cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

via-rhine.c (70769B)


      1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
      2/*
      3	Written 1998-2001 by Donald Becker.
      4
      5	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
      6
      7	This software may be used and distributed according to the terms of
      8	the GNU General Public License (GPL), incorporated herein by reference.
      9	Drivers based on or derived from this code fall under the GPL and must
     10	retain the authorship, copyright and license notice.  This file is not
     11	a complete program and may only be used when the entire operating
     12	system is licensed under the GPL.
     13
     14	This driver is designed for the VIA VT86C100A Rhine-I.
     15	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
     16	and management NIC 6105M).
     17
     18	The author may be reached as becker@scyld.com, or C/O
     19	Scyld Computing Corporation
     20	410 Severn Ave., Suite 210
     21	Annapolis MD 21403
     22
     23
     24	This driver contains some changes from the original Donald Becker
     25	version. He may or may not be interested in bug reports on this
     26	code. You can find his versions at:
     27	http://www.scyld.com/network/via-rhine.html
     28	[link no longer provides useful info -jgarzik]
     29
     30*/
     31
     32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     33
     34#define DRV_NAME	"via-rhine"
     35
     36#include <linux/types.h>
     37
     38/* A few user-configurable values.
     39   These may be modified when a driver module is loaded. */
     40static int debug = 0;
     41#define RHINE_MSG_DEFAULT \
     42        (0x0000)
     43
     44/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
     45   Setting to > 1518 effectively disables this feature. */
     46#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
     47	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
     48	defined(__sh__) || defined(__mips__)
     49static int rx_copybreak = 1518;
     50#else
     51static int rx_copybreak;
     52#endif
     53
     54/* Work-around for broken BIOSes: they are unable to get the chip back out of
     55   power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
     56static bool avoid_D3;
     57
     58/*
     59 * In case you are looking for 'options[]' or 'full_duplex[]', they
     60 * are gone. Use ethtool(8) instead.
     61 */
     62
     63/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
     64   The Rhine has a 64 element 8390-like hash table. */
     65static const int multicast_filter_limit = 32;
     66
     67
     68/* Operational parameters that are set at compile time. */
     69
     70/* Keep the ring sizes a power of two for compile efficiency.
     71 * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
     72 * Making the Tx ring too large decreases the effectiveness of channel
     73 * bonding and packet priority.
     74 * With BQL support, we can increase TX ring safely.
     75 * There are no ill effects from too-large receive rings.
     76 */
     77#define TX_RING_SIZE	64
     78#define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
     79#define RX_RING_SIZE	64
     80
     81/* Operational parameters that usually are not changed. */
     82
     83/* Time in jiffies before concluding the transmitter is hung. */
     84#define TX_TIMEOUT	(2*HZ)
     85
     86#define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
     87
     88#include <linux/module.h>
     89#include <linux/moduleparam.h>
     90#include <linux/kernel.h>
     91#include <linux/string.h>
     92#include <linux/timer.h>
     93#include <linux/errno.h>
     94#include <linux/ioport.h>
     95#include <linux/interrupt.h>
     96#include <linux/pci.h>
     97#include <linux/of_device.h>
     98#include <linux/of_irq.h>
     99#include <linux/platform_device.h>
    100#include <linux/dma-mapping.h>
    101#include <linux/netdevice.h>
    102#include <linux/etherdevice.h>
    103#include <linux/skbuff.h>
    104#include <linux/init.h>
    105#include <linux/delay.h>
    106#include <linux/mii.h>
    107#include <linux/ethtool.h>
    108#include <linux/crc32.h>
    109#include <linux/if_vlan.h>
    110#include <linux/bitops.h>
    111#include <linux/workqueue.h>
    112#include <asm/processor.h>	/* Processor type for cache alignment. */
    113#include <asm/io.h>
    114#include <asm/irq.h>
    115#include <linux/uaccess.h>
    116#include <linux/dmi.h>
    117
    118MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
    119MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
    120MODULE_LICENSE("GPL");
    121
    122module_param(debug, int, 0);
    123module_param(rx_copybreak, int, 0);
    124module_param(avoid_D3, bool, 0);
    125MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
    126MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
    127MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
    128
    129#define MCAM_SIZE	32
    130#define VCAM_SIZE	32
    131
    132/*
    133		Theory of Operation
    134
    135I. Board Compatibility
    136
    137This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
    138controller.
    139
    140II. Board-specific settings
    141
    142Boards with this chip are functional only in a bus-master PCI slot.
    143
    144Many operational settings are loaded from the EEPROM to the Config word at
    145offset 0x78. For most of these settings, this driver assumes that they are
    146correct.
    147If this driver is compiled to use PCI memory space operations the EEPROM
    148must be configured to enable memory ops.
    149
    150III. Driver operation
    151
    152IIIa. Ring buffers
    153
    154This driver uses two statically allocated fixed-size descriptor lists
    155formed into rings by a branch from the final descriptor to the beginning of
    156the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
    157
    158IIIb/c. Transmit/Receive Structure
    159
    160This driver attempts to use a zero-copy receive and transmit scheme.
    161
    162Alas, all data buffers are required to start on a 32 bit boundary, so
    163the driver must often copy transmit packets into bounce buffers.
    164
    165The driver allocates full frame size skbuffs for the Rx ring buffers at
    166open() time and passes the skb->data field to the chip as receive data
    167buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
    168a fresh skbuff is allocated and the frame is copied to the new skbuff.
    169When the incoming frame is larger, the skbuff is passed directly up the
    170protocol stack. Buffers consumed this way are replaced by newly allocated
    171skbuffs in the last phase of rhine_rx().
    172
    173The RX_COPYBREAK value is chosen to trade-off the memory wasted by
    174using a full-sized skbuff for small frames vs. the copying costs of larger
    175frames. New boards are typically used in generously configured machines
    176and the underfilled buffers have negligible impact compared to the benefit of
    177a single allocation size, so the default value of zero results in never
    178copying packets. When copying is done, the cost is usually mitigated by using
    179a combined copy/checksum routine. Copying also preloads the cache, which is
    180most useful with small frames.
    181
    182Since the VIA chips are only able to transfer data to buffers on 32 bit
    183boundaries, the IP header at offset 14 in an ethernet frame isn't
    184longword aligned for further processing. Copying these unaligned buffers
    185has the beneficial effect of 16-byte aligning the IP header.
    186
    187IIId. Synchronization
    188
    189The driver runs as two independent, single-threaded flows of control. One
    190is the send-packet routine, which enforces single-threaded use by the
    191netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
    192which is single threaded by the hardware and interrupt handling software.
    193
    194The send packet thread has partial control over the Tx ring. It locks the
    195netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
    196the ring is not available it stops the transmit queue by
    197calling netif_stop_queue.
    198
    199The interrupt handler has exclusive control over the Rx ring and records stats
    200from the Tx ring. After reaping the stats, it marks the Tx queue entry as
    201empty by incrementing the dirty_tx mark. If at least half of the entries in
    202the Rx ring are available the transmit queue is woken up if it was stopped.
    203
    204IV. Notes
    205
    206IVb. References
    207
    208Preliminary VT86C100A manual from http://www.via.com.tw/
    209http://www.scyld.com/expert/100mbps.html
    210http://www.scyld.com/expert/NWay.html
    211ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
    212ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
    213
    214
    215IVc. Errata
    216
    217The VT86C100A manual is not reliable information.
    218The 3043 chip does not handle unaligned transmit or receive buffers, resulting
    219in significant performance degradation for bounce buffer copies on transmit
    220and unaligned IP headers on receive.
    221The chip does not pad to minimum transmit length.
    222
    223*/
    224
    225
    226/* This table drives the PCI probe routines. It's mostly boilerplate in all
    227   of the drivers, and will likely be provided by some future kernel.
    228   Note the matching code -- the first table entry matchs all 56** cards but
    229   second only the 1234 card.
    230*/
    231
    232enum rhine_revs {
    233	VT86C100A	= 0x00,
    234	VTunknown0	= 0x20,
    235	VT6102		= 0x40,
    236	VT8231		= 0x50,	/* Integrated MAC */
    237	VT8233		= 0x60,	/* Integrated MAC */
    238	VT8235		= 0x74,	/* Integrated MAC */
    239	VT8237		= 0x78,	/* Integrated MAC */
    240	VT8251		= 0x7C,	/* Integrated MAC */
    241	VT6105		= 0x80,
    242	VT6105_B0	= 0x83,
    243	VT6105L		= 0x8A,
    244	VT6107		= 0x8C,
    245	VTunknown2	= 0x8E,
    246	VT6105M		= 0x90,	/* Management adapter */
    247};
    248
    249enum rhine_quirks {
    250	rqWOL		= 0x0001,	/* Wake-On-LAN support */
    251	rqForceReset	= 0x0002,
    252	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
    253	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
    254	rqRhineI	= 0x0100,	/* See comment below */
    255	rqIntPHY	= 0x0200,	/* Integrated PHY */
    256	rqMgmt		= 0x0400,	/* Management adapter */
    257	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
    258					 * switched from PIO mode to MMIO
    259					 * (only applies to PCI)
    260					 */
    261};
    262/*
    263 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
    264 * MMIO as well as for the collision counter and the Tx FIFO underflow
    265 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
    266 */
    267
    268/* Beware of PCI posted writes */
    269#define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
    270
    271static const struct pci_device_id rhine_pci_tbl[] = {
    272	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
    273	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
    274	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
    275	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
    276	{ }	/* terminate list */
    277};
    278MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
    279
    280/* OpenFirmware identifiers for platform-bus devices
    281 * The .data field is currently only used to store quirks
    282 */
    283static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
    284static const struct of_device_id rhine_of_tbl[] = {
    285	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
    286	{ }	/* terminate list */
    287};
    288MODULE_DEVICE_TABLE(of, rhine_of_tbl);
    289
    290/* Offsets to the device registers. */
    291enum register_offsets {
    292	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
    293	ChipCmd1=0x09, TQWake=0x0A,
    294	IntrStatus=0x0C, IntrEnable=0x0E,
    295	MulticastFilter0=0x10, MulticastFilter1=0x14,
    296	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
    297	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
    298	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
    299	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
    300	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
    301	StickyHW=0x83, IntrStatus2=0x84,
    302	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
    303	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
    304	WOLcrClr1=0xA6, WOLcgClr=0xA7,
    305	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
    306};
    307
    308/* Bits in ConfigD */
    309enum backoff_bits {
    310	BackOptional=0x01, BackModify=0x02,
    311	BackCaptureEffect=0x04, BackRandom=0x08
    312};
    313
    314/* Bits in the TxConfig (TCR) register */
    315enum tcr_bits {
    316	TCR_PQEN=0x01,
    317	TCR_LB0=0x02,		/* loopback[0] */
    318	TCR_LB1=0x04,		/* loopback[1] */
    319	TCR_OFSET=0x08,
    320	TCR_RTGOPT=0x10,
    321	TCR_RTFT0=0x20,
    322	TCR_RTFT1=0x40,
    323	TCR_RTSF=0x80,
    324};
    325
    326/* Bits in the CamCon (CAMC) register */
    327enum camcon_bits {
    328	CAMC_CAMEN=0x01,
    329	CAMC_VCAMSL=0x02,
    330	CAMC_CAMWR=0x04,
    331	CAMC_CAMRD=0x08,
    332};
    333
    334/* Bits in the PCIBusConfig1 (BCR1) register */
    335enum bcr1_bits {
    336	BCR1_POT0=0x01,
    337	BCR1_POT1=0x02,
    338	BCR1_POT2=0x04,
    339	BCR1_CTFT0=0x08,
    340	BCR1_CTFT1=0x10,
    341	BCR1_CTSF=0x20,
    342	BCR1_TXQNOBK=0x40,	/* for VT6105 */
    343	BCR1_VIDFR=0x80,	/* for VT6105 */
    344	BCR1_MED0=0x40,		/* for VT6102 */
    345	BCR1_MED1=0x80,		/* for VT6102 */
    346};
    347
    348/* Registers we check that mmio and reg are the same. */
    349static const int mmio_verify_registers[] = {
    350	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
    351	0
    352};
    353
    354/* Bits in the interrupt status/mask registers. */
    355enum intr_status_bits {
    356	IntrRxDone	= 0x0001,
    357	IntrTxDone	= 0x0002,
    358	IntrRxErr	= 0x0004,
    359	IntrTxError	= 0x0008,
    360	IntrRxEmpty	= 0x0020,
    361	IntrPCIErr	= 0x0040,
    362	IntrStatsMax	= 0x0080,
    363	IntrRxEarly	= 0x0100,
    364	IntrTxUnderrun	= 0x0210,
    365	IntrRxOverflow	= 0x0400,
    366	IntrRxDropped	= 0x0800,
    367	IntrRxNoBuf	= 0x1000,
    368	IntrTxAborted	= 0x2000,
    369	IntrLinkChange	= 0x4000,
    370	IntrRxWakeUp	= 0x8000,
    371	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
    372	IntrNormalSummary	= IntrRxDone | IntrTxDone,
    373	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
    374				  IntrTxUnderrun,
    375};
    376
    377/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
    378enum wol_bits {
    379	WOLucast	= 0x10,
    380	WOLmagic	= 0x20,
    381	WOLbmcast	= 0x30,
    382	WOLlnkon	= 0x40,
    383	WOLlnkoff	= 0x80,
    384};
    385
    386/* The Rx and Tx buffer descriptors. */
    387struct rx_desc {
    388	__le32 rx_status;
    389	__le32 desc_length; /* Chain flag, Buffer/frame length */
    390	__le32 addr;
    391	__le32 next_desc;
    392};
    393struct tx_desc {
    394	__le32 tx_status;
    395	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
    396	__le32 addr;
    397	__le32 next_desc;
    398};
    399
    400/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
    401#define TXDESC		0x00e08000
    402
    403enum rx_status_bits {
    404	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
    405};
    406
    407/* Bits in *_desc.*_status */
    408enum desc_status_bits {
    409	DescOwn=0x80000000
    410};
    411
    412/* Bits in *_desc.*_length */
    413enum desc_length_bits {
    414	DescTag=0x00010000
    415};
    416
    417/* Bits in ChipCmd. */
    418enum chip_cmd_bits {
    419	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
    420	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
    421	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
    422	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
    423};
    424
    425struct rhine_stats {
    426	u64		packets;
    427	u64		bytes;
    428	struct u64_stats_sync syncp;
    429};
    430
    431struct rhine_private {
    432	/* Bit mask for configured VLAN ids */
    433	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
    434
    435	/* Descriptor rings */
    436	struct rx_desc *rx_ring;
    437	struct tx_desc *tx_ring;
    438	dma_addr_t rx_ring_dma;
    439	dma_addr_t tx_ring_dma;
    440
    441	/* The addresses of receive-in-place skbuffs. */
    442	struct sk_buff *rx_skbuff[RX_RING_SIZE];
    443	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
    444
    445	/* The saved address of a sent-in-place packet/buffer, for later free(). */
    446	struct sk_buff *tx_skbuff[TX_RING_SIZE];
    447	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
    448
    449	/* Tx bounce buffers (Rhine-I only) */
    450	unsigned char *tx_buf[TX_RING_SIZE];
    451	unsigned char *tx_bufs;
    452	dma_addr_t tx_bufs_dma;
    453
    454	int irq;
    455	long pioaddr;
    456	struct net_device *dev;
    457	struct napi_struct napi;
    458	spinlock_t lock;
    459	struct mutex task_lock;
    460	bool task_enable;
    461	struct work_struct slow_event_task;
    462	struct work_struct reset_task;
    463
    464	u32 msg_enable;
    465
    466	/* Frequently used values: keep some adjacent for cache effect. */
    467	u32 quirks;
    468	unsigned int cur_rx;
    469	unsigned int cur_tx, dirty_tx;
    470	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
    471	struct rhine_stats rx_stats;
    472	struct rhine_stats tx_stats;
    473	u8 wolopts;
    474
    475	u8 tx_thresh, rx_thresh;
    476
    477	struct mii_if_info mii_if;
    478	void __iomem *base;
    479};
    480
    481#define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
    482#define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
    483#define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
    484
    485#define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
    486#define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
    487#define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
    488
    489#define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
    490#define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
    491#define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
    492
    493#define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
    494#define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
    495#define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
    496
    497
    498static int  mdio_read(struct net_device *dev, int phy_id, int location);
    499static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
    500static int  rhine_open(struct net_device *dev);
    501static void rhine_reset_task(struct work_struct *work);
    502static void rhine_slow_event_task(struct work_struct *work);
    503static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
    504static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
    505				  struct net_device *dev);
    506static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
    507static void rhine_tx(struct net_device *dev);
    508static int rhine_rx(struct net_device *dev, int limit);
    509static void rhine_set_rx_mode(struct net_device *dev);
    510static void rhine_get_stats64(struct net_device *dev,
    511			      struct rtnl_link_stats64 *stats);
    512static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
    513static const struct ethtool_ops netdev_ethtool_ops;
    514static int  rhine_close(struct net_device *dev);
    515static int rhine_vlan_rx_add_vid(struct net_device *dev,
    516				 __be16 proto, u16 vid);
    517static int rhine_vlan_rx_kill_vid(struct net_device *dev,
    518				  __be16 proto, u16 vid);
    519static void rhine_restart_tx(struct net_device *dev);
    520
    521static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
    522{
    523	void __iomem *ioaddr = rp->base;
    524	int i;
    525
    526	for (i = 0; i < 1024; i++) {
    527		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
    528
    529		if (low ^ has_mask_bits)
    530			break;
    531		udelay(10);
    532	}
    533	if (i > 64) {
    534		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
    535			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
    536	}
    537}
    538
    539static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
    540{
    541	rhine_wait_bit(rp, reg, mask, false);
    542}
    543
    544static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
    545{
    546	rhine_wait_bit(rp, reg, mask, true);
    547}
    548
    549static u32 rhine_get_events(struct rhine_private *rp)
    550{
    551	void __iomem *ioaddr = rp->base;
    552	u32 intr_status;
    553
    554	intr_status = ioread16(ioaddr + IntrStatus);
    555	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
    556	if (rp->quirks & rqStatusWBRace)
    557		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
    558	return intr_status;
    559}
    560
    561static void rhine_ack_events(struct rhine_private *rp, u32 mask)
    562{
    563	void __iomem *ioaddr = rp->base;
    564
    565	if (rp->quirks & rqStatusWBRace)
    566		iowrite8(mask >> 16, ioaddr + IntrStatus2);
    567	iowrite16(mask, ioaddr + IntrStatus);
    568}
    569
    570/*
    571 * Get power related registers into sane state.
    572 * Notify user about past WOL event.
    573 */
    574static void rhine_power_init(struct net_device *dev)
    575{
    576	struct rhine_private *rp = netdev_priv(dev);
    577	void __iomem *ioaddr = rp->base;
    578	u16 wolstat;
    579
    580	if (rp->quirks & rqWOL) {
    581		/* Make sure chip is in power state D0 */
    582		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
    583
    584		/* Disable "force PME-enable" */
    585		iowrite8(0x80, ioaddr + WOLcgClr);
    586
    587		/* Clear power-event config bits (WOL) */
    588		iowrite8(0xFF, ioaddr + WOLcrClr);
    589		/* More recent cards can manage two additional patterns */
    590		if (rp->quirks & rq6patterns)
    591			iowrite8(0x03, ioaddr + WOLcrClr1);
    592
    593		/* Save power-event status bits */
    594		wolstat = ioread8(ioaddr + PwrcsrSet);
    595		if (rp->quirks & rq6patterns)
    596			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
    597
    598		/* Clear power-event status bits */
    599		iowrite8(0xFF, ioaddr + PwrcsrClr);
    600		if (rp->quirks & rq6patterns)
    601			iowrite8(0x03, ioaddr + PwrcsrClr1);
    602
    603		if (wolstat) {
    604			char *reason;
    605			switch (wolstat) {
    606			case WOLmagic:
    607				reason = "Magic packet";
    608				break;
    609			case WOLlnkon:
    610				reason = "Link went up";
    611				break;
    612			case WOLlnkoff:
    613				reason = "Link went down";
    614				break;
    615			case WOLucast:
    616				reason = "Unicast packet";
    617				break;
    618			case WOLbmcast:
    619				reason = "Multicast/broadcast packet";
    620				break;
    621			default:
    622				reason = "Unknown";
    623			}
    624			netdev_info(dev, "Woke system up. Reason: %s\n",
    625				    reason);
    626		}
    627	}
    628}
    629
    630static void rhine_chip_reset(struct net_device *dev)
    631{
    632	struct rhine_private *rp = netdev_priv(dev);
    633	void __iomem *ioaddr = rp->base;
    634	u8 cmd1;
    635
    636	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
    637	IOSYNC;
    638
    639	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
    640		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
    641
    642		/* Force reset */
    643		if (rp->quirks & rqForceReset)
    644			iowrite8(0x40, ioaddr + MiscCmd);
    645
    646		/* Reset can take somewhat longer (rare) */
    647		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
    648	}
    649
    650	cmd1 = ioread8(ioaddr + ChipCmd1);
    651	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
    652		   "failed" : "succeeded");
    653}
    654
    655static void enable_mmio(long pioaddr, u32 quirks)
    656{
    657	int n;
    658
    659	if (quirks & rqNeedEnMMIO) {
    660		if (quirks & rqRhineI) {
    661			/* More recent docs say that this bit is reserved */
    662			n = inb(pioaddr + ConfigA) | 0x20;
    663			outb(n, pioaddr + ConfigA);
    664		} else {
    665			n = inb(pioaddr + ConfigD) | 0x80;
    666			outb(n, pioaddr + ConfigD);
    667		}
    668	}
    669}
    670
    671static inline int verify_mmio(struct device *hwdev,
    672			      long pioaddr,
    673			      void __iomem *ioaddr,
    674			      u32 quirks)
    675{
    676	if (quirks & rqNeedEnMMIO) {
    677		int i = 0;
    678
    679		/* Check that selected MMIO registers match the PIO ones */
    680		while (mmio_verify_registers[i]) {
    681			int reg = mmio_verify_registers[i++];
    682			unsigned char a = inb(pioaddr+reg);
    683			unsigned char b = readb(ioaddr+reg);
    684
    685			if (a != b) {
    686				dev_err(hwdev,
    687					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
    688					reg, a, b);
    689				return -EIO;
    690			}
    691		}
    692	}
    693	return 0;
    694}
    695
    696/*
    697 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
    698 * (plus 0x6C for Rhine-I/II)
    699 */
    700static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
    701{
    702	struct rhine_private *rp = netdev_priv(dev);
    703	void __iomem *ioaddr = rp->base;
    704	int i;
    705
    706	outb(0x20, pioaddr + MACRegEEcsr);
    707	for (i = 0; i < 1024; i++) {
    708		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
    709			break;
    710	}
    711	if (i > 512)
    712		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
    713
    714	/*
    715	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
    716	 * MMIO. If reloading EEPROM was done first this could be avoided, but
    717	 * it is not known if that still works with the "win98-reboot" problem.
    718	 */
    719	enable_mmio(pioaddr, rp->quirks);
    720
    721	/* Turn off EEPROM-controlled wake-up (magic packet) */
    722	if (rp->quirks & rqWOL)
    723		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
    724
    725}
    726
    727#ifdef CONFIG_NET_POLL_CONTROLLER
    728static void rhine_poll(struct net_device *dev)
    729{
    730	struct rhine_private *rp = netdev_priv(dev);
    731	const int irq = rp->irq;
    732
    733	disable_irq(irq);
    734	rhine_interrupt(irq, dev);
    735	enable_irq(irq);
    736}
    737#endif
    738
    739static void rhine_kick_tx_threshold(struct rhine_private *rp)
    740{
    741	if (rp->tx_thresh < 0xe0) {
    742		void __iomem *ioaddr = rp->base;
    743
    744		rp->tx_thresh += 0x20;
    745		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
    746	}
    747}
    748
    749static void rhine_tx_err(struct rhine_private *rp, u32 status)
    750{
    751	struct net_device *dev = rp->dev;
    752
    753	if (status & IntrTxAborted) {
    754		netif_info(rp, tx_err, dev,
    755			   "Abort %08x, frame dropped\n", status);
    756	}
    757
    758	if (status & IntrTxUnderrun) {
    759		rhine_kick_tx_threshold(rp);
    760		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
    761			   "Tx threshold now %02x\n", rp->tx_thresh);
    762	}
    763
    764	if (status & IntrTxDescRace)
    765		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
    766
    767	if ((status & IntrTxError) &&
    768	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
    769		rhine_kick_tx_threshold(rp);
    770		netif_info(rp, tx_err, dev, "Unspecified error. "
    771			   "Tx threshold now %02x\n", rp->tx_thresh);
    772	}
    773
    774	rhine_restart_tx(dev);
    775}
    776
    777static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
    778{
    779	void __iomem *ioaddr = rp->base;
    780	struct net_device_stats *stats = &rp->dev->stats;
    781
    782	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
    783	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
    784
    785	/*
    786	 * Clears the "tally counters" for CRC errors and missed frames(?).
    787	 * It has been reported that some chips need a write of 0 to clear
    788	 * these, for others the counters are set to 1 when written to and
    789	 * instead cleared when read. So we clear them both ways ...
    790	 */
    791	iowrite32(0, ioaddr + RxMissed);
    792	ioread16(ioaddr + RxCRCErrs);
    793	ioread16(ioaddr + RxMissed);
    794}
    795
    796#define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
    797				 IntrRxErr | \
    798				 IntrRxEmpty | \
    799				 IntrRxOverflow	| \
    800				 IntrRxDropped | \
    801				 IntrRxNoBuf | \
    802				 IntrRxWakeUp)
    803
    804#define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
    805				 IntrTxAborted | \
    806				 IntrTxUnderrun | \
    807				 IntrTxDescRace)
    808#define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
    809
    810#define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
    811				 RHINE_EVENT_NAPI_TX | \
    812				 IntrStatsMax)
    813#define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
    814#define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
    815
    816static int rhine_napipoll(struct napi_struct *napi, int budget)
    817{
    818	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
    819	struct net_device *dev = rp->dev;
    820	void __iomem *ioaddr = rp->base;
    821	u16 enable_mask = RHINE_EVENT & 0xffff;
    822	int work_done = 0;
    823	u32 status;
    824
    825	status = rhine_get_events(rp);
    826	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
    827
    828	if (status & RHINE_EVENT_NAPI_RX)
    829		work_done += rhine_rx(dev, budget);
    830
    831	if (status & RHINE_EVENT_NAPI_TX) {
    832		if (status & RHINE_EVENT_NAPI_TX_ERR) {
    833			/* Avoid scavenging before Tx engine turned off */
    834			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
    835			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
    836				netif_warn(rp, tx_err, dev, "Tx still on\n");
    837		}
    838
    839		rhine_tx(dev);
    840
    841		if (status & RHINE_EVENT_NAPI_TX_ERR)
    842			rhine_tx_err(rp, status);
    843	}
    844
    845	if (status & IntrStatsMax) {
    846		spin_lock(&rp->lock);
    847		rhine_update_rx_crc_and_missed_errord(rp);
    848		spin_unlock(&rp->lock);
    849	}
    850
    851	if (status & RHINE_EVENT_SLOW) {
    852		enable_mask &= ~RHINE_EVENT_SLOW;
    853		schedule_work(&rp->slow_event_task);
    854	}
    855
    856	if (work_done < budget) {
    857		napi_complete_done(napi, work_done);
    858		iowrite16(enable_mask, ioaddr + IntrEnable);
    859	}
    860	return work_done;
    861}
    862
    863static void rhine_hw_init(struct net_device *dev, long pioaddr)
    864{
    865	struct rhine_private *rp = netdev_priv(dev);
    866
    867	/* Reset the chip to erase previous misconfiguration. */
    868	rhine_chip_reset(dev);
    869
    870	/* Rhine-I needs extra time to recuperate before EEPROM reload */
    871	if (rp->quirks & rqRhineI)
    872		msleep(5);
    873
    874	/* Reload EEPROM controlled bytes cleared by soft reset */
    875	if (dev_is_pci(dev->dev.parent))
    876		rhine_reload_eeprom(pioaddr, dev);
    877}
    878
    879static const struct net_device_ops rhine_netdev_ops = {
    880	.ndo_open		 = rhine_open,
    881	.ndo_stop		 = rhine_close,
    882	.ndo_start_xmit		 = rhine_start_tx,
    883	.ndo_get_stats64	 = rhine_get_stats64,
    884	.ndo_set_rx_mode	 = rhine_set_rx_mode,
    885	.ndo_validate_addr	 = eth_validate_addr,
    886	.ndo_set_mac_address 	 = eth_mac_addr,
    887	.ndo_eth_ioctl		 = netdev_ioctl,
    888	.ndo_tx_timeout 	 = rhine_tx_timeout,
    889	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
    890	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
    891#ifdef CONFIG_NET_POLL_CONTROLLER
    892	.ndo_poll_controller	 = rhine_poll,
    893#endif
    894};
    895
    896static int rhine_init_one_common(struct device *hwdev, u32 quirks,
    897				 long pioaddr, void __iomem *ioaddr, int irq)
    898{
    899	struct net_device *dev;
    900	struct rhine_private *rp;
    901	int i, rc, phy_id;
    902	u8 addr[ETH_ALEN];
    903	const char *name;
    904
    905	/* this should always be supported */
    906	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
    907	if (rc) {
    908		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
    909		goto err_out;
    910	}
    911
    912	dev = alloc_etherdev(sizeof(struct rhine_private));
    913	if (!dev) {
    914		rc = -ENOMEM;
    915		goto err_out;
    916	}
    917	SET_NETDEV_DEV(dev, hwdev);
    918
    919	rp = netdev_priv(dev);
    920	rp->dev = dev;
    921	rp->quirks = quirks;
    922	rp->pioaddr = pioaddr;
    923	rp->base = ioaddr;
    924	rp->irq = irq;
    925	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
    926
    927	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
    928
    929	u64_stats_init(&rp->tx_stats.syncp);
    930	u64_stats_init(&rp->rx_stats.syncp);
    931
    932	/* Get chip registers into a sane state */
    933	rhine_power_init(dev);
    934	rhine_hw_init(dev, pioaddr);
    935
    936	for (i = 0; i < 6; i++)
    937		addr[i] = ioread8(ioaddr + StationAddr + i);
    938	eth_hw_addr_set(dev, addr);
    939
    940	if (!is_valid_ether_addr(dev->dev_addr)) {
    941		/* Report it and use a random ethernet address instead */
    942		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
    943		eth_hw_addr_random(dev);
    944		netdev_info(dev, "Using random MAC address: %pM\n",
    945			    dev->dev_addr);
    946	}
    947
    948	/* For Rhine-I/II, phy_id is loaded from EEPROM */
    949	if (!phy_id)
    950		phy_id = ioread8(ioaddr + 0x6C);
    951
    952	spin_lock_init(&rp->lock);
    953	mutex_init(&rp->task_lock);
    954	INIT_WORK(&rp->reset_task, rhine_reset_task);
    955	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
    956
    957	rp->mii_if.dev = dev;
    958	rp->mii_if.mdio_read = mdio_read;
    959	rp->mii_if.mdio_write = mdio_write;
    960	rp->mii_if.phy_id_mask = 0x1f;
    961	rp->mii_if.reg_num_mask = 0x1f;
    962
    963	/* The chip-specific entries in the device structure. */
    964	dev->netdev_ops = &rhine_netdev_ops;
    965	dev->ethtool_ops = &netdev_ethtool_ops;
    966	dev->watchdog_timeo = TX_TIMEOUT;
    967
    968	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
    969
    970	if (rp->quirks & rqRhineI)
    971		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
    972
    973	if (rp->quirks & rqMgmt)
    974		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
    975				 NETIF_F_HW_VLAN_CTAG_RX |
    976				 NETIF_F_HW_VLAN_CTAG_FILTER;
    977
    978	/* dev->name not defined before register_netdev()! */
    979	rc = register_netdev(dev);
    980	if (rc)
    981		goto err_out_free_netdev;
    982
    983	if (rp->quirks & rqRhineI)
    984		name = "Rhine";
    985	else if (rp->quirks & rqStatusWBRace)
    986		name = "Rhine II";
    987	else if (rp->quirks & rqMgmt)
    988		name = "Rhine III (Management Adapter)";
    989	else
    990		name = "Rhine III";
    991
    992	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
    993		    name, ioaddr, dev->dev_addr, rp->irq);
    994
    995	dev_set_drvdata(hwdev, dev);
    996
    997	{
    998		u16 mii_cmd;
    999		int mii_status = mdio_read(dev, phy_id, 1);
   1000		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
   1001		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
   1002		if (mii_status != 0xffff && mii_status != 0x0000) {
   1003			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
   1004			netdev_info(dev,
   1005				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
   1006				    phy_id,
   1007				    mii_status, rp->mii_if.advertising,
   1008				    mdio_read(dev, phy_id, 5));
   1009
   1010			/* set IFF_RUNNING */
   1011			if (mii_status & BMSR_LSTATUS)
   1012				netif_carrier_on(dev);
   1013			else
   1014				netif_carrier_off(dev);
   1015
   1016		}
   1017	}
   1018	rp->mii_if.phy_id = phy_id;
   1019	if (avoid_D3)
   1020		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
   1021
   1022	return 0;
   1023
   1024err_out_free_netdev:
   1025	free_netdev(dev);
   1026err_out:
   1027	return rc;
   1028}
   1029
   1030static int rhine_init_one_pci(struct pci_dev *pdev,
   1031			      const struct pci_device_id *ent)
   1032{
   1033	struct device *hwdev = &pdev->dev;
   1034	int rc;
   1035	long pioaddr, memaddr;
   1036	void __iomem *ioaddr;
   1037	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
   1038
   1039/* This driver was written to use PCI memory space. Some early versions
   1040 * of the Rhine may only work correctly with I/O space accesses.
   1041 * TODO: determine for which revisions this is true and assign the flag
   1042 *	 in code as opposed to this Kconfig option (???)
   1043 */
   1044#ifdef CONFIG_VIA_RHINE_MMIO
   1045	u32 quirks = rqNeedEnMMIO;
   1046#else
   1047	u32 quirks = 0;
   1048#endif
   1049
   1050	rc = pci_enable_device(pdev);
   1051	if (rc)
   1052		goto err_out;
   1053
   1054	if (pdev->revision < VTunknown0) {
   1055		quirks |= rqRhineI;
   1056	} else if (pdev->revision >= VT6102) {
   1057		quirks |= rqWOL | rqForceReset;
   1058		if (pdev->revision < VT6105) {
   1059			quirks |= rqStatusWBRace;
   1060		} else {
   1061			quirks |= rqIntPHY;
   1062			if (pdev->revision >= VT6105_B0)
   1063				quirks |= rq6patterns;
   1064			if (pdev->revision >= VT6105M)
   1065				quirks |= rqMgmt;
   1066		}
   1067	}
   1068
   1069	/* sanity check */
   1070	if ((pci_resource_len(pdev, 0) < io_size) ||
   1071	    (pci_resource_len(pdev, 1) < io_size)) {
   1072		rc = -EIO;
   1073		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
   1074		goto err_out_pci_disable;
   1075	}
   1076
   1077	pioaddr = pci_resource_start(pdev, 0);
   1078	memaddr = pci_resource_start(pdev, 1);
   1079
   1080	pci_set_master(pdev);
   1081
   1082	rc = pci_request_regions(pdev, DRV_NAME);
   1083	if (rc)
   1084		goto err_out_pci_disable;
   1085
   1086	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
   1087	if (!ioaddr) {
   1088		rc = -EIO;
   1089		dev_err(hwdev,
   1090			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
   1091			dev_name(hwdev), io_size, memaddr);
   1092		goto err_out_free_res;
   1093	}
   1094
   1095	enable_mmio(pioaddr, quirks);
   1096
   1097	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
   1098	if (rc)
   1099		goto err_out_unmap;
   1100
   1101	rc = rhine_init_one_common(&pdev->dev, quirks,
   1102				   pioaddr, ioaddr, pdev->irq);
   1103	if (!rc)
   1104		return 0;
   1105
   1106err_out_unmap:
   1107	pci_iounmap(pdev, ioaddr);
   1108err_out_free_res:
   1109	pci_release_regions(pdev);
   1110err_out_pci_disable:
   1111	pci_disable_device(pdev);
   1112err_out:
   1113	return rc;
   1114}
   1115
   1116static int rhine_init_one_platform(struct platform_device *pdev)
   1117{
   1118	const u32 *quirks;
   1119	int irq;
   1120	void __iomem *ioaddr;
   1121
   1122	quirks = of_device_get_match_data(&pdev->dev);
   1123	if (!quirks)
   1124		return -EINVAL;
   1125
   1126	ioaddr = devm_platform_ioremap_resource(pdev, 0);
   1127	if (IS_ERR(ioaddr))
   1128		return PTR_ERR(ioaddr);
   1129
   1130	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
   1131	if (!irq)
   1132		return -EINVAL;
   1133
   1134	return rhine_init_one_common(&pdev->dev, *quirks,
   1135				     (long)ioaddr, ioaddr, irq);
   1136}
   1137
   1138static int alloc_ring(struct net_device* dev)
   1139{
   1140	struct rhine_private *rp = netdev_priv(dev);
   1141	struct device *hwdev = dev->dev.parent;
   1142	void *ring;
   1143	dma_addr_t ring_dma;
   1144
   1145	ring = dma_alloc_coherent(hwdev,
   1146				  RX_RING_SIZE * sizeof(struct rx_desc) +
   1147				  TX_RING_SIZE * sizeof(struct tx_desc),
   1148				  &ring_dma,
   1149				  GFP_ATOMIC);
   1150	if (!ring) {
   1151		netdev_err(dev, "Could not allocate DMA memory\n");
   1152		return -ENOMEM;
   1153	}
   1154	if (rp->quirks & rqRhineI) {
   1155		rp->tx_bufs = dma_alloc_coherent(hwdev,
   1156						 PKT_BUF_SZ * TX_RING_SIZE,
   1157						 &rp->tx_bufs_dma,
   1158						 GFP_ATOMIC);
   1159		if (rp->tx_bufs == NULL) {
   1160			dma_free_coherent(hwdev,
   1161					  RX_RING_SIZE * sizeof(struct rx_desc) +
   1162					  TX_RING_SIZE * sizeof(struct tx_desc),
   1163					  ring, ring_dma);
   1164			return -ENOMEM;
   1165		}
   1166	}
   1167
   1168	rp->rx_ring = ring;
   1169	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
   1170	rp->rx_ring_dma = ring_dma;
   1171	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
   1172
   1173	return 0;
   1174}
   1175
   1176static void free_ring(struct net_device* dev)
   1177{
   1178	struct rhine_private *rp = netdev_priv(dev);
   1179	struct device *hwdev = dev->dev.parent;
   1180
   1181	dma_free_coherent(hwdev,
   1182			  RX_RING_SIZE * sizeof(struct rx_desc) +
   1183			  TX_RING_SIZE * sizeof(struct tx_desc),
   1184			  rp->rx_ring, rp->rx_ring_dma);
   1185	rp->tx_ring = NULL;
   1186
   1187	if (rp->tx_bufs)
   1188		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
   1189				  rp->tx_bufs, rp->tx_bufs_dma);
   1190
   1191	rp->tx_bufs = NULL;
   1192
   1193}
   1194
   1195struct rhine_skb_dma {
   1196	struct sk_buff *skb;
   1197	dma_addr_t dma;
   1198};
   1199
   1200static inline int rhine_skb_dma_init(struct net_device *dev,
   1201				     struct rhine_skb_dma *sd)
   1202{
   1203	struct rhine_private *rp = netdev_priv(dev);
   1204	struct device *hwdev = dev->dev.parent;
   1205	const int size = rp->rx_buf_sz;
   1206
   1207	sd->skb = netdev_alloc_skb(dev, size);
   1208	if (!sd->skb)
   1209		return -ENOMEM;
   1210
   1211	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
   1212	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
   1213		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
   1214		dev_kfree_skb_any(sd->skb);
   1215		return -EIO;
   1216	}
   1217
   1218	return 0;
   1219}
   1220
   1221static void rhine_reset_rbufs(struct rhine_private *rp)
   1222{
   1223	int i;
   1224
   1225	rp->cur_rx = 0;
   1226
   1227	for (i = 0; i < RX_RING_SIZE; i++)
   1228		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
   1229}
   1230
   1231static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
   1232					   struct rhine_skb_dma *sd, int entry)
   1233{
   1234	rp->rx_skbuff_dma[entry] = sd->dma;
   1235	rp->rx_skbuff[entry] = sd->skb;
   1236
   1237	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
   1238	dma_wmb();
   1239}
   1240
   1241static void free_rbufs(struct net_device* dev);
   1242
   1243static int alloc_rbufs(struct net_device *dev)
   1244{
   1245	struct rhine_private *rp = netdev_priv(dev);
   1246	dma_addr_t next;
   1247	int rc, i;
   1248
   1249	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
   1250	next = rp->rx_ring_dma;
   1251
   1252	/* Init the ring entries */
   1253	for (i = 0; i < RX_RING_SIZE; i++) {
   1254		rp->rx_ring[i].rx_status = 0;
   1255		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
   1256		next += sizeof(struct rx_desc);
   1257		rp->rx_ring[i].next_desc = cpu_to_le32(next);
   1258		rp->rx_skbuff[i] = NULL;
   1259	}
   1260	/* Mark the last entry as wrapping the ring. */
   1261	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
   1262
   1263	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
   1264	for (i = 0; i < RX_RING_SIZE; i++) {
   1265		struct rhine_skb_dma sd;
   1266
   1267		rc = rhine_skb_dma_init(dev, &sd);
   1268		if (rc < 0) {
   1269			free_rbufs(dev);
   1270			goto out;
   1271		}
   1272
   1273		rhine_skb_dma_nic_store(rp, &sd, i);
   1274	}
   1275
   1276	rhine_reset_rbufs(rp);
   1277out:
   1278	return rc;
   1279}
   1280
   1281static void free_rbufs(struct net_device* dev)
   1282{
   1283	struct rhine_private *rp = netdev_priv(dev);
   1284	struct device *hwdev = dev->dev.parent;
   1285	int i;
   1286
   1287	/* Free all the skbuffs in the Rx queue. */
   1288	for (i = 0; i < RX_RING_SIZE; i++) {
   1289		rp->rx_ring[i].rx_status = 0;
   1290		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
   1291		if (rp->rx_skbuff[i]) {
   1292			dma_unmap_single(hwdev,
   1293					 rp->rx_skbuff_dma[i],
   1294					 rp->rx_buf_sz, DMA_FROM_DEVICE);
   1295			dev_kfree_skb(rp->rx_skbuff[i]);
   1296		}
   1297		rp->rx_skbuff[i] = NULL;
   1298	}
   1299}
   1300
   1301static void alloc_tbufs(struct net_device* dev)
   1302{
   1303	struct rhine_private *rp = netdev_priv(dev);
   1304	dma_addr_t next;
   1305	int i;
   1306
   1307	rp->dirty_tx = rp->cur_tx = 0;
   1308	next = rp->tx_ring_dma;
   1309	for (i = 0; i < TX_RING_SIZE; i++) {
   1310		rp->tx_skbuff[i] = NULL;
   1311		rp->tx_ring[i].tx_status = 0;
   1312		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
   1313		next += sizeof(struct tx_desc);
   1314		rp->tx_ring[i].next_desc = cpu_to_le32(next);
   1315		if (rp->quirks & rqRhineI)
   1316			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
   1317	}
   1318	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
   1319
   1320	netdev_reset_queue(dev);
   1321}
   1322
   1323static void free_tbufs(struct net_device* dev)
   1324{
   1325	struct rhine_private *rp = netdev_priv(dev);
   1326	struct device *hwdev = dev->dev.parent;
   1327	int i;
   1328
   1329	for (i = 0; i < TX_RING_SIZE; i++) {
   1330		rp->tx_ring[i].tx_status = 0;
   1331		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
   1332		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
   1333		if (rp->tx_skbuff[i]) {
   1334			if (rp->tx_skbuff_dma[i]) {
   1335				dma_unmap_single(hwdev,
   1336						 rp->tx_skbuff_dma[i],
   1337						 rp->tx_skbuff[i]->len,
   1338						 DMA_TO_DEVICE);
   1339			}
   1340			dev_kfree_skb(rp->tx_skbuff[i]);
   1341		}
   1342		rp->tx_skbuff[i] = NULL;
   1343		rp->tx_buf[i] = NULL;
   1344	}
   1345}
   1346
   1347static void rhine_check_media(struct net_device *dev, unsigned int init_media)
   1348{
   1349	struct rhine_private *rp = netdev_priv(dev);
   1350	void __iomem *ioaddr = rp->base;
   1351
   1352	if (!rp->mii_if.force_media)
   1353		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
   1354
   1355	if (rp->mii_if.full_duplex)
   1356	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
   1357		   ioaddr + ChipCmd1);
   1358	else
   1359	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
   1360		   ioaddr + ChipCmd1);
   1361
   1362	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
   1363		   rp->mii_if.force_media, netif_carrier_ok(dev));
   1364}
   1365
   1366/* Called after status of force_media possibly changed */
   1367static void rhine_set_carrier(struct mii_if_info *mii)
   1368{
   1369	struct net_device *dev = mii->dev;
   1370	struct rhine_private *rp = netdev_priv(dev);
   1371
   1372	if (mii->force_media) {
   1373		/* autoneg is off: Link is always assumed to be up */
   1374		if (!netif_carrier_ok(dev))
   1375			netif_carrier_on(dev);
   1376	}
   1377
   1378	rhine_check_media(dev, 0);
   1379
   1380	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
   1381		   mii->force_media, netif_carrier_ok(dev));
   1382}
   1383
   1384/**
   1385 * rhine_set_cam - set CAM multicast filters
   1386 * @ioaddr: register block of this Rhine
   1387 * @idx: multicast CAM index [0..MCAM_SIZE-1]
   1388 * @addr: multicast address (6 bytes)
   1389 *
   1390 * Load addresses into multicast filters.
   1391 */
   1392static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
   1393{
   1394	int i;
   1395
   1396	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
   1397	wmb();
   1398
   1399	/* Paranoid -- idx out of range should never happen */
   1400	idx &= (MCAM_SIZE - 1);
   1401
   1402	iowrite8((u8) idx, ioaddr + CamAddr);
   1403
   1404	for (i = 0; i < 6; i++, addr++)
   1405		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
   1406	udelay(10);
   1407	wmb();
   1408
   1409	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
   1410	udelay(10);
   1411
   1412	iowrite8(0, ioaddr + CamCon);
   1413}
   1414
   1415/**
   1416 * rhine_set_vlan_cam - set CAM VLAN filters
   1417 * @ioaddr: register block of this Rhine
   1418 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
   1419 * @addr: VLAN ID (2 bytes)
   1420 *
   1421 * Load addresses into VLAN filters.
   1422 */
   1423static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
   1424{
   1425	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
   1426	wmb();
   1427
   1428	/* Paranoid -- idx out of range should never happen */
   1429	idx &= (VCAM_SIZE - 1);
   1430
   1431	iowrite8((u8) idx, ioaddr + CamAddr);
   1432
   1433	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
   1434	udelay(10);
   1435	wmb();
   1436
   1437	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
   1438	udelay(10);
   1439
   1440	iowrite8(0, ioaddr + CamCon);
   1441}
   1442
   1443/**
   1444 * rhine_set_cam_mask - set multicast CAM mask
   1445 * @ioaddr: register block of this Rhine
   1446 * @mask: multicast CAM mask
   1447 *
   1448 * Mask sets multicast filters active/inactive.
   1449 */
   1450static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
   1451{
   1452	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
   1453	wmb();
   1454
   1455	/* write mask */
   1456	iowrite32(mask, ioaddr + CamMask);
   1457
   1458	/* disable CAMEN */
   1459	iowrite8(0, ioaddr + CamCon);
   1460}
   1461
   1462/**
   1463 * rhine_set_vlan_cam_mask - set VLAN CAM mask
   1464 * @ioaddr: register block of this Rhine
   1465 * @mask: VLAN CAM mask
   1466 *
   1467 * Mask sets VLAN filters active/inactive.
   1468 */
   1469static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
   1470{
   1471	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
   1472	wmb();
   1473
   1474	/* write mask */
   1475	iowrite32(mask, ioaddr + CamMask);
   1476
   1477	/* disable CAMEN */
   1478	iowrite8(0, ioaddr + CamCon);
   1479}
   1480
   1481/**
   1482 * rhine_init_cam_filter - initialize CAM filters
   1483 * @dev: network device
   1484 *
   1485 * Initialize (disable) hardware VLAN and multicast support on this
   1486 * Rhine.
   1487 */
   1488static void rhine_init_cam_filter(struct net_device *dev)
   1489{
   1490	struct rhine_private *rp = netdev_priv(dev);
   1491	void __iomem *ioaddr = rp->base;
   1492
   1493	/* Disable all CAMs */
   1494	rhine_set_vlan_cam_mask(ioaddr, 0);
   1495	rhine_set_cam_mask(ioaddr, 0);
   1496
   1497	/* disable hardware VLAN support */
   1498	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
   1499	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
   1500}
   1501
   1502/**
   1503 * rhine_update_vcam - update VLAN CAM filters
   1504 * @dev: rhine_private data of this Rhine
   1505 *
   1506 * Update VLAN CAM filters to match configuration change.
   1507 */
   1508static void rhine_update_vcam(struct net_device *dev)
   1509{
   1510	struct rhine_private *rp = netdev_priv(dev);
   1511	void __iomem *ioaddr = rp->base;
   1512	u16 vid;
   1513	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
   1514	unsigned int i = 0;
   1515
   1516	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
   1517		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
   1518		vCAMmask |= 1 << i;
   1519		if (++i >= VCAM_SIZE)
   1520			break;
   1521	}
   1522	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
   1523}
   1524
   1525static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
   1526{
   1527	struct rhine_private *rp = netdev_priv(dev);
   1528
   1529	spin_lock_bh(&rp->lock);
   1530	set_bit(vid, rp->active_vlans);
   1531	rhine_update_vcam(dev);
   1532	spin_unlock_bh(&rp->lock);
   1533	return 0;
   1534}
   1535
   1536static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
   1537{
   1538	struct rhine_private *rp = netdev_priv(dev);
   1539
   1540	spin_lock_bh(&rp->lock);
   1541	clear_bit(vid, rp->active_vlans);
   1542	rhine_update_vcam(dev);
   1543	spin_unlock_bh(&rp->lock);
   1544	return 0;
   1545}
   1546
   1547static void init_registers(struct net_device *dev)
   1548{
   1549	struct rhine_private *rp = netdev_priv(dev);
   1550	void __iomem *ioaddr = rp->base;
   1551	int i;
   1552
   1553	for (i = 0; i < 6; i++)
   1554		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
   1555
   1556	/* Initialize other registers. */
   1557	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
   1558	/* Configure initial FIFO thresholds. */
   1559	iowrite8(0x20, ioaddr + TxConfig);
   1560	rp->tx_thresh = 0x20;
   1561	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
   1562
   1563	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
   1564	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
   1565
   1566	rhine_set_rx_mode(dev);
   1567
   1568	if (rp->quirks & rqMgmt)
   1569		rhine_init_cam_filter(dev);
   1570
   1571	napi_enable(&rp->napi);
   1572
   1573	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
   1574
   1575	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
   1576	       ioaddr + ChipCmd);
   1577	rhine_check_media(dev, 1);
   1578}
   1579
   1580/* Enable MII link status auto-polling (required for IntrLinkChange) */
   1581static void rhine_enable_linkmon(struct rhine_private *rp)
   1582{
   1583	void __iomem *ioaddr = rp->base;
   1584
   1585	iowrite8(0, ioaddr + MIICmd);
   1586	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
   1587	iowrite8(0x80, ioaddr + MIICmd);
   1588
   1589	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
   1590
   1591	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
   1592}
   1593
   1594/* Disable MII link status auto-polling (required for MDIO access) */
   1595static void rhine_disable_linkmon(struct rhine_private *rp)
   1596{
   1597	void __iomem *ioaddr = rp->base;
   1598
   1599	iowrite8(0, ioaddr + MIICmd);
   1600
   1601	if (rp->quirks & rqRhineI) {
   1602		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
   1603
   1604		/* Can be called from ISR. Evil. */
   1605		mdelay(1);
   1606
   1607		/* 0x80 must be set immediately before turning it off */
   1608		iowrite8(0x80, ioaddr + MIICmd);
   1609
   1610		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
   1611
   1612		/* Heh. Now clear 0x80 again. */
   1613		iowrite8(0, ioaddr + MIICmd);
   1614	}
   1615	else
   1616		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
   1617}
   1618
   1619/* Read and write over the MII Management Data I/O (MDIO) interface. */
   1620
   1621static int mdio_read(struct net_device *dev, int phy_id, int regnum)
   1622{
   1623	struct rhine_private *rp = netdev_priv(dev);
   1624	void __iomem *ioaddr = rp->base;
   1625	int result;
   1626
   1627	rhine_disable_linkmon(rp);
   1628
   1629	/* rhine_disable_linkmon already cleared MIICmd */
   1630	iowrite8(phy_id, ioaddr + MIIPhyAddr);
   1631	iowrite8(regnum, ioaddr + MIIRegAddr);
   1632	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
   1633	rhine_wait_bit_low(rp, MIICmd, 0x40);
   1634	result = ioread16(ioaddr + MIIData);
   1635
   1636	rhine_enable_linkmon(rp);
   1637	return result;
   1638}
   1639
   1640static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
   1641{
   1642	struct rhine_private *rp = netdev_priv(dev);
   1643	void __iomem *ioaddr = rp->base;
   1644
   1645	rhine_disable_linkmon(rp);
   1646
   1647	/* rhine_disable_linkmon already cleared MIICmd */
   1648	iowrite8(phy_id, ioaddr + MIIPhyAddr);
   1649	iowrite8(regnum, ioaddr + MIIRegAddr);
   1650	iowrite16(value, ioaddr + MIIData);
   1651	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
   1652	rhine_wait_bit_low(rp, MIICmd, 0x20);
   1653
   1654	rhine_enable_linkmon(rp);
   1655}
   1656
   1657static void rhine_task_disable(struct rhine_private *rp)
   1658{
   1659	mutex_lock(&rp->task_lock);
   1660	rp->task_enable = false;
   1661	mutex_unlock(&rp->task_lock);
   1662
   1663	cancel_work_sync(&rp->slow_event_task);
   1664	cancel_work_sync(&rp->reset_task);
   1665}
   1666
   1667static void rhine_task_enable(struct rhine_private *rp)
   1668{
   1669	mutex_lock(&rp->task_lock);
   1670	rp->task_enable = true;
   1671	mutex_unlock(&rp->task_lock);
   1672}
   1673
   1674static int rhine_open(struct net_device *dev)
   1675{
   1676	struct rhine_private *rp = netdev_priv(dev);
   1677	void __iomem *ioaddr = rp->base;
   1678	int rc;
   1679
   1680	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
   1681	if (rc)
   1682		goto out;
   1683
   1684	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
   1685
   1686	rc = alloc_ring(dev);
   1687	if (rc < 0)
   1688		goto out_free_irq;
   1689
   1690	rc = alloc_rbufs(dev);
   1691	if (rc < 0)
   1692		goto out_free_ring;
   1693
   1694	alloc_tbufs(dev);
   1695	enable_mmio(rp->pioaddr, rp->quirks);
   1696	rhine_power_init(dev);
   1697	rhine_chip_reset(dev);
   1698	rhine_task_enable(rp);
   1699	init_registers(dev);
   1700
   1701	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
   1702		  __func__, ioread16(ioaddr + ChipCmd),
   1703		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
   1704
   1705	netif_start_queue(dev);
   1706
   1707out:
   1708	return rc;
   1709
   1710out_free_ring:
   1711	free_ring(dev);
   1712out_free_irq:
   1713	free_irq(rp->irq, dev);
   1714	goto out;
   1715}
   1716
   1717static void rhine_reset_task(struct work_struct *work)
   1718{
   1719	struct rhine_private *rp = container_of(work, struct rhine_private,
   1720						reset_task);
   1721	struct net_device *dev = rp->dev;
   1722
   1723	mutex_lock(&rp->task_lock);
   1724
   1725	if (!rp->task_enable)
   1726		goto out_unlock;
   1727
   1728	napi_disable(&rp->napi);
   1729	netif_tx_disable(dev);
   1730	spin_lock_bh(&rp->lock);
   1731
   1732	/* clear all descriptors */
   1733	free_tbufs(dev);
   1734	alloc_tbufs(dev);
   1735
   1736	rhine_reset_rbufs(rp);
   1737
   1738	/* Reinitialize the hardware. */
   1739	rhine_chip_reset(dev);
   1740	init_registers(dev);
   1741
   1742	spin_unlock_bh(&rp->lock);
   1743
   1744	netif_trans_update(dev); /* prevent tx timeout */
   1745	dev->stats.tx_errors++;
   1746	netif_wake_queue(dev);
   1747
   1748out_unlock:
   1749	mutex_unlock(&rp->task_lock);
   1750}
   1751
   1752static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
   1753{
   1754	struct rhine_private *rp = netdev_priv(dev);
   1755	void __iomem *ioaddr = rp->base;
   1756
   1757	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
   1758		    ioread16(ioaddr + IntrStatus),
   1759		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
   1760
   1761	schedule_work(&rp->reset_task);
   1762}
   1763
   1764static inline bool rhine_tx_queue_full(struct rhine_private *rp)
   1765{
   1766	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
   1767}
   1768
   1769static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
   1770				  struct net_device *dev)
   1771{
   1772	struct rhine_private *rp = netdev_priv(dev);
   1773	struct device *hwdev = dev->dev.parent;
   1774	void __iomem *ioaddr = rp->base;
   1775	unsigned entry;
   1776
   1777	/* Caution: the write order is important here, set the field
   1778	   with the "ownership" bits last. */
   1779
   1780	/* Calculate the next Tx descriptor entry. */
   1781	entry = rp->cur_tx % TX_RING_SIZE;
   1782
   1783	if (skb_padto(skb, ETH_ZLEN))
   1784		return NETDEV_TX_OK;
   1785
   1786	rp->tx_skbuff[entry] = skb;
   1787
   1788	if ((rp->quirks & rqRhineI) &&
   1789	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
   1790		/* Must use alignment buffer. */
   1791		if (skb->len > PKT_BUF_SZ) {
   1792			/* packet too long, drop it */
   1793			dev_kfree_skb_any(skb);
   1794			rp->tx_skbuff[entry] = NULL;
   1795			dev->stats.tx_dropped++;
   1796			return NETDEV_TX_OK;
   1797		}
   1798
   1799		/* Padding is not copied and so must be redone. */
   1800		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
   1801		if (skb->len < ETH_ZLEN)
   1802			memset(rp->tx_buf[entry] + skb->len, 0,
   1803			       ETH_ZLEN - skb->len);
   1804		rp->tx_skbuff_dma[entry] = 0;
   1805		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
   1806						      (rp->tx_buf[entry] -
   1807						       rp->tx_bufs));
   1808	} else {
   1809		rp->tx_skbuff_dma[entry] =
   1810			dma_map_single(hwdev, skb->data, skb->len,
   1811				       DMA_TO_DEVICE);
   1812		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
   1813			dev_kfree_skb_any(skb);
   1814			rp->tx_skbuff_dma[entry] = 0;
   1815			dev->stats.tx_dropped++;
   1816			return NETDEV_TX_OK;
   1817		}
   1818		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
   1819	}
   1820
   1821	rp->tx_ring[entry].desc_length =
   1822		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
   1823
   1824	if (unlikely(skb_vlan_tag_present(skb))) {
   1825		u16 vid_pcp = skb_vlan_tag_get(skb);
   1826
   1827		/* drop CFI/DEI bit, register needs VID and PCP */
   1828		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
   1829			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
   1830		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
   1831		/* request tagging */
   1832		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
   1833	}
   1834	else
   1835		rp->tx_ring[entry].tx_status = 0;
   1836
   1837	netdev_sent_queue(dev, skb->len);
   1838	/* lock eth irq */
   1839	dma_wmb();
   1840	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
   1841	wmb();
   1842
   1843	rp->cur_tx++;
   1844	/*
   1845	 * Nobody wants cur_tx write to rot for ages after the NIC will have
   1846	 * seen the transmit request, especially as the transmit completion
   1847	 * handler could miss it.
   1848	 */
   1849	smp_wmb();
   1850
   1851	/* Non-x86 Todo: explicitly flush cache lines here. */
   1852
   1853	if (skb_vlan_tag_present(skb))
   1854		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
   1855		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
   1856
   1857	/* Wake the potentially-idle transmit channel */
   1858	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
   1859	       ioaddr + ChipCmd1);
   1860	IOSYNC;
   1861
   1862	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
   1863	if (rhine_tx_queue_full(rp)) {
   1864		netif_stop_queue(dev);
   1865		smp_rmb();
   1866		/* Rejuvenate. */
   1867		if (!rhine_tx_queue_full(rp))
   1868			netif_wake_queue(dev);
   1869	}
   1870
   1871	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
   1872		  rp->cur_tx - 1, entry);
   1873
   1874	return NETDEV_TX_OK;
   1875}
   1876
   1877static void rhine_irq_disable(struct rhine_private *rp)
   1878{
   1879	iowrite16(0x0000, rp->base + IntrEnable);
   1880}
   1881
   1882/* The interrupt handler does all of the Rx thread work and cleans up
   1883   after the Tx thread. */
   1884static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
   1885{
   1886	struct net_device *dev = dev_instance;
   1887	struct rhine_private *rp = netdev_priv(dev);
   1888	u32 status;
   1889	int handled = 0;
   1890
   1891	status = rhine_get_events(rp);
   1892
   1893	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
   1894
   1895	if (status & RHINE_EVENT) {
   1896		handled = 1;
   1897
   1898		rhine_irq_disable(rp);
   1899		napi_schedule(&rp->napi);
   1900	}
   1901
   1902	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
   1903		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
   1904			  status);
   1905	}
   1906
   1907	return IRQ_RETVAL(handled);
   1908}
   1909
   1910/* This routine is logically part of the interrupt handler, but isolated
   1911   for clarity. */
   1912static void rhine_tx(struct net_device *dev)
   1913{
   1914	struct rhine_private *rp = netdev_priv(dev);
   1915	struct device *hwdev = dev->dev.parent;
   1916	unsigned int pkts_compl = 0, bytes_compl = 0;
   1917	unsigned int dirty_tx = rp->dirty_tx;
   1918	unsigned int cur_tx;
   1919	struct sk_buff *skb;
   1920
   1921	/*
   1922	 * The race with rhine_start_tx does not matter here as long as the
   1923	 * driver enforces a value of cur_tx that was relevant when the
   1924	 * packet was scheduled to the network chipset.
   1925	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
   1926	 */
   1927	smp_rmb();
   1928	cur_tx = rp->cur_tx;
   1929	/* find and cleanup dirty tx descriptors */
   1930	while (dirty_tx != cur_tx) {
   1931		unsigned int entry = dirty_tx % TX_RING_SIZE;
   1932		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
   1933
   1934		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
   1935			  entry, txstatus);
   1936		if (txstatus & DescOwn)
   1937			break;
   1938		skb = rp->tx_skbuff[entry];
   1939		if (txstatus & 0x8000) {
   1940			netif_dbg(rp, tx_done, dev,
   1941				  "Transmit error, Tx status %08x\n", txstatus);
   1942			dev->stats.tx_errors++;
   1943			if (txstatus & 0x0400)
   1944				dev->stats.tx_carrier_errors++;
   1945			if (txstatus & 0x0200)
   1946				dev->stats.tx_window_errors++;
   1947			if (txstatus & 0x0100)
   1948				dev->stats.tx_aborted_errors++;
   1949			if (txstatus & 0x0080)
   1950				dev->stats.tx_heartbeat_errors++;
   1951			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
   1952			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
   1953				dev->stats.tx_fifo_errors++;
   1954				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
   1955				break; /* Keep the skb - we try again */
   1956			}
   1957			/* Transmitter restarted in 'abnormal' handler. */
   1958		} else {
   1959			if (rp->quirks & rqRhineI)
   1960				dev->stats.collisions += (txstatus >> 3) & 0x0F;
   1961			else
   1962				dev->stats.collisions += txstatus & 0x0F;
   1963			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
   1964				  (txstatus >> 3) & 0xF, txstatus & 0xF);
   1965
   1966			u64_stats_update_begin(&rp->tx_stats.syncp);
   1967			rp->tx_stats.bytes += skb->len;
   1968			rp->tx_stats.packets++;
   1969			u64_stats_update_end(&rp->tx_stats.syncp);
   1970		}
   1971		/* Free the original skb. */
   1972		if (rp->tx_skbuff_dma[entry]) {
   1973			dma_unmap_single(hwdev,
   1974					 rp->tx_skbuff_dma[entry],
   1975					 skb->len,
   1976					 DMA_TO_DEVICE);
   1977		}
   1978		bytes_compl += skb->len;
   1979		pkts_compl++;
   1980		dev_consume_skb_any(skb);
   1981		rp->tx_skbuff[entry] = NULL;
   1982		dirty_tx++;
   1983	}
   1984
   1985	rp->dirty_tx = dirty_tx;
   1986	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
   1987	smp_wmb();
   1988
   1989	netdev_completed_queue(dev, pkts_compl, bytes_compl);
   1990
   1991	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
   1992	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
   1993		netif_wake_queue(dev);
   1994		smp_rmb();
   1995		/* Rejuvenate. */
   1996		if (rhine_tx_queue_full(rp))
   1997			netif_stop_queue(dev);
   1998	}
   1999}
   2000
   2001/**
   2002 * rhine_get_vlan_tci - extract TCI from Rx data buffer
   2003 * @skb: pointer to sk_buff
   2004 * @data_size: used data area of the buffer including CRC
   2005 *
   2006 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
   2007 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
   2008 * aligned following the CRC.
   2009 */
   2010static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
   2011{
   2012	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
   2013	return be16_to_cpup((__be16 *)trailer);
   2014}
   2015
   2016static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
   2017				     int data_size)
   2018{
   2019	dma_rmb();
   2020	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
   2021		u16 vlan_tci;
   2022
   2023		vlan_tci = rhine_get_vlan_tci(skb, data_size);
   2024		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
   2025	}
   2026}
   2027
   2028/* Process up to limit frames from receive ring */
   2029static int rhine_rx(struct net_device *dev, int limit)
   2030{
   2031	struct rhine_private *rp = netdev_priv(dev);
   2032	struct device *hwdev = dev->dev.parent;
   2033	int entry = rp->cur_rx % RX_RING_SIZE;
   2034	int count;
   2035
   2036	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
   2037		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
   2038
   2039	/* If EOP is set on the next entry, it's a new packet. Send it up. */
   2040	for (count = 0; count < limit; ++count) {
   2041		struct rx_desc *desc = rp->rx_ring + entry;
   2042		u32 desc_status = le32_to_cpu(desc->rx_status);
   2043		int data_size = desc_status >> 16;
   2044
   2045		if (desc_status & DescOwn)
   2046			break;
   2047
   2048		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
   2049			  desc_status);
   2050
   2051		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
   2052			if ((desc_status & RxWholePkt) != RxWholePkt) {
   2053				netdev_warn(dev,
   2054	"Oversized Ethernet frame spanned multiple buffers, "
   2055	"entry %#x length %d status %08x!\n",
   2056					    entry, data_size,
   2057					    desc_status);
   2058				dev->stats.rx_length_errors++;
   2059			} else if (desc_status & RxErr) {
   2060				/* There was a error. */
   2061				netif_dbg(rp, rx_err, dev,
   2062					  "%s() Rx error %08x\n", __func__,
   2063					  desc_status);
   2064				dev->stats.rx_errors++;
   2065				if (desc_status & 0x0030)
   2066					dev->stats.rx_length_errors++;
   2067				if (desc_status & 0x0048)
   2068					dev->stats.rx_fifo_errors++;
   2069				if (desc_status & 0x0004)
   2070					dev->stats.rx_frame_errors++;
   2071				if (desc_status & 0x0002) {
   2072					/* this can also be updated outside the interrupt handler */
   2073					spin_lock(&rp->lock);
   2074					dev->stats.rx_crc_errors++;
   2075					spin_unlock(&rp->lock);
   2076				}
   2077			}
   2078		} else {
   2079			/* Length should omit the CRC */
   2080			int pkt_len = data_size - 4;
   2081			struct sk_buff *skb;
   2082
   2083			/* Check if the packet is long enough to accept without
   2084			   copying to a minimally-sized skbuff. */
   2085			if (pkt_len < rx_copybreak) {
   2086				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
   2087				if (unlikely(!skb))
   2088					goto drop;
   2089
   2090				dma_sync_single_for_cpu(hwdev,
   2091							rp->rx_skbuff_dma[entry],
   2092							rp->rx_buf_sz,
   2093							DMA_FROM_DEVICE);
   2094
   2095				skb_copy_to_linear_data(skb,
   2096						 rp->rx_skbuff[entry]->data,
   2097						 pkt_len);
   2098
   2099				dma_sync_single_for_device(hwdev,
   2100							   rp->rx_skbuff_dma[entry],
   2101							   rp->rx_buf_sz,
   2102							   DMA_FROM_DEVICE);
   2103			} else {
   2104				struct rhine_skb_dma sd;
   2105
   2106				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
   2107					goto drop;
   2108
   2109				skb = rp->rx_skbuff[entry];
   2110
   2111				dma_unmap_single(hwdev,
   2112						 rp->rx_skbuff_dma[entry],
   2113						 rp->rx_buf_sz,
   2114						 DMA_FROM_DEVICE);
   2115				rhine_skb_dma_nic_store(rp, &sd, entry);
   2116			}
   2117
   2118			skb_put(skb, pkt_len);
   2119
   2120			rhine_rx_vlan_tag(skb, desc, data_size);
   2121
   2122			skb->protocol = eth_type_trans(skb, dev);
   2123
   2124			netif_receive_skb(skb);
   2125
   2126			u64_stats_update_begin(&rp->rx_stats.syncp);
   2127			rp->rx_stats.bytes += pkt_len;
   2128			rp->rx_stats.packets++;
   2129			u64_stats_update_end(&rp->rx_stats.syncp);
   2130		}
   2131give_descriptor_to_nic:
   2132		desc->rx_status = cpu_to_le32(DescOwn);
   2133		entry = (++rp->cur_rx) % RX_RING_SIZE;
   2134	}
   2135
   2136	return count;
   2137
   2138drop:
   2139	dev->stats.rx_dropped++;
   2140	goto give_descriptor_to_nic;
   2141}
   2142
   2143static void rhine_restart_tx(struct net_device *dev) {
   2144	struct rhine_private *rp = netdev_priv(dev);
   2145	void __iomem *ioaddr = rp->base;
   2146	int entry = rp->dirty_tx % TX_RING_SIZE;
   2147	u32 intr_status;
   2148
   2149	/*
   2150	 * If new errors occurred, we need to sort them out before doing Tx.
   2151	 * In that case the ISR will be back here RSN anyway.
   2152	 */
   2153	intr_status = rhine_get_events(rp);
   2154
   2155	if ((intr_status & IntrTxErrSummary) == 0) {
   2156
   2157		/* We know better than the chip where it should continue. */
   2158		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
   2159		       ioaddr + TxRingPtr);
   2160
   2161		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
   2162		       ioaddr + ChipCmd);
   2163
   2164		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
   2165			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
   2166			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
   2167
   2168		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
   2169		       ioaddr + ChipCmd1);
   2170		IOSYNC;
   2171	}
   2172	else {
   2173		/* This should never happen */
   2174		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
   2175			   intr_status);
   2176	}
   2177
   2178}
   2179
   2180static void rhine_slow_event_task(struct work_struct *work)
   2181{
   2182	struct rhine_private *rp =
   2183		container_of(work, struct rhine_private, slow_event_task);
   2184	struct net_device *dev = rp->dev;
   2185	u32 intr_status;
   2186
   2187	mutex_lock(&rp->task_lock);
   2188
   2189	if (!rp->task_enable)
   2190		goto out_unlock;
   2191
   2192	intr_status = rhine_get_events(rp);
   2193	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
   2194
   2195	if (intr_status & IntrLinkChange)
   2196		rhine_check_media(dev, 0);
   2197
   2198	if (intr_status & IntrPCIErr)
   2199		netif_warn(rp, hw, dev, "PCI error\n");
   2200
   2201	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
   2202
   2203out_unlock:
   2204	mutex_unlock(&rp->task_lock);
   2205}
   2206
   2207static void
   2208rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
   2209{
   2210	struct rhine_private *rp = netdev_priv(dev);
   2211	unsigned int start;
   2212
   2213	spin_lock_bh(&rp->lock);
   2214	rhine_update_rx_crc_and_missed_errord(rp);
   2215	spin_unlock_bh(&rp->lock);
   2216
   2217	netdev_stats_to_stats64(stats, &dev->stats);
   2218
   2219	do {
   2220		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
   2221		stats->rx_packets = rp->rx_stats.packets;
   2222		stats->rx_bytes = rp->rx_stats.bytes;
   2223	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
   2224
   2225	do {
   2226		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
   2227		stats->tx_packets = rp->tx_stats.packets;
   2228		stats->tx_bytes = rp->tx_stats.bytes;
   2229	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
   2230}
   2231
   2232static void rhine_set_rx_mode(struct net_device *dev)
   2233{
   2234	struct rhine_private *rp = netdev_priv(dev);
   2235	void __iomem *ioaddr = rp->base;
   2236	u32 mc_filter[2];	/* Multicast hash filter */
   2237	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
   2238	struct netdev_hw_addr *ha;
   2239
   2240	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
   2241		rx_mode = 0x1C;
   2242		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
   2243		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
   2244	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
   2245		   (dev->flags & IFF_ALLMULTI)) {
   2246		/* Too many to match, or accept all multicasts. */
   2247		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
   2248		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
   2249	} else if (rp->quirks & rqMgmt) {
   2250		int i = 0;
   2251		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
   2252		netdev_for_each_mc_addr(ha, dev) {
   2253			if (i == MCAM_SIZE)
   2254				break;
   2255			rhine_set_cam(ioaddr, i, ha->addr);
   2256			mCAMmask |= 1 << i;
   2257			i++;
   2258		}
   2259		rhine_set_cam_mask(ioaddr, mCAMmask);
   2260	} else {
   2261		memset(mc_filter, 0, sizeof(mc_filter));
   2262		netdev_for_each_mc_addr(ha, dev) {
   2263			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
   2264
   2265			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
   2266		}
   2267		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
   2268		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
   2269	}
   2270	/* enable/disable VLAN receive filtering */
   2271	if (rp->quirks & rqMgmt) {
   2272		if (dev->flags & IFF_PROMISC)
   2273			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
   2274		else
   2275			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
   2276	}
   2277	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
   2278}
   2279
   2280static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
   2281{
   2282	struct device *hwdev = dev->dev.parent;
   2283
   2284	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
   2285	strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
   2286}
   2287
   2288static int netdev_get_link_ksettings(struct net_device *dev,
   2289				     struct ethtool_link_ksettings *cmd)
   2290{
   2291	struct rhine_private *rp = netdev_priv(dev);
   2292
   2293	mutex_lock(&rp->task_lock);
   2294	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
   2295	mutex_unlock(&rp->task_lock);
   2296
   2297	return 0;
   2298}
   2299
   2300static int netdev_set_link_ksettings(struct net_device *dev,
   2301				     const struct ethtool_link_ksettings *cmd)
   2302{
   2303	struct rhine_private *rp = netdev_priv(dev);
   2304	int rc;
   2305
   2306	mutex_lock(&rp->task_lock);
   2307	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
   2308	rhine_set_carrier(&rp->mii_if);
   2309	mutex_unlock(&rp->task_lock);
   2310
   2311	return rc;
   2312}
   2313
   2314static int netdev_nway_reset(struct net_device *dev)
   2315{
   2316	struct rhine_private *rp = netdev_priv(dev);
   2317
   2318	return mii_nway_restart(&rp->mii_if);
   2319}
   2320
   2321static u32 netdev_get_link(struct net_device *dev)
   2322{
   2323	struct rhine_private *rp = netdev_priv(dev);
   2324
   2325	return mii_link_ok(&rp->mii_if);
   2326}
   2327
   2328static u32 netdev_get_msglevel(struct net_device *dev)
   2329{
   2330	struct rhine_private *rp = netdev_priv(dev);
   2331
   2332	return rp->msg_enable;
   2333}
   2334
   2335static void netdev_set_msglevel(struct net_device *dev, u32 value)
   2336{
   2337	struct rhine_private *rp = netdev_priv(dev);
   2338
   2339	rp->msg_enable = value;
   2340}
   2341
   2342static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
   2343{
   2344	struct rhine_private *rp = netdev_priv(dev);
   2345
   2346	if (!(rp->quirks & rqWOL))
   2347		return;
   2348
   2349	spin_lock_irq(&rp->lock);
   2350	wol->supported = WAKE_PHY | WAKE_MAGIC |
   2351			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
   2352	wol->wolopts = rp->wolopts;
   2353	spin_unlock_irq(&rp->lock);
   2354}
   2355
   2356static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
   2357{
   2358	struct rhine_private *rp = netdev_priv(dev);
   2359	u32 support = WAKE_PHY | WAKE_MAGIC |
   2360		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
   2361
   2362	if (!(rp->quirks & rqWOL))
   2363		return -EINVAL;
   2364
   2365	if (wol->wolopts & ~support)
   2366		return -EINVAL;
   2367
   2368	spin_lock_irq(&rp->lock);
   2369	rp->wolopts = wol->wolopts;
   2370	spin_unlock_irq(&rp->lock);
   2371
   2372	return 0;
   2373}
   2374
   2375static const struct ethtool_ops netdev_ethtool_ops = {
   2376	.get_drvinfo		= netdev_get_drvinfo,
   2377	.nway_reset		= netdev_nway_reset,
   2378	.get_link		= netdev_get_link,
   2379	.get_msglevel		= netdev_get_msglevel,
   2380	.set_msglevel		= netdev_set_msglevel,
   2381	.get_wol		= rhine_get_wol,
   2382	.set_wol		= rhine_set_wol,
   2383	.get_link_ksettings	= netdev_get_link_ksettings,
   2384	.set_link_ksettings	= netdev_set_link_ksettings,
   2385};
   2386
   2387static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
   2388{
   2389	struct rhine_private *rp = netdev_priv(dev);
   2390	int rc;
   2391
   2392	if (!netif_running(dev))
   2393		return -EINVAL;
   2394
   2395	mutex_lock(&rp->task_lock);
   2396	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
   2397	rhine_set_carrier(&rp->mii_if);
   2398	mutex_unlock(&rp->task_lock);
   2399
   2400	return rc;
   2401}
   2402
   2403static int rhine_close(struct net_device *dev)
   2404{
   2405	struct rhine_private *rp = netdev_priv(dev);
   2406	void __iomem *ioaddr = rp->base;
   2407
   2408	rhine_task_disable(rp);
   2409	napi_disable(&rp->napi);
   2410	netif_stop_queue(dev);
   2411
   2412	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
   2413		  ioread16(ioaddr + ChipCmd));
   2414
   2415	/* Switch to loopback mode to avoid hardware races. */
   2416	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
   2417
   2418	rhine_irq_disable(rp);
   2419
   2420	/* Stop the chip's Tx and Rx processes. */
   2421	iowrite16(CmdStop, ioaddr + ChipCmd);
   2422
   2423	free_irq(rp->irq, dev);
   2424	free_rbufs(dev);
   2425	free_tbufs(dev);
   2426	free_ring(dev);
   2427
   2428	return 0;
   2429}
   2430
   2431
   2432static void rhine_remove_one_pci(struct pci_dev *pdev)
   2433{
   2434	struct net_device *dev = pci_get_drvdata(pdev);
   2435	struct rhine_private *rp = netdev_priv(dev);
   2436
   2437	unregister_netdev(dev);
   2438
   2439	pci_iounmap(pdev, rp->base);
   2440	pci_release_regions(pdev);
   2441
   2442	free_netdev(dev);
   2443	pci_disable_device(pdev);
   2444}
   2445
   2446static int rhine_remove_one_platform(struct platform_device *pdev)
   2447{
   2448	struct net_device *dev = platform_get_drvdata(pdev);
   2449	struct rhine_private *rp = netdev_priv(dev);
   2450
   2451	unregister_netdev(dev);
   2452
   2453	iounmap(rp->base);
   2454
   2455	free_netdev(dev);
   2456
   2457	return 0;
   2458}
   2459
   2460static void rhine_shutdown_pci(struct pci_dev *pdev)
   2461{
   2462	struct net_device *dev = pci_get_drvdata(pdev);
   2463	struct rhine_private *rp = netdev_priv(dev);
   2464	void __iomem *ioaddr = rp->base;
   2465
   2466	if (!(rp->quirks & rqWOL))
   2467		return; /* Nothing to do for non-WOL adapters */
   2468
   2469	rhine_power_init(dev);
   2470
   2471	/* Make sure we use pattern 0, 1 and not 4, 5 */
   2472	if (rp->quirks & rq6patterns)
   2473		iowrite8(0x04, ioaddr + WOLcgClr);
   2474
   2475	spin_lock(&rp->lock);
   2476
   2477	if (rp->wolopts & WAKE_MAGIC) {
   2478		iowrite8(WOLmagic, ioaddr + WOLcrSet);
   2479		/*
   2480		 * Turn EEPROM-controlled wake-up back on -- some hardware may
   2481		 * not cooperate otherwise.
   2482		 */
   2483		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
   2484	}
   2485
   2486	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
   2487		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
   2488
   2489	if (rp->wolopts & WAKE_PHY)
   2490		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
   2491
   2492	if (rp->wolopts & WAKE_UCAST)
   2493		iowrite8(WOLucast, ioaddr + WOLcrSet);
   2494
   2495	if (rp->wolopts) {
   2496		/* Enable legacy WOL (for old motherboards) */
   2497		iowrite8(0x01, ioaddr + PwcfgSet);
   2498		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
   2499	}
   2500
   2501	spin_unlock(&rp->lock);
   2502
   2503	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
   2504		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
   2505
   2506		pci_wake_from_d3(pdev, true);
   2507		pci_set_power_state(pdev, PCI_D3hot);
   2508	}
   2509}
   2510
   2511#ifdef CONFIG_PM_SLEEP
   2512static int rhine_suspend(struct device *device)
   2513{
   2514	struct net_device *dev = dev_get_drvdata(device);
   2515	struct rhine_private *rp = netdev_priv(dev);
   2516
   2517	if (!netif_running(dev))
   2518		return 0;
   2519
   2520	rhine_task_disable(rp);
   2521	rhine_irq_disable(rp);
   2522	napi_disable(&rp->napi);
   2523
   2524	netif_device_detach(dev);
   2525
   2526	if (dev_is_pci(device))
   2527		rhine_shutdown_pci(to_pci_dev(device));
   2528
   2529	return 0;
   2530}
   2531
   2532static int rhine_resume(struct device *device)
   2533{
   2534	struct net_device *dev = dev_get_drvdata(device);
   2535	struct rhine_private *rp = netdev_priv(dev);
   2536
   2537	if (!netif_running(dev))
   2538		return 0;
   2539
   2540	enable_mmio(rp->pioaddr, rp->quirks);
   2541	rhine_power_init(dev);
   2542	free_tbufs(dev);
   2543	alloc_tbufs(dev);
   2544	rhine_reset_rbufs(rp);
   2545	rhine_task_enable(rp);
   2546	spin_lock_bh(&rp->lock);
   2547	init_registers(dev);
   2548	spin_unlock_bh(&rp->lock);
   2549
   2550	netif_device_attach(dev);
   2551
   2552	return 0;
   2553}
   2554
   2555static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
   2556#define RHINE_PM_OPS	(&rhine_pm_ops)
   2557
   2558#else
   2559
   2560#define RHINE_PM_OPS	NULL
   2561
   2562#endif /* !CONFIG_PM_SLEEP */
   2563
   2564static struct pci_driver rhine_driver_pci = {
   2565	.name		= DRV_NAME,
   2566	.id_table	= rhine_pci_tbl,
   2567	.probe		= rhine_init_one_pci,
   2568	.remove		= rhine_remove_one_pci,
   2569	.shutdown	= rhine_shutdown_pci,
   2570	.driver.pm	= RHINE_PM_OPS,
   2571};
   2572
   2573static struct platform_driver rhine_driver_platform = {
   2574	.probe		= rhine_init_one_platform,
   2575	.remove		= rhine_remove_one_platform,
   2576	.driver = {
   2577		.name	= DRV_NAME,
   2578		.of_match_table	= rhine_of_tbl,
   2579		.pm		= RHINE_PM_OPS,
   2580	}
   2581};
   2582
   2583static const struct dmi_system_id rhine_dmi_table[] __initconst = {
   2584	{
   2585		.ident = "EPIA-M",
   2586		.matches = {
   2587			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
   2588			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
   2589		},
   2590	},
   2591	{
   2592		.ident = "KV7",
   2593		.matches = {
   2594			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
   2595			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
   2596		},
   2597	},
   2598	{ NULL }
   2599};
   2600
   2601static int __init rhine_init(void)
   2602{
   2603	int ret_pci, ret_platform;
   2604
   2605/* when a module, this is printed whether or not devices are found in probe */
   2606	if (dmi_check_system(rhine_dmi_table)) {
   2607		/* these BIOSes fail at PXE boot if chip is in D3 */
   2608		avoid_D3 = true;
   2609		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
   2610	}
   2611	else if (avoid_D3)
   2612		pr_info("avoid_D3 set\n");
   2613
   2614	ret_pci = pci_register_driver(&rhine_driver_pci);
   2615	ret_platform = platform_driver_register(&rhine_driver_platform);
   2616	if ((ret_pci < 0) && (ret_platform < 0))
   2617		return ret_pci;
   2618
   2619	return 0;
   2620}
   2621
   2622
   2623static void __exit rhine_cleanup(void)
   2624{
   2625	platform_driver_unregister(&rhine_driver_platform);
   2626	pci_unregister_driver(&rhine_driver_pci);
   2627}
   2628
   2629
   2630module_init(rhine_init);
   2631module_exit(rhine_cleanup);