   1016		tsi108_rx_int(dev);
   1017
   1018	if (stat & TSI108_INT_SFN) {
   1019		if (net_ratelimit())
   1020			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
   1021		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
   1022	}
   1023
   1024	if (stat & TSI108_INT_STATCARRY) {
   1025		tsi108_stat_carry(dev);
   1026		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
   1027	}
   1028
   1029	return IRQ_HANDLED;
   1030}
   1031
   1032static void tsi108_stop_ethernet(struct net_device *dev)
   1033{
   1034	struct tsi108_prv_data *data = netdev_priv(dev);
   1035	int i = 1000;
   1036	/* Disable all TX and RX queues ... */
   1037	TSI_WRITE(TSI108_EC_TXCTRL, 0);
   1038	TSI_WRITE(TSI108_EC_RXCTRL, 0);
   1039
   1040	/* ...and wait for them to become idle */
   1041	while(i--) {
   1042		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
   1043			break;
   1044		udelay(10);
   1045	}
   1046	i = 1000;
   1047	while(i--){
   1048		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
   1049			return;
   1050		udelay(10);
   1051	}
   1052	printk(KERN_ERR "%s function time out\n", __func__);
   1053}
   1054
   1055static void tsi108_reset_ether(struct tsi108_prv_data * data)
   1056{
   1057	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
   1058	udelay(100);
   1059	TSI_WRITE(TSI108_MAC_CFG1, 0);
   1060
   1061	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
   1062	udelay(100);
   1063	TSI_WRITE(TSI108_EC_PORTCTRL,
   1064			     TSI_READ(TSI108_EC_PORTCTRL) &
   1065			     ~TSI108_EC_PORTCTRL_STATRST);
   1066
   1067	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
   1068	udelay(100);
   1069	TSI_WRITE(TSI108_EC_TXCFG,
   1070			     TSI_READ(TSI108_EC_TXCFG) &
   1071			     ~TSI108_EC_TXCFG_RST);
   1072
   1073	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
   1074	udelay(100);
   1075	TSI_WRITE(TSI108_EC_RXCFG,
   1076			     TSI_READ(TSI108_EC_RXCFG) &
   1077			     ~TSI108_EC_RXCFG_RST);
   1078
   1079	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
   1080			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
   1081			     TSI108_MAC_MII_MGMT_RST);
   1082	udelay(100);
   1083	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
   1084			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
   1085			     ~(TSI108_MAC_MII_MGMT_RST |
   1086			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
   1087}
   1088
   1089static int tsi108_get_mac(struct net_device *dev)
   1090{
   1091	struct tsi108_prv_data *data = netdev_priv(dev);
   1092	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
   1093	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
   1094	u8 addr[ETH_ALEN];
   1095
   1096	/* Note that the octets are reversed from what the manual says,
   1097	 * producing an even weirder ordering...
   1098	 */
   1099	if (word2 == 0 && word1 == 0) {
   1100		addr[0] = 0x00;
   1101		addr[1] = 0x06;
   1102		addr[2] = 0xd2;
   1103		addr[3] = 0x00;
   1104		addr[4] = 0x00;
   1105		if (0x8 == data->phy)
   1106			addr[5] = 0x01;
   1107		else
   1108			addr[5] = 0x02;
   1109		eth_hw_addr_set(dev, addr);
   1110
   1111		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
   1112
   1113		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
   1114		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
   1115
   1116		TSI_WRITE(TSI108_MAC_ADDR1, word1);
   1117		TSI_WRITE(TSI108_MAC_ADDR2, word2);
   1118	} else {
   1119		addr[0] = (word2 >> 16) & 0xff;
   1120		addr[1] = (word2 >> 24) & 0xff;
   1121		addr[2] = (word1 >> 0) & 0xff;
   1122		addr[3] = (word1 >> 8) & 0xff;
   1123		addr[4] = (word1 >> 16) & 0xff;
   1124		addr[5] = (word1 >> 24) & 0xff;
   1125		eth_hw_addr_set(dev, addr);
   1126	}
   1127
   1128	if (!is_valid_ether_addr(dev->dev_addr)) {
   1129		printk(KERN_ERR
   1130		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
   1131		       dev->name, word1, word2);
   1132		return -EINVAL;
   1133	}
   1134
   1135	return 0;
   1136}
   1137
   1138static int tsi108_set_mac(struct net_device *dev, void *addr)
   1139{
   1140	struct tsi108_prv_data *data = netdev_priv(dev);
   1141	u32 word1, word2;
   1142
   1143	if (!is_valid_ether_addr(addr))
   1144		return -EADDRNOTAVAIL;
   1145
   1146	/* +2 is for the offset of the HW addr type */
   1147	eth_hw_addr_set(dev, ((unsigned char *)addr) + 2);
   1148
   1149	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
   1150
   1151	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
   1152	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
   1153
   1154	spin_lock_irq(&data->misclock);
   1155	TSI_WRITE(TSI108_MAC_ADDR1, word1);
   1156	TSI_WRITE(TSI108_MAC_ADDR2, word2);
   1157	spin_lock(&data->txlock);
   1158
   1159	if (data->txfree && data->link_up)
   1160		netif_wake_queue(dev);
   1161
   1162	spin_unlock(&data->txlock);
   1163	spin_unlock_irq(&data->misclock);
   1164	return 0;
   1165}
   1166
   1167/* Protected by dev->xmit_lock. */
   1168static void tsi108_set_rx_mode(struct net_device *dev)
   1169{
   1170	struct tsi108_prv_data *data = netdev_priv(dev);
   1171	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
   1172
   1173	if (dev->flags & IFF_PROMISC) {
   1174		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
   1175		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
   1176		goto out;
   1177	}
   1178
   1179	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
   1180
   1181	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
   1182		int i;
   1183		struct netdev_hw_addr *ha;
   1184		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
   1185
   1186		memset(data->mc_hash, 0, sizeof(data->mc_hash));
   1187
   1188		netdev_for_each_mc_addr(ha, dev) {
   1189			u32 hash, crc;
   1190
   1191			crc = ether_crc(6, ha->addr);
   1192			hash = crc >> 23;
   1193			__set_bit(hash, &data->mc_hash[0]);
   1194		}
   1195
   1196		TSI_WRITE(TSI108_EC_HASHADDR,
   1197				     TSI108_EC_HASHADDR_AUTOINC |
   1198				     TSI108_EC_HASHADDR_MCAST);
   1199
   1200		for (i = 0; i < 16; i++) {
   1201			/* The manual says that the hardware may drop
   1202			 * back-to-back writes to the data register.
   1203			 */
   1204			udelay(1);
   1205			TSI_WRITE(TSI108_EC_HASHDATA,
   1206					     data->mc_hash[i]);
   1207		}
   1208	}
   1209
   1210      out:
   1211	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
   1212}
   1213
   1214static void tsi108_init_phy(struct net_device *dev)
   1215{
   1216	struct tsi108_prv_data *data = netdev_priv(dev);
   1217	u32 i = 0;
   1218	u16 phyval = 0;
   1219	unsigned long flags;
   1220
   1221	spin_lock_irqsave(&phy_lock, flags);
   1222
   1223	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
   1224	while (--i) {
   1225		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
   1226			break;
   1227		udelay(10);
   1228	}
   1229	if (i == 0)
   1230		printk(KERN_ERR "%s function time out\n", __func__);
   1231
   1232	if (data->phy_type == TSI108_PHY_BCM54XX) {
   1233		tsi108_write_mii(data, 0x09, 0x0300);
   1234		tsi108_write_mii(data, 0x10, 0x1020);
   1235		tsi108_write_mii(data, 0x1c, 0x8c00);
   1236	}
   1237
   1238	tsi108_write_mii(data,
   1239			 MII_BMCR,
   1240			 BMCR_ANENABLE | BMCR_ANRESTART);
   1241	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
   1242		cpu_relax();
   1243
   1244	/* Set G/MII mode and receive clock select in TBI control #2.  The
   1245	 * second port won't work if this isn't done, even though we don't
   1246	 * use TBI mode.
   1247	 */
   1248
   1249	tsi108_write_tbi(data, 0x11, 0x30);
   1250
   1251	/* FIXME: It seems to take more than 2 back-to-back reads to the
   1252	 * PHY_STAT register before the link up status bit is set.
   1253	 */
   1254
   1255	data->link_up = 0;
   1256
   1257	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
   1258		 BMSR_LSTATUS)) {
   1259		if (i++ > (MII_READ_DELAY / 10)) {
   1260			break;
   1261		}
   1262		spin_unlock_irqrestore(&phy_lock, flags);
   1263		msleep(10);
   1264		spin_lock_irqsave(&phy_lock, flags);
   1265	}
   1266
   1267	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
   1268	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
   1269	data->phy_ok = 1;
   1270	data->init_media = 1;
   1271	spin_unlock_irqrestore(&phy_lock, flags);
   1272}
   1273
   1274static void tsi108_kill_phy(struct net_device *dev)
   1275{
   1276	struct tsi108_prv_data *data = netdev_priv(dev);
   1277	unsigned long flags;
   1278
   1279	spin_lock_irqsave(&phy_lock, flags);
   1280	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
   1281	data->phy_ok = 0;
   1282	spin_unlock_irqrestore(&phy_lock, flags);
   1283}
   1284
   1285static int tsi108_open(struct net_device *dev)
   1286{
   1287	int i;
   1288	struct tsi108_prv_data *data = netdev_priv(dev);
   1289	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
   1290	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
   1291
   1292	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
   1293	if (i != 0) {
   1294		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
   1295		       data->id, data->irq_num);
   1296		return i;
   1297	} else {
   1298		dev->irq = data->irq_num;
   1299		printk(KERN_NOTICE
   1300		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
   1301		       data->id, dev->irq, dev->name);
   1302	}
   1303
   1304	data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
   1305					  &data->rxdma, GFP_KERNEL);
   1306	if (!data->rxring)
   1307		return -ENOMEM;
   1308
   1309	data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
   1310					  &data->txdma, GFP_KERNEL);
   1311	if (!data->txring) {
   1312		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
   1313				    data->rxdma);
   1314		return -ENOMEM;
   1315	}
   1316
   1317	for (i = 0; i < TSI108_RXRING_LEN; i++) {
   1318		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
   1319		data->rxring[i].blen = TSI108_RXBUF_SIZE;
   1320		data->rxring[i].vlan = 0;
   1321	}
   1322
   1323	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
   1324
   1325	data->rxtail = 0;
   1326	data->rxhead = 0;
   1327
   1328	for (i = 0; i < TSI108_RXRING_LEN; i++) {
   1329		struct sk_buff *skb;
   1330
   1331		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
   1332		if (!skb) {
   1333			/* Bah.  No memory for now, but maybe we'll get
   1334			 * some more later.
   1335			 * For now, we'll live with the smaller ring.
   1336			 */
   1337			printk(KERN_WARNING
   1338			       "%s: Could only allocate %d receive skb(s).\n",
   1339			       dev->name, i);
   1340			data->rxhead = i;
   1341			break;
   1342		}
   1343
   1344		data->rxskbs[i] = skb;
   1345		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
   1346		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
   1347	}
   1348
   1349	data->rxfree = i;
   1350	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
   1351
   1352	for (i = 0; i < TSI108_TXRING_LEN; i++) {
   1353		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
   1354		data->txring[i].misc = 0;
   1355	}
   1356
   1357	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
   1358	data->txtail = 0;
   1359	data->txhead = 0;
   1360	data->txfree = TSI108_TXRING_LEN;
   1361	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
   1362	tsi108_init_phy(dev);
   1363
   1364	napi_enable(&data->napi);
   1365
   1366	timer_setup(&data->timer, tsi108_timed_checker, 0);
   1367	mod_timer(&data->timer, jiffies + 1);
   1368
   1369	tsi108_restart_rx(data, dev);
   1370
   1371	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
   1372
   1373	TSI_WRITE(TSI108_EC_INTMASK,
   1374			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
   1375			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
   1376			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
   1377			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
   1378
   1379	TSI_WRITE(TSI108_MAC_CFG1,
   1380			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
   1381	netif_start_queue(dev);
   1382	return 0;
   1383}
   1384
   1385static int tsi108_close(struct net_device *dev)
   1386{
   1387	struct tsi108_prv_data *data = netdev_priv(dev);
   1388
   1389	netif_stop_queue(dev);
   1390	napi_disable(&data->napi);
   1391
   1392	del_timer_sync(&data->timer);
   1393
   1394	tsi108_stop_ethernet(dev);
   1395	tsi108_kill_phy(dev);
   1396	TSI_WRITE(TSI108_EC_INTMASK, ~0);
   1397	TSI_WRITE(TSI108_MAC_CFG1, 0);
   1398
   1399	/* Check for any pending TX packets, and drop them. */
   1400
   1401	while (!data->txfree || data->txhead != data->txtail) {
   1402		int tx = data->txtail;
   1403		struct sk_buff *skb;
   1404		skb = data->txskbs[tx];
   1405		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
   1406		data->txfree++;
   1407		dev_kfree_skb(skb);
   1408	}
   1409
   1410	free_irq(data->irq_num, dev);
   1411
   1412	/* Discard the RX ring. */
   1413
   1414	while (data->rxfree) {
   1415		int rx = data->rxtail;
   1416		struct sk_buff *skb;
   1417
   1418		skb = data->rxskbs[rx];
   1419		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
   1420		data->rxfree--;
   1421		dev_kfree_skb(skb);
   1422	}
   1423
   1424	dma_free_coherent(&data->pdev->dev,
   1425			    TSI108_RXRING_LEN * sizeof(rx_desc),
   1426			    data->rxring, data->rxdma);
   1427	dma_free_coherent(&data->pdev->dev,
   1428			    TSI108_TXRING_LEN * sizeof(tx_desc),
   1429			    data->txring, data->txdma);
   1430
   1431	return 0;
   1432}
   1433
   1434static void tsi108_init_mac(struct net_device *dev)
   1435{
   1436	struct tsi108_prv_data *data = netdev_priv(dev);
   1437
   1438	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
   1439			     TSI108_MAC_CFG2_PADCRC);
   1440
   1441	TSI_WRITE(TSI108_EC_TXTHRESH,
   1442			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
   1443			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
   1444
   1445	TSI_WRITE(TSI108_STAT_CARRYMASK1,
   1446			     ~(TSI108_STAT_CARRY1_RXBYTES |
   1447			       TSI108_STAT_CARRY1_RXPKTS |
   1448			       TSI108_STAT_CARRY1_RXFCS |
   1449			       TSI108_STAT_CARRY1_RXMCAST |
   1450			       TSI108_STAT_CARRY1_RXALIGN |
   1451			       TSI108_STAT_CARRY1_RXLENGTH |
   1452			       TSI108_STAT_CARRY1_RXRUNT |
   1453			       TSI108_STAT_CARRY1_RXJUMBO |
   1454			       TSI108_STAT_CARRY1_RXFRAG |
   1455			       TSI108_STAT_CARRY1_RXJABBER |
   1456			       TSI108_STAT_CARRY1_RXDROP));
   1457
   1458	TSI_WRITE(TSI108_STAT_CARRYMASK2,
   1459			     ~(TSI108_STAT_CARRY2_TXBYTES |
   1460			       TSI108_STAT_CARRY2_TXPKTS |
   1461			       TSI108_STAT_CARRY2_TXEXDEF |
   1462			       TSI108_STAT_CARRY2_TXEXCOL |
   1463			       TSI108_STAT_CARRY2_TXTCOL |
   1464			       TSI108_STAT_CARRY2_TXPAUSE));
   1465
   1466	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
   1467	TSI_WRITE(TSI108_MAC_CFG1, 0);
   1468
   1469	TSI_WRITE(TSI108_EC_RXCFG,
   1470			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
   1471
   1472	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
   1473			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
   1474			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
   1475						TSI108_EC_TXQ_CFG_SFNPORT));
   1476
   1477	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
   1478			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
   1479			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
   1480						TSI108_EC_RXQ_CFG_SFNPORT));
   1481
   1482	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
   1483			     TSI108_EC_TXQ_BUFCFG_BURST256 |
   1484			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
   1485						TSI108_EC_TXQ_BUFCFG_SFNPORT));
   1486
   1487	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
   1488			     TSI108_EC_RXQ_BUFCFG_BURST256 |
   1489			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
   1490						TSI108_EC_RXQ_BUFCFG_SFNPORT));
   1491
   1492	TSI_WRITE(TSI108_EC_INTMASK, ~0);
   1493}
   1494
   1495static int tsi108_get_link_ksettings(struct net_device *dev,
   1496				     struct ethtool_link_ksettings *cmd)
   1497{
   1498	struct tsi108_prv_data *data = netdev_priv(dev);
   1499	unsigned long flags;
   1500
   1501	spin_lock_irqsave(&data->txlock, flags);
   1502	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
   1503	spin_unlock_irqrestore(&data->txlock, flags);
   1504
   1505	return 0;
   1506}
   1507
   1508static int tsi108_set_link_ksettings(struct net_device *dev,
   1509				     const struct ethtool_link_ksettings *cmd)
   1510{
   1511	struct tsi108_prv_data *data = netdev_priv(dev);
   1512	unsigned long flags;
   1513	int rc;
   1514
   1515	spin_lock_irqsave(&data->txlock, flags);
   1516	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
   1517	spin_unlock_irqrestore(&data->txlock, flags);
   1518
   1519	return rc;
   1520}
   1521
   1522static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
   1523{
   1524	struct tsi108_prv_data *data = netdev_priv(dev);
   1525	if (!netif_running(dev))
   1526		return -EINVAL;
   1527	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
   1528}
   1529
   1530static const struct ethtool_ops tsi108_ethtool_ops = {
   1531	.get_link 	= ethtool_op_get_link,
   1532	.get_link_ksettings	= tsi108_get_link_ksettings,
   1533	.set_link_ksettings	= tsi108_set_link_ksettings,
   1534};
   1535
   1536static const struct net_device_ops tsi108_netdev_ops = {
   1537	.ndo_open		= tsi108_open,
   1538	.ndo_stop		= tsi108_close,
   1539	.ndo_start_xmit		= tsi108_send_packet,
   1540	.ndo_set_rx_mode	= tsi108_set_rx_mode,
   1541	.ndo_get_stats		= tsi108_get_stats,
   1542	.ndo_eth_ioctl		= tsi108_do_ioctl,
   1543	.ndo_set_mac_address	= tsi108_set_mac,
   1544	.ndo_validate_addr	= eth_validate_addr,
   1545};
   1546
   1547static int
   1548tsi108_init_one(struct platform_device *pdev)
   1549{
   1550	struct net_device *dev = NULL;
   1551	struct tsi108_prv_data *data = NULL;
   1552	hw_info *einfo;
   1553	int err = 0;
   1554
   1555	einfo = dev_get_platdata(&pdev->dev);
   1556
   1557	if (NULL == einfo) {
   1558		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
   1559		       pdev->id);
   1560		return -ENODEV;
   1561	}
   1562
   1563	/* Create an ethernet device instance */
   1564
   1565	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
   1566	if (!dev)
   1567		return -ENOMEM;
   1568
   1569	printk("tsi108_eth%d: probe...\n", pdev->id);
   1570	data = netdev_priv(dev);
   1571	data->dev = dev;
   1572	data->pdev = pdev;
   1573
   1574	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
   1575			pdev->id, einfo->regs, einfo->phyregs,
   1576			einfo->phy, einfo->irq_num);
   1577
   1578	data->regs = ioremap(einfo->regs, 0x400);
   1579	if (NULL == data->regs) {
   1580		err = -ENOMEM;
   1581		goto regs_fail;
   1582	}
   1583
   1584	data->phyregs = ioremap(einfo->phyregs, 0x400);
   1585	if (NULL == data->phyregs) {
   1586		err = -ENOMEM;
   1587		goto phyregs_fail;
   1588	}
   1589/* MII setup */
   1590	data->mii_if.dev = dev;
   1591	data->mii_if.mdio_read = tsi108_mdio_read;
   1592	data->mii_if.mdio_write = tsi108_mdio_write;
   1593	data->mii_if.phy_id = einfo->phy;
   1594	data->mii_if.phy_id_mask = 0x1f;
   1595	data->mii_if.reg_num_mask = 0x1f;
   1596
   1597	data->phy = einfo->phy;
   1598	data->phy_type = einfo->phy_type;
   1599	data->irq_num = einfo->irq_num;
   1600	data->id = pdev->id;
   1601	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
   1602	dev->netdev_ops = &tsi108_netdev_ops;
   1603	dev->ethtool_ops = &tsi108_ethtool_ops;
   1604
   1605	/* Apparently, the Linux networking code won't use scatter-gather
   1606	 * if the hardware doesn't do checksums.  However, it's faster
   1607	 * to checksum in place and use SG, as (among other reasons)
   1608	 * the cache won't be dirtied (which then has to be flushed
   1609	 * before DMA).  The checksumming is done by the driver (via
   1610	 * a new function skb_csum_dev() in net/core/skbuff.c).
   1611	 */
   1612
   1613	dev->features = NETIF_F_HIGHDMA;
   1614
   1615	spin_lock_init(&data->txlock);
   1616	spin_lock_init(&data->misclock);
   1617
   1618	tsi108_reset_ether(data);
   1619	tsi108_kill_phy(dev);
   1620
   1621	if ((err = tsi108_get_mac(dev)) != 0) {
   1622		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
   1623		       dev->name);
   1624		goto register_fail;
   1625	}
   1626
   1627	tsi108_init_mac(dev);
   1628	err = register_netdev(dev);
   1629	if (err) {
   1630		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
   1631				dev->name);
   1632		goto register_fail;
   1633	}
   1634
   1635	platform_set_drvdata(pdev, dev);
   1636	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
   1637	       dev->name, dev->dev_addr);
   1638#ifdef DEBUG
   1639	data->msg_enable = DEBUG;
   1640	dump_eth_one(dev);
   1641#endif
   1642
   1643	return 0;
   1644
   1645register_fail:
   1646	iounmap(data->phyregs);
   1647
   1648phyregs_fail:
   1649	iounmap(data->regs);
   1650
   1651regs_fail:
   1652	free_netdev(dev);
   1653	return err;
   1654}
   1655
   1656/* There's no way to either get interrupts from the PHY when
   1657 * something changes, or to have the Tsi108 automatically communicate
   1658 * with the PHY to reconfigure itself.
   1659 *
   1660 * Thus, we have to do it using a timer.
   1661 */
   1662
   1663static void tsi108_timed_checker(struct timer_list *t)
   1664{
   1665	struct tsi108_prv_data *data = from_timer(data, t, timer);
   1666	struct net_device *dev = data->dev;
   1667
   1668	tsi108_check_phy(dev);
   1669	tsi108_check_rxring(dev);
   1670	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
   1671}
   1672
   1673static int tsi108_ether_remove(struct platform_device *pdev)
   1674{
   1675	struct net_device *dev = platform_get_drvdata(pdev);
   1676	struct tsi108_prv_data *priv = netdev_priv(dev);
   1677
   1678	unregister_netdev(dev);
   1679	tsi108_stop_ethernet(dev);
   1680	iounmap(priv->regs);
   1681	iounmap(priv->phyregs);
   1682	free_netdev(dev);
   1683
   1684	return 0;
   1685}
   1686module_platform_driver(tsi_eth_driver);
   1687
   1688MODULE_AUTHOR("Tundra Semiconductor Corporation");
   1689MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
   1690MODULE_LICENSE("GPL");
   1691MODULE_ALIAS("platform:tsi-ethernet");