cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

defxx.c (118590B)


      1/*
      2 * File Name:
      3 *   defxx.c
      4 *
      5 * Copyright Information:
      6 *   Copyright Digital Equipment Corporation 1996.
      7 *
      8 *   This software may be used and distributed according to the terms of
      9 *   the GNU General Public License, incorporated herein by reference.
     10 *
     11 * Abstract:
     12 *   A Linux device driver supporting the Digital Equipment Corporation
     13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
     14 *   adapters include:
     15 *
     16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
     17 *		DEC FDDIcontroller/EISA         (DEFEA)
     18 *		DEC FDDIcontroller/PCI          (DEFPA)
     19 *
     20 * The original author:
     21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
     22 *
     23 * Maintainers:
     24 *   macro	Maciej W. Rozycki <macro@orcam.me.uk>
     25 *
     26 * Credits:
     27 *   I'd like to thank Patricia Cross for helping me get started with
     28 *   Linux, David Davies for a lot of help upgrading and configuring
     29 *   my development system and for answering many OS and driver
     30 *   development questions, and Alan Cox for recommendations and
     31 *   integration help on getting FDDI support into Linux.  LVS
     32 *
     33 * Driver Architecture:
     34 *   The driver architecture is largely based on previous driver work
     35 *   for other operating systems.  The upper edge interface and
     36 *   functions were largely taken from existing Linux device drivers
     37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
     38 *   driver.
     39 *
     40 *   Adapter Probe -
     41 *		The driver scans for supported EISA adapters by reading the
     42 *		SLOT ID register for each EISA slot and making a match
     43 *		against the expected value.
     44 *
     45 *   Bus-Specific Initialization -
     46 *		This driver currently supports both EISA and PCI controller
     47 *		families.  While the custom DMA chip and FDDI logic is similar
     48 *		or identical, the bus logic is very different.  After
     49 *		initialization, the	only bus-specific differences is in how the
     50 *		driver enables and disables interrupts.  Other than that, the
     51 *		run-time critical code behaves the same on both families.
     52 *		It's important to note that both adapter families are configured
     53 *		to I/O map, rather than memory map, the adapter registers.
     54 *
     55 *   Driver Open/Close -
     56 *		In the driver open routine, the driver ISR (interrupt service
     57 *		routine) is registered and the adapter is brought to an
     58 *		operational state.  In the driver close routine, the opposite
     59 *		occurs; the driver ISR is deregistered and the adapter is
     60 *		brought to a safe, but closed state.  Users may use consecutive
     61 *		commands to bring the adapter up and down as in the following
     62 *		example:
     63 *					ifconfig fddi0 up
     64 *					ifconfig fddi0 down
     65 *					ifconfig fddi0 up
     66 *
     67 *   Driver Shutdown -
     68 *		Apparently, there is no shutdown or halt routine support under
     69 *		Linux.  This routine would be called during "reboot" or
     70 *		"shutdown" to allow the driver to place the adapter in a safe
     71 *		state before a warm reboot occurs.  To be really safe, the user
     72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
     73 *		to ensure that the adapter DMA engine is taken off-line.  However,
     74 *		the current driver code anticipates this problem and always issues
     75 *		a soft reset of the adapter	at the beginning of driver initialization.
     76 *		A future driver enhancement in this area may occur in 2.1.X where
     77 *		Alan indicated that a shutdown handler may be implemented.
     78 *
     79 *   Interrupt Service Routine -
     80 *		The driver supports shared interrupts, so the ISR is registered for
     81 *		each board with the appropriate flag and the pointer to that board's
     82 *		device structure.  This provides the context during interrupt
     83 *		processing to support shared interrupts and multiple boards.
     84 *
     85 *		Interrupt enabling/disabling can occur at many levels.  At the host
     86 *		end, you can disable system interrupts, or disable interrupts at the
     87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
     88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
     89 *		controller interrupt enable/disable.
     90 *
     91 *		The driver currently enables and disables adapter interrupts at the
     92 *		bus-logic chip and assumes that Linux will take care of clearing or
     93 *		acknowledging any host-based interrupt chips.
     94 *
     95 *   Control Functions -
     96 *		Control functions are those used to support functions such as adding
     97 *		or deleting multicast addresses, enabling or disabling packet
     98 *		reception filters, or other custom/proprietary commands.  Presently,
     99 *		the driver supports the "get statistics", "set multicast list", and
    100 *		"set mac address" functions defined by Linux.  A list of possible
    101 *		enhancements include:
    102 *
    103 *				- Custom ioctl interface for executing port interface commands
    104 *				- Custom ioctl interface for adding unicast addresses to
    105 *				  adapter CAM (to support bridge functions).
    106 *				- Custom ioctl interface for supporting firmware upgrades.
    107 *
    108 *   Hardware (port interface) Support Routines -
    109 *		The driver function names that start with "dfx_hw_" represent
    110 *		low-level port interface routines that are called frequently.  They
    111 *		include issuing a DMA or port control command to the adapter,
    112 *		resetting the adapter, or reading the adapter state.  Since the
    113 *		driver initialization and run-time code must make calls into the
    114 *		port interface, these routines were written to be as generic and
    115 *		usable as possible.
    116 *
    117 *   Receive Path -
    118 *		The adapter DMA engine supports a 256 entry receive descriptor block
    119 *		of which up to 255 entries can be used at any given time.  The
    120 *		architecture is a standard producer, consumer, completion model in
    121 *		which the driver "produces" receive buffers to the adapter, the
    122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
    123 *		and the driver "completes" the receive buffers by servicing the
    124 *		incoming packet, then "produces" a new buffer and starts the cycle
    125 *		again.  Receive buffers can be fragmented in up to 16 fragments
    126 *		(descriptor	entries).  For simplicity, this driver posts
    127 *		single-fragment receive buffers of 4608 bytes, then allocates a
    128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
    129 *		utilization, a better approach would be to pass up the receive
    130 *		buffer (no extra copy) then allocate and post a replacement buffer.
    131 *		This is a performance enhancement that should be looked into at
    132 *		some point.
    133 *
    134 *   Transmit Path -
    135 *		Like the receive path, the adapter DMA engine supports a 256 entry
    136 *		transmit descriptor block of which up to 255 entries can be used at
    137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
    138 *		fragments (descriptor entries).  This driver always posts one
    139 *		fragment per transmit packet request.
    140 *
    141 *		The fragment contains the entire packet from FC to end of data.
    142 *		Before posting the buffer to the adapter, the driver sets a three-byte
    143 *		packet request header (PRH) which is required by the Motorola MAC chip
    144 *		used on the adapters.  The PRH tells the MAC the type of token to
    145 *		receive/send, whether or not to generate and append the CRC, whether
    146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
    147 *		definition is not necessarily consistent across all FDDI chipsets,
    148 *		the driver, rather than the common FDDI packet handler routines,
    149 *		sets these bytes.
    150 *
    151 *		To reduce the amount of descriptor fetches needed per transmit request,
    152 *		the driver takes advantage of the fact that there are at least three
    153 *		bytes available before the skb->data field on the outgoing transmit
    154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
    155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
    156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
    157 *		bytes which we'll use to store the PRH.
    158 *
    159 *		There's a subtle advantage to adding these pad bytes to the
    160 *		hard_header_len, it ensures that the data portion of the packet for
    161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
    162 *		implementations may not need the extra padding and can start copying
    163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
    164 *		another driver implementation need ADDITIONAL padding, the net_init.c
    165 *		module should be updated and dev->hard_header_len should be increased.
    166 *		NOTE: To maintain the alignment on the data portion of the packet,
    167 *		dev->hard_header_len should always be evenly divisible by 4 and at
    168 *		least 24 bytes in size.
    169 *
    170 * Modification History:
    171 *		Date		Name	Description
    172 *		16-Aug-96	LVS		Created.
    173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
    174 *							string is only displayed if 1 or more cards are
    175 *							found.  Changed dfx_rcv_queue_process to copy
    176 *							3 NULL bytes before FC to ensure that data is
    177 *							longword aligned in receive buffer.
    178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
    179 *							LLC group promiscuous mode if multicast list
    180 *							is too large.  LLC individual/group promiscuous
    181 *							mode is now disabled if IFF_PROMISC flag not set.
    182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
    183 *							on Alan Cox recommendation.  Added node address
    184 *							override support.
    185 *		12-Sep-96	LVS		Reset current address to factory address during
    186 *							device open.  Updated transmit path to post a
    187 *							single fragment which includes PRH->end of data.
    188 *		Mar 2000	AC		Did various cleanups for 2.3.x
    189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
    190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
    191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
    192 *		Feb 2001			Skb allocation fixes
    193 *		Feb 2001	davej		PCI enable cleanups.
    194 *		04 Aug 2003	macro		Converted to the DMA API.
    195 *		14 Aug 2004	macro		Fix device names reported.
    196 *		14 Jun 2005	macro		Use irqreturn_t.
    197 *		23 Oct 2006	macro		Big-endian host support.
    198 *		14 Dec 2006	macro		TURBOchannel support.
    199 *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
    200 *		10 Mar 2021	macro		Dynamic MMIO vs port I/O.
    201 */
    202
    203/* Include files */
    204#include <linux/bitops.h>
    205#include <linux/compiler.h>
    206#include <linux/delay.h>
    207#include <linux/dma-mapping.h>
    208#include <linux/eisa.h>
    209#include <linux/errno.h>
    210#include <linux/fddidevice.h>
    211#include <linux/interrupt.h>
    212#include <linux/ioport.h>
    213#include <linux/kernel.h>
    214#include <linux/module.h>
    215#include <linux/netdevice.h>
    216#include <linux/pci.h>
    217#include <linux/skbuff.h>
    218#include <linux/slab.h>
    219#include <linux/string.h>
    220#include <linux/tc.h>
    221
    222#include <asm/byteorder.h>
    223#include <asm/io.h>
    224
    225#include "defxx.h"
    226
    227/* Version information string should be updated prior to each new release!  */
    228#define DRV_NAME "defxx"
    229#define DRV_VERSION "v1.12"
    230#define DRV_RELDATE "2021/03/10"
    231
    232static const char version[] =
    233	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
    234	"  Lawrence V. Stefani and others\n";
    235
    236#define DYNAMIC_BUFFERS 1
    237
    238#define SKBUFF_RX_COPYBREAK 200
    239/*
    240 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
    241 * alignment for compatibility with old EISA boards.
    242 */
    243#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
    244
    245#ifdef CONFIG_EISA
    246#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
    247#else
    248#define DFX_BUS_EISA(dev) 0
    249#endif
    250
    251#ifdef CONFIG_TC
    252#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
    253#else
    254#define DFX_BUS_TC(dev) 0
    255#endif
    256
    257#if defined(CONFIG_EISA) || defined(CONFIG_PCI)
    258#define dfx_use_mmio bp->mmio
    259#else
    260#define dfx_use_mmio true
    261#endif
    262
    263/* Define module-wide (static) routines */
    264
    265static void		dfx_bus_init(struct net_device *dev);
    266static void		dfx_bus_uninit(struct net_device *dev);
    267static void		dfx_bus_config_check(DFX_board_t *bp);
    268
    269static int		dfx_driver_init(struct net_device *dev,
    270					const char *print_name,
    271					resource_size_t bar_start);
    272static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
    273
    274static int		dfx_open(struct net_device *dev);
    275static int		dfx_close(struct net_device *dev);
    276
    277static void		dfx_int_pr_halt_id(DFX_board_t *bp);
    278static void		dfx_int_type_0_process(DFX_board_t *bp);
    279static void		dfx_int_common(struct net_device *dev);
    280static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
    281
    282static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
    283static void		dfx_ctl_set_multicast_list(struct net_device *dev);
    284static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
    285static int		dfx_ctl_update_cam(DFX_board_t *bp);
    286static int		dfx_ctl_update_filters(DFX_board_t *bp);
    287
    288static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
    289static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
    290static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
    291static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
    292static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
    293
    294static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
    295static void		dfx_rcv_queue_process(DFX_board_t *bp);
    296#ifdef DYNAMIC_BUFFERS
    297static void		dfx_rcv_flush(DFX_board_t *bp);
    298#else
    299static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
    300#endif
    301
    302static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
    303				     struct net_device *dev);
    304static int		dfx_xmt_done(DFX_board_t *bp);
    305static void		dfx_xmt_flush(DFX_board_t *bp);
    306
    307/* Define module-wide (static) variables */
    308
    309static struct pci_driver dfx_pci_driver;
    310static struct eisa_driver dfx_eisa_driver;
    311static struct tc_driver dfx_tc_driver;
    312
    313
    314/*
    315 * =======================
    316 * = dfx_port_write_long =
    317 * = dfx_port_read_long  =
    318 * =======================
    319 *
    320 * Overview:
    321 *   Routines for reading and writing values from/to adapter
    322 *
    323 * Returns:
    324 *   None
    325 *
    326 * Arguments:
    327 *   bp		- pointer to board information
    328 *   offset	- register offset from base I/O address
    329 *   data	- for dfx_port_write_long, this is a value to write;
    330 *		  for dfx_port_read_long, this is a pointer to store
    331 *		  the read value
    332 *
    333 * Functional Description:
    334 *   These routines perform the correct operation to read or write
    335 *   the adapter register.
    336 *
    337 *   EISA port block base addresses are based on the slot number in which the
    338 *   controller is installed.  For example, if the EISA controller is installed
    339 *   in slot 4, the port block base address is 0x4000.  If the controller is
    340 *   installed in slot 2, the port block base address is 0x2000, and so on.
    341 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
    342 *   registers using the register offsets defined in DEFXX.H.
    343 *
    344 *   PCI port block base addresses are assigned by the PCI BIOS or system
    345 *   firmware.  There is one 128 byte port block which can be accessed.  It
    346 *   allows for I/O mapping of both PDQ and PFI registers using the register
    347 *   offsets defined in DEFXX.H.
    348 *
    349 * Return Codes:
    350 *   None
    351 *
    352 * Assumptions:
    353 *   bp->base is a valid base I/O address for this adapter.
    354 *   offset is a valid register offset for this adapter.
    355 *
    356 * Side Effects:
    357 *   Rather than produce macros for these functions, these routines
    358 *   are defined using "inline" to ensure that the compiler will
    359 *   generate inline code and not waste a procedure call and return.
    360 *   This provides all the benefits of macros, but with the
    361 *   advantage of strict data type checking.
    362 */
    363
    364static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
    365{
    366	writel(data, bp->base.mem + offset);
    367	mb();
    368}
    369
    370static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
    371{
    372	outl(data, bp->base.port + offset);
    373}
    374
    375static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
    376{
    377	struct device __maybe_unused *bdev = bp->bus_dev;
    378
    379	if (dfx_use_mmio)
    380		dfx_writel(bp, offset, data);
    381	else
    382		dfx_outl(bp, offset, data);
    383}
    384
    385
    386static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
    387{
    388	mb();
    389	*data = readl(bp->base.mem + offset);
    390}
    391
    392static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
    393{
    394	*data = inl(bp->base.port + offset);
    395}
    396
    397static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
    398{
    399	struct device __maybe_unused *bdev = bp->bus_dev;
    400
    401	if (dfx_use_mmio)
    402		dfx_readl(bp, offset, data);
    403	else
    404		dfx_inl(bp, offset, data);
    405}
    406
    407
    408/*
    409 * ================
    410 * = dfx_get_bars =
    411 * ================
    412 *
    413 * Overview:
    414 *   Retrieves the address ranges used to access control and status
    415 *   registers.
    416 *
    417 * Returns:
    418 *   None
    419 *
    420 * Arguments:
    421 *   bp		- pointer to board information
    422 *   bar_start	- pointer to store the start addresses
    423 *   bar_len	- pointer to store the lengths of the areas
    424 *
    425 * Assumptions:
    426 *   I am sure there are some.
    427 *
    428 * Side Effects:
    429 *   None
    430 */
    431static void dfx_get_bars(DFX_board_t *bp,
    432			 resource_size_t *bar_start, resource_size_t *bar_len)
    433{
    434	struct device *bdev = bp->bus_dev;
    435	int dfx_bus_pci = dev_is_pci(bdev);
    436	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
    437	int dfx_bus_tc = DFX_BUS_TC(bdev);
    438
    439	if (dfx_bus_pci) {
    440		int num = dfx_use_mmio ? 0 : 1;
    441
    442		bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
    443		bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
    444		bar_start[2] = bar_start[1] = 0;
    445		bar_len[2] = bar_len[1] = 0;
    446	}
    447	if (dfx_bus_eisa) {
    448		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
    449		resource_size_t bar_lo;
    450		resource_size_t bar_hi;
    451
    452		if (dfx_use_mmio) {
    453			bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
    454			bar_lo <<= 8;
    455			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
    456			bar_lo <<= 8;
    457			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
    458			bar_lo <<= 8;
    459			bar_start[0] = bar_lo;
    460			bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
    461			bar_hi <<= 8;
    462			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
    463			bar_hi <<= 8;
    464			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
    465			bar_hi <<= 8;
    466			bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
    467				     1;
    468		} else {
    469			bar_start[0] = base_addr;
    470			bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
    471		}
    472		bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
    473		bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
    474		bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
    475		bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
    476	}
    477	if (dfx_bus_tc) {
    478		bar_start[0] = to_tc_dev(bdev)->resource.start +
    479			       PI_TC_K_CSR_OFFSET;
    480		bar_len[0] = PI_TC_K_CSR_LEN;
    481		bar_start[2] = bar_start[1] = 0;
    482		bar_len[2] = bar_len[1] = 0;
    483	}
    484}
    485
    486static const struct net_device_ops dfx_netdev_ops = {
    487	.ndo_open		= dfx_open,
    488	.ndo_stop		= dfx_close,
    489	.ndo_start_xmit		= dfx_xmt_queue_pkt,
    490	.ndo_get_stats		= dfx_ctl_get_stats,
    491	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
    492	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
    493};
    494
    495static void dfx_register_res_err(const char *print_name, bool mmio,
    496				 unsigned long start, unsigned long len)
    497{
    498	pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
    499	       print_name, mmio ? "MMIO" : "I/O", len, start);
    500}
    501
    502/*
    503 * ================
    504 * = dfx_register =
    505 * ================
    506 *
    507 * Overview:
    508 *   Initializes a supported FDDI controller
    509 *
    510 * Returns:
    511 *   Condition code
    512 *
    513 * Arguments:
    514 *   bdev - pointer to device information
    515 *
    516 * Functional Description:
    517 *
    518 * Return Codes:
    519 *   0		 - This device (fddi0, fddi1, etc) configured successfully
    520 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
    521 *
    522 * Assumptions:
    523 *   It compiles so it should work :-( (PCI cards do :-)
    524 *
    525 * Side Effects:
    526 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
    527 *   initialized and the board resources are read and stored in
    528 *   the device structure.
    529 */
    530static int dfx_register(struct device *bdev)
    531{
    532	static int version_disp;
    533	int dfx_bus_pci = dev_is_pci(bdev);
    534	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
    535	const char *print_name = dev_name(bdev);
    536	struct net_device *dev;
    537	DFX_board_t	  *bp;			/* board pointer */
    538	resource_size_t bar_start[3] = {0};	/* pointers to ports */
    539	resource_size_t bar_len[3] = {0};	/* resource length */
    540	int alloc_size;				/* total buffer size used */
    541	struct resource *region;
    542	int err = 0;
    543
    544	if (!version_disp) {	/* display version info if adapter is found */
    545		version_disp = 1;	/* set display flag to TRUE so that */
    546		printk(version);	/* we only display this string ONCE */
    547	}
    548
    549	dev = alloc_fddidev(sizeof(*bp));
    550	if (!dev) {
    551		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
    552		       print_name);
    553		return -ENOMEM;
    554	}
    555
    556	/* Enable PCI device. */
    557	if (dfx_bus_pci) {
    558		err = pci_enable_device(to_pci_dev(bdev));
    559		if (err) {
    560			pr_err("%s: Cannot enable PCI device, aborting\n",
    561			       print_name);
    562			goto err_out;
    563		}
    564	}
    565
    566	SET_NETDEV_DEV(dev, bdev);
    567
    568	bp = netdev_priv(dev);
    569	bp->bus_dev = bdev;
    570	dev_set_drvdata(bdev, dev);
    571
    572	bp->mmio = true;
    573
    574	dfx_get_bars(bp, bar_start, bar_len);
    575	if (bar_len[0] == 0 ||
    576	    (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
    577		bp->mmio = false;
    578		dfx_get_bars(bp, bar_start, bar_len);
    579	}
    580
    581	if (dfx_use_mmio) {
    582		region = request_mem_region(bar_start[0], bar_len[0],
    583					    bdev->driver->name);
    584		if (!region && (dfx_bus_eisa || dfx_bus_pci)) {
    585			bp->mmio = false;
    586			dfx_get_bars(bp, bar_start, bar_len);
    587		}
    588	}
    589	if (!dfx_use_mmio)
    590		region = request_region(bar_start[0], bar_len[0],
    591					bdev->driver->name);
    592	if (!region) {
    593		dfx_register_res_err(print_name, dfx_use_mmio,
    594				     bar_start[0], bar_len[0]);
    595		err = -EBUSY;
    596		goto err_out_disable;
    597	}
    598	if (bar_start[1] != 0) {
    599		region = request_region(bar_start[1], bar_len[1],
    600					bdev->driver->name);
    601		if (!region) {
    602			dfx_register_res_err(print_name, 0,
    603					     bar_start[1], bar_len[1]);
    604			err = -EBUSY;
    605			goto err_out_csr_region;
    606		}
    607	}
    608	if (bar_start[2] != 0) {
    609		region = request_region(bar_start[2], bar_len[2],
    610					bdev->driver->name);
    611		if (!region) {
    612			dfx_register_res_err(print_name, 0,
    613					     bar_start[2], bar_len[2]);
    614			err = -EBUSY;
    615			goto err_out_bh_region;
    616		}
    617	}
    618
    619	/* Set up I/O base address. */
    620	if (dfx_use_mmio) {
    621		bp->base.mem = ioremap(bar_start[0], bar_len[0]);
    622		if (!bp->base.mem) {
    623			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
    624			err = -ENOMEM;
    625			goto err_out_esic_region;
    626		}
    627	} else {
    628		bp->base.port = bar_start[0];
    629		dev->base_addr = bar_start[0];
    630	}
    631
    632	/* Initialize new device structure */
    633	dev->netdev_ops			= &dfx_netdev_ops;
    634
    635	if (dfx_bus_pci)
    636		pci_set_master(to_pci_dev(bdev));
    637
    638	if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
    639		err = -ENODEV;
    640		goto err_out_unmap;
    641	}
    642
    643	err = register_netdev(dev);
    644	if (err)
    645		goto err_out_kfree;
    646
    647	printk("%s: registered as %s\n", print_name, dev->name);
    648	return 0;
    649
    650err_out_kfree:
    651	alloc_size = sizeof(PI_DESCR_BLOCK) +
    652		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
    653#ifndef DYNAMIC_BUFFERS
    654		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
    655#endif
    656		     sizeof(PI_CONSUMER_BLOCK) +
    657		     (PI_ALIGN_K_DESC_BLK - 1);
    658	if (bp->kmalloced)
    659		dma_free_coherent(bdev, alloc_size,
    660				  bp->kmalloced, bp->kmalloced_dma);
    661
    662err_out_unmap:
    663	if (dfx_use_mmio)
    664		iounmap(bp->base.mem);
    665
    666err_out_esic_region:
    667	if (bar_start[2] != 0)
    668		release_region(bar_start[2], bar_len[2]);
    669
    670err_out_bh_region:
    671	if (bar_start[1] != 0)
    672		release_region(bar_start[1], bar_len[1]);
    673
    674err_out_csr_region:
    675	if (dfx_use_mmio)
    676		release_mem_region(bar_start[0], bar_len[0]);
    677	else
    678		release_region(bar_start[0], bar_len[0]);
    679
    680err_out_disable:
    681	if (dfx_bus_pci)
    682		pci_disable_device(to_pci_dev(bdev));
    683
    684err_out:
    685	free_netdev(dev);
    686	return err;
    687}
    688
    689
    690/*
    691 * ================
    692 * = dfx_bus_init =
    693 * ================
    694 *
    695 * Overview:
    696 *   Initializes the bus-specific controller logic.
    697 *
    698 * Returns:
    699 *   None
    700 *
    701 * Arguments:
    702 *   dev - pointer to device information
    703 *
    704 * Functional Description:
    705 *   Determine and save adapter IRQ in device table,
    706 *   then perform bus-specific logic initialization.
    707 *
    708 * Return Codes:
    709 *   None
    710 *
    711 * Assumptions:
    712 *   bp->base has already been set with the proper
    713 *	 base I/O address for this device.
    714 *
    715 * Side Effects:
    716 *   Interrupts are enabled at the adapter bus-specific logic.
    717 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
    718 *   enabled yet.
    719 */
    720
    721static void dfx_bus_init(struct net_device *dev)
    722{
    723	DFX_board_t *bp = netdev_priv(dev);
    724	struct device *bdev = bp->bus_dev;
    725	int dfx_bus_pci = dev_is_pci(bdev);
    726	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
    727	int dfx_bus_tc = DFX_BUS_TC(bdev);
    728	u8 val;
    729
    730	DBG_printk("In dfx_bus_init...\n");
    731
    732	/* Initialize a pointer back to the net_device struct */
    733	bp->dev = dev;
    734
    735	/* Initialize adapter based on bus type */
    736
    737	if (dfx_bus_tc)
    738		dev->irq = to_tc_dev(bdev)->interrupt;
    739	if (dfx_bus_eisa) {
    740		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
    741
    742		/* Disable the board before fiddling with the decoders.  */
    743		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
    744
    745		/* Get the interrupt level from the ESIC chip.  */
    746		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
    747		val &= PI_CONFIG_STAT_0_M_IRQ;
    748		val >>= PI_CONFIG_STAT_0_V_IRQ;
    749
    750		switch (val) {
    751		case PI_CONFIG_STAT_0_IRQ_K_9:
    752			dev->irq = 9;
    753			break;
    754
    755		case PI_CONFIG_STAT_0_IRQ_K_10:
    756			dev->irq = 10;
    757			break;
    758
    759		case PI_CONFIG_STAT_0_IRQ_K_11:
    760			dev->irq = 11;
    761			break;
    762
    763		case PI_CONFIG_STAT_0_IRQ_K_15:
    764			dev->irq = 15;
    765			break;
    766		}
    767
    768		/*
    769		 * Enable memory decoding (MEMCS1) and/or port decoding
    770		 * (IOCS1/IOCS0) as appropriate in Function Control
    771		 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
    772		 * taking 16 32-bit words, while IOCS1 is used for the
    773		 * Burst Holdoff register, taking a single 32-bit word
    774		 * only.  We use the slot-specific I/O range as per the
    775		 * ESIC spec, that is set bits 15:12 in the mask registers
    776		 * to mask them out.
    777		 */
    778
    779		/* Set the decode range of the board.  */
    780		val = 0;
    781		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
    782		val = PI_DEFEA_K_CSR_IO;
    783		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
    784
    785		val = PI_IO_CMP_M_SLOT;
    786		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
    787		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
    788		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
    789
    790		val = 0;
    791		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
    792		val = PI_DEFEA_K_BURST_HOLDOFF;
    793		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
    794
    795		val = PI_IO_CMP_M_SLOT;
    796		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
    797		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
    798		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
    799
    800		/* Enable the decoders.  */
    801		val = PI_FUNCTION_CNTRL_M_IOCS1;
    802		if (dfx_use_mmio)
    803			val |= PI_FUNCTION_CNTRL_M_MEMCS1;
    804		else
    805			val |= PI_FUNCTION_CNTRL_M_IOCS0;
    806		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
    807
    808		/*
    809		 * Enable access to the rest of the module
    810		 * (including PDQ and packet memory).
    811		 */
    812		val = PI_SLOT_CNTRL_M_ENB;
    813		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
    814
    815		/*
    816		 * Map PDQ registers into memory or port space.  This is
    817		 * done with a bit in the Burst Holdoff register.
    818		 */
    819		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
    820		if (dfx_use_mmio)
    821			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
    822		else
    823			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
    824		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
    825
    826		/* Enable interrupts at EISA bus interface chip (ESIC) */
    827		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
    828		val |= PI_CONFIG_STAT_0_M_INT_ENB;
    829		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
    830	}
    831	if (dfx_bus_pci) {
    832		struct pci_dev *pdev = to_pci_dev(bdev);
    833
    834		/* Get the interrupt level from the PCI Configuration Table */
    835
    836		dev->irq = pdev->irq;
    837
    838		/* Check Latency Timer and set if less than minimal */
    839
    840		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
    841		if (val < PFI_K_LAT_TIMER_MIN) {
    842			val = PFI_K_LAT_TIMER_DEF;
    843			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
    844		}
    845
    846		/* Enable interrupts at PCI bus interface chip (PFI) */
    847		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
    848		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
    849	}
    850}
    851
    852/*
    853 * ==================
    854 * = dfx_bus_uninit =
    855 * ==================
    856 *
    857 * Overview:
    858 *   Uninitializes the bus-specific controller logic.
    859 *
    860 * Returns:
    861 *   None
    862 *
    863 * Arguments:
    864 *   dev - pointer to device information
    865 *
    866 * Functional Description:
    867 *   Perform bus-specific logic uninitialization.
    868 *
    869 * Return Codes:
    870 *   None
    871 *
    872 * Assumptions:
    873 *   bp->base has already been set with the proper
    874 *	 base I/O address for this device.
    875 *
    876 * Side Effects:
    877 *   Interrupts are disabled at the adapter bus-specific logic.
    878 */
    879
    880static void dfx_bus_uninit(struct net_device *dev)
    881{
    882	DFX_board_t *bp = netdev_priv(dev);
    883	struct device *bdev = bp->bus_dev;
    884	int dfx_bus_pci = dev_is_pci(bdev);
    885	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
    886	u8 val;
    887
    888	DBG_printk("In dfx_bus_uninit...\n");
    889
    890	/* Uninitialize adapter based on bus type */
    891
    892	if (dfx_bus_eisa) {
    893		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
    894
    895		/* Disable interrupts at EISA bus interface chip (ESIC) */
    896		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
    897		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
    898		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
    899
    900		/* Disable the board.  */
    901		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
    902
    903		/* Disable memory and port decoders.  */
    904		outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
    905	}
    906	if (dfx_bus_pci) {
    907		/* Disable interrupts at PCI bus interface chip (PFI) */
    908		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
    909	}
    910}
    911
    912
    913/*
    914 * ========================
    915 * = dfx_bus_config_check =
    916 * ========================
    917 *
    918 * Overview:
    919 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
    920 *   are illegal, then this routine will set new defaults.
    921 *
    922 * Returns:
    923 *   None
    924 *
    925 * Arguments:
    926 *   bp - pointer to board information
    927 *
    928 * Functional Description:
    929 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
    930 *   PDQ, and all FDDI PCI controllers, all values are legal.
    931 *
    932 * Return Codes:
    933 *   None
    934 *
    935 * Assumptions:
    936 *   dfx_adap_init has NOT been called yet so burst size and other items have
    937 *   not been set.
    938 *
    939 * Side Effects:
    940 *   None
    941 */
    942
    943static void dfx_bus_config_check(DFX_board_t *bp)
    944{
    945	struct device __maybe_unused *bdev = bp->bus_dev;
    946	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
    947	int	status;				/* return code from adapter port control call */
    948	u32	host_data;			/* LW data returned from port control call */
    949
    950	DBG_printk("In dfx_bus_config_check...\n");
    951
    952	/* Configuration check only valid for EISA adapter */
    953
    954	if (dfx_bus_eisa) {
    955		/*
    956		 * First check if revision 2 EISA controller.  Rev. 1 cards used
    957		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
    958		 * cards used PDQ revision E, so no workaround needed in this
    959		 * case, either.  Only Rev. 2 cards used either Rev. D or E
    960		 * chips, so we must verify the chip revision on Rev. 2 cards.
    961		 */
    962		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
    963			/*
    964			 * Revision 2 FDDI EISA controller found,
    965			 * so let's check PDQ revision of adapter.
    966			 */
    967			status = dfx_hw_port_ctrl_req(bp,
    968											PI_PCTRL_M_SUB_CMD,
    969											PI_SUB_CMD_K_PDQ_REV_GET,
    970											0,
    971											&host_data);
    972			if ((status != DFX_K_SUCCESS) || (host_data == 2))
    973				{
    974				/*
    975				 * Either we couldn't determine the PDQ revision, or
    976				 * we determined that it is at revision D.  In either case,
    977				 * we need to implement the workaround.
    978				 */
    979
    980				/* Ensure that the burst size is set to 8 longwords or less */
    981
    982				switch (bp->burst_size)
    983					{
    984					case PI_PDATA_B_DMA_BURST_SIZE_32:
    985					case PI_PDATA_B_DMA_BURST_SIZE_16:
    986						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
    987						break;
    988
    989					default:
    990						break;
    991					}
    992
    993				/* Ensure that full-duplex mode is not enabled */
    994
    995				bp->full_duplex_enb = PI_SNMP_K_FALSE;
    996				}
    997			}
    998		}
    999	}
   1000
   1001
   1002/*
   1003 * ===================
   1004 * = dfx_driver_init =
   1005 * ===================
   1006 *
   1007 * Overview:
   1008 *   Initializes remaining adapter board structure information
   1009 *   and makes sure adapter is in a safe state prior to dfx_open().
   1010 *
   1011 * Returns:
   1012 *   Condition code
   1013 *
   1014 * Arguments:
   1015 *   dev - pointer to device information
   1016 *   print_name - printable device name
   1017 *
   1018 * Functional Description:
   1019 *   This function allocates additional resources such as the host memory
   1020 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
   1021 *	 Remaining bus initialization steps are also completed.  The adapter
   1022 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
   1023 *   must call dfx_open() to open the adapter and bring it on-line.
   1024 *
   1025 * Return Codes:
   1026 *   DFX_K_SUCCESS	- initialization succeeded
   1027 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
   1028 *						or read adapter MAC address
   1029 *
   1030 * Assumptions:
   1031 *   Memory allocated from dma_alloc_coherent() call is physically
   1032 *   contiguous, locked memory.
   1033 *
   1034 * Side Effects:
   1035 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
   1036 *   returning from this routine.
   1037 */
   1038
   1039static int dfx_driver_init(struct net_device *dev, const char *print_name,
   1040			   resource_size_t bar_start)
   1041{
   1042	DFX_board_t *bp = netdev_priv(dev);
   1043	struct device *bdev = bp->bus_dev;
   1044	int dfx_bus_pci = dev_is_pci(bdev);
   1045	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
   1046	int dfx_bus_tc = DFX_BUS_TC(bdev);
   1047	int alloc_size;			/* total buffer size needed */
   1048	char *top_v, *curr_v;		/* virtual addrs into memory block */
   1049	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
   1050	u32 data;			/* host data register value */
   1051	__le32 le32;
   1052	char *board_name = NULL;
   1053
   1054	DBG_printk("In dfx_driver_init...\n");
   1055
   1056	/* Initialize bus-specific hardware registers */
   1057
   1058	dfx_bus_init(dev);
   1059
   1060	/*
   1061	 * Initialize default values for configurable parameters
   1062	 *
   1063	 * Note: All of these parameters are ones that a user may
   1064	 *       want to customize.  It'd be nice to break these
   1065	 *		 out into Space.c or someplace else that's more
   1066	 *		 accessible/understandable than this file.
   1067	 */
   1068
   1069	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
   1070	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
   1071	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
   1072	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
   1073
   1074	/*
   1075	 * Ensure that HW configuration is OK
   1076	 *
   1077	 * Note: Depending on the hardware revision, we may need to modify
   1078	 *       some of the configurable parameters to workaround hardware
   1079	 *       limitations.  We'll perform this configuration check AFTER
   1080	 *       setting the parameters to their default values.
   1081	 */
   1082
   1083	dfx_bus_config_check(bp);
   1084
   1085	/* Disable PDQ interrupts first */
   1086
   1087	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
   1088
   1089	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
   1090
   1091	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
   1092
   1093	/*  Read the factory MAC address from the adapter then save it */
   1094
   1095	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
   1096				 &data) != DFX_K_SUCCESS) {
   1097		printk("%s: Could not read adapter factory MAC address!\n",
   1098		       print_name);
   1099		return DFX_K_FAILURE;
   1100	}
   1101	le32 = cpu_to_le32(data);
   1102	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
   1103
   1104	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
   1105				 &data) != DFX_K_SUCCESS) {
   1106		printk("%s: Could not read adapter factory MAC address!\n",
   1107		       print_name);
   1108		return DFX_K_FAILURE;
   1109	}
   1110	le32 = cpu_to_le32(data);
   1111	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
   1112
   1113	/*
   1114	 * Set current address to factory address
   1115	 *
   1116	 * Note: Node address override support is handled through
   1117	 *       dfx_ctl_set_mac_address.
   1118	 */
   1119
   1120	dev_addr_set(dev, bp->factory_mac_addr);
   1121	if (dfx_bus_tc)
   1122		board_name = "DEFTA";
   1123	if (dfx_bus_eisa)
   1124		board_name = "DEFEA";
   1125	if (dfx_bus_pci)
   1126		board_name = "DEFPA";
   1127	pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
   1128		print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
   1129		(long long)bar_start, dev->irq, dev->dev_addr);
   1130
   1131	/*
   1132	 * Get memory for descriptor block, consumer block, and other buffers
   1133	 * that need to be DMA read or written to by the adapter.
   1134	 */
   1135
   1136	alloc_size = sizeof(PI_DESCR_BLOCK) +
   1137					PI_CMD_REQ_K_SIZE_MAX +
   1138					PI_CMD_RSP_K_SIZE_MAX +
   1139#ifndef DYNAMIC_BUFFERS
   1140					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
   1141#endif
   1142					sizeof(PI_CONSUMER_BLOCK) +
   1143					(PI_ALIGN_K_DESC_BLK - 1);
   1144	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
   1145						   &bp->kmalloced_dma,
   1146						   GFP_ATOMIC);
   1147	if (top_v == NULL)
   1148		return DFX_K_FAILURE;
   1149
   1150	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
   1151
   1152	/*
   1153	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
   1154	 *  plus the amount of memory needed was allocated.  The physical address
   1155	 *	is now 8K aligned.  By carving up the memory in a specific order,
   1156	 *  we'll guarantee the alignment requirements for all other structures.
   1157	 *
   1158	 *  Note: If the assumptions change regarding the non-paged, non-cached,
   1159	 *		  physically contiguous nature of the memory block or the address
   1160	 *		  alignments, then we'll need to implement a different algorithm
   1161	 *		  for allocating the needed memory.
   1162	 */
   1163
   1164	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
   1165	curr_v = top_v + (curr_p - top_p);
   1166
   1167	/* Reserve space for descriptor block */
   1168
   1169	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
   1170	bp->descr_block_phys = curr_p;
   1171	curr_v += sizeof(PI_DESCR_BLOCK);
   1172	curr_p += sizeof(PI_DESCR_BLOCK);
   1173
   1174	/* Reserve space for command request buffer */
   1175
   1176	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
   1177	bp->cmd_req_phys = curr_p;
   1178	curr_v += PI_CMD_REQ_K_SIZE_MAX;
   1179	curr_p += PI_CMD_REQ_K_SIZE_MAX;
   1180
   1181	/* Reserve space for command response buffer */
   1182
   1183	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
   1184	bp->cmd_rsp_phys = curr_p;
   1185	curr_v += PI_CMD_RSP_K_SIZE_MAX;
   1186	curr_p += PI_CMD_RSP_K_SIZE_MAX;
   1187
   1188	/* Reserve space for the LLC host receive queue buffers */
   1189
   1190	bp->rcv_block_virt = curr_v;
   1191	bp->rcv_block_phys = curr_p;
   1192
   1193#ifndef DYNAMIC_BUFFERS
   1194	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
   1195	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
   1196#endif
   1197
   1198	/* Reserve space for the consumer block */
   1199
   1200	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
   1201	bp->cons_block_phys = curr_p;
   1202
   1203	/* Display virtual and physical addresses if debug driver */
   1204
   1205	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
   1206		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
   1207	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
   1208		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
   1209	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
   1210		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
   1211	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
   1212		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
   1213	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
   1214		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
   1215
   1216	return DFX_K_SUCCESS;
   1217}
   1218
   1219
   1220/*
   1221 * =================
   1222 * = dfx_adap_init =
   1223 * =================
   1224 *
   1225 * Overview:
   1226 *   Brings the adapter to the link avail/link unavailable state.
   1227 *
   1228 * Returns:
   1229 *   Condition code
   1230 *
   1231 * Arguments:
   1232 *   bp - pointer to board information
   1233 *   get_buffers - non-zero if buffers to be allocated
   1234 *
   1235 * Functional Description:
   1236 *   Issues the low-level firmware/hardware calls necessary to bring
   1237 *   the adapter up, or to properly reset and restore adapter during
   1238 *   run-time.
   1239 *
   1240 * Return Codes:
   1241 *   DFX_K_SUCCESS - Adapter brought up successfully
   1242 *   DFX_K_FAILURE - Adapter initialization failed
   1243 *
   1244 * Assumptions:
   1245 *   bp->reset_type should be set to a valid reset type value before
   1246 *   calling this routine.
   1247 *
   1248 * Side Effects:
   1249 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
   1250 *   upon a successful return of this routine.
   1251 */
   1252
   1253static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
   1254	{
   1255	DBG_printk("In dfx_adap_init...\n");
   1256
   1257	/* Disable PDQ interrupts first */
   1258
   1259	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
   1260
   1261	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
   1262
   1263	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
   1264		{
   1265		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
   1266		return DFX_K_FAILURE;
   1267		}
   1268
   1269	/*
   1270	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
   1271	 * so we'll acknowledge all Type 0 interrupts now before continuing.
   1272	 */
   1273
   1274	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
   1275
   1276	/*
   1277	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
   1278	 *
   1279	 * Note: We only need to clear host copies of these registers.  The PDQ reset
   1280	 *       takes care of the on-board register values.
   1281	 */
   1282
   1283	bp->cmd_req_reg.lword	= 0;
   1284	bp->cmd_rsp_reg.lword	= 0;
   1285	bp->rcv_xmt_reg.lword	= 0;
   1286
   1287	/* Clear consumer block before going to DMA_AVAILABLE state */
   1288
   1289	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
   1290
   1291	/* Initialize the DMA Burst Size */
   1292
   1293	if (dfx_hw_port_ctrl_req(bp,
   1294							PI_PCTRL_M_SUB_CMD,
   1295							PI_SUB_CMD_K_BURST_SIZE_SET,
   1296							bp->burst_size,
   1297							NULL) != DFX_K_SUCCESS)
   1298		{
   1299		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
   1300		return DFX_K_FAILURE;
   1301		}
   1302
   1303	/*
   1304	 * Set base address of Consumer Block
   1305	 *
   1306	 * Assumption: 32-bit physical address of consumer block is 64 byte
   1307	 *			   aligned.  That is, bits 0-5 of the address must be zero.
   1308	 */
   1309
   1310	if (dfx_hw_port_ctrl_req(bp,
   1311							PI_PCTRL_M_CONS_BLOCK,
   1312							bp->cons_block_phys,
   1313							0,
   1314							NULL) != DFX_K_SUCCESS)
   1315		{
   1316		printk("%s: Could not set consumer block address!\n", bp->dev->name);
   1317		return DFX_K_FAILURE;
   1318		}
   1319
   1320	/*
   1321	 * Set the base address of Descriptor Block and bring adapter
   1322	 * to DMA_AVAILABLE state.
   1323	 *
   1324	 * Note: We also set the literal and data swapping requirements
   1325	 *       in this command.
   1326	 *
   1327	 * Assumption: 32-bit physical address of descriptor block
   1328	 *       is 8Kbyte aligned.
   1329	 */
   1330	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
   1331				 (u32)(bp->descr_block_phys |
   1332				       PI_PDATA_A_INIT_M_BSWAP_INIT),
   1333				 0, NULL) != DFX_K_SUCCESS) {
   1334		printk("%s: Could not set descriptor block address!\n",
   1335		       bp->dev->name);
   1336		return DFX_K_FAILURE;
   1337	}
   1338
   1339	/* Set transmit flush timeout value */
   1340
   1341	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
   1342	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
   1343	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
   1344	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
   1345	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
   1346	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   1347		{
   1348		printk("%s: DMA command request failed!\n", bp->dev->name);
   1349		return DFX_K_FAILURE;
   1350		}
   1351
   1352	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
   1353
   1354	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
   1355	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
   1356	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
   1357	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
   1358	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
   1359	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
   1360	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
   1361	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
   1362	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   1363		{
   1364		printk("%s: DMA command request failed!\n", bp->dev->name);
   1365		return DFX_K_FAILURE;
   1366		}
   1367
   1368	/* Initialize adapter CAM */
   1369
   1370	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
   1371		{
   1372		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
   1373		return DFX_K_FAILURE;
   1374		}
   1375
   1376	/* Initialize adapter filters */
   1377
   1378	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
   1379		{
   1380		printk("%s: Adapter filters update failed!\n", bp->dev->name);
   1381		return DFX_K_FAILURE;
   1382		}
   1383
   1384	/*
   1385	 * Remove any existing dynamic buffers (i.e. if the adapter is being
   1386	 * reinitialized)
   1387	 */
   1388
   1389	if (get_buffers)
   1390		dfx_rcv_flush(bp);
   1391
   1392	/* Initialize receive descriptor block and produce buffers */
   1393
   1394	if (dfx_rcv_init(bp, get_buffers))
   1395	        {
   1396		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
   1397		if (get_buffers)
   1398			dfx_rcv_flush(bp);
   1399		return DFX_K_FAILURE;
   1400		}
   1401
   1402	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
   1403
   1404	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
   1405	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   1406		{
   1407		printk("%s: Start command failed\n", bp->dev->name);
   1408		if (get_buffers)
   1409			dfx_rcv_flush(bp);
   1410		return DFX_K_FAILURE;
   1411		}
   1412
   1413	/* Initialization succeeded, reenable PDQ interrupts */
   1414
   1415	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
   1416	return DFX_K_SUCCESS;
   1417	}
   1418
   1419
   1420/*
   1421 * ============
   1422 * = dfx_open =
   1423 * ============
   1424 *
   1425 * Overview:
   1426 *   Opens the adapter
   1427 *
   1428 * Returns:
   1429 *   Condition code
   1430 *
   1431 * Arguments:
   1432 *   dev - pointer to device information
   1433 *
   1434 * Functional Description:
   1435 *   This function brings the adapter to an operational state.
   1436 *
   1437 * Return Codes:
   1438 *   0		 - Adapter was successfully opened
   1439 *   -EAGAIN - Could not register IRQ or adapter initialization failed
   1440 *
   1441 * Assumptions:
   1442 *   This routine should only be called for a device that was
   1443 *   initialized successfully.
   1444 *
   1445 * Side Effects:
   1446 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
   1447 *   if the open is successful.
   1448 */
   1449
   1450static int dfx_open(struct net_device *dev)
   1451{
   1452	DFX_board_t *bp = netdev_priv(dev);
   1453	int ret;
   1454
   1455	DBG_printk("In dfx_open...\n");
   1456
   1457	/* Register IRQ - support shared interrupts by passing device ptr */
   1458
   1459	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
   1460			  dev);
   1461	if (ret) {
   1462		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
   1463		return ret;
   1464	}
   1465
   1466	/*
   1467	 * Set current address to factory MAC address
   1468	 *
   1469	 * Note: We've already done this step in dfx_driver_init.
   1470	 *       However, it's possible that a user has set a node
   1471	 *		 address override, then closed and reopened the
   1472	 *		 adapter.  Unless we reset the device address field
   1473	 *		 now, we'll continue to use the existing modified
   1474	 *		 address.
   1475	 */
   1476
   1477	dev_addr_set(dev, bp->factory_mac_addr);
   1478
   1479	/* Clear local unicast/multicast address tables and counts */
   1480
   1481	memset(bp->uc_table, 0, sizeof(bp->uc_table));
   1482	memset(bp->mc_table, 0, sizeof(bp->mc_table));
   1483	bp->uc_count = 0;
   1484	bp->mc_count = 0;
   1485
   1486	/* Disable promiscuous filter settings */
   1487
   1488	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
   1489	bp->group_prom		= PI_FSTATE_K_BLOCK;
   1490
   1491	spin_lock_init(&bp->lock);
   1492
   1493	/* Reset and initialize adapter */
   1494
   1495	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
   1496	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
   1497	{
   1498		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
   1499		free_irq(dev->irq, dev);
   1500		return -EAGAIN;
   1501	}
   1502
   1503	/* Set device structure info */
   1504	netif_start_queue(dev);
   1505	return 0;
   1506}
   1507
   1508
   1509/*
   1510 * =============
   1511 * = dfx_close =
   1512 * =============
   1513 *
   1514 * Overview:
   1515 *   Closes the device/module.
   1516 *
   1517 * Returns:
   1518 *   Condition code
   1519 *
   1520 * Arguments:
   1521 *   dev - pointer to device information
   1522 *
   1523 * Functional Description:
   1524 *   This routine closes the adapter and brings it to a safe state.
   1525 *   The interrupt service routine is deregistered with the OS.
   1526 *   The adapter can be opened again with another call to dfx_open().
   1527 *
   1528 * Return Codes:
   1529 *   Always return 0.
   1530 *
   1531 * Assumptions:
   1532 *   No further requests for this adapter are made after this routine is
   1533 *   called.  dfx_open() can be called to reset and reinitialize the
   1534 *   adapter.
   1535 *
   1536 * Side Effects:
   1537 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
   1538 *   routine.
   1539 */
   1540
   1541static int dfx_close(struct net_device *dev)
   1542{
   1543	DFX_board_t *bp = netdev_priv(dev);
   1544
   1545	DBG_printk("In dfx_close...\n");
   1546
   1547	/* Disable PDQ interrupts first */
   1548
   1549	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
   1550
   1551	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
   1552
   1553	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
   1554
   1555	/*
   1556	 * Flush any pending transmit buffers
   1557	 *
   1558	 * Note: It's important that we flush the transmit buffers
   1559	 *		 BEFORE we clear our copy of the Type 2 register.
   1560	 *		 Otherwise, we'll have no idea how many buffers
   1561	 *		 we need to free.
   1562	 */
   1563
   1564	dfx_xmt_flush(bp);
   1565
   1566	/*
   1567	 * Clear Type 1 and Type 2 registers after adapter reset
   1568	 *
   1569	 * Note: Even though we're closing the adapter, it's
   1570	 *       possible that an interrupt will occur after
   1571	 *		 dfx_close is called.  Without some assurance to
   1572	 *		 the contrary we want to make sure that we don't
   1573	 *		 process receive and transmit LLC frames and update
   1574	 *		 the Type 2 register with bad information.
   1575	 */
   1576
   1577	bp->cmd_req_reg.lword	= 0;
   1578	bp->cmd_rsp_reg.lword	= 0;
   1579	bp->rcv_xmt_reg.lword	= 0;
   1580
   1581	/* Clear consumer block for the same reason given above */
   1582
   1583	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
   1584
   1585	/* Release all dynamically allocate skb in the receive ring. */
   1586
   1587	dfx_rcv_flush(bp);
   1588
   1589	/* Clear device structure flags */
   1590
   1591	netif_stop_queue(dev);
   1592
   1593	/* Deregister (free) IRQ */
   1594
   1595	free_irq(dev->irq, dev);
   1596
   1597	return 0;
   1598}
   1599
   1600
   1601/*
   1602 * ======================
   1603 * = dfx_int_pr_halt_id =
   1604 * ======================
   1605 *
   1606 * Overview:
   1607 *   Displays halt id's in string form.
   1608 *
   1609 * Returns:
   1610 *   None
   1611 *
   1612 * Arguments:
   1613 *   bp - pointer to board information
   1614 *
   1615 * Functional Description:
   1616 *   Determine current halt id and display appropriate string.
   1617 *
   1618 * Return Codes:
   1619 *   None
   1620 *
   1621 * Assumptions:
   1622 *   None
   1623 *
   1624 * Side Effects:
   1625 *   None
   1626 */
   1627
   1628static void dfx_int_pr_halt_id(DFX_board_t	*bp)
   1629	{
   1630	PI_UINT32	port_status;			/* PDQ port status register value */
   1631	PI_UINT32	halt_id;				/* PDQ port status halt ID */
   1632
   1633	/* Read the latest port status */
   1634
   1635	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
   1636
   1637	/* Display halt state transition information */
   1638
   1639	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
   1640	switch (halt_id)
   1641		{
   1642		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
   1643			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
   1644			break;
   1645
   1646		case PI_HALT_ID_K_PARITY_ERROR:
   1647			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
   1648			break;
   1649
   1650		case PI_HALT_ID_K_HOST_DIR_HALT:
   1651			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
   1652			break;
   1653
   1654		case PI_HALT_ID_K_SW_FAULT:
   1655			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
   1656			break;
   1657
   1658		case PI_HALT_ID_K_HW_FAULT:
   1659			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
   1660			break;
   1661
   1662		case PI_HALT_ID_K_PC_TRACE:
   1663			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
   1664			break;
   1665
   1666		case PI_HALT_ID_K_DMA_ERROR:
   1667			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
   1668			break;
   1669
   1670		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
   1671			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
   1672			break;
   1673
   1674		case PI_HALT_ID_K_BUS_EXCEPTION:
   1675			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
   1676			break;
   1677
   1678		default:
   1679			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
   1680			break;
   1681		}
   1682	}
   1683
   1684
   1685/*
   1686 * ==========================
   1687 * = dfx_int_type_0_process =
   1688 * ==========================
   1689 *
   1690 * Overview:
   1691 *   Processes Type 0 interrupts.
   1692 *
   1693 * Returns:
   1694 *   None
   1695 *
   1696 * Arguments:
   1697 *   bp - pointer to board information
   1698 *
   1699 * Functional Description:
   1700 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
   1701 *   is a serious fault on the adapter, then an error message is displayed
   1702 *   and the adapter is reset.
   1703 *
   1704 *   One tricky potential timing window is the rapid succession of "link avail"
   1705 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
   1706 *   interrupt must be done before reading the state from the Port Status
   1707 *   register.  This is true because a state change could occur after reading
   1708 *   the data, but before acknowledging the interrupt.  If this state change
   1709 *   does happen, it would be lost because the driver is using the old state,
   1710 *   and it will never know about the new state because it subsequently
   1711 *   acknowledges the state change interrupt.
   1712 *
   1713 *          INCORRECT                                      CORRECT
   1714 *      read type 0 int reasons                   read type 0 int reasons
   1715 *      read adapter state                        ack type 0 interrupts
   1716 *      ack type 0 interrupts                     read adapter state
   1717 *      ... process interrupt ...                 ... process interrupt ...
   1718 *
   1719 * Return Codes:
   1720 *   None
   1721 *
   1722 * Assumptions:
   1723 *   None
   1724 *
   1725 * Side Effects:
   1726 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
   1727 *   or if the port status indicates that the adapter is halted.  The driver
   1728 *   is responsible for reinitializing the adapter with the current CAM
   1729 *   contents and adapter filter settings.
   1730 */
   1731
   1732static void dfx_int_type_0_process(DFX_board_t	*bp)
   1733
   1734	{
   1735	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
   1736	PI_UINT32	state;				/* current adap state (from port status) */
   1737
   1738	/*
   1739	 * Read host interrupt Type 0 register to determine which Type 0
   1740	 * interrupts are pending.  Immediately write it back out to clear
   1741	 * those interrupts.
   1742	 */
   1743
   1744	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
   1745	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
   1746
   1747	/* Check for Type 0 error interrupts */
   1748
   1749	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
   1750							PI_TYPE_0_STAT_M_PM_PAR_ERR |
   1751							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
   1752		{
   1753		/* Check for Non-Existent Memory error */
   1754
   1755		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
   1756			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
   1757
   1758		/* Check for Packet Memory Parity error */
   1759
   1760		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
   1761			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
   1762
   1763		/* Check for Host Bus Parity error */
   1764
   1765		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
   1766			printk("%s: Host Bus Parity Error\n", bp->dev->name);
   1767
   1768		/* Reset adapter and bring it back on-line */
   1769
   1770		bp->link_available = PI_K_FALSE;	/* link is no longer available */
   1771		bp->reset_type = 0;					/* rerun on-board diagnostics */
   1772		printk("%s: Resetting adapter...\n", bp->dev->name);
   1773		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
   1774			{
   1775			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
   1776			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
   1777			return;
   1778			}
   1779		printk("%s: Adapter reset successful!\n", bp->dev->name);
   1780		return;
   1781		}
   1782
   1783	/* Check for transmit flush interrupt */
   1784
   1785	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
   1786		{
   1787		/* Flush any pending xmt's and acknowledge the flush interrupt */
   1788
   1789		bp->link_available = PI_K_FALSE;		/* link is no longer available */
   1790		dfx_xmt_flush(bp);						/* flush any outstanding packets */
   1791		(void) dfx_hw_port_ctrl_req(bp,
   1792									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
   1793									0,
   1794									0,
   1795									NULL);
   1796		}
   1797
   1798	/* Check for adapter state change */
   1799
   1800	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
   1801		{
   1802		/* Get latest adapter state */
   1803
   1804		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
   1805		if (state == PI_STATE_K_HALTED)
   1806			{
   1807			/*
   1808			 * Adapter has transitioned to HALTED state, try to reset
   1809			 * adapter to bring it back on-line.  If reset fails,
   1810			 * leave the adapter in the broken state.
   1811			 */
   1812
   1813			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
   1814			dfx_int_pr_halt_id(bp);			/* display halt id as string */
   1815
   1816			/* Reset adapter and bring it back on-line */
   1817
   1818			bp->link_available = PI_K_FALSE;	/* link is no longer available */
   1819			bp->reset_type = 0;					/* rerun on-board diagnostics */
   1820			printk("%s: Resetting adapter...\n", bp->dev->name);
   1821			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
   1822				{
   1823				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
   1824				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
   1825				return;
   1826				}
   1827			printk("%s: Adapter reset successful!\n", bp->dev->name);
   1828			}
   1829		else if (state == PI_STATE_K_LINK_AVAIL)
   1830			{
   1831			bp->link_available = PI_K_TRUE;		/* set link available flag */
   1832			}
   1833		}
   1834	}
   1835
   1836
   1837/*
   1838 * ==================
   1839 * = dfx_int_common =
   1840 * ==================
   1841 *
   1842 * Overview:
   1843 *   Interrupt service routine (ISR)
   1844 *
   1845 * Returns:
   1846 *   None
   1847 *
   1848 * Arguments:
   1849 *   bp - pointer to board information
   1850 *
   1851 * Functional Description:
   1852 *   This is the ISR which processes incoming adapter interrupts.
   1853 *
   1854 * Return Codes:
   1855 *   None
   1856 *
   1857 * Assumptions:
   1858 *   This routine assumes PDQ interrupts have not been disabled.
   1859 *   When interrupts are disabled at the PDQ, the Port Status register
   1860 *   is automatically cleared.  This routine uses the Port Status
   1861 *   register value to determine whether a Type 0 interrupt occurred,
   1862 *   so it's important that adapter interrupts are not normally
   1863 *   enabled/disabled at the PDQ.
   1864 *
   1865 *   It's vital that this routine is NOT reentered for the
   1866 *   same board and that the OS is not in another section of
   1867 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
   1868 *   different thread.
   1869 *
   1870 * Side Effects:
   1871 *   Pending interrupts are serviced.  Depending on the type of
   1872 *   interrupt, acknowledging and clearing the interrupt at the
   1873 *   PDQ involves writing a register to clear the interrupt bit
   1874 *   or updating completion indices.
   1875 */
   1876
   1877static void dfx_int_common(struct net_device *dev)
   1878{
   1879	DFX_board_t *bp = netdev_priv(dev);
   1880	PI_UINT32	port_status;		/* Port Status register */
   1881
   1882	/* Process xmt interrupts - frequent case, so always call this routine */
   1883
   1884	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
   1885		netif_wake_queue(dev);
   1886
   1887	/* Process rcv interrupts - frequent case, so always call this routine */
   1888
   1889	dfx_rcv_queue_process(bp);		/* service received LLC frames */
   1890
   1891	/*
   1892	 * Transmit and receive producer and completion indices are updated on the
   1893	 * adapter by writing to the Type 2 Producer register.  Since the frequent
   1894	 * case is that we'll be processing either LLC transmit or receive buffers,
   1895	 * we'll optimize I/O writes by doing a single register write here.
   1896	 */
   1897
   1898	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
   1899
   1900	/* Read PDQ Port Status register to find out which interrupts need processing */
   1901
   1902	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
   1903
   1904	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
   1905
   1906	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
   1907		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
   1908	}
   1909
   1910
   1911/*
   1912 * =================
   1913 * = dfx_interrupt =
   1914 * =================
   1915 *
   1916 * Overview:
   1917 *   Interrupt processing routine
   1918 *
   1919 * Returns:
   1920 *   Whether a valid interrupt was seen.
   1921 *
   1922 * Arguments:
   1923 *   irq	- interrupt vector
   1924 *   dev_id	- pointer to device information
   1925 *
   1926 * Functional Description:
   1927 *   This routine calls the interrupt processing routine for this adapter.  It
   1928 *   disables and reenables adapter interrupts, as appropriate.  We can support
   1929 *   shared interrupts since the incoming dev_id pointer provides our device
   1930 *   structure context.
   1931 *
   1932 * Return Codes:
   1933 *   IRQ_HANDLED - an IRQ was handled.
   1934 *   IRQ_NONE    - no IRQ was handled.
   1935 *
   1936 * Assumptions:
   1937 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
   1938 *   on Intel-based systems) is done by the operating system outside this
   1939 *   routine.
   1940 *
   1941 *	 System interrupts are enabled through this call.
   1942 *
   1943 * Side Effects:
   1944 *   Interrupts are disabled, then reenabled at the adapter.
   1945 */
   1946
   1947static irqreturn_t dfx_interrupt(int irq, void *dev_id)
   1948{
   1949	struct net_device *dev = dev_id;
   1950	DFX_board_t *bp = netdev_priv(dev);
   1951	struct device *bdev = bp->bus_dev;
   1952	int dfx_bus_pci = dev_is_pci(bdev);
   1953	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
   1954	int dfx_bus_tc = DFX_BUS_TC(bdev);
   1955
   1956	/* Service adapter interrupts */
   1957
   1958	if (dfx_bus_pci) {
   1959		u32 status;
   1960
   1961		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
   1962		if (!(status & PFI_STATUS_M_PDQ_INT))
   1963			return IRQ_NONE;
   1964
   1965		spin_lock(&bp->lock);
   1966
   1967		/* Disable PDQ-PFI interrupts at PFI */
   1968		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
   1969				    PFI_MODE_M_DMA_ENB);
   1970
   1971		/* Call interrupt service routine for this adapter */
   1972		dfx_int_common(dev);
   1973
   1974		/* Clear PDQ interrupt status bit and reenable interrupts */
   1975		dfx_port_write_long(bp, PFI_K_REG_STATUS,
   1976				    PFI_STATUS_M_PDQ_INT);
   1977		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
   1978				    (PFI_MODE_M_PDQ_INT_ENB |
   1979				     PFI_MODE_M_DMA_ENB));
   1980
   1981		spin_unlock(&bp->lock);
   1982	}
   1983	if (dfx_bus_eisa) {
   1984		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
   1985		u8 status;
   1986
   1987		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
   1988		if (!(status & PI_CONFIG_STAT_0_M_PEND))
   1989			return IRQ_NONE;
   1990
   1991		spin_lock(&bp->lock);
   1992
   1993		/* Disable interrupts at the ESIC */
   1994		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
   1995		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
   1996
   1997		/* Call interrupt service routine for this adapter */
   1998		dfx_int_common(dev);
   1999
   2000		/* Reenable interrupts at the ESIC */
   2001		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
   2002		status |= PI_CONFIG_STAT_0_M_INT_ENB;
   2003		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
   2004
   2005		spin_unlock(&bp->lock);
   2006	}
   2007	if (dfx_bus_tc) {
   2008		u32 status;
   2009
   2010		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
   2011		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
   2012				PI_PSTATUS_M_XMT_DATA_PENDING |
   2013				PI_PSTATUS_M_SMT_HOST_PENDING |
   2014				PI_PSTATUS_M_UNSOL_PENDING |
   2015				PI_PSTATUS_M_CMD_RSP_PENDING |
   2016				PI_PSTATUS_M_CMD_REQ_PENDING |
   2017				PI_PSTATUS_M_TYPE_0_PENDING)))
   2018			return IRQ_NONE;
   2019
   2020		spin_lock(&bp->lock);
   2021
   2022		/* Call interrupt service routine for this adapter */
   2023		dfx_int_common(dev);
   2024
   2025		spin_unlock(&bp->lock);
   2026	}
   2027
   2028	return IRQ_HANDLED;
   2029}
   2030
   2031
   2032/*
   2033 * =====================
   2034 * = dfx_ctl_get_stats =
   2035 * =====================
   2036 *
   2037 * Overview:
   2038 *   Get statistics for FDDI adapter
   2039 *
   2040 * Returns:
   2041 *   Pointer to FDDI statistics structure
   2042 *
   2043 * Arguments:
   2044 *   dev - pointer to device information
   2045 *
   2046 * Functional Description:
   2047 *   Gets current MIB objects from adapter, then
   2048 *   returns FDDI statistics structure as defined
   2049 *   in if_fddi.h.
   2050 *
   2051 *   Note: Since the FDDI statistics structure is
   2052 *   still new and the device structure doesn't
   2053 *   have an FDDI-specific get statistics handler,
   2054 *   we'll return the FDDI statistics structure as
   2055 *   a pointer to an Ethernet statistics structure.
   2056 *   That way, at least the first part of the statistics
   2057 *   structure can be decoded properly, and it allows
   2058 *   "smart" applications to perform a second cast to
   2059 *   decode the FDDI-specific statistics.
   2060 *
   2061 *   We'll have to pay attention to this routine as the
   2062 *   device structure becomes more mature and LAN media
   2063 *   independent.
   2064 *
   2065 * Return Codes:
   2066 *   None
   2067 *
   2068 * Assumptions:
   2069 *   None
   2070 *
   2071 * Side Effects:
   2072 *   None
   2073 */
   2074
   2075static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
   2076	{
   2077	DFX_board_t *bp = netdev_priv(dev);
   2078
   2079	/* Fill the bp->stats structure with driver-maintained counters */
   2080
   2081	bp->stats.gen.rx_packets = bp->rcv_total_frames;
   2082	bp->stats.gen.tx_packets = bp->xmt_total_frames;
   2083	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
   2084	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
   2085	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
   2086				   bp->rcv_frame_status_errors +
   2087				   bp->rcv_length_errors;
   2088	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
   2089	bp->stats.gen.rx_dropped = bp->rcv_discards;
   2090	bp->stats.gen.tx_dropped = bp->xmt_discards;
   2091	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
   2092	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
   2093
   2094	/* Get FDDI SMT MIB objects */
   2095
   2096	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
   2097	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   2098		return (struct net_device_stats *)&bp->stats;
   2099
   2100	/* Fill the bp->stats structure with the SMT MIB object values */
   2101
   2102	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
   2103	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
   2104	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
   2105	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
   2106	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
   2107	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
   2108	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
   2109	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
   2110	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
   2111	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
   2112	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
   2113	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
   2114	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
   2115	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
   2116	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
   2117	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
   2118	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
   2119	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
   2120	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
   2121	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
   2122	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
   2123	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
   2124	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
   2125	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
   2126	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
   2127	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
   2128	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
   2129	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
   2130	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
   2131	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
   2132	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
   2133	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
   2134	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
   2135	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
   2136	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
   2137	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
   2138	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
   2139	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
   2140	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
   2141	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
   2142	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
   2143	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
   2144	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
   2145	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
   2146	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
   2147	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
   2148	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
   2149	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
   2150	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
   2151	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
   2152	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
   2153	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
   2154	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
   2155	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
   2156	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
   2157	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
   2158	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
   2159	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
   2160	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
   2161	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
   2162	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
   2163	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
   2164	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
   2165	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
   2166	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
   2167	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
   2168	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
   2169	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
   2170	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
   2171	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
   2172	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
   2173	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
   2174	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
   2175	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
   2176	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
   2177	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
   2178	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
   2179	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
   2180	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
   2181	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
   2182	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
   2183	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
   2184	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
   2185	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
   2186	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
   2187	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
   2188	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
   2189	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
   2190	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
   2191	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
   2192	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
   2193	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
   2194
   2195	/* Get FDDI counters */
   2196
   2197	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
   2198	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   2199		return (struct net_device_stats *)&bp->stats;
   2200
   2201	/* Fill the bp->stats structure with the FDDI counter values */
   2202
   2203	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
   2204	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
   2205	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
   2206	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
   2207	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
   2208	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
   2209	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
   2210	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
   2211	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
   2212	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
   2213	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
   2214
   2215	return (struct net_device_stats *)&bp->stats;
   2216	}
   2217
   2218
   2219/*
   2220 * ==============================
   2221 * = dfx_ctl_set_multicast_list =
   2222 * ==============================
   2223 *
   2224 * Overview:
   2225 *   Enable/Disable LLC frame promiscuous mode reception
   2226 *   on the adapter and/or update multicast address table.
   2227 *
   2228 * Returns:
   2229 *   None
   2230 *
   2231 * Arguments:
   2232 *   dev - pointer to device information
   2233 *
   2234 * Functional Description:
   2235 *   This routine follows a fairly simple algorithm for setting the
   2236 *   adapter filters and CAM:
   2237 *
   2238 *		if IFF_PROMISC flag is set
   2239 *			enable LLC individual/group promiscuous mode
   2240 *		else
   2241 *			disable LLC individual/group promiscuous mode
   2242 *			if number of incoming multicast addresses >
   2243 *					(CAM max size - number of unicast addresses in CAM)
   2244 *				enable LLC group promiscuous mode
   2245 *				set driver-maintained multicast address count to zero
   2246 *			else
   2247 *				disable LLC group promiscuous mode
   2248 *				set driver-maintained multicast address count to incoming count
   2249 *			update adapter CAM
   2250 *		update adapter filters
   2251 *
   2252 * Return Codes:
   2253 *   None
   2254 *
   2255 * Assumptions:
   2256 *   Multicast addresses are presented in canonical (LSB) format.
   2257 *
   2258 * Side Effects:
   2259 *   On-board adapter CAM and filters are updated.
   2260 */
   2261
   2262static void dfx_ctl_set_multicast_list(struct net_device *dev)
   2263{
   2264	DFX_board_t *bp = netdev_priv(dev);
   2265	int					i;			/* used as index in for loop */
   2266	struct netdev_hw_addr *ha;
   2267
   2268	/* Enable LLC frame promiscuous mode, if necessary */
   2269
   2270	if (dev->flags & IFF_PROMISC)
   2271		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
   2272
   2273	/* Else, update multicast address table */
   2274
   2275	else
   2276		{
   2277		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
   2278		/*
   2279		 * Check whether incoming multicast address count exceeds table size
   2280		 *
   2281		 * Note: The adapters utilize an on-board 64 entry CAM for
   2282		 *       supporting perfect filtering of multicast packets
   2283		 *		 and bridge functions when adding unicast addresses.
   2284		 *		 There is no hash function available.  To support
   2285		 *		 additional multicast addresses, the all multicast
   2286		 *		 filter (LLC group promiscuous mode) must be enabled.
   2287		 *
   2288		 *		 The firmware reserves two CAM entries for SMT-related
   2289		 *		 multicast addresses, which leaves 62 entries available.
   2290		 *		 The following code ensures that we're not being asked
   2291		 *		 to add more than 62 addresses to the CAM.  If we are,
   2292		 *		 the driver will enable the all multicast filter.
   2293		 *		 Should the number of multicast addresses drop below
   2294		 *		 the high water mark, the filter will be disabled and
   2295		 *		 perfect filtering will be used.
   2296		 */
   2297
   2298		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
   2299			{
   2300			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
   2301			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
   2302			}
   2303		else
   2304			{
   2305			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
   2306			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
   2307			}
   2308
   2309		/* Copy addresses to multicast address table, then update adapter CAM */
   2310
   2311		i = 0;
   2312		netdev_for_each_mc_addr(ha, dev)
   2313			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
   2314			       ha->addr, FDDI_K_ALEN);
   2315
   2316		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
   2317			{
   2318			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
   2319			}
   2320		else
   2321			{
   2322			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
   2323			}
   2324		}
   2325
   2326	/* Update adapter filters */
   2327
   2328	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
   2329		{
   2330		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
   2331		}
   2332	else
   2333		{
   2334		DBG_printk("%s: Adapter filters updated!\n", dev->name);
   2335		}
   2336	}
   2337
   2338
   2339/*
   2340 * ===========================
   2341 * = dfx_ctl_set_mac_address =
   2342 * ===========================
   2343 *
   2344 * Overview:
   2345 *   Add node address override (unicast address) to adapter
   2346 *   CAM and update dev_addr field in device table.
   2347 *
   2348 * Returns:
   2349 *   None
   2350 *
   2351 * Arguments:
   2352 *   dev  - pointer to device information
   2353 *   addr - pointer to sockaddr structure containing unicast address to add
   2354 *
   2355 * Functional Description:
   2356 *   The adapter supports node address overrides by adding one or more
   2357 *   unicast addresses to the adapter CAM.  This is similar to adding
   2358 *   multicast addresses.  In this routine we'll update the driver and
   2359 *   device structures with the new address, then update the adapter CAM
   2360 *   to ensure that the adapter will copy and strip frames destined and
   2361 *   sourced by that address.
   2362 *
   2363 * Return Codes:
   2364 *   Always returns zero.
   2365 *
   2366 * Assumptions:
   2367 *   The address pointed to by addr->sa_data is a valid unicast
   2368 *   address and is presented in canonical (LSB) format.
   2369 *
   2370 * Side Effects:
   2371 *   On-board adapter CAM is updated.  On-board adapter filters
   2372 *   may be updated.
   2373 */
   2374
   2375static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
   2376	{
   2377	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
   2378	DFX_board_t *bp = netdev_priv(dev);
   2379
   2380	/* Copy unicast address to driver-maintained structs and update count */
   2381
   2382	dev_addr_set(dev, p_sockaddr->sa_data);				/* update device struct */
   2383	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
   2384	bp->uc_count = 1;
   2385
   2386	/*
   2387	 * Verify we're not exceeding the CAM size by adding unicast address
   2388	 *
   2389	 * Note: It's possible that before entering this routine we've
   2390	 *       already filled the CAM with 62 multicast addresses.
   2391	 *		 Since we need to place the node address override into
   2392	 *		 the CAM, we have to check to see that we're not
   2393	 *		 exceeding the CAM size.  If we are, we have to enable
   2394	 *		 the LLC group (multicast) promiscuous mode filter as
   2395	 *		 in dfx_ctl_set_multicast_list.
   2396	 */
   2397
   2398	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
   2399		{
   2400		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
   2401		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
   2402
   2403		/* Update adapter filters */
   2404
   2405		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
   2406			{
   2407			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
   2408			}
   2409		else
   2410			{
   2411			DBG_printk("%s: Adapter filters updated!\n", dev->name);
   2412			}
   2413		}
   2414
   2415	/* Update adapter CAM with new unicast address */
   2416
   2417	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
   2418		{
   2419		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
   2420		}
   2421	else
   2422		{
   2423		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
   2424		}
   2425	return 0;			/* always return zero */
   2426	}
   2427
   2428
   2429/*
   2430 * ======================
   2431 * = dfx_ctl_update_cam =
   2432 * ======================
   2433 *
   2434 * Overview:
   2435 *   Procedure to update adapter CAM (Content Addressable Memory)
   2436 *   with desired unicast and multicast address entries.
   2437 *
   2438 * Returns:
   2439 *   Condition code
   2440 *
   2441 * Arguments:
   2442 *   bp - pointer to board information
   2443 *
   2444 * Functional Description:
   2445 *   Updates adapter CAM with current contents of board structure
   2446 *   unicast and multicast address tables.  Since there are only 62
   2447 *   free entries in CAM, this routine ensures that the command
   2448 *   request buffer is not overrun.
   2449 *
   2450 * Return Codes:
   2451 *   DFX_K_SUCCESS - Request succeeded
   2452 *   DFX_K_FAILURE - Request failed
   2453 *
   2454 * Assumptions:
   2455 *   All addresses being added (unicast and multicast) are in canonical
   2456 *   order.
   2457 *
   2458 * Side Effects:
   2459 *   On-board adapter CAM is updated.
   2460 */
   2461
   2462static int dfx_ctl_update_cam(DFX_board_t *bp)
   2463	{
   2464	int			i;				/* used as index */
   2465	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
   2466
   2467	/*
   2468	 * Fill in command request information
   2469	 *
   2470	 * Note: Even though both the unicast and multicast address
   2471	 *       table entries are stored as contiguous 6 byte entries,
   2472	 *		 the firmware address filter set command expects each
   2473	 *		 entry to be two longwords (8 bytes total).  We must be
   2474	 *		 careful to only copy the six bytes of each unicast and
   2475	 *		 multicast table entry into each command entry.  This
   2476	 *		 is also why we must first clear the entire command
   2477	 *		 request buffer.
   2478	 */
   2479
   2480	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
   2481	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
   2482	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
   2483
   2484	/* Now add unicast addresses to command request buffer, if any */
   2485
   2486	for (i=0; i < (int)bp->uc_count; i++)
   2487		{
   2488		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
   2489			{
   2490			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
   2491			p_addr++;			/* point to next command entry */
   2492			}
   2493		}
   2494
   2495	/* Now add multicast addresses to command request buffer, if any */
   2496
   2497	for (i=0; i < (int)bp->mc_count; i++)
   2498		{
   2499		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
   2500			{
   2501			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
   2502			p_addr++;			/* point to next command entry */
   2503			}
   2504		}
   2505
   2506	/* Issue command to update adapter CAM, then return */
   2507
   2508	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   2509		return DFX_K_FAILURE;
   2510	return DFX_K_SUCCESS;
   2511	}
   2512
   2513
   2514/*
   2515 * ==========================
   2516 * = dfx_ctl_update_filters =
   2517 * ==========================
   2518 *
   2519 * Overview:
   2520 *   Procedure to update adapter filters with desired
   2521 *   filter settings.
   2522 *
   2523 * Returns:
   2524 *   Condition code
   2525 *
   2526 * Arguments:
   2527 *   bp - pointer to board information
   2528 *
   2529 * Functional Description:
   2530 *   Enables or disables filter using current filter settings.
   2531 *
   2532 * Return Codes:
   2533 *   DFX_K_SUCCESS - Request succeeded.
   2534 *   DFX_K_FAILURE - Request failed.
   2535 *
   2536 * Assumptions:
   2537 *   We must always pass up packets destined to the broadcast
   2538 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
   2539 *   broadcast filter enabled.
   2540 *
   2541 * Side Effects:
   2542 *   On-board adapter filters are updated.
   2543 */
   2544
   2545static int dfx_ctl_update_filters(DFX_board_t *bp)
   2546	{
   2547	int	i = 0;					/* used as index */
   2548
   2549	/* Fill in command request information */
   2550
   2551	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
   2552
   2553	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
   2554
   2555	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
   2556	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
   2557
   2558	/* Initialize LLC Individual/Group Promiscuous filter */
   2559
   2560	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
   2561	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
   2562
   2563	/* Initialize LLC Group Promiscuous filter */
   2564
   2565	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
   2566	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
   2567
   2568	/* Terminate the item code list */
   2569
   2570	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
   2571
   2572	/* Issue command to update adapter filters, then return */
   2573
   2574	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
   2575		return DFX_K_FAILURE;
   2576	return DFX_K_SUCCESS;
   2577	}
   2578
   2579
   2580/*
   2581 * ======================
   2582 * = dfx_hw_dma_cmd_req =
   2583 * ======================
   2584 *
   2585 * Overview:
   2586 *   Sends PDQ DMA command to adapter firmware
   2587 *
   2588 * Returns:
   2589 *   Condition code
   2590 *
   2591 * Arguments:
   2592 *   bp - pointer to board information
   2593 *
   2594 * Functional Description:
   2595 *   The command request and response buffers are posted to the adapter in the manner
   2596 *   described in the PDQ Port Specification:
   2597 *
   2598 *		1. Command Response Buffer is posted to adapter.
   2599 *		2. Command Request Buffer is posted to adapter.
   2600 *		3. Command Request consumer index is polled until it indicates that request
   2601 *         buffer has been DMA'd to adapter.
   2602 *		4. Command Response consumer index is polled until it indicates that response
   2603 *         buffer has been DMA'd from adapter.
   2604 *
   2605 *   This ordering ensures that a response buffer is already available for the firmware
   2606 *   to use once it's done processing the request buffer.
   2607 *
   2608 * Return Codes:
   2609 *   DFX_K_SUCCESS	  - DMA command succeeded
   2610 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
   2611 *   DFX_K_HW_TIMEOUT - DMA command timed out
   2612 *
   2613 * Assumptions:
   2614 *   Command request buffer has already been filled with desired DMA command.
   2615 *
   2616 * Side Effects:
   2617 *   None
   2618 */
   2619
   2620static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
   2621	{
   2622	int status;			/* adapter status */
   2623	int timeout_cnt;	/* used in for loops */
   2624
   2625	/* Make sure the adapter is in a state that we can issue the DMA command in */
   2626
   2627	status = dfx_hw_adap_state_rd(bp);
   2628	if ((status == PI_STATE_K_RESET)		||
   2629		(status == PI_STATE_K_HALTED)		||
   2630		(status == PI_STATE_K_DMA_UNAVAIL)	||
   2631		(status == PI_STATE_K_UPGRADE))
   2632		return DFX_K_OUTSTATE;
   2633
   2634	/* Put response buffer on the command response queue */
   2635
   2636	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
   2637			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
   2638	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
   2639
   2640	/* Bump (and wrap) the producer index and write out to register */
   2641
   2642	bp->cmd_rsp_reg.index.prod += 1;
   2643	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
   2644	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
   2645
   2646	/* Put request buffer on the command request queue */
   2647
   2648	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
   2649			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
   2650	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
   2651
   2652	/* Bump (and wrap) the producer index and write out to register */
   2653
   2654	bp->cmd_req_reg.index.prod += 1;
   2655	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
   2656	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
   2657
   2658	/*
   2659	 * Here we wait for the command request consumer index to be equal
   2660	 * to the producer, indicating that the adapter has DMAed the request.
   2661	 */
   2662
   2663	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
   2664		{
   2665		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
   2666			break;
   2667		udelay(100);			/* wait for 100 microseconds */
   2668		}
   2669	if (timeout_cnt == 0)
   2670		return DFX_K_HW_TIMEOUT;
   2671
   2672	/* Bump (and wrap) the completion index and write out to register */
   2673
   2674	bp->cmd_req_reg.index.comp += 1;
   2675	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
   2676	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
   2677
   2678	/*
   2679	 * Here we wait for the command response consumer index to be equal
   2680	 * to the producer, indicating that the adapter has DMAed the response.
   2681	 */
   2682
   2683	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
   2684		{
   2685		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
   2686			break;
   2687		udelay(100);			/* wait for 100 microseconds */
   2688		}
   2689	if (timeout_cnt == 0)
   2690		return DFX_K_HW_TIMEOUT;
   2691
   2692	/* Bump (and wrap) the completion index and write out to register */
   2693
   2694	bp->cmd_rsp_reg.index.comp += 1;
   2695	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
   2696	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
   2697	return DFX_K_SUCCESS;
   2698	}
   2699
   2700
   2701/*
   2702 * ========================
   2703 * = dfx_hw_port_ctrl_req =
   2704 * ========================
   2705 *
   2706 * Overview:
   2707 *   Sends PDQ port control command to adapter firmware
   2708 *
   2709 * Returns:
   2710 *   Host data register value in host_data if ptr is not NULL
   2711 *
   2712 * Arguments:
   2713 *   bp			- pointer to board information
   2714 *	 command	- port control command
   2715 *	 data_a		- port data A register value
   2716 *	 data_b		- port data B register value
   2717 *	 host_data	- ptr to host data register value
   2718 *
   2719 * Functional Description:
   2720 *   Send generic port control command to adapter by writing
   2721 *   to various PDQ port registers, then polling for completion.
   2722 *
   2723 * Return Codes:
   2724 *   DFX_K_SUCCESS	  - port control command succeeded
   2725 *   DFX_K_HW_TIMEOUT - port control command timed out
   2726 *
   2727 * Assumptions:
   2728 *   None
   2729 *
   2730 * Side Effects:
   2731 *   None
   2732 */
   2733
   2734static int dfx_hw_port_ctrl_req(
   2735	DFX_board_t	*bp,
   2736	PI_UINT32	command,
   2737	PI_UINT32	data_a,
   2738	PI_UINT32	data_b,
   2739	PI_UINT32	*host_data
   2740	)
   2741
   2742	{
   2743	PI_UINT32	port_cmd;		/* Port Control command register value */
   2744	int			timeout_cnt;	/* used in for loops */
   2745
   2746	/* Set Command Error bit in command longword */
   2747
   2748	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
   2749
   2750	/* Issue port command to the adapter */
   2751
   2752	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
   2753	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
   2754	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
   2755
   2756	/* Now wait for command to complete */
   2757
   2758	if (command == PI_PCTRL_M_BLAST_FLASH)
   2759		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
   2760	else
   2761		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
   2762
   2763	for (; timeout_cnt > 0; timeout_cnt--)
   2764		{
   2765		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
   2766		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
   2767			break;
   2768		udelay(100);			/* wait for 100 microseconds */
   2769		}
   2770	if (timeout_cnt == 0)
   2771		return DFX_K_HW_TIMEOUT;
   2772
   2773	/*
   2774	 * If the address of host_data is non-zero, assume caller has supplied a
   2775	 * non NULL pointer, and return the contents of the HOST_DATA register in
   2776	 * it.
   2777	 */
   2778
   2779	if (host_data != NULL)
   2780		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
   2781	return DFX_K_SUCCESS;
   2782	}
   2783
   2784
   2785/*
   2786 * =====================
   2787 * = dfx_hw_adap_reset =
   2788 * =====================
   2789 *
   2790 * Overview:
   2791 *   Resets adapter
   2792 *
   2793 * Returns:
   2794 *   None
   2795 *
   2796 * Arguments:
   2797 *   bp   - pointer to board information
   2798 *   type - type of reset to perform
   2799 *
   2800 * Functional Description:
   2801 *   Issue soft reset to adapter by writing to PDQ Port Reset
   2802 *   register.  Use incoming reset type to tell adapter what
   2803 *   kind of reset operation to perform.
   2804 *
   2805 * Return Codes:
   2806 *   None
   2807 *
   2808 * Assumptions:
   2809 *   This routine merely issues a soft reset to the adapter.
   2810 *   It is expected that after this routine returns, the caller
   2811 *   will appropriately poll the Port Status register for the
   2812 *   adapter to enter the proper state.
   2813 *
   2814 * Side Effects:
   2815 *   Internal adapter registers are cleared.
   2816 */
   2817
   2818static void dfx_hw_adap_reset(
   2819	DFX_board_t	*bp,
   2820	PI_UINT32	type
   2821	)
   2822
   2823	{
   2824	/* Set Reset type and assert reset */
   2825
   2826	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
   2827	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
   2828
   2829	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
   2830
   2831	udelay(20);
   2832
   2833	/* Deassert reset */
   2834
   2835	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
   2836	}
   2837
   2838
   2839/*
   2840 * ========================
   2841 * = dfx_hw_adap_state_rd =
   2842 * ========================
   2843 *
   2844 * Overview:
   2845 *   Returns current adapter state
   2846 *
   2847 * Returns:
   2848 *   Adapter state per PDQ Port Specification
   2849 *
   2850 * Arguments:
   2851 *   bp - pointer to board information
   2852 *
   2853 * Functional Description:
   2854 *   Reads PDQ Port Status register and returns adapter state.
   2855 *
   2856 * Return Codes:
   2857 *   None
   2858 *
   2859 * Assumptions:
   2860 *   None
   2861 *
   2862 * Side Effects:
   2863 *   None
   2864 */
   2865
   2866static int dfx_hw_adap_state_rd(DFX_board_t *bp)
   2867	{
   2868	PI_UINT32 port_status;		/* Port Status register value */
   2869
   2870	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
   2871	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
   2872	}
   2873
   2874
   2875/*
   2876 * =====================
   2877 * = dfx_hw_dma_uninit =
   2878 * =====================
   2879 *
   2880 * Overview:
   2881 *   Brings adapter to DMA_UNAVAILABLE state
   2882 *
   2883 * Returns:
   2884 *   Condition code
   2885 *
   2886 * Arguments:
   2887 *   bp   - pointer to board information
   2888 *   type - type of reset to perform
   2889 *
   2890 * Functional Description:
   2891 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
   2892 *		1. Set reset type bit in Port Data A Register then reset adapter.
   2893 *		2. Check that adapter is in DMA_UNAVAILABLE state.
   2894 *
   2895 * Return Codes:
   2896 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
   2897 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
   2898 *
   2899 * Assumptions:
   2900 *   None
   2901 *
   2902 * Side Effects:
   2903 *   Internal adapter registers are cleared.
   2904 */
   2905
   2906static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
   2907	{
   2908	int timeout_cnt;	/* used in for loops */
   2909
   2910	/* Set reset type bit and reset adapter */
   2911
   2912	dfx_hw_adap_reset(bp, type);
   2913
   2914	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
   2915
   2916	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
   2917		{
   2918		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
   2919			break;
   2920		udelay(100);					/* wait for 100 microseconds */
   2921		}
   2922	if (timeout_cnt == 0)
   2923		return DFX_K_HW_TIMEOUT;
   2924	return DFX_K_SUCCESS;
   2925	}
   2926
   2927/*
   2928 *	Align an sk_buff to a boundary power of 2
   2929 *
   2930 */
   2931#ifdef DYNAMIC_BUFFERS
   2932static void my_skb_align(struct sk_buff *skb, int n)
   2933{
   2934	unsigned long x = (unsigned long)skb->data;
   2935	unsigned long v;
   2936
   2937	v = ALIGN(x, n);	/* Where we want to be */
   2938
   2939	skb_reserve(skb, v - x);
   2940}
   2941#endif
   2942
   2943/*
   2944 * ================
   2945 * = dfx_rcv_init =
   2946 * ================
   2947 *
   2948 * Overview:
   2949 *   Produces buffers to adapter LLC Host receive descriptor block
   2950 *
   2951 * Returns:
   2952 *   None
   2953 *
   2954 * Arguments:
   2955 *   bp - pointer to board information
   2956 *   get_buffers - non-zero if buffers to be allocated
   2957 *
   2958 * Functional Description:
   2959 *   This routine can be called during dfx_adap_init() or during an adapter
   2960 *	 reset.  It initializes the descriptor block and produces all allocated
   2961 *   LLC Host queue receive buffers.
   2962 *
   2963 * Return Codes:
   2964 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
   2965 *   dynamic buffer allocation). If the buffer allocation failed, the
   2966 *   already allocated buffers will not be released and the caller should do
   2967 *   this.
   2968 *
   2969 * Assumptions:
   2970 *   The PDQ has been reset and the adapter and driver maintained Type 2
   2971 *   register indices are cleared.
   2972 *
   2973 * Side Effects:
   2974 *   Receive buffers are posted to the adapter LLC queue and the adapter
   2975 *   is notified.
   2976 */
   2977
   2978static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
   2979	{
   2980	int	i, j;					/* used in for loop */
   2981
   2982	/*
   2983	 *  Since each receive buffer is a single fragment of same length, initialize
   2984	 *  first longword in each receive descriptor for entire LLC Host descriptor
   2985	 *  block.  Also initialize second longword in each receive descriptor with
   2986	 *  physical address of receive buffer.  We'll always allocate receive
   2987	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
   2988	 *  block and produce new receive buffers by simply updating the receive
   2989	 *  producer index.
   2990	 *
   2991	 * 	Assumptions:
   2992	 *		To support all shipping versions of PDQ, the receive buffer size
   2993	 *		must be mod 128 in length and the physical address must be 128 byte
   2994	 *		aligned.  In other words, bits 0-6 of the length and address must
   2995	 *		be zero for the following descriptor field entries to be correct on
   2996	 *		all PDQ-based boards.  We guaranteed both requirements during
   2997	 *		driver initialization when we allocated memory for the receive buffers.
   2998	 */
   2999
   3000	if (get_buffers) {
   3001#ifdef DYNAMIC_BUFFERS
   3002	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
   3003		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
   3004		{
   3005			struct sk_buff *newskb;
   3006			dma_addr_t dma_addr;
   3007
   3008			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
   3009						    GFP_NOIO);
   3010			if (!newskb)
   3011				return -ENOMEM;
   3012			/*
   3013			 * align to 128 bytes for compatibility with
   3014			 * the old EISA boards.
   3015			 */
   3016
   3017			my_skb_align(newskb, 128);
   3018			dma_addr = dma_map_single(bp->bus_dev,
   3019						  newskb->data,
   3020						  PI_RCV_DATA_K_SIZE_MAX,
   3021						  DMA_FROM_DEVICE);
   3022			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
   3023				dev_kfree_skb(newskb);
   3024				return -ENOMEM;
   3025			}
   3026			bp->descr_block_virt->rcv_data[i + j].long_0 =
   3027				(u32)(PI_RCV_DESCR_M_SOP |
   3028				      ((PI_RCV_DATA_K_SIZE_MAX /
   3029					PI_ALIGN_K_RCV_DATA_BUFF) <<
   3030				       PI_RCV_DESCR_V_SEG_LEN));
   3031			bp->descr_block_virt->rcv_data[i + j].long_1 =
   3032				(u32)dma_addr;
   3033
   3034			/*
   3035			 * p_rcv_buff_va is only used inside the
   3036			 * kernel so we put the skb pointer here.
   3037			 */
   3038			bp->p_rcv_buff_va[i+j] = (char *) newskb;
   3039		}
   3040#else
   3041	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
   3042		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
   3043			{
   3044			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
   3045				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
   3046			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
   3047			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
   3048			}
   3049#endif
   3050	}
   3051
   3052	/* Update receive producer and Type 2 register */
   3053
   3054	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
   3055	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
   3056	return 0;
   3057	}
   3058
   3059
   3060/*
   3061 * =========================
   3062 * = dfx_rcv_queue_process =
   3063 * =========================
   3064 *
   3065 * Overview:
   3066 *   Process received LLC frames.
   3067 *
   3068 * Returns:
   3069 *   None
   3070 *
   3071 * Arguments:
   3072 *   bp - pointer to board information
   3073 *
   3074 * Functional Description:
   3075 *   Received LLC frames are processed until there are no more consumed frames.
   3076 *   Once all frames are processed, the receive buffers are returned to the
   3077 *   adapter.  Note that this algorithm fixes the length of time that can be spent
   3078 *   in this routine, because there are a fixed number of receive buffers to
   3079 *   process and buffers are not produced until this routine exits and returns
   3080 *   to the ISR.
   3081 *
   3082 * Return Codes:
   3083 *   None
   3084 *
   3085 * Assumptions:
   3086 *   None
   3087 *
   3088 * Side Effects:
   3089 *   None
   3090 */
   3091
   3092static void dfx_rcv_queue_process(
   3093	DFX_board_t *bp
   3094	)
   3095
   3096	{
   3097	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
   3098	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
   3099	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
   3100	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
   3101
   3102	/* Service all consumed LLC receive frames */
   3103
   3104	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
   3105	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
   3106		{
   3107		/* Process any errors */
   3108		dma_addr_t dma_addr;
   3109		int entry;
   3110
   3111		entry = bp->rcv_xmt_reg.index.rcv_comp;
   3112#ifdef DYNAMIC_BUFFERS
   3113		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
   3114#else
   3115		p_buff = bp->p_rcv_buff_va[entry];
   3116#endif
   3117		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
   3118		dma_sync_single_for_cpu(bp->bus_dev,
   3119					dma_addr + RCV_BUFF_K_DESCR,
   3120					sizeof(u32),
   3121					DMA_FROM_DEVICE);
   3122		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
   3123
   3124		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
   3125			{
   3126			if (descr & PI_FMC_DESCR_M_RCC_CRC)
   3127				bp->rcv_crc_errors++;
   3128			else
   3129				bp->rcv_frame_status_errors++;
   3130			}
   3131		else
   3132		{
   3133			int rx_in_place = 0;
   3134
   3135			/* The frame was received without errors - verify packet length */
   3136
   3137			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
   3138			pkt_len -= 4;				/* subtract 4 byte CRC */
   3139			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
   3140				bp->rcv_length_errors++;
   3141			else{
   3142#ifdef DYNAMIC_BUFFERS
   3143				struct sk_buff *newskb = NULL;
   3144
   3145				if (pkt_len > SKBUFF_RX_COPYBREAK) {
   3146					dma_addr_t new_dma_addr;
   3147
   3148					newskb = netdev_alloc_skb(bp->dev,
   3149								  NEW_SKB_SIZE);
   3150					if (newskb){
   3151						my_skb_align(newskb, 128);
   3152						new_dma_addr = dma_map_single(
   3153								bp->bus_dev,
   3154								newskb->data,
   3155								PI_RCV_DATA_K_SIZE_MAX,
   3156								DMA_FROM_DEVICE);
   3157						if (dma_mapping_error(
   3158								bp->bus_dev,
   3159								new_dma_addr)) {
   3160							dev_kfree_skb(newskb);
   3161							newskb = NULL;
   3162						}
   3163					}
   3164					if (newskb) {
   3165						rx_in_place = 1;
   3166
   3167						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
   3168						dma_unmap_single(bp->bus_dev,
   3169							dma_addr,
   3170							PI_RCV_DATA_K_SIZE_MAX,
   3171							DMA_FROM_DEVICE);
   3172						skb_reserve(skb, RCV_BUFF_K_PADDING);
   3173						bp->p_rcv_buff_va[entry] = (char *)newskb;
   3174						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
   3175					}
   3176				}
   3177				if (!newskb)
   3178#endif
   3179					/* Alloc new buffer to pass up,
   3180					 * add room for PRH. */
   3181					skb = netdev_alloc_skb(bp->dev,
   3182							       pkt_len + 3);
   3183				if (skb == NULL)
   3184					{
   3185					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
   3186					bp->rcv_discards++;
   3187					break;
   3188					}
   3189				else {
   3190					if (!rx_in_place) {
   3191						/* Receive buffer allocated, pass receive packet up */
   3192						dma_sync_single_for_cpu(
   3193							bp->bus_dev,
   3194							dma_addr +
   3195							RCV_BUFF_K_PADDING,
   3196							pkt_len + 3,
   3197							DMA_FROM_DEVICE);
   3198
   3199						skb_copy_to_linear_data(skb,
   3200							       p_buff + RCV_BUFF_K_PADDING,
   3201							       pkt_len + 3);
   3202					}
   3203
   3204					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
   3205					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
   3206					skb->protocol = fddi_type_trans(skb, bp->dev);
   3207					bp->rcv_total_bytes += skb->len;
   3208					netif_rx(skb);
   3209
   3210					/* Update the rcv counters */
   3211					bp->rcv_total_frames++;
   3212					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
   3213						bp->rcv_multicast_frames++;
   3214				}
   3215			}
   3216			}
   3217
   3218		/*
   3219		 * Advance the producer (for recycling) and advance the completion
   3220		 * (for servicing received frames).  Note that it is okay to
   3221		 * advance the producer without checking that it passes the
   3222		 * completion index because they are both advanced at the same
   3223		 * rate.
   3224		 */
   3225
   3226		bp->rcv_xmt_reg.index.rcv_prod += 1;
   3227		bp->rcv_xmt_reg.index.rcv_comp += 1;
   3228		}
   3229	}
   3230
   3231
   3232/*
   3233 * =====================
   3234 * = dfx_xmt_queue_pkt =
   3235 * =====================
   3236 *
   3237 * Overview:
   3238 *   Queues packets for transmission
   3239 *
   3240 * Returns:
   3241 *   Condition code
   3242 *
   3243 * Arguments:
   3244 *   skb - pointer to sk_buff to queue for transmission
   3245 *   dev - pointer to device information
   3246 *
   3247 * Functional Description:
   3248 *   Here we assume that an incoming skb transmit request
   3249 *   is contained in a single physically contiguous buffer
   3250 *   in which the virtual address of the start of packet
   3251 *   (skb->data) can be converted to a physical address
   3252 *   by using dma_map_single().
   3253 *
   3254 *   Since the adapter architecture requires a three byte
   3255 *   packet request header to prepend the start of packet,
   3256 *   we'll write the three byte field immediately prior to
   3257 *   the FC byte.  This assumption is valid because we've
   3258 *   ensured that dev->hard_header_len includes three pad
   3259 *   bytes.  By posting a single fragment to the adapter,
   3260 *   we'll reduce the number of descriptor fetches and
   3261 *   bus traffic needed to send the request.
   3262 *
   3263 *   Also, we can't free the skb until after it's been DMA'd
   3264 *   out by the adapter, so we'll queue it in the driver and
   3265 *   return it in dfx_xmt_done.
   3266 *
   3267 * Return Codes:
   3268 *   0 - driver queued packet, link is unavailable, or skbuff was bad
   3269 *	 1 - caller should requeue the sk_buff for later transmission
   3270 *
   3271 * Assumptions:
   3272 *	 First and foremost, we assume the incoming skb pointer
   3273 *   is NOT NULL and is pointing to a valid sk_buff structure.
   3274 *
   3275 *   The outgoing packet is complete, starting with the
   3276 *   frame control byte including the last byte of data,
   3277 *   but NOT including the 4 byte CRC.  We'll let the
   3278 *   adapter hardware generate and append the CRC.
   3279 *
   3280 *   The entire packet is stored in one physically
   3281 *   contiguous buffer which is not cached and whose
   3282 *   32-bit physical address can be determined.
   3283 *
   3284 *   It's vital that this routine is NOT reentered for the
   3285 *   same board and that the OS is not in another section of
   3286 *   code (eg. dfx_int_common) for the same board on a
   3287 *   different thread.
   3288 *
   3289 * Side Effects:
   3290 *   None
   3291 */
   3292
   3293static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
   3294				     struct net_device *dev)
   3295	{
   3296	DFX_board_t		*bp = netdev_priv(dev);
   3297	u8			prod;				/* local transmit producer index */
   3298	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
   3299	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
   3300	dma_addr_t		dma_addr;
   3301	unsigned long		flags;
   3302
   3303	netif_stop_queue(dev);
   3304
   3305	/*
   3306	 * Verify that incoming transmit request is OK
   3307	 *
   3308	 * Note: The packet size check is consistent with other
   3309	 *		 Linux device drivers, although the correct packet
   3310	 *		 size should be verified before calling the
   3311	 *		 transmit routine.
   3312	 */
   3313
   3314	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
   3315	{
   3316		printk("%s: Invalid packet length - %u bytes\n",
   3317			dev->name, skb->len);
   3318		bp->xmt_length_errors++;		/* bump error counter */
   3319		netif_wake_queue(dev);
   3320		dev_kfree_skb(skb);
   3321		return NETDEV_TX_OK;			/* return "success" */
   3322	}
   3323	/*
   3324	 * See if adapter link is available, if not, free buffer
   3325	 *
   3326	 * Note: If the link isn't available, free buffer and return 0
   3327	 *		 rather than tell the upper layer to requeue the packet.
   3328	 *		 The methodology here is that by the time the link
   3329	 *		 becomes available, the packet to be sent will be
   3330	 *		 fairly stale.  By simply dropping the packet, the
   3331	 *		 higher layer protocols will eventually time out
   3332	 *		 waiting for response packets which it won't receive.
   3333	 */
   3334
   3335	if (bp->link_available == PI_K_FALSE)
   3336		{
   3337		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
   3338			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
   3339		else
   3340			{
   3341			bp->xmt_discards++;					/* bump error counter */
   3342			dev_kfree_skb(skb);		/* free sk_buff now */
   3343			netif_wake_queue(dev);
   3344			return NETDEV_TX_OK;		/* return "success" */
   3345			}
   3346		}
   3347
   3348	/* Write the three PRH bytes immediately before the FC byte */
   3349
   3350	skb_push(skb, 3);
   3351	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
   3352	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
   3353	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
   3354
   3355	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
   3356				  DMA_TO_DEVICE);
   3357	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
   3358		skb_pull(skb, 3);
   3359		return NETDEV_TX_BUSY;
   3360	}
   3361
   3362	spin_lock_irqsave(&bp->lock, flags);
   3363
   3364	/* Get the current producer and the next free xmt data descriptor */
   3365
   3366	prod		= bp->rcv_xmt_reg.index.xmt_prod;
   3367	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
   3368
   3369	/*
   3370	 * Get pointer to auxiliary queue entry to contain information
   3371	 * for this packet.
   3372	 *
   3373	 * Note: The current xmt producer index will become the
   3374	 *	 current xmt completion index when we complete this
   3375	 *	 packet later on.  So, we'll get the pointer to the
   3376	 *	 next auxiliary queue entry now before we bump the
   3377	 *	 producer index.
   3378	 */
   3379
   3380	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
   3381
   3382	/*
   3383	 * Write the descriptor with buffer info and bump producer
   3384	 *
   3385	 * Note: Since we need to start DMA from the packet request
   3386	 *		 header, we'll add 3 bytes to the DMA buffer length,
   3387	 *		 and we'll determine the physical address of the
   3388	 *		 buffer from the PRH, not skb->data.
   3389	 *
   3390	 * Assumptions:
   3391	 *		 1. Packet starts with the frame control (FC) byte
   3392	 *		    at skb->data.
   3393	 *		 2. The 4-byte CRC is not appended to the buffer or
   3394	 *			included in the length.
   3395	 *		 3. Packet length (skb->len) is from FC to end of
   3396	 *			data, inclusive.
   3397	 *		 4. The packet length does not exceed the maximum
   3398	 *			FDDI LLC frame length of 4491 bytes.
   3399	 *		 5. The entire packet is contained in a physically
   3400	 *			contiguous, non-cached, locked memory space
   3401	 *			comprised of a single buffer pointed to by
   3402	 *			skb->data.
   3403	 *		 6. The physical address of the start of packet
   3404	 *			can be determined from the virtual address
   3405	 *			by using dma_map_single() and is only 32-bits
   3406	 *			wide.
   3407	 */
   3408
   3409	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
   3410	p_xmt_descr->long_1 = (u32)dma_addr;
   3411
   3412	/*
   3413	 * Verify that descriptor is actually available
   3414	 *
   3415	 * Note: If descriptor isn't available, return 1 which tells
   3416	 *	 the upper layer to requeue the packet for later
   3417	 *	 transmission.
   3418	 *
   3419	 *       We need to ensure that the producer never reaches the
   3420	 *	 completion, except to indicate that the queue is empty.
   3421	 */
   3422
   3423	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
   3424	{
   3425		skb_pull(skb,3);
   3426		spin_unlock_irqrestore(&bp->lock, flags);
   3427		return NETDEV_TX_BUSY;	/* requeue packet for later */
   3428	}
   3429
   3430	/*
   3431	 * Save info for this packet for xmt done indication routine
   3432	 *
   3433	 * Normally, we'd save the producer index in the p_xmt_drv_descr
   3434	 * structure so that we'd have it handy when we complete this
   3435	 * packet later (in dfx_xmt_done).  However, since the current
   3436	 * transmit architecture guarantees a single fragment for the
   3437	 * entire packet, we can simply bump the completion index by
   3438	 * one (1) for each completed packet.
   3439	 *
   3440	 * Note: If this assumption changes and we're presented with
   3441	 *	 an inconsistent number of transmit fragments for packet
   3442	 *	 data, we'll need to modify this code to save the current
   3443	 *	 transmit producer index.
   3444	 */
   3445
   3446	p_xmt_drv_descr->p_skb = skb;
   3447
   3448	/* Update Type 2 register */
   3449
   3450	bp->rcv_xmt_reg.index.xmt_prod = prod;
   3451	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
   3452	spin_unlock_irqrestore(&bp->lock, flags);
   3453	netif_wake_queue(dev);
   3454	return NETDEV_TX_OK;	/* packet queued to adapter */
   3455	}
   3456
   3457
   3458/*
   3459 * ================
   3460 * = dfx_xmt_done =
   3461 * ================
   3462 *
   3463 * Overview:
   3464 *   Processes all frames that have been transmitted.
   3465 *
   3466 * Returns:
   3467 *   None
   3468 *
   3469 * Arguments:
   3470 *   bp - pointer to board information
   3471 *
   3472 * Functional Description:
   3473 *   For all consumed transmit descriptors that have not
   3474 *   yet been completed, we'll free the skb we were holding
   3475 *   onto using dev_kfree_skb and bump the appropriate
   3476 *   counters.
   3477 *
   3478 * Return Codes:
   3479 *   None
   3480 *
   3481 * Assumptions:
   3482 *   The Type 2 register is not updated in this routine.  It is
   3483 *   assumed that it will be updated in the ISR when dfx_xmt_done
   3484 *   returns.
   3485 *
   3486 * Side Effects:
   3487 *   None
   3488 */
   3489
   3490static int dfx_xmt_done(DFX_board_t *bp)
   3491	{
   3492	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
   3493	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
   3494	u8			comp;			/* local transmit completion index */
   3495	int 			freed = 0;		/* buffers freed */
   3496
   3497	/* Service all consumed transmit frames */
   3498
   3499	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
   3500	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
   3501		{
   3502		/* Get pointer to the transmit driver descriptor block information */
   3503
   3504		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
   3505
   3506		/* Increment transmit counters */
   3507
   3508		bp->xmt_total_frames++;
   3509		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
   3510
   3511		/* Return skb to operating system */
   3512		comp = bp->rcv_xmt_reg.index.xmt_comp;
   3513		dma_unmap_single(bp->bus_dev,
   3514				 bp->descr_block_virt->xmt_data[comp].long_1,
   3515				 p_xmt_drv_descr->p_skb->len,
   3516				 DMA_TO_DEVICE);
   3517		dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
   3518
   3519		/*
   3520		 * Move to start of next packet by updating completion index
   3521		 *
   3522		 * Here we assume that a transmit packet request is always
   3523		 * serviced by posting one fragment.  We can therefore
   3524		 * simplify the completion code by incrementing the
   3525		 * completion index by one.  This code will need to be
   3526		 * modified if this assumption changes.  See comments
   3527		 * in dfx_xmt_queue_pkt for more details.
   3528		 */
   3529
   3530		bp->rcv_xmt_reg.index.xmt_comp += 1;
   3531		freed++;
   3532		}
   3533	return freed;
   3534	}
   3535
   3536
   3537/*
   3538 * =================
   3539 * = dfx_rcv_flush =
   3540 * =================
   3541 *
   3542 * Overview:
   3543 *   Remove all skb's in the receive ring.
   3544 *
   3545 * Returns:
   3546 *   None
   3547 *
   3548 * Arguments:
   3549 *   bp - pointer to board information
   3550 *
   3551 * Functional Description:
   3552 *   Free's all the dynamically allocated skb's that are
   3553 *   currently attached to the device receive ring. This
   3554 *   function is typically only used when the device is
   3555 *   initialized or reinitialized.
   3556 *
   3557 * Return Codes:
   3558 *   None
   3559 *
   3560 * Side Effects:
   3561 *   None
   3562 */
   3563#ifdef DYNAMIC_BUFFERS
   3564static void dfx_rcv_flush( DFX_board_t *bp )
   3565	{
   3566	int i, j;
   3567
   3568	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
   3569		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
   3570		{
   3571			struct sk_buff *skb;
   3572			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
   3573			if (skb) {
   3574				dma_unmap_single(bp->bus_dev,
   3575						 bp->descr_block_virt->rcv_data[i+j].long_1,
   3576						 PI_RCV_DATA_K_SIZE_MAX,
   3577						 DMA_FROM_DEVICE);
   3578				dev_kfree_skb(skb);
   3579			}
   3580			bp->p_rcv_buff_va[i+j] = NULL;
   3581		}
   3582
   3583	}
   3584#endif /* DYNAMIC_BUFFERS */
   3585
   3586/*
   3587 * =================
   3588 * = dfx_xmt_flush =
   3589 * =================
   3590 *
   3591 * Overview:
   3592 *   Processes all frames whether they've been transmitted
   3593 *   or not.
   3594 *
   3595 * Returns:
   3596 *   None
   3597 *
   3598 * Arguments:
   3599 *   bp - pointer to board information
   3600 *
   3601 * Functional Description:
   3602 *   For all produced transmit descriptors that have not
   3603 *   yet been completed, we'll free the skb we were holding
   3604 *   onto using dev_kfree_skb and bump the appropriate
   3605 *   counters.  Of course, it's possible that some of
   3606 *   these transmit requests actually did go out, but we
   3607 *   won't make that distinction here.  Finally, we'll
   3608 *   update the consumer index to match the producer.
   3609 *
   3610 * Return Codes:
   3611 *   None
   3612 *
   3613 * Assumptions:
   3614 *   This routine does NOT update the Type 2 register.  It
   3615 *   is assumed that this routine is being called during a
   3616 *   transmit flush interrupt, or a shutdown or close routine.
   3617 *
   3618 * Side Effects:
   3619 *   None
   3620 */
   3621
   3622static void dfx_xmt_flush( DFX_board_t *bp )
   3623	{
   3624	u32			prod_cons;		/* rcv/xmt consumer block longword */
   3625	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
   3626	u8			comp;			/* local transmit completion index */
   3627
   3628	/* Flush all outstanding transmit frames */
   3629
   3630	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
   3631		{
   3632		/* Get pointer to the transmit driver descriptor block information */
   3633
   3634		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
   3635
   3636		/* Return skb to operating system */
   3637		comp = bp->rcv_xmt_reg.index.xmt_comp;
   3638		dma_unmap_single(bp->bus_dev,
   3639				 bp->descr_block_virt->xmt_data[comp].long_1,
   3640				 p_xmt_drv_descr->p_skb->len,
   3641				 DMA_TO_DEVICE);
   3642		dev_kfree_skb(p_xmt_drv_descr->p_skb);
   3643
   3644		/* Increment transmit error counter */
   3645
   3646		bp->xmt_discards++;
   3647
   3648		/*
   3649		 * Move to start of next packet by updating completion index
   3650		 *
   3651		 * Here we assume that a transmit packet request is always
   3652		 * serviced by posting one fragment.  We can therefore
   3653		 * simplify the completion code by incrementing the
   3654		 * completion index by one.  This code will need to be
   3655		 * modified if this assumption changes.  See comments
   3656		 * in dfx_xmt_queue_pkt for more details.
   3657		 */
   3658
   3659		bp->rcv_xmt_reg.index.xmt_comp += 1;
   3660		}
   3661
   3662	/* Update the transmit consumer index in the consumer block */
   3663
   3664	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
   3665	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
   3666	bp->cons_block_virt->xmt_rcv_data = prod_cons;
   3667	}
   3668
   3669/*
   3670 * ==================
   3671 * = dfx_unregister =
   3672 * ==================
   3673 *
   3674 * Overview:
   3675 *   Shuts down an FDDI controller
   3676 *
   3677 * Returns:
   3678 *   Condition code
   3679 *
   3680 * Arguments:
   3681 *   bdev - pointer to device information
   3682 *
   3683 * Functional Description:
   3684 *
   3685 * Return Codes:
   3686 *   None
   3687 *
   3688 * Assumptions:
   3689 *   It compiles so it should work :-( (PCI cards do :-)
   3690 *
   3691 * Side Effects:
   3692 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
   3693 *   freed.
   3694 */
   3695static void dfx_unregister(struct device *bdev)
   3696{
   3697	struct net_device *dev = dev_get_drvdata(bdev);
   3698	DFX_board_t *bp = netdev_priv(dev);
   3699	int dfx_bus_pci = dev_is_pci(bdev);
   3700	resource_size_t bar_start[3] = {0};	/* pointers to ports */
   3701	resource_size_t bar_len[3] = {0};	/* resource lengths */
   3702	int		alloc_size;		/* total buffer size used */
   3703
   3704	unregister_netdev(dev);
   3705
   3706	alloc_size = sizeof(PI_DESCR_BLOCK) +
   3707		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
   3708#ifndef DYNAMIC_BUFFERS
   3709		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
   3710#endif
   3711		     sizeof(PI_CONSUMER_BLOCK) +
   3712		     (PI_ALIGN_K_DESC_BLK - 1);
   3713	if (bp->kmalloced)
   3714		dma_free_coherent(bdev, alloc_size,
   3715				  bp->kmalloced, bp->kmalloced_dma);
   3716
   3717	dfx_bus_uninit(dev);
   3718
   3719	dfx_get_bars(bp, bar_start, bar_len);
   3720	if (bar_start[2] != 0)
   3721		release_region(bar_start[2], bar_len[2]);
   3722	if (bar_start[1] != 0)
   3723		release_region(bar_start[1], bar_len[1]);
   3724	if (dfx_use_mmio) {
   3725		iounmap(bp->base.mem);
   3726		release_mem_region(bar_start[0], bar_len[0]);
   3727	} else
   3728		release_region(bar_start[0], bar_len[0]);
   3729
   3730	if (dfx_bus_pci)
   3731		pci_disable_device(to_pci_dev(bdev));
   3732
   3733	free_netdev(dev);
   3734}
   3735
   3736
   3737static int __maybe_unused dfx_dev_register(struct device *);
   3738static int __maybe_unused dfx_dev_unregister(struct device *);
   3739
   3740#ifdef CONFIG_PCI
   3741static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
   3742static void dfx_pci_unregister(struct pci_dev *);
   3743
   3744static const struct pci_device_id dfx_pci_table[] = {
   3745	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
   3746	{ }
   3747};
   3748MODULE_DEVICE_TABLE(pci, dfx_pci_table);
   3749
   3750static struct pci_driver dfx_pci_driver = {
   3751	.name		= DRV_NAME,
   3752	.id_table	= dfx_pci_table,
   3753	.probe		= dfx_pci_register,
   3754	.remove		= dfx_pci_unregister,
   3755};
   3756
   3757static int dfx_pci_register(struct pci_dev *pdev,
   3758			    const struct pci_device_id *ent)
   3759{
   3760	return dfx_register(&pdev->dev);
   3761}
   3762
   3763static void dfx_pci_unregister(struct pci_dev *pdev)
   3764{
   3765	dfx_unregister(&pdev->dev);
   3766}
   3767#endif /* CONFIG_PCI */
   3768
   3769#ifdef CONFIG_EISA
   3770static const struct eisa_device_id dfx_eisa_table[] = {
   3771        { "DEC3001", DEFEA_PROD_ID_1 },
   3772        { "DEC3002", DEFEA_PROD_ID_2 },
   3773        { "DEC3003", DEFEA_PROD_ID_3 },
   3774        { "DEC3004", DEFEA_PROD_ID_4 },
   3775        { }
   3776};
   3777MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
   3778
   3779static struct eisa_driver dfx_eisa_driver = {
   3780	.id_table	= dfx_eisa_table,
   3781	.driver		= {
   3782		.name	= DRV_NAME,
   3783		.bus	= &eisa_bus_type,
   3784		.probe	= dfx_dev_register,
   3785		.remove	= dfx_dev_unregister,
   3786	},
   3787};
   3788#endif /* CONFIG_EISA */
   3789
   3790#ifdef CONFIG_TC
   3791static struct tc_device_id const dfx_tc_table[] = {
   3792	{ "DEC     ", "PMAF-FA " },
   3793	{ "DEC     ", "PMAF-FD " },
   3794	{ "DEC     ", "PMAF-FS " },
   3795	{ "DEC     ", "PMAF-FU " },
   3796	{ }
   3797};
   3798MODULE_DEVICE_TABLE(tc, dfx_tc_table);
   3799
   3800static struct tc_driver dfx_tc_driver = {
   3801	.id_table	= dfx_tc_table,
   3802	.driver		= {
   3803		.name	= DRV_NAME,
   3804		.bus	= &tc_bus_type,
   3805		.probe	= dfx_dev_register,
   3806		.remove	= dfx_dev_unregister,
   3807	},
   3808};
   3809#endif /* CONFIG_TC */
   3810
   3811static int __maybe_unused dfx_dev_register(struct device *dev)
   3812{
   3813	int status;
   3814
   3815	status = dfx_register(dev);
   3816	if (!status)
   3817		get_device(dev);
   3818	return status;
   3819}
   3820
   3821static int __maybe_unused dfx_dev_unregister(struct device *dev)
   3822{
   3823	put_device(dev);
   3824	dfx_unregister(dev);
   3825	return 0;
   3826}
   3827
   3828
   3829static int dfx_init(void)
   3830{
   3831	int status;
   3832
   3833	status = pci_register_driver(&dfx_pci_driver);
   3834	if (!status)
   3835		status = eisa_driver_register(&dfx_eisa_driver);
   3836	if (!status)
   3837		status = tc_register_driver(&dfx_tc_driver);
   3838	return status;
   3839}
   3840
   3841static void dfx_cleanup(void)
   3842{
   3843	tc_unregister_driver(&dfx_tc_driver);
   3844	eisa_driver_unregister(&dfx_eisa_driver);
   3845	pci_unregister_driver(&dfx_pci_driver);
   3846}
   3847
   3848module_init(dfx_init);
   3849module_exit(dfx_cleanup);
   3850MODULE_AUTHOR("Lawrence V. Stefani");
   3851MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
   3852		   DRV_VERSION " " DRV_RELDATE);
   3853MODULE_LICENSE("GPL");