cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pcmplc.c (48732B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/******************************************************************************
      3 *
      4 *	(C)Copyright 1998,1999 SysKonnect,
      5 *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
      6 *
      7 *	See the file "skfddi.c" for further information.
      8 *
      9 *	The information in this file is provided "AS IS" without warranty.
     10 *
     11 ******************************************************************************/
     12
     13/*
     14	PCM
     15	Physical Connection Management
     16*/
     17
     18/*
     19 * Hardware independent state machine implemantation
     20 * The following external SMT functions are referenced :
     21 *
     22 * 		queue_event()
     23 * 		smt_timer_start()
     24 * 		smt_timer_stop()
     25 *
     26 * 	The following external HW dependent functions are referenced :
     27 * 		sm_pm_control()
     28 *		sm_ph_linestate()
     29 *
     30 * 	The following HW dependent events are required :
     31 *		PC_QLS
     32 *		PC_ILS
     33 *		PC_HLS
     34 *		PC_MLS
     35 *		PC_NSE
     36 *		PC_LEM
     37 *
     38 */
     39
     40
     41#include "h/types.h"
     42#include "h/fddi.h"
     43#include "h/smc.h"
     44#include "h/supern_2.h"
     45#define KERNEL
     46#include "h/smtstate.h"
     47
     48#ifdef	FDDI_MIB
     49extern int snmp_fddi_trap(
     50#ifdef	ANSIC
     51struct s_smc	* smc, int  type, int  index
     52#endif
     53);
     54#endif
     55#ifdef	CONCENTRATOR
     56extern int plc_is_installed(
     57#ifdef	ANSIC
     58struct s_smc *smc ,
     59int p
     60#endif
     61) ;
     62#endif
     63/*
     64 * FSM Macros
     65 */
     66#define AFLAG		(0x20)
     67#define GO_STATE(x)	(mib->fddiPORTPCMState = (x)|AFLAG)
     68#define ACTIONS_DONE()	(mib->fddiPORTPCMState &= ~AFLAG)
     69#define ACTIONS(x)	(x|AFLAG)
     70
     71/*
     72 * PCM states
     73 */
     74#define PC0_OFF			0
     75#define PC1_BREAK		1
     76#define PC2_TRACE		2
     77#define PC3_CONNECT		3
     78#define PC4_NEXT		4
     79#define PC5_SIGNAL		5
     80#define PC6_JOIN		6
     81#define PC7_VERIFY		7
     82#define PC8_ACTIVE		8
     83#define PC9_MAINT		9
     84
     85/*
     86 * symbolic state names
     87 */
     88static const char * const pcm_states[] =  {
     89	"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
     90	"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
     91} ;
     92
     93/*
     94 * symbolic event names
     95 */
     96static const char * const pcm_events[] = {
     97	"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
     98	"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
     99	"PC_ENABLE","PC_DISABLE",
    100	"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
    101	"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
    102	"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
    103	"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
    104	"PC_NSE","PC_LEM"
    105} ;
    106
    107#ifdef	MOT_ELM
    108/*
    109 * PCL-S control register
    110 * this register in the PLC-S controls the scrambling parameters
    111 */
    112#define PLCS_CONTROL_C_U	0
    113#define PLCS_CONTROL_C_S	(PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
    114				 PL_C_CIPHER_ENABLE)
    115#define	PLCS_FASSERT_U		0
    116#define	PLCS_FASSERT_S		0xFd76	/* 52.0 us */
    117#define	PLCS_FDEASSERT_U	0
    118#define	PLCS_FDEASSERT_S	0
    119#else	/* nMOT_ELM */
    120/*
    121 * PCL-S control register
    122 * this register in the PLC-S controls the scrambling parameters
    123 * can be patched for ANSI compliance if standard changes
    124 */
    125static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
    126static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
    127
    128#define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
    129#define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
    130#endif	/* nMOT_ELM */
    131
    132/*
    133 * external vars
    134 */
    135/* struct definition see 'cmtdef.h' (also used by CFM) */
    136
    137#define PS_OFF		0
    138#define PS_BIT3		1
    139#define PS_BIT4		2
    140#define PS_BIT7		3
    141#define PS_LCT		4
    142#define PS_BIT8		5
    143#define PS_JOIN		6
    144#define PS_ACTIVE	7
    145
    146#define LCT_LEM_MAX	255
    147
    148/*
    149 * PLC timing parameter
    150 */
    151
    152#define PLC_MS(m)	((int)((0x10000L-(m*100000L/2048))))
    153#define SLOW_TL_MIN	PLC_MS(6)
    154#define SLOW_C_MIN	PLC_MS(10)
    155
    156static	const struct plt {
    157	int	timer ;			/* relative plc timer address */
    158	int	para ;			/* default timing parameters */
    159} pltm[] = {
    160	{ PL_C_MIN, SLOW_C_MIN },	/* min t. to remain Connect State */
    161	{ PL_TL_MIN, SLOW_TL_MIN },	/* min t. to transmit a Line State */
    162	{ PL_TB_MIN, TP_TB_MIN },	/* min break time */
    163	{ PL_T_OUT, TP_T_OUT },		/* Signaling timeout */
    164	{ PL_LC_LENGTH, TP_LC_LENGTH },	/* Link Confidence Test Time */
    165	{ PL_T_SCRUB, TP_T_SCRUB },	/* Scrub Time == MAC TVX time ! */
    166	{ PL_NS_MAX, TP_NS_MAX },	/* max t. that noise is tolerated */
    167	{ 0,0 }
    168} ;
    169
    170/*
    171 * interrupt mask
    172 */
    173#ifdef	SUPERNET_3
    174/*
    175 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
    176 * PLL bug?
    177 */
    178static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
    179			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
    180#else	/* SUPERNET_3 */
    181/*
    182 * We do NOT need the elasticity buffer error during signaling.
    183 */
    184static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
    185			PL_PCM_ENABLED | PL_SELF_TEST ;
    186#endif	/* SUPERNET_3 */
    187static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
    188			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
    189
    190/* internal functions */
    191static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
    192static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
    193static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
    194static void reset_lem_struct(struct s_phy *phy);
    195static void plc_init(struct s_smc *smc, int p);
    196static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
    197static void sm_ph_lem_stop(struct s_smc *smc, int np);
    198static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
    199static void real_init_plc(struct s_smc *smc);
    200
    201/*
    202 * SMT timer interface
    203 *      start PCM timer 0
    204 */
    205static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
    206			     struct s_phy *phy)
    207{
    208	phy->timer0_exp = FALSE ;       /* clear timer event flag */
    209	smt_timer_start(smc,&phy->pcm_timer0,value,
    210		EV_TOKEN(EVENT_PCM+phy->np,event)) ;
    211}
    212/*
    213 * SMT timer interface
    214 *      stop PCM timer 0
    215 */
    216static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
    217{
    218	if (phy->pcm_timer0.tm_active)
    219		smt_timer_stop(smc,&phy->pcm_timer0) ;
    220}
    221
    222/*
    223	init PCM state machine (called by driver)
    224	clear all PCM vars and flags
    225*/
    226void pcm_init(struct s_smc *smc)
    227{
    228	int		i ;
    229	int		np ;
    230	struct s_phy	*phy ;
    231	struct fddi_mib_p	*mib ;
    232
    233	for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
    234		/* Indicates the type of PHY being used */
    235		mib = phy->mib ;
    236		mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
    237		phy->np = np ;
    238		switch (smc->s.sas) {
    239#ifdef	CONCENTRATOR
    240		case SMT_SAS :
    241			mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
    242			break ;
    243		case SMT_DAS :
    244			mib->fddiPORTMy_Type = (np == PA) ? TA :
    245					(np == PB) ? TB : TM ;
    246			break ;
    247		case SMT_NAC :
    248			mib->fddiPORTMy_Type = TM ;
    249			break;
    250#else
    251		case SMT_SAS :
    252			mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
    253			mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
    254					FALSE ;
    255#ifndef	SUPERNET_3
    256			smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
    257#else
    258			smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
    259#endif
    260			break ;
    261		case SMT_DAS :
    262			mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
    263			break ;
    264#endif
    265		}
    266		/*
    267		 * set PMD-type
    268		 */
    269		phy->pmd_scramble = 0 ;
    270		switch (phy->pmd_type[PMD_SK_PMD]) {
    271		case 'P' :
    272			mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
    273			break ;
    274		case 'L' :
    275			mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
    276			break ;
    277		case 'D' :
    278			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
    279			break ;
    280		case 'S' :
    281			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
    282			phy->pmd_scramble = TRUE ;
    283			break ;
    284		case 'U' :
    285			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
    286			phy->pmd_scramble = TRUE ;
    287			break ;
    288		case '1' :
    289			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
    290			break ;
    291		case '2' :
    292			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
    293			break ;
    294		case '3' :
    295			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
    296			break ;
    297		case '4' :
    298			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
    299			break ;
    300		case 'H' :
    301			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
    302			break ;
    303		case 'I' :
    304			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
    305			break ;
    306		case 'G' :
    307			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
    308			break ;
    309		default:
    310			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
    311			break ;
    312		}
    313		/*
    314		 * A and B port can be on primary and secondary path
    315		 */
    316		switch (mib->fddiPORTMy_Type) {
    317		case TA :
    318			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
    319			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
    320			mib->fddiPORTRequestedPaths[2] =
    321				MIB_P_PATH_LOCAL |
    322				MIB_P_PATH_CON_ALTER |
    323				MIB_P_PATH_SEC_PREFER ;
    324			mib->fddiPORTRequestedPaths[3] =
    325				MIB_P_PATH_LOCAL |
    326				MIB_P_PATH_CON_ALTER |
    327				MIB_P_PATH_SEC_PREFER |
    328				MIB_P_PATH_THRU ;
    329			break ;
    330		case TB :
    331			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
    332			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
    333			mib->fddiPORTRequestedPaths[2] =
    334				MIB_P_PATH_LOCAL |
    335				MIB_P_PATH_PRIM_PREFER ;
    336			mib->fddiPORTRequestedPaths[3] =
    337				MIB_P_PATH_LOCAL |
    338				MIB_P_PATH_PRIM_PREFER |
    339				MIB_P_PATH_CON_PREFER |
    340				MIB_P_PATH_THRU ;
    341			break ;
    342		case TS :
    343			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
    344			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
    345			mib->fddiPORTRequestedPaths[2] =
    346				MIB_P_PATH_LOCAL |
    347				MIB_P_PATH_CON_ALTER |
    348				MIB_P_PATH_PRIM_PREFER ;
    349			mib->fddiPORTRequestedPaths[3] =
    350				MIB_P_PATH_LOCAL |
    351				MIB_P_PATH_CON_ALTER |
    352				MIB_P_PATH_PRIM_PREFER ;
    353			break ;
    354		case TM :
    355			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
    356			mib->fddiPORTRequestedPaths[2] =
    357				MIB_P_PATH_LOCAL |
    358				MIB_P_PATH_SEC_ALTER |
    359				MIB_P_PATH_PRIM_ALTER ;
    360			mib->fddiPORTRequestedPaths[3] = 0 ;
    361			break ;
    362		}
    363
    364		phy->pc_lem_fail = FALSE ;
    365		mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
    366		mib->fddiPORTLCTFail_Ct = 0 ;
    367		mib->fddiPORTBS_Flag = 0 ;
    368		mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
    369		mib->fddiPORTNeighborType = TNONE ;
    370		phy->ls_flag = 0 ;
    371		phy->rc_flag = 0 ;
    372		phy->tc_flag = 0 ;
    373		phy->td_flag = 0 ;
    374		if (np >= PM)
    375			phy->phy_name = '0' + np - PM ;
    376		else
    377			phy->phy_name = 'A' + np ;
    378		phy->wc_flag = FALSE ;		/* set by SMT */
    379		memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
    380		reset_lem_struct(phy) ;
    381		memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
    382		phy->plc.p_state = PS_OFF ;
    383		for (i = 0 ; i < NUMBITS ; i++) {
    384			phy->t_next[i] = 0 ;
    385		}
    386	}
    387	real_init_plc(smc) ;
    388}
    389
    390void init_plc(struct s_smc *smc)
    391{
    392	SK_UNUSED(smc) ;
    393
    394	/*
    395	 * dummy
    396	 * this is an obsolete public entry point that has to remain
    397	 * for compat. It is used by various drivers.
    398	 * the work is now done in real_init_plc()
    399	 * which is called from pcm_init() ;
    400	 */
    401}
    402
    403static void real_init_plc(struct s_smc *smc)
    404{
    405	int	p ;
    406
    407	for (p = 0 ; p < NUMPHYS ; p++)
    408		plc_init(smc,p) ;
    409}
    410
    411static void plc_init(struct s_smc *smc, int p)
    412{
    413	int	i ;
    414#ifndef	MOT_ELM
    415	int	rev ;	/* Revision of PLC-x */
    416#endif	/* MOT_ELM */
    417
    418	/* transit PCM state machine to MAINT state */
    419	outpw(PLC(p,PL_CNTRL_B),0) ;
    420	outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
    421	outpw(PLC(p,PL_CNTRL_A),0) ;
    422
    423	/*
    424	 * if PLC-S then set control register C
    425	 */
    426#ifndef	MOT_ELM
    427	rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
    428	if (rev != PLC_REVISION_A)
    429#endif	/* MOT_ELM */
    430	{
    431		if (smc->y[p].pmd_scramble) {
    432			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
    433#ifdef	MOT_ELM
    434			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
    435			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
    436#endif	/* MOT_ELM */
    437		}
    438		else {
    439			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
    440#ifdef	MOT_ELM
    441			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
    442			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
    443#endif	/* MOT_ELM */
    444		}
    445	}
    446
    447	/*
    448	 * set timer register
    449	 */
    450	for ( i = 0 ; pltm[i].timer; i++)	/* set timer parameter reg */
    451		outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
    452
    453	(void)inpw(PLC(p,PL_INTR_EVENT)) ;	/* clear interrupt event reg */
    454	plc_clear_irq(smc,p) ;
    455	outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
    456
    457	/*
    458	 * if PCM is configured for class s, it will NOT go to the
    459	 * REMOVE state if offline (page 3-36;)
    460	 * in the concentrator, all inactive PHYS always must be in
    461	 * the remove state
    462	 * there's no real need to use this feature at all ..
    463	 */
    464#ifndef	CONCENTRATOR
    465	if ((smc->s.sas == SMT_SAS) && (p == PS)) {
    466		outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
    467	}
    468#endif
    469}
    470
    471/*
    472 * control PCM state machine
    473 */
    474static void plc_go_state(struct s_smc *smc, int p, int state)
    475{
    476	HW_PTR port ;
    477	int val ;
    478
    479	SK_UNUSED(smc) ;
    480
    481	port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
    482	val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
    483	outpw(port,val) ;
    484	outpw(port,val | state) ;
    485}
    486
    487/*
    488 * read current line state (called by ECM & PCM)
    489 */
    490int sm_pm_get_ls(struct s_smc *smc, int phy)
    491{
    492	int	state ;
    493
    494#ifdef	CONCENTRATOR
    495	if (!plc_is_installed(smc,phy))
    496		return PC_QLS;
    497#endif
    498
    499	state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
    500	switch(state) {
    501	case PL_L_QLS:
    502		state = PC_QLS ;
    503		break ;
    504	case PL_L_MLS:
    505		state = PC_MLS ;
    506		break ;
    507	case PL_L_HLS:
    508		state = PC_HLS ;
    509		break ;
    510	case PL_L_ILS4:
    511	case PL_L_ILS16:
    512		state = PC_ILS ;
    513		break ;
    514	case PL_L_ALS:
    515		state = PC_LS_PDR ;
    516		break ;
    517	default :
    518		state = PC_LS_NONE ;
    519	}
    520	return state;
    521}
    522
    523static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
    524{
    525	int np = phy->np ;		/* PHY index */
    526	int	n ;
    527	int	i ;
    528
    529	SK_UNUSED(smc) ;
    530
    531	/* create bit vector */
    532	for (i = len-1,n = 0 ; i >= 0 ; i--) {
    533		n = (n<<1) | phy->t_val[phy->bitn+i] ;
    534	}
    535	if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
    536#if	0
    537		printf("PL_PCM_SIGNAL is set\n") ;
    538#endif
    539		return 1;
    540	}
    541	/* write bit[n] & length = 1 to regs */
    542	outpw(PLC(np,PL_VECTOR_LEN),len-1) ;	/* len=nr-1 */
    543	outpw(PLC(np,PL_XMIT_VECTOR),n) ;
    544#ifdef	DEBUG
    545#if 1
    546#ifdef	DEBUG_BRD
    547	if (smc->debug.d_plc & 0x80)
    548#else
    549	if (debug.d_plc & 0x80)
    550#endif
    551		printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
    552#endif
    553#endif
    554	return 0;
    555}
    556
    557/*
    558 * config plc muxes
    559 */
    560void plc_config_mux(struct s_smc *smc, int mux)
    561{
    562	if (smc->s.sas != SMT_DAS)
    563		return ;
    564	if (mux == MUX_WRAPB) {
    565		SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
    566		SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
    567	}
    568	else {
    569		CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
    570		CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
    571	}
    572	CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
    573	CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
    574}
    575
    576/*
    577	PCM state machine
    578	called by dispatcher  & fddi_init() (driver)
    579	do
    580		display state change
    581		process event
    582	until SM is stable
    583*/
    584void pcm(struct s_smc *smc, const int np, int event)
    585{
    586	int	state ;
    587	int	oldstate ;
    588	struct s_phy	*phy ;
    589	struct fddi_mib_p	*mib ;
    590
    591#ifndef	CONCENTRATOR
    592	/*
    593	 * ignore 2nd PHY if SAS
    594	 */
    595	if ((np != PS) && (smc->s.sas == SMT_SAS))
    596		return ;
    597#endif
    598	phy = &smc->y[np] ;
    599	mib = phy->mib ;
    600	oldstate = mib->fddiPORTPCMState ;
    601	do {
    602		DB_PCM("PCM %c: state %s%s, event %s",
    603		       phy->phy_name,
    604		       mib->fddiPORTPCMState & AFLAG ? "ACTIONS " : "",
    605		       pcm_states[mib->fddiPORTPCMState & ~AFLAG],
    606		       pcm_events[event]);
    607		state = mib->fddiPORTPCMState ;
    608		pcm_fsm(smc,phy,event) ;
    609		event = 0 ;
    610	} while (state != mib->fddiPORTPCMState) ;
    611	/*
    612	 * because the PLC does the bit signaling for us,
    613	 * we're always in SIGNAL state
    614	 * the MIB want's to see CONNECT
    615	 * we therefore fake an entry in the MIB
    616	 */
    617	if (state == PC5_SIGNAL)
    618		mib->fddiPORTPCMStateX = PC3_CONNECT ;
    619	else
    620		mib->fddiPORTPCMStateX = state ;
    621
    622#ifndef	SLIM_SMT
    623	/*
    624	 * path change
    625	 */
    626	if (	mib->fddiPORTPCMState != oldstate &&
    627		((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
    628		smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
    629			(int) (INDEX_PORT+ phy->np),0) ;
    630	}
    631#endif
    632
    633#ifdef FDDI_MIB
    634	/* check whether a snmp-trap has to be sent */
    635
    636	if ( mib->fddiPORTPCMState != oldstate ) {
    637		/* a real state change took place */
    638		DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
    639		if ( mib->fddiPORTPCMState == PC0_OFF ) {
    640			/* send first trap */
    641			snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
    642		} else if ( oldstate == PC0_OFF ) {
    643			/* send second trap */
    644			snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
    645		} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
    646			oldstate == PC8_ACTIVE ) {
    647			/* send third trap */
    648			snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
    649		} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
    650			/* send fourth trap */
    651			snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
    652		}
    653	}
    654#endif
    655
    656	pcm_state_change(smc,np,state) ;
    657}
    658
    659/*
    660 * PCM state machine
    661 */
    662static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
    663{
    664	int	i ;
    665	int	np = phy->np ;		/* PHY index */
    666	struct s_plc	*plc ;
    667	struct fddi_mib_p	*mib ;
    668#ifndef	MOT_ELM
    669	u_short	plc_rev ;		/* Revision of the plc */
    670#endif	/* nMOT_ELM */
    671
    672	plc = &phy->plc ;
    673	mib = phy->mib ;
    674
    675	/*
    676	 * general transitions independent of state
    677	 */
    678	switch (cmd) {
    679	case PC_STOP :
    680		/*PC00-PC80*/
    681		if (mib->fddiPORTPCMState != PC9_MAINT) {
    682			GO_STATE(PC0_OFF) ;
    683			AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
    684				FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
    685				smt_get_port_event_word(smc));
    686		}
    687		return ;
    688	case PC_START :
    689		/*PC01-PC81*/
    690		if (mib->fddiPORTPCMState != PC9_MAINT)
    691			GO_STATE(PC1_BREAK) ;
    692		return ;
    693	case PC_DISABLE :
    694		/* PC09-PC99 */
    695		GO_STATE(PC9_MAINT) ;
    696		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
    697			FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
    698			smt_get_port_event_word(smc));
    699		return ;
    700	case PC_TIMEOUT_LCT :
    701		/* if long or extended LCT */
    702		stop_pcm_timer0(smc,phy) ;
    703		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
    704		/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
    705		return ;
    706	}
    707
    708	switch(mib->fddiPORTPCMState) {
    709	case ACTIONS(PC0_OFF) :
    710		stop_pcm_timer0(smc,phy) ;
    711		outpw(PLC(np,PL_CNTRL_A),0) ;
    712		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
    713		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
    714		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
    715		phy->cf_loop = FALSE ;
    716		phy->cf_join = FALSE ;
    717		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
    718		plc_go_state(smc,np,PL_PCM_STOP) ;
    719		mib->fddiPORTConnectState = PCM_DISABLED ;
    720		ACTIONS_DONE() ;
    721		break ;
    722	case PC0_OFF:
    723		/*PC09*/
    724		if (cmd == PC_MAINT) {
    725			GO_STATE(PC9_MAINT) ;
    726			break ;
    727		}
    728		break ;
    729	case ACTIONS(PC1_BREAK) :
    730		/* Stop the LCT timer if we came from Signal state */
    731		stop_pcm_timer0(smc,phy) ;
    732		ACTIONS_DONE() ;
    733		plc_go_state(smc,np,0) ;
    734		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
    735		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
    736		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
    737		/*
    738		 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
    739		 */
    740#if	0
    741		if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
    742			plc_go_state(smc,np,PL_PCM_STOP) ;
    743			/* TB_MIN ? */
    744		}
    745#endif
    746		/*
    747		 * Go to OFF state in any case.
    748		 */
    749		plc_go_state(smc,np,PL_PCM_STOP) ;
    750
    751		if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
    752			mib->fddiPORTConnectState = PCM_CONNECTING ;
    753		phy->cf_loop = FALSE ;
    754		phy->cf_join = FALSE ;
    755		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
    756		phy->ls_flag = FALSE ;
    757		phy->pc_mode = PM_NONE ;	/* needed by CFM */
    758		phy->bitn = 0 ;			/* bit signaling start bit */
    759		for (i = 0 ; i < 3 ; i++)
    760			pc_tcode_actions(smc,i,phy) ;
    761
    762		/* Set the non-active interrupt mask register */
    763		outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
    764
    765		/*
    766		 * If the LCT was stopped. There might be a
    767		 * PCM_CODE interrupt event present.
    768		 * This must be cleared.
    769		 */
    770		(void)inpw(PLC(np,PL_INTR_EVENT)) ;
    771#ifndef	MOT_ELM
    772		/* Get the plc revision for revision dependent code */
    773		plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
    774
    775		if (plc_rev != PLC_REV_SN3)
    776#endif	/* MOT_ELM */
    777		{
    778			/*
    779			 * No supernet III PLC, so set Xmit verctor and
    780			 * length BEFORE starting the state machine.
    781			 */
    782			if (plc_send_bits(smc,phy,3)) {
    783				return ;
    784			}
    785		}
    786
    787		/*
    788		 * Now give the Start command.
    789		 * - The start command shall be done before setting the bits
    790		 *   to be signaled. (In PLC-S description and PLCS in SN3.
    791		 * - The start command shall be issued AFTER setting the
    792		 *   XMIT vector and the XMIT length register.
    793		 *
    794		 * We do it exactly according this specs for the old PLC and
    795		 * the new PLCS inside the SN3.
    796		 * For the usual PLCS we try it the way it is done for the
    797		 * old PLC and set the XMIT registers again, if the PLC is
    798		 * not in SIGNAL state. This is done according to an PLCS
    799		 * errata workaround.
    800		 */
    801
    802		plc_go_state(smc,np,PL_PCM_START) ;
    803
    804		/*
    805		 * workaround for PLC-S eng. sample errata
    806		 */
    807#ifdef	MOT_ELM
    808		if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
    809#else	/* nMOT_ELM */
    810		if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
    811			PLC_REVISION_A) &&
    812			!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
    813#endif	/* nMOT_ELM */
    814		{
    815			/*
    816			 * Set register again (PLCS errata) or the first time
    817			 * (new SN3 PLCS).
    818			 */
    819			(void) plc_send_bits(smc,phy,3) ;
    820		}
    821		/*
    822		 * end of workaround
    823		 */
    824
    825		GO_STATE(PC5_SIGNAL) ;
    826		plc->p_state = PS_BIT3 ;
    827		plc->p_bits = 3 ;
    828		plc->p_start = 0 ;
    829
    830		break ;
    831	case PC1_BREAK :
    832		break ;
    833	case ACTIONS(PC2_TRACE) :
    834		plc_go_state(smc,np,PL_PCM_TRACE) ;
    835		ACTIONS_DONE() ;
    836		break ;
    837	case PC2_TRACE :
    838		break ;
    839
    840	case PC3_CONNECT :	/* these states are done by hardware */
    841	case PC4_NEXT :
    842		break ;
    843
    844	case ACTIONS(PC5_SIGNAL) :
    845		ACTIONS_DONE() ;
    846		fallthrough;
    847	case PC5_SIGNAL :
    848		if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
    849			break ;
    850		switch (plc->p_state) {
    851		case PS_BIT3 :
    852			for (i = 0 ; i <= 2 ; i++)
    853				pc_rcode_actions(smc,i,phy) ;
    854			pc_tcode_actions(smc,3,phy) ;
    855			plc->p_state = PS_BIT4 ;
    856			plc->p_bits = 1 ;
    857			plc->p_start = 3 ;
    858			phy->bitn = 3 ;
    859			if (plc_send_bits(smc,phy,1)) {
    860				return ;
    861			}
    862			break ;
    863		case PS_BIT4 :
    864			pc_rcode_actions(smc,3,phy) ;
    865			for (i = 4 ; i <= 6 ; i++)
    866				pc_tcode_actions(smc,i,phy) ;
    867			plc->p_state = PS_BIT7 ;
    868			plc->p_bits = 3 ;
    869			plc->p_start = 4 ;
    870			phy->bitn = 4 ;
    871			if (plc_send_bits(smc,phy,3)) {
    872				return ;
    873			}
    874			break ;
    875		case PS_BIT7 :
    876			for (i = 3 ; i <= 6 ; i++)
    877				pc_rcode_actions(smc,i,phy) ;
    878			plc->p_state = PS_LCT ;
    879			plc->p_bits = 0 ;
    880			plc->p_start = 7 ;
    881			phy->bitn = 7 ;
    882		sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
    883			/* start LCT */
    884			i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
    885			outpw(PLC(np,PL_CNTRL_B),i) ;	/* must be cleared */
    886			outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
    887			break ;
    888		case PS_LCT :
    889			/* check for local LCT failure */
    890			pc_tcode_actions(smc,7,phy) ;
    891			/*
    892			 * set tval[7]
    893			 */
    894			plc->p_state = PS_BIT8 ;
    895			plc->p_bits = 1 ;
    896			plc->p_start = 7 ;
    897			phy->bitn = 7 ;
    898			if (plc_send_bits(smc,phy,1)) {
    899				return ;
    900			}
    901			break ;
    902		case PS_BIT8 :
    903			/* check for remote LCT failure */
    904			pc_rcode_actions(smc,7,phy) ;
    905			if (phy->t_val[7] || phy->r_val[7]) {
    906				plc_go_state(smc,np,PL_PCM_STOP) ;
    907				GO_STATE(PC1_BREAK) ;
    908				break ;
    909			}
    910			for (i = 8 ; i <= 9 ; i++)
    911				pc_tcode_actions(smc,i,phy) ;
    912			plc->p_state = PS_JOIN ;
    913			plc->p_bits = 2 ;
    914			plc->p_start = 8 ;
    915			phy->bitn = 8 ;
    916			if (plc_send_bits(smc,phy,2)) {
    917				return ;
    918			}
    919			break ;
    920		case PS_JOIN :
    921			for (i = 8 ; i <= 9 ; i++)
    922				pc_rcode_actions(smc,i,phy) ;
    923			plc->p_state = PS_ACTIVE ;
    924			GO_STATE(PC6_JOIN) ;
    925			break ;
    926		}
    927		break ;
    928
    929	case ACTIONS(PC6_JOIN) :
    930		/*
    931		 * prevent mux error when going from WRAP_A to WRAP_B
    932		 */
    933		if (smc->s.sas == SMT_DAS && np == PB &&
    934			(smc->y[PA].pc_mode == PM_TREE ||
    935			 smc->y[PB].pc_mode == PM_TREE)) {
    936			SETMASK(PLC(np,PL_CNTRL_A),
    937				PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
    938			SETMASK(PLC(np,PL_CNTRL_B),
    939				PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
    940		}
    941		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
    942		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
    943		ACTIONS_DONE() ;
    944		cmd = 0 ;
    945		fallthrough;
    946	case PC6_JOIN :
    947		switch (plc->p_state) {
    948		case PS_ACTIVE:
    949			/*PC88b*/
    950			if (!phy->cf_join) {
    951				phy->cf_join = TRUE ;
    952				queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
    953			}
    954			if (cmd == PC_JOIN)
    955				GO_STATE(PC8_ACTIVE) ;
    956			/*PC82*/
    957			if (cmd == PC_TRACE) {
    958				GO_STATE(PC2_TRACE) ;
    959				break ;
    960			}
    961			break ;
    962		}
    963		break ;
    964
    965	case PC7_VERIFY :
    966		break ;
    967
    968	case ACTIONS(PC8_ACTIVE) :
    969		/*
    970		 * start LEM for SMT
    971		 */
    972		sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
    973
    974		phy->tr_flag = FALSE ;
    975		mib->fddiPORTConnectState = PCM_ACTIVE ;
    976
    977		/* Set the active interrupt mask register */
    978		outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
    979
    980		ACTIONS_DONE() ;
    981		break ;
    982	case PC8_ACTIVE :
    983		/*PC81 is done by PL_TNE_EXPIRED irq */
    984		/*PC82*/
    985		if (cmd == PC_TRACE) {
    986			GO_STATE(PC2_TRACE) ;
    987			break ;
    988		}
    989		/*PC88c: is done by TRACE_PROP irq */
    990
    991		break ;
    992	case ACTIONS(PC9_MAINT) :
    993		stop_pcm_timer0(smc,phy) ;
    994		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
    995		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
    996		CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;	/* disable LEM int. */
    997		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
    998		phy->cf_loop = FALSE ;
    999		phy->cf_join = FALSE ;
   1000		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
   1001		plc_go_state(smc,np,PL_PCM_STOP) ;
   1002		mib->fddiPORTConnectState = PCM_DISABLED ;
   1003		SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
   1004		sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
   1005		outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
   1006		ACTIONS_DONE() ;
   1007		break ;
   1008	case PC9_MAINT :
   1009		DB_PCMN(1, "PCM %c : MAINT", phy->phy_name);
   1010		/*PC90*/
   1011		if (cmd == PC_ENABLE) {
   1012			GO_STATE(PC0_OFF) ;
   1013			break ;
   1014		}
   1015		break ;
   1016
   1017	default:
   1018		SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
   1019		break ;
   1020	}
   1021}
   1022
   1023/*
   1024 * force line state on a PHY output	(only in MAINT state)
   1025 */
   1026static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
   1027{
   1028	int	cntrl ;
   1029
   1030	SK_UNUSED(smc) ;
   1031
   1032	cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
   1033						PL_PCM_STOP | PL_MAINT ;
   1034	switch(ls) {
   1035	case PC_QLS: 		/* Force Quiet */
   1036		cntrl |= PL_M_QUI0 ;
   1037		break ;
   1038	case PC_MLS: 		/* Force Master */
   1039		cntrl |= PL_M_MASTR ;
   1040		break ;
   1041	case PC_HLS: 		/* Force Halt */
   1042		cntrl |= PL_M_HALT ;
   1043		break ;
   1044	default :
   1045	case PC_ILS: 		/* Force Idle */
   1046		cntrl |= PL_M_IDLE ;
   1047		break ;
   1048	case PC_LS_PDR: 	/* Enable repeat filter */
   1049		cntrl |= PL_M_TPDR ;
   1050		break ;
   1051	}
   1052	outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
   1053}
   1054
   1055static void reset_lem_struct(struct s_phy *phy)
   1056{
   1057	struct lem_counter *lem = &phy->lem ;
   1058
   1059	phy->mib->fddiPORTLer_Estimate = 15 ;
   1060	lem->lem_float_ber = 15 * 100 ;
   1061}
   1062
   1063/*
   1064 * link error monitor
   1065 */
   1066static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
   1067{
   1068	int ber ;
   1069	u_long errors ;
   1070	struct lem_counter *lem = &phy->lem ;
   1071	struct fddi_mib_p	*mib ;
   1072	int			cond ;
   1073
   1074	mib = phy->mib ;
   1075
   1076	if (!lem->lem_on)
   1077		return ;
   1078
   1079	errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
   1080	lem->lem_errors += errors ;
   1081	mib->fddiPORTLem_Ct += errors ;
   1082
   1083	errors = lem->lem_errors ;
   1084	/*
   1085	 * calculation is called on a intervall of 8 seconds
   1086	 *	-> this means, that one error in 8 sec. is one of 8*125*10E6
   1087	 *	the same as BER = 10E-9
   1088	 * Please note:
   1089	 *	-> 9 errors in 8 seconds mean:
   1090	 *	   BER = 9 * 10E-9  and this is
   1091	 *	    < 10E-8, so the limit of 10E-8 is not reached!
   1092	 */
   1093
   1094		if (!errors)		ber = 15 ;
   1095	else	if (errors <= 9)	ber = 9 ;
   1096	else	if (errors <= 99)	ber = 8 ;
   1097	else	if (errors <= 999)	ber = 7 ;
   1098	else	if (errors <= 9999)	ber = 6 ;
   1099	else	if (errors <= 99999)	ber = 5 ;
   1100	else	if (errors <= 999999)	ber = 4 ;
   1101	else	if (errors <= 9999999)	ber = 3 ;
   1102	else	if (errors <= 99999999)	ber = 2 ;
   1103	else	if (errors <= 999999999) ber = 1 ;
   1104	else				ber = 0 ;
   1105
   1106	/*
   1107	 * weighted average
   1108	 */
   1109	ber *= 100 ;
   1110	lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
   1111	lem->lem_float_ber /= 10 ;
   1112	mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
   1113	if (mib->fddiPORTLer_Estimate < 4) {
   1114		mib->fddiPORTLer_Estimate = 4 ;
   1115	}
   1116
   1117	if (lem->lem_errors) {
   1118		DB_PCMN(1, "LEM %c :", phy->np == PB ? 'B' : 'A');
   1119		DB_PCMN(1, "errors      : %ld", lem->lem_errors);
   1120		DB_PCMN(1, "sum_errors  : %ld", mib->fddiPORTLem_Ct);
   1121		DB_PCMN(1, "current BER : 10E-%d", ber / 100);
   1122		DB_PCMN(1, "float BER   : 10E-(%d/100)", lem->lem_float_ber);
   1123		DB_PCMN(1, "avg. BER    : 10E-%d", mib->fddiPORTLer_Estimate);
   1124	}
   1125
   1126	lem->lem_errors = 0L ;
   1127
   1128#ifndef	SLIM_SMT
   1129	cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
   1130		TRUE : FALSE ;
   1131#ifdef	SMT_EXT_CUTOFF
   1132	smt_ler_alarm_check(smc,phy,cond) ;
   1133#endif	/* nSMT_EXT_CUTOFF */
   1134	if (cond != mib->fddiPORTLerFlag) {
   1135		smt_srf_event(smc,SMT_COND_PORT_LER,
   1136			(int) (INDEX_PORT+ phy->np) ,cond) ;
   1137	}
   1138#endif
   1139
   1140	if (	mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
   1141		phy->pc_lem_fail = TRUE ;		/* flag */
   1142		mib->fddiPORTLem_Reject_Ct++ ;
   1143		/*
   1144		 * "forgive 10e-2" if we cutoff so we can come
   1145		 * up again ..
   1146		 */
   1147		lem->lem_float_ber += 2*100 ;
   1148
   1149		/*PC81b*/
   1150#ifdef	CONCENTRATOR
   1151		DB_PCMN(1, "PCM: LER cutoff on port %d cutoff %d",
   1152			phy->np, mib->fddiPORTLer_Cutoff);
   1153#endif
   1154#ifdef	SMT_EXT_CUTOFF
   1155		smt_port_off_event(smc,phy->np);
   1156#else	/* nSMT_EXT_CUTOFF */
   1157		queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
   1158#endif	/* nSMT_EXT_CUTOFF */
   1159	}
   1160}
   1161
   1162/*
   1163 * called by SMT to calculate LEM bit error rate
   1164 */
   1165void sm_lem_evaluate(struct s_smc *smc)
   1166{
   1167	int np ;
   1168
   1169	for (np = 0 ; np < NUMPHYS ; np++)
   1170		lem_evaluate(smc,&smc->y[np]) ;
   1171}
   1172
   1173static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
   1174{
   1175	struct lem_counter	*lem = &phy->lem ;
   1176	struct fddi_mib_p	*mib ;
   1177	int errors ;
   1178
   1179	mib = phy->mib ;
   1180
   1181	phy->pc_lem_fail = FALSE ;		/* flag */
   1182	errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
   1183	lem->lem_errors += errors ;
   1184	mib->fddiPORTLem_Ct += errors ;
   1185	if (lem->lem_errors) {
   1186		switch(phy->lc_test) {
   1187		case LC_SHORT:
   1188			if (lem->lem_errors >= smc->s.lct_short)
   1189				phy->pc_lem_fail = TRUE ;
   1190			break ;
   1191		case LC_MEDIUM:
   1192			if (lem->lem_errors >= smc->s.lct_medium)
   1193				phy->pc_lem_fail = TRUE ;
   1194			break ;
   1195		case LC_LONG:
   1196			if (lem->lem_errors >= smc->s.lct_long)
   1197				phy->pc_lem_fail = TRUE ;
   1198			break ;
   1199		case LC_EXTENDED:
   1200			if (lem->lem_errors >= smc->s.lct_extended)
   1201				phy->pc_lem_fail = TRUE ;
   1202			break ;
   1203		}
   1204		DB_PCMN(1, " >>errors : %lu", lem->lem_errors);
   1205	}
   1206	if (phy->pc_lem_fail) {
   1207		mib->fddiPORTLCTFail_Ct++ ;
   1208		mib->fddiPORTLem_Reject_Ct++ ;
   1209	}
   1210	else
   1211		mib->fddiPORTLCTFail_Ct = 0 ;
   1212}
   1213
   1214/*
   1215 * LEM functions
   1216 */
   1217static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
   1218{
   1219	struct lem_counter *lem = &smc->y[np].lem ;
   1220
   1221	lem->lem_on = 1 ;
   1222	lem->lem_errors = 0L ;
   1223
   1224	/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
   1225	 * often.
   1226	 */
   1227
   1228	outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
   1229	(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ;	/* clear error counter */
   1230
   1231	/* enable LE INT */
   1232	SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
   1233}
   1234
   1235static void sm_ph_lem_stop(struct s_smc *smc, int np)
   1236{
   1237	struct lem_counter *lem = &smc->y[np].lem ;
   1238
   1239	lem->lem_on = 0 ;
   1240	CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
   1241}
   1242
   1243/*
   1244 * PCM pseudo code
   1245 * receive actions are called AFTER the bit n is received,
   1246 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
   1247 */
   1248
   1249/*
   1250 * PCM pseudo code 5.1 .. 6.1
   1251 */
   1252static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
   1253{
   1254	struct fddi_mib_p	*mib ;
   1255
   1256	mib = phy->mib ;
   1257
   1258	DB_PCMN(1, "SIG rec %x %x:", bit, phy->r_val[bit]);
   1259	bit++ ;
   1260
   1261	switch(bit) {
   1262	case 0:
   1263	case 1:
   1264	case 2:
   1265		break ;
   1266	case 3 :
   1267		if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
   1268			mib->fddiPORTNeighborType = TA ;
   1269		else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
   1270			mib->fddiPORTNeighborType = TB ;
   1271		else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
   1272			mib->fddiPORTNeighborType = TS ;
   1273		else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
   1274			mib->fddiPORTNeighborType = TM ;
   1275		break ;
   1276	case 4:
   1277		if (mib->fddiPORTMy_Type == TM &&
   1278			mib->fddiPORTNeighborType == TM) {
   1279			DB_PCMN(1, "PCM %c : E100 withhold M-M",
   1280				phy->phy_name);
   1281			mib->fddiPORTPC_Withhold = PC_WH_M_M ;
   1282			RS_SET(smc,RS_EVENT) ;
   1283		}
   1284		else if (phy->t_val[3] || phy->r_val[3]) {
   1285			mib->fddiPORTPC_Withhold = PC_WH_NONE ;
   1286			if (mib->fddiPORTMy_Type == TM ||
   1287			    mib->fddiPORTNeighborType == TM)
   1288				phy->pc_mode = PM_TREE ;
   1289			else
   1290				phy->pc_mode = PM_PEER ;
   1291
   1292			/* reevaluate the selection criteria (wc_flag) */
   1293			all_selection_criteria (smc);
   1294
   1295			if (phy->wc_flag) {
   1296				mib->fddiPORTPC_Withhold = PC_WH_PATH ;
   1297			}
   1298		}
   1299		else {
   1300			mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
   1301			RS_SET(smc,RS_EVENT) ;
   1302			DB_PCMN(1, "PCM %c : E101 withhold other",
   1303				phy->phy_name);
   1304		}
   1305		phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
   1306				(mib->fddiPORTMy_Type != TM) &&
   1307				(mib->fddiPORTNeighborType ==
   1308				mib->fddiPORTMy_Type)) ;
   1309		if (phy->twisted) {
   1310			DB_PCMN(1, "PCM %c : E102 !!! TWISTED !!!",
   1311				phy->phy_name);
   1312		}
   1313		break ;
   1314	case 5 :
   1315		break ;
   1316	case 6:
   1317		if (phy->t_val[4] || phy->r_val[4]) {
   1318			if ((phy->t_val[4] && phy->t_val[5]) ||
   1319			    (phy->r_val[4] && phy->r_val[5]) )
   1320				phy->lc_test = LC_EXTENDED ;
   1321			else
   1322				phy->lc_test = LC_LONG ;
   1323		}
   1324		else if (phy->t_val[5] || phy->r_val[5])
   1325			phy->lc_test = LC_MEDIUM ;
   1326		else
   1327			phy->lc_test = LC_SHORT ;
   1328		switch (phy->lc_test) {
   1329		case LC_SHORT :				/* 50ms */
   1330			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
   1331			phy->t_next[7] = smc->s.pcm_lc_short ;
   1332			break ;
   1333		case LC_MEDIUM :			/* 500ms */
   1334			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
   1335			phy->t_next[7] = smc->s.pcm_lc_medium ;
   1336			break ;
   1337		case LC_LONG :
   1338			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
   1339			phy->t_next[7] = smc->s.pcm_lc_long ;
   1340			break ;
   1341		case LC_EXTENDED :
   1342			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
   1343			phy->t_next[7] = smc->s.pcm_lc_extended ;
   1344			break ;
   1345		}
   1346		if (phy->t_next[7] > smc->s.pcm_lc_medium) {
   1347			start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
   1348		}
   1349		DB_PCMN(1, "LCT timer = %ld us", phy->t_next[7]);
   1350		phy->t_next[9] = smc->s.pcm_t_next_9 ;
   1351		break ;
   1352	case 7:
   1353		if (phy->t_val[6]) {
   1354			phy->cf_loop = TRUE ;
   1355		}
   1356		phy->td_flag = TRUE ;
   1357		break ;
   1358	case 8:
   1359		if (phy->t_val[7] || phy->r_val[7]) {
   1360			DB_PCMN(1, "PCM %c : E103 LCT fail %s",
   1361				phy->phy_name,
   1362				phy->t_val[7] ? "local" : "remote");
   1363			queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
   1364		}
   1365		break ;
   1366	case 9:
   1367		if (phy->t_val[8] || phy->r_val[8]) {
   1368			if (phy->t_val[8])
   1369				phy->cf_loop = TRUE ;
   1370			phy->td_flag = TRUE ;
   1371		}
   1372		break ;
   1373	case 10:
   1374		if (phy->r_val[9]) {
   1375			/* neighbor intends to have MAC on output */ ;
   1376			mib->fddiPORTMacIndicated.R_val = TRUE ;
   1377		}
   1378		else {
   1379			/* neighbor does not intend to have MAC on output */ ;
   1380			mib->fddiPORTMacIndicated.R_val = FALSE ;
   1381		}
   1382		break ;
   1383	}
   1384}
   1385
   1386/*
   1387 * PCM pseudo code 5.1 .. 6.1
   1388 */
   1389static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
   1390{
   1391	int	np = phy->np ;
   1392	struct fddi_mib_p	*mib ;
   1393
   1394	mib = phy->mib ;
   1395
   1396	switch(bit) {
   1397	case 0:
   1398		phy->t_val[0] = 0 ;		/* no escape used */
   1399		break ;
   1400	case 1:
   1401		if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
   1402			phy->t_val[1] = 1 ;
   1403		else
   1404			phy->t_val[1] = 0 ;
   1405		break ;
   1406	case 2 :
   1407		if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
   1408			phy->t_val[2] = 1 ;
   1409		else
   1410			phy->t_val[2] = 0 ;
   1411		break ;
   1412	case 3:
   1413		{
   1414		int	type,ne ;
   1415		int	policy ;
   1416
   1417		type = mib->fddiPORTMy_Type ;
   1418		ne = mib->fddiPORTNeighborType ;
   1419		policy = smc->mib.fddiSMTConnectionPolicy ;
   1420
   1421		phy->t_val[3] = 1 ;	/* Accept connection */
   1422		switch (type) {
   1423		case TA :
   1424			if (
   1425				((policy & POLICY_AA) && ne == TA) ||
   1426				((policy & POLICY_AB) && ne == TB) ||
   1427				((policy & POLICY_AS) && ne == TS) ||
   1428				((policy & POLICY_AM) && ne == TM) )
   1429				phy->t_val[3] = 0 ;	/* Reject */
   1430			break ;
   1431		case TB :
   1432			if (
   1433				((policy & POLICY_BA) && ne == TA) ||
   1434				((policy & POLICY_BB) && ne == TB) ||
   1435				((policy & POLICY_BS) && ne == TS) ||
   1436				((policy & POLICY_BM) && ne == TM) )
   1437				phy->t_val[3] = 0 ;	/* Reject */
   1438			break ;
   1439		case TS :
   1440			if (
   1441				((policy & POLICY_SA) && ne == TA) ||
   1442				((policy & POLICY_SB) && ne == TB) ||
   1443				((policy & POLICY_SS) && ne == TS) ||
   1444				((policy & POLICY_SM) && ne == TM) )
   1445				phy->t_val[3] = 0 ;	/* Reject */
   1446			break ;
   1447		case TM :
   1448			if (	ne == TM ||
   1449				((policy & POLICY_MA) && ne == TA) ||
   1450				((policy & POLICY_MB) && ne == TB) ||
   1451				((policy & POLICY_MS) && ne == TS) ||
   1452				((policy & POLICY_MM) && ne == TM) )
   1453				phy->t_val[3] = 0 ;	/* Reject */
   1454			break ;
   1455		}
   1456#ifndef	SLIM_SMT
   1457		/*
   1458		 * detect undesirable connection attempt event
   1459		 */
   1460		if (	(type == TA && ne == TA ) ||
   1461			(type == TA && ne == TS ) ||
   1462			(type == TB && ne == TB ) ||
   1463			(type == TB && ne == TS ) ||
   1464			(type == TS && ne == TA ) ||
   1465			(type == TS && ne == TB ) ) {
   1466			smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
   1467				(int) (INDEX_PORT+ phy->np) ,0) ;
   1468		}
   1469#endif
   1470		}
   1471		break ;
   1472	case 4:
   1473		if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
   1474			if (phy->pc_lem_fail) {
   1475				phy->t_val[4] = 1 ;	/* long */
   1476				phy->t_val[5] = 0 ;
   1477			}
   1478			else {
   1479				phy->t_val[4] = 0 ;
   1480				if (mib->fddiPORTLCTFail_Ct > 0)
   1481					phy->t_val[5] = 1 ;	/* medium */
   1482				else
   1483					phy->t_val[5] = 0 ;	/* short */
   1484
   1485				/*
   1486				 * Implementers choice: use medium
   1487				 * instead of short when undesired
   1488				 * connection attempt is made.
   1489				 */
   1490				if (phy->wc_flag)
   1491					phy->t_val[5] = 1 ;	/* medium */
   1492			}
   1493			mib->fddiPORTConnectState = PCM_CONNECTING ;
   1494		}
   1495		else {
   1496			mib->fddiPORTConnectState = PCM_STANDBY ;
   1497			phy->t_val[4] = 1 ;	/* extended */
   1498			phy->t_val[5] = 1 ;
   1499		}
   1500		break ;
   1501	case 5:
   1502		break ;
   1503	case 6:
   1504		/* we do NOT have a MAC for LCT */
   1505		phy->t_val[6] = 0 ;
   1506		break ;
   1507	case 7:
   1508		phy->cf_loop = FALSE ;
   1509		lem_check_lct(smc,phy) ;
   1510		if (phy->pc_lem_fail) {
   1511			DB_PCMN(1, "PCM %c : E104 LCT failed", phy->phy_name);
   1512			phy->t_val[7] = 1 ;
   1513		}
   1514		else
   1515			phy->t_val[7] = 0 ;
   1516		break ;
   1517	case 8:
   1518		phy->t_val[8] = 0 ;	/* Don't request MAC loopback */
   1519		break ;
   1520	case 9:
   1521		phy->cf_loop = 0 ;
   1522		if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
   1523		     ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
   1524			queue_event(smc,EVENT_PCM+np,PC_START) ;
   1525			break ;
   1526		}
   1527		phy->t_val[9] = FALSE ;
   1528		switch (smc->s.sas) {
   1529		case SMT_DAS :
   1530			/*
   1531			 * MAC intended on output
   1532			 */
   1533			if (phy->pc_mode == PM_TREE) {
   1534				if ((np == PB) || ((np == PA) &&
   1535				(smc->y[PB].mib->fddiPORTConnectState !=
   1536					PCM_ACTIVE)))
   1537					phy->t_val[9] = TRUE ;
   1538			}
   1539			else {
   1540				if (np == PB)
   1541					phy->t_val[9] = TRUE ;
   1542			}
   1543			break ;
   1544		case SMT_SAS :
   1545			if (np == PS)
   1546				phy->t_val[9] = TRUE ;
   1547			break ;
   1548#ifdef	CONCENTRATOR
   1549		case SMT_NAC :
   1550			/*
   1551			 * MAC intended on output
   1552			 */
   1553			if (np == PB)
   1554				phy->t_val[9] = TRUE ;
   1555			break ;
   1556#endif
   1557		}
   1558		mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
   1559		break ;
   1560	}
   1561	DB_PCMN(1, "SIG snd %x %x:", bit, phy->t_val[bit]);
   1562}
   1563
   1564/*
   1565 * return status twisted (called by SMT)
   1566 */
   1567int pcm_status_twisted(struct s_smc *smc)
   1568{
   1569	int	twist = 0 ;
   1570	if (smc->s.sas != SMT_DAS)
   1571		return 0;
   1572	if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
   1573		twist |= 1 ;
   1574	if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
   1575		twist |= 2 ;
   1576	return twist;
   1577}
   1578
   1579/*
   1580 * return status	(called by SMT)
   1581 *	type
   1582 *	state
   1583 *	remote phy type
   1584 *	remote mac yes/no
   1585 */
   1586void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
   1587		      int *remote, int *mac)
   1588{
   1589	struct s_phy	*phy = &smc->y[np] ;
   1590	struct fddi_mib_p	*mib ;
   1591
   1592	mib = phy->mib ;
   1593
   1594	/* remote PHY type and MAC - set only if active */
   1595	*mac = 0 ;
   1596	*type = mib->fddiPORTMy_Type ;		/* our PHY type */
   1597	*state = mib->fddiPORTConnectState ;
   1598	*remote = mib->fddiPORTNeighborType ;
   1599
   1600	switch(mib->fddiPORTPCMState) {
   1601	case PC8_ACTIVE :
   1602		*mac = mib->fddiPORTMacIndicated.R_val ;
   1603		break ;
   1604	}
   1605}
   1606
   1607/*
   1608 * return rooted station status (called by SMT)
   1609 */
   1610int pcm_rooted_station(struct s_smc *smc)
   1611{
   1612	int	n ;
   1613
   1614	for (n = 0 ; n < NUMPHYS ; n++) {
   1615		if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
   1616		    smc->y[n].mib->fddiPORTNeighborType == TM)
   1617			return 0;
   1618	}
   1619	return 1;
   1620}
   1621
   1622/*
   1623 * Interrupt actions for PLC & PCM events
   1624 */
   1625void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
   1626/* int np;	PHY index */
   1627{
   1628	struct s_phy *phy = &smc->y[np] ;
   1629	struct s_plc *plc = &phy->plc ;
   1630	int		n ;
   1631#ifdef	SUPERNET_3
   1632	int		corr_mask ;
   1633#endif	/* SUPERNET_3 */
   1634	int		i ;
   1635
   1636	if (np >= smc->s.numphys) {
   1637		plc->soft_err++ ;
   1638		return ;
   1639	}
   1640	if (cmd & PL_EBUF_ERR) {	/* elastic buff. det. over-|underflow*/
   1641		/*
   1642		 * Check whether the SRF Condition occurred.
   1643		 */
   1644		if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
   1645			/*
   1646			 * This is the real Elasticity Error.
   1647			 * More than one in a row are treated as a
   1648			 * single one.
   1649			 * Only count this in the active state.
   1650			 */
   1651			phy->mib->fddiPORTEBError_Ct ++ ;
   1652
   1653		}
   1654
   1655		plc->ebuf_err++ ;
   1656		if (plc->ebuf_cont <= 1000) {
   1657			/*
   1658			 * Prevent counter from being wrapped after
   1659			 * hanging years in that interrupt.
   1660			 */
   1661			plc->ebuf_cont++ ;	/* Ebuf continuous error */
   1662		}
   1663
   1664#ifdef	SUPERNET_3
   1665		if (plc->ebuf_cont == 1000 &&
   1666			((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
   1667			PLC_REV_SN3)) {
   1668			/*
   1669			 * This interrupt remeained high for at least
   1670			 * 1000 consecutive interrupt calls.
   1671			 *
   1672			 * This is caused by a hardware error of the
   1673			 * ORION part of the Supernet III chipset.
   1674			 *
   1675			 * Disable this bit from the mask.
   1676			 */
   1677			corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
   1678			outpw(PLC(np,PL_INTR_MASK),corr_mask);
   1679
   1680			/*
   1681			 * Disconnect from the ring.
   1682			 * Call the driver with the reset indication.
   1683			 */
   1684			queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
   1685
   1686			/*
   1687			 * Make an error log entry.
   1688			 */
   1689			SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
   1690
   1691			/*
   1692			 * Indicate the Reset.
   1693			 */
   1694			drv_reset_indication(smc) ;
   1695		}
   1696#endif	/* SUPERNET_3 */
   1697	} else {
   1698		/* Reset the continuous error variable */
   1699		plc->ebuf_cont = 0 ;	/* reset Ebuf continuous error */
   1700	}
   1701	if (cmd & PL_PHYINV) {		/* physical layer invalid signal */
   1702		plc->phyinv++ ;
   1703	}
   1704	if (cmd & PL_VSYM_CTR) {	/* violation symbol counter has incr.*/
   1705		plc->vsym_ctr++ ;
   1706	}
   1707	if (cmd & PL_MINI_CTR) {	/* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
   1708		plc->mini_ctr++ ;
   1709	}
   1710	if (cmd & PL_LE_CTR) {		/* link error event counter */
   1711		int	j ;
   1712
   1713		/*
   1714		 * note: PL_LINK_ERR_CTR MUST be read to clear it
   1715		 */
   1716		j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
   1717		i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
   1718
   1719		if (i < j) {
   1720			/* wrapped around */
   1721			i += 256 ;
   1722		}
   1723
   1724		if (phy->lem.lem_on) {
   1725			/* Note: Lem errors shall only be counted when
   1726			 * link is ACTIVE or LCT is active.
   1727			 */
   1728			phy->lem.lem_errors += i ;
   1729			phy->mib->fddiPORTLem_Ct += i ;
   1730		}
   1731	}
   1732	if (cmd & PL_TPC_EXPIRED) {	/* TPC timer reached zero */
   1733		if (plc->p_state == PS_LCT) {
   1734			/*
   1735			 * end of LCT
   1736			 */
   1737			;
   1738		}
   1739		plc->tpc_exp++ ;
   1740	}
   1741	if (cmd & PL_LS_MATCH) {	/* LS == LS in PLC_CNTRL_B's MATCH_LS*/
   1742		switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
   1743		case PL_I_IDLE :	phy->curr_ls = PC_ILS ;		break ;
   1744		case PL_I_HALT :	phy->curr_ls = PC_HLS ;		break ;
   1745		case PL_I_MASTR :	phy->curr_ls = PC_MLS ;		break ;
   1746		case PL_I_QUIET :	phy->curr_ls = PC_QLS ;		break ;
   1747		}
   1748	}
   1749	if (cmd & PL_PCM_BREAK) {	/* PCM has entered the BREAK state */
   1750		int	reason;
   1751
   1752		reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
   1753
   1754		switch (reason) {
   1755		case PL_B_PCS :		plc->b_pcs++ ;	break ;
   1756		case PL_B_TPC :		plc->b_tpc++ ;	break ;
   1757		case PL_B_TNE :		plc->b_tne++ ;	break ;
   1758		case PL_B_QLS :		plc->b_qls++ ;	break ;
   1759		case PL_B_ILS :		plc->b_ils++ ;	break ;
   1760		case PL_B_HLS :		plc->b_hls++ ;	break ;
   1761		}
   1762
   1763		/*jd 05-Aug-1999 changed: Bug #10419 */
   1764		DB_PCMN(1, "PLC %d: MDcF = %x", np, smc->e.DisconnectFlag);
   1765		if (smc->e.DisconnectFlag == FALSE) {
   1766			DB_PCMN(1, "PLC %d: restart (reason %x)", np, reason);
   1767			queue_event(smc,EVENT_PCM+np,PC_START) ;
   1768		}
   1769		else {
   1770			DB_PCMN(1, "PLC %d: NO!! restart (reason %x)",
   1771				np, reason);
   1772		}
   1773		return ;
   1774	}
   1775	/*
   1776	 * If both CODE & ENABLE are set ignore enable
   1777	 */
   1778	if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
   1779		queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
   1780		n = inpw(PLC(np,PL_RCV_VECTOR)) ;
   1781		for (i = 0 ; i < plc->p_bits ; i++) {
   1782			phy->r_val[plc->p_start+i] = n & 1 ;
   1783			n >>= 1 ;
   1784		}
   1785	}
   1786	else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
   1787		queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
   1788	}
   1789	if (cmd & PL_TRACE_PROP) {	/* MLS while PC8_ACTIV || PC2_TRACE */
   1790		/*PC22b*/
   1791		if (!phy->tr_flag) {
   1792			DB_PCMN(1, "PCM : irq TRACE_PROP %d %d",
   1793				np, smc->mib.fddiSMTECMState);
   1794			phy->tr_flag = TRUE ;
   1795			smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
   1796			queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
   1797		}
   1798	}
   1799	/*
   1800	 * filter PLC glitch ???
   1801	 * QLS || HLS only while in PC2_TRACE state
   1802	 */
   1803	if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
   1804		/*PC22a*/
   1805		if (smc->e.path_test == PT_PASSED) {
   1806			DB_PCMN(1, "PCM : state = %s %d",
   1807				get_pcmstate(smc, np),
   1808				phy->mib->fddiPORTPCMState);
   1809
   1810			smc->e.path_test = PT_PENDING ;
   1811			queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
   1812		}
   1813	}
   1814	if (cmd & PL_TNE_EXPIRED) {	/* TNE: length of noise events */
   1815		/* break_required (TNE > NS_Max) */
   1816		if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
   1817			if (!phy->tr_flag) {
   1818				DB_PCMN(1, "PCM %c : PC81 %s",
   1819					phy->phy_name, "NSE");
   1820				queue_event(smc, EVENT_PCM + np, PC_START);
   1821				return;
   1822			}
   1823		}
   1824	}
   1825#if	0
   1826	if (cmd & PL_NP_ERR) {		/* NP has requested to r/w an inv reg*/
   1827		/*
   1828		 * It's a bug by AMD
   1829		 */
   1830		plc->np_err++ ;
   1831	}
   1832	/* pin inactiv (GND) */
   1833	if (cmd & PL_PARITY_ERR) {	/* p. error dedected on TX9-0 inp */
   1834		plc->parity_err++ ;
   1835	}
   1836	if (cmd & PL_LSDO) {		/* carrier detected */
   1837		;
   1838	}
   1839#endif
   1840}
   1841
   1842#ifdef	DEBUG
   1843/*
   1844 * fill state struct
   1845 */
   1846void pcm_get_state(struct s_smc *smc, struct smt_state *state)
   1847{
   1848	struct s_phy	*phy ;
   1849	struct pcm_state *pcs ;
   1850	int	i ;
   1851	int	ii ;
   1852	short	rbits ;
   1853	short	tbits ;
   1854	struct fddi_mib_p	*mib ;
   1855
   1856	for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
   1857		i++ , phy++, pcs++ ) {
   1858		mib = phy->mib ;
   1859		pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
   1860		pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
   1861		pcs->pcm_mode = phy->pc_mode ;
   1862		pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
   1863		pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
   1864		pcs->pcm_lsf = phy->ls_flag ;
   1865		pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
   1866		pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
   1867		for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
   1868			rbits <<= 1 ;
   1869			tbits <<= 1 ;
   1870			if (phy->r_val[NUMBITS-1-ii])
   1871				rbits |= 1 ;
   1872			if (phy->t_val[NUMBITS-1-ii])
   1873				tbits |= 1 ;
   1874		}
   1875		pcs->pcm_r_val = rbits ;
   1876		pcs->pcm_t_val = tbits ;
   1877	}
   1878}
   1879
   1880int get_pcm_state(struct s_smc *smc, int np)
   1881{
   1882	int pcs ;
   1883
   1884	SK_UNUSED(smc) ;
   1885
   1886	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
   1887		case PL_PC0 :	pcs = PC_STOP ;		break ;
   1888		case PL_PC1 :	pcs = PC_START ;	break ;
   1889		case PL_PC2 :	pcs = PC_TRACE ;	break ;
   1890		case PL_PC3 :	pcs = PC_SIGNAL ;	break ;
   1891		case PL_PC4 :	pcs = PC_SIGNAL ;	break ;
   1892		case PL_PC5 :	pcs = PC_SIGNAL ;	break ;
   1893		case PL_PC6 :	pcs = PC_JOIN ;		break ;
   1894		case PL_PC7 :	pcs = PC_JOIN ;		break ;
   1895		case PL_PC8 :	pcs = PC_ENABLE ;	break ;
   1896		case PL_PC9 :	pcs = PC_MAINT ;	break ;
   1897		default :	pcs = PC_DISABLE ; 	break ;
   1898	}
   1899	return pcs;
   1900}
   1901
   1902char *get_linestate(struct s_smc *smc, int np)
   1903{
   1904	char *ls = "" ;
   1905
   1906	SK_UNUSED(smc) ;
   1907
   1908	switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
   1909		case PL_L_NLS :	ls = "NOISE" ;	break ;
   1910		case PL_L_ALS :	ls = "ACTIV" ;	break ;
   1911		case PL_L_UND :	ls = "UNDEF" ;	break ;
   1912		case PL_L_ILS4:	ls = "ILS 4" ;	break ;
   1913		case PL_L_QLS :	ls = "QLS" ;	break ;
   1914		case PL_L_MLS :	ls = "MLS" ;	break ;
   1915		case PL_L_HLS :	ls = "HLS" ;	break ;
   1916		case PL_L_ILS16:ls = "ILS16" ;	break ;
   1917#ifdef	lint
   1918		default:	ls = "unknown" ; break ;
   1919#endif
   1920	}
   1921	return ls;
   1922}
   1923
   1924char *get_pcmstate(struct s_smc *smc, int np)
   1925{
   1926	char *pcs ;
   1927	
   1928	SK_UNUSED(smc) ;
   1929
   1930	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
   1931		case PL_PC0 :	pcs = "OFF" ;		break ;
   1932		case PL_PC1 :	pcs = "BREAK" ;		break ;
   1933		case PL_PC2 :	pcs = "TRACE" ;		break ;
   1934		case PL_PC3 :	pcs = "CONNECT";	break ;
   1935		case PL_PC4 :	pcs = "NEXT" ;		break ;
   1936		case PL_PC5 :	pcs = "SIGNAL" ;	break ;
   1937		case PL_PC6 :	pcs = "JOIN" ;		break ;
   1938		case PL_PC7 :	pcs = "VERIFY" ;	break ;
   1939		case PL_PC8 :	pcs = "ACTIV" ;		break ;
   1940		case PL_PC9 :	pcs = "MAINT" ;		break ;
   1941		default :	pcs = "UNKNOWN" ; 	break ;
   1942	}
   1943	return pcs;
   1944}
   1945
   1946void list_phy(struct s_smc *smc)
   1947{
   1948	struct s_plc *plc ;
   1949	int np ;
   1950
   1951	for (np = 0 ; np < NUMPHYS ; np++) {
   1952		plc  = &smc->y[np].plc ;
   1953		printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
   1954		printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
   1955						plc->soft_err,plc->b_pcs);
   1956		printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
   1957			plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
   1958		printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
   1959						plc->ebuf_err,plc->b_tne) ;
   1960		printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
   1961			plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
   1962		printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
   1963						plc->vsym_ctr,plc->b_ils)  ;
   1964		printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
   1965						plc->mini_ctr,plc->b_hls) ;
   1966		printf("\tnodepr_err: %ld\n",plc->np_err) ;
   1967		printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
   1968		printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
   1969	}
   1970}
   1971
   1972
   1973#ifdef	CONCENTRATOR
   1974void pcm_lem_dump(struct s_smc *smc)
   1975{
   1976	int		i ;
   1977	struct s_phy	*phy ;
   1978	struct fddi_mib_p	*mib ;
   1979
   1980	char		*entostring() ;
   1981
   1982	printf("PHY	errors	BER\n") ;
   1983	printf("----------------------\n") ;
   1984	for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
   1985		if (!plc_is_installed(smc,i))
   1986			continue ;
   1987		mib = phy->mib ;
   1988		printf("%s\t%ld\t10E-%d\n",
   1989			entostring(smc,ENTITY_PHY(i)),
   1990			mib->fddiPORTLem_Ct,
   1991			mib->fddiPORTLer_Estimate) ;
   1992	}
   1993}
   1994#endif
   1995#endif