cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

skfddi.c (64228B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * File Name:
      4 *   skfddi.c
      5 *
      6 * Copyright Information:
      7 *   Copyright SysKonnect 1998,1999.
      8 *
      9 * The information in this file is provided "AS IS" without warranty.
     10 *
     11 * Abstract:
     12 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
     13 *   familie.
     14 *
     15 * Maintainers:
     16 *   CG    Christoph Goos (cgoos@syskonnect.de)
     17 *
     18 * Contributors:
     19 *   DM    David S. Miller
     20 *
     21 * Address all question to:
     22 *   linux@syskonnect.de
     23 *
     24 * The technical manual for the adapters is available from SysKonnect's
     25 * web pages: www.syskonnect.com
     26 * Goto "Support" and search Knowledge Base for "manual".
     27 *
     28 * Driver Architecture:
     29 *   The driver architecture is based on the DEC FDDI driver by
     30 *   Lawrence V. Stefani and several ethernet drivers.
     31 *   I also used an existing Windows NT miniport driver.
     32 *   All hardware dependent functions are handled by the SysKonnect
     33 *   Hardware Module.
     34 *   The only headerfiles that are directly related to this source
     35 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
     36 *   The others belong to the SysKonnect FDDI Hardware Module and
     37 *   should better not be changed.
     38 *
     39 * Modification History:
     40 *              Date            Name    Description
     41 *              02-Mar-98       CG	Created.
     42 *
     43 *		10-Mar-99	CG	Support for 2.2.x added.
     44 *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
     45 *		26-Oct-99	CG	Fixed compilation error on 2.2.13
     46 *		12-Nov-99	CG	Source code release
     47 *		22-Nov-99	CG	Included in kernel source.
     48 *		07-May-00	DM	64 bit fixes, new dma interface
     49 *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
     50 *					  Daniele Bellucci <bellucda@tiscali.it>
     51 *		03-Dec-03	SH	Convert to PCI device model
     52 *
     53 * Compilation options (-Dxxx):
     54 *              DRIVERDEBUG     print lots of messages to log file
     55 *              DUMPPACKETS     print received/transmitted packets to logfile
     56 * 
     57 * Tested cpu architectures:
     58 *	- i386
     59 *	- sparc64
     60 */
     61
     62/* Version information string - should be updated prior to */
     63/* each new release!!! */
     64#define VERSION		"2.07"
     65
     66static const char * const boot_msg = 
     67	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
     68	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
     69
     70/* Include files */
     71
     72#include <linux/capability.h>
     73#include <linux/compat.h>
     74#include <linux/module.h>
     75#include <linux/kernel.h>
     76#include <linux/errno.h>
     77#include <linux/ioport.h>
     78#include <linux/interrupt.h>
     79#include <linux/pci.h>
     80#include <linux/netdevice.h>
     81#include <linux/etherdevice.h>
     82#include <linux/fddidevice.h>
     83#include <linux/skbuff.h>
     84#include <linux/bitops.h>
     85#include <linux/gfp.h>
     86
     87#include <asm/byteorder.h>
     88#include <asm/io.h>
     89#include <linux/uaccess.h>
     90
     91#include	"h/types.h"
     92#undef ADDR			// undo Linux definition
     93#include	"h/skfbi.h"
     94#include	"h/fddi.h"
     95#include	"h/smc.h"
     96#include	"h/smtstate.h"
     97
     98
     99// Define module-wide (static) routines
    100static int skfp_driver_init(struct net_device *dev);
    101static int skfp_open(struct net_device *dev);
    102static int skfp_close(struct net_device *dev);
    103static irqreturn_t skfp_interrupt(int irq, void *dev_id);
    104static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
    105static void skfp_ctl_set_multicast_list(struct net_device *dev);
    106static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
    107static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
    108static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
    109			       void __user *data, int cmd);
    110static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
    111				       struct net_device *dev);
    112static void send_queued_packets(struct s_smc *smc);
    113static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
    114static void ResetAdapter(struct s_smc *smc);
    115
    116
    117// Functions needed by the hardware module
    118void *mac_drv_get_space(struct s_smc *smc, u_int size);
    119void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
    120unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
    121unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
    122void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
    123		  int flag);
    124void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
    125void llc_restart_tx(struct s_smc *smc);
    126void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
    127			 int frag_count, int len);
    128void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
    129			 int frag_count);
    130void mac_drv_fill_rxd(struct s_smc *smc);
    131void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
    132		       int frag_count);
    133int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
    134		    int la_len);
    135void dump_data(unsigned char *Data, int length);
    136
    137// External functions from the hardware module
    138extern u_int mac_drv_check_space(void);
    139extern int mac_drv_init(struct s_smc *smc);
    140extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
    141			int len, int frame_status);
    142extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
    143		       int frame_len, int frame_status);
    144extern void fddi_isr(struct s_smc *smc);
    145extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
    146			int len, int frame_status);
    147extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
    148extern void mac_drv_clear_rx_queue(struct s_smc *smc);
    149extern void enable_tx_irq(struct s_smc *smc, u_short queue);
    150
    151static const struct pci_device_id skfddi_pci_tbl[] = {
    152	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
    153	{ }			/* Terminating entry */
    154};
    155MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
    156MODULE_LICENSE("GPL");
    157MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
    158
    159// Define module-wide (static) variables
    160
    161static int num_boards;	/* total number of adapters configured */
    162
    163static const struct net_device_ops skfp_netdev_ops = {
    164	.ndo_open		= skfp_open,
    165	.ndo_stop		= skfp_close,
    166	.ndo_start_xmit		= skfp_send_pkt,
    167	.ndo_get_stats		= skfp_ctl_get_stats,
    168	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
    169	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
    170	.ndo_siocdevprivate	= skfp_siocdevprivate,
    171};
    172
    173/*
    174 * =================
    175 * = skfp_init_one =
    176 * =================
    177 *   
    178 * Overview:
    179 *   Probes for supported FDDI PCI controllers
    180 *  
    181 * Returns:
    182 *   Condition code
    183 *       
    184 * Arguments:
    185 *   pdev - pointer to PCI device information
    186 *
    187 * Functional Description:
    188 *   This is now called by PCI driver registration process
    189 *   for each board found.
    190 *   
    191 * Return Codes:
    192 *   0           - This device (fddi0, fddi1, etc) configured successfully
    193 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
    194 *                         present for this device name
    195 *
    196 *
    197 * Side Effects:
    198 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
    199 *   initialized and the board resources are read and stored in
    200 *   the device structure.
    201 */
    202static int skfp_init_one(struct pci_dev *pdev,
    203				const struct pci_device_id *ent)
    204{
    205	struct net_device *dev;
    206	struct s_smc *smc;	/* board pointer */
    207	void __iomem *mem;
    208	int err;
    209
    210	pr_debug("entering skfp_init_one\n");
    211
    212	if (num_boards == 0) 
    213		printk("%s\n", boot_msg);
    214
    215	err = pci_enable_device(pdev);
    216	if (err)
    217		return err;
    218
    219	err = pci_request_regions(pdev, "skfddi");
    220	if (err)
    221		goto err_out1;
    222
    223	pci_set_master(pdev);
    224
    225#ifdef MEM_MAPPED_IO
    226	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
    227		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
    228		err = -EIO;
    229		goto err_out2;
    230	}
    231
    232	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
    233#else
    234	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
    235		printk(KERN_ERR "skfp: region is not PIO resource\n");
    236		err = -EIO;
    237		goto err_out2;
    238	}
    239
    240	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
    241#endif
    242	if (!mem) {
    243		printk(KERN_ERR "skfp:  Unable to map register, "
    244				"FDDI adapter will be disabled.\n");
    245		err = -EIO;
    246		goto err_out2;
    247	}
    248
    249	dev = alloc_fddidev(sizeof(struct s_smc));
    250	if (!dev) {
    251		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
    252				"FDDI adapter will be disabled.\n");
    253		err = -ENOMEM;
    254		goto err_out3;
    255	}
    256
    257	dev->irq = pdev->irq;
    258	dev->netdev_ops = &skfp_netdev_ops;
    259
    260	SET_NETDEV_DEV(dev, &pdev->dev);
    261
    262	/* Initialize board structure with bus-specific info */
    263	smc = netdev_priv(dev);
    264	smc->os.dev = dev;
    265	smc->os.bus_type = SK_BUS_TYPE_PCI;
    266	smc->os.pdev = *pdev;
    267	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
    268	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
    269	smc->os.dev = dev;
    270	smc->hw.slot = -1;
    271	smc->hw.iop = mem;
    272	smc->os.ResetRequested = FALSE;
    273	skb_queue_head_init(&smc->os.SendSkbQueue);
    274
    275	dev->base_addr = (unsigned long)mem;
    276
    277	err = skfp_driver_init(dev);
    278	if (err)
    279		goto err_out4;
    280
    281	err = register_netdev(dev);
    282	if (err)
    283		goto err_out5;
    284
    285	++num_boards;
    286	pci_set_drvdata(pdev, dev);
    287
    288	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
    289	    (pdev->subsystem_device & 0xff00) == 0x5800) 
    290		printk("%s: SysKonnect FDDI PCI adapter"
    291		       " found (SK-%04X)\n", dev->name,	
    292		       pdev->subsystem_device);
    293	else
    294		printk("%s: FDDI PCI adapter found\n", dev->name);
    295
    296	return 0;
    297err_out5:
    298	if (smc->os.SharedMemAddr) 
    299		dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
    300				  smc->os.SharedMemAddr,
    301				  smc->os.SharedMemDMA);
    302	dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
    303			  smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
    304err_out4:
    305	free_netdev(dev);
    306err_out3:
    307#ifdef MEM_MAPPED_IO
    308	iounmap(mem);
    309#else
    310	ioport_unmap(mem);
    311#endif
    312err_out2:
    313	pci_release_regions(pdev);
    314err_out1:
    315	pci_disable_device(pdev);
    316	return err;
    317}
    318
    319/*
    320 * Called for each adapter board from pci_unregister_driver
    321 */
    322static void skfp_remove_one(struct pci_dev *pdev)
    323{
    324	struct net_device *p = pci_get_drvdata(pdev);
    325	struct s_smc *lp = netdev_priv(p);
    326
    327	unregister_netdev(p);
    328
    329	if (lp->os.SharedMemAddr) {
    330		dma_free_coherent(&pdev->dev,
    331				  lp->os.SharedMemSize,
    332				  lp->os.SharedMemAddr,
    333				  lp->os.SharedMemDMA);
    334		lp->os.SharedMemAddr = NULL;
    335	}
    336	if (lp->os.LocalRxBuffer) {
    337		dma_free_coherent(&pdev->dev,
    338				  MAX_FRAME_SIZE,
    339				  lp->os.LocalRxBuffer,
    340				  lp->os.LocalRxBufferDMA);
    341		lp->os.LocalRxBuffer = NULL;
    342	}
    343#ifdef MEM_MAPPED_IO
    344	iounmap(lp->hw.iop);
    345#else
    346	ioport_unmap(lp->hw.iop);
    347#endif
    348	pci_release_regions(pdev);
    349	free_netdev(p);
    350
    351	pci_disable_device(pdev);
    352}
    353
    354/*
    355 * ====================
    356 * = skfp_driver_init =
    357 * ====================
    358 *   
    359 * Overview:
    360 *   Initializes remaining adapter board structure information
    361 *   and makes sure adapter is in a safe state prior to skfp_open().
    362 *  
    363 * Returns:
    364 *   Condition code
    365 *       
    366 * Arguments:
    367 *   dev - pointer to device information
    368 *
    369 * Functional Description:
    370 *   This function allocates additional resources such as the host memory
    371 *   blocks needed by the adapter.
    372 *   The adapter is also reset. The OS must call skfp_open() to open 
    373 *   the adapter and bring it on-line.
    374 *
    375 * Return Codes:
    376 *    0 - initialization succeeded
    377 *   -1 - initialization failed
    378 */
    379static  int skfp_driver_init(struct net_device *dev)
    380{
    381	struct s_smc *smc = netdev_priv(dev);
    382	skfddi_priv *bp = &smc->os;
    383	int err = -EIO;
    384
    385	pr_debug("entering skfp_driver_init\n");
    386
    387	// set the io address in private structures
    388	bp->base_addr = dev->base_addr;
    389
    390	// Get the interrupt level from the PCI Configuration Table
    391	smc->hw.irq = dev->irq;
    392
    393	spin_lock_init(&bp->DriverLock);
    394	
    395	// Allocate invalid frame
    396	bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
    397					       &bp->LocalRxBufferDMA,
    398					       GFP_ATOMIC);
    399	if (!bp->LocalRxBuffer) {
    400		printk("could not allocate mem for ");
    401		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
    402		goto fail;
    403	}
    404
    405	// Determine the required size of the 'shared' memory area.
    406	bp->SharedMemSize = mac_drv_check_space();
    407	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
    408	if (bp->SharedMemSize > 0) {
    409		bp->SharedMemSize += 16;	// for descriptor alignment
    410
    411		bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
    412						       bp->SharedMemSize,
    413						       &bp->SharedMemDMA,
    414						       GFP_ATOMIC);
    415		if (!bp->SharedMemAddr) {
    416			printk("could not allocate mem for ");
    417			printk("hardware module: %ld byte\n",
    418			       bp->SharedMemSize);
    419			goto fail;
    420		}
    421
    422	} else {
    423		bp->SharedMemAddr = NULL;
    424	}
    425
    426	bp->SharedMemHeap = 0;
    427
    428	card_stop(smc);		// Reset adapter.
    429
    430	pr_debug("mac_drv_init()..\n");
    431	if (mac_drv_init(smc) != 0) {
    432		pr_debug("mac_drv_init() failed\n");
    433		goto fail;
    434	}
    435	read_address(smc, NULL);
    436	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
    437	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
    438
    439	smt_reset_defaults(smc, 0);
    440
    441	return 0;
    442
    443fail:
    444	if (bp->SharedMemAddr) {
    445		dma_free_coherent(&bp->pdev.dev,
    446				  bp->SharedMemSize,
    447				  bp->SharedMemAddr,
    448				  bp->SharedMemDMA);
    449		bp->SharedMemAddr = NULL;
    450	}
    451	if (bp->LocalRxBuffer) {
    452		dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
    453				  bp->LocalRxBuffer, bp->LocalRxBufferDMA);
    454		bp->LocalRxBuffer = NULL;
    455	}
    456	return err;
    457}				// skfp_driver_init
    458
    459
    460/*
    461 * =============
    462 * = skfp_open =
    463 * =============
    464 *   
    465 * Overview:
    466 *   Opens the adapter
    467 *  
    468 * Returns:
    469 *   Condition code
    470 *       
    471 * Arguments:
    472 *   dev - pointer to device information
    473 *
    474 * Functional Description:
    475 *   This function brings the adapter to an operational state.
    476 *
    477 * Return Codes:
    478 *   0           - Adapter was successfully opened
    479 *   -EAGAIN - Could not register IRQ
    480 */
    481static int skfp_open(struct net_device *dev)
    482{
    483	struct s_smc *smc = netdev_priv(dev);
    484	int err;
    485
    486	pr_debug("entering skfp_open\n");
    487	/* Register IRQ - support shared interrupts by passing device ptr */
    488	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
    489			  dev->name, dev);
    490	if (err)
    491		return err;
    492
    493	/*
    494	 * Set current address to factory MAC address
    495	 *
    496	 * Note: We've already done this step in skfp_driver_init.
    497	 *       However, it's possible that a user has set a node
    498	 *               address override, then closed and reopened the
    499	 *               adapter.  Unless we reset the device address field
    500	 *               now, we'll continue to use the existing modified
    501	 *               address.
    502	 */
    503	read_address(smc, NULL);
    504	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
    505
    506	init_smt(smc, NULL);
    507	smt_online(smc, 1);
    508	STI_FBI();
    509
    510	/* Clear local multicast address tables */
    511	mac_clear_multicast(smc);
    512
    513	/* Disable promiscuous filter settings */
    514	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
    515
    516	netif_start_queue(dev);
    517	return 0;
    518}				// skfp_open
    519
    520
    521/*
    522 * ==============
    523 * = skfp_close =
    524 * ==============
    525 *   
    526 * Overview:
    527 *   Closes the device/module.
    528 *  
    529 * Returns:
    530 *   Condition code
    531 *       
    532 * Arguments:
    533 *   dev - pointer to device information
    534 *
    535 * Functional Description:
    536 *   This routine closes the adapter and brings it to a safe state.
    537 *   The interrupt service routine is deregistered with the OS.
    538 *   The adapter can be opened again with another call to skfp_open().
    539 *
    540 * Return Codes:
    541 *   Always return 0.
    542 *
    543 * Assumptions:
    544 *   No further requests for this adapter are made after this routine is
    545 *   called.  skfp_open() can be called to reset and reinitialize the
    546 *   adapter.
    547 */
    548static int skfp_close(struct net_device *dev)
    549{
    550	struct s_smc *smc = netdev_priv(dev);
    551	skfddi_priv *bp = &smc->os;
    552
    553	CLI_FBI();
    554	smt_reset_defaults(smc, 1);
    555	card_stop(smc);
    556	mac_drv_clear_tx_queue(smc);
    557	mac_drv_clear_rx_queue(smc);
    558
    559	netif_stop_queue(dev);
    560	/* Deregister (free) IRQ */
    561	free_irq(dev->irq, dev);
    562
    563	skb_queue_purge(&bp->SendSkbQueue);
    564	bp->QueueSkb = MAX_TX_QUEUE_LEN;
    565
    566	return 0;
    567}				// skfp_close
    568
    569
    570/*
    571 * ==================
    572 * = skfp_interrupt =
    573 * ==================
    574 *   
    575 * Overview:
    576 *   Interrupt processing routine
    577 *  
    578 * Returns:
    579 *   None
    580 *       
    581 * Arguments:
    582 *   irq        - interrupt vector
    583 *   dev_id     - pointer to device information
    584 *
    585 * Functional Description:
    586 *   This routine calls the interrupt processing routine for this adapter.  It
    587 *   disables and reenables adapter interrupts, as appropriate.  We can support
    588 *   shared interrupts since the incoming dev_id pointer provides our device
    589 *   structure context. All the real work is done in the hardware module.
    590 *
    591 * Return Codes:
    592 *   None
    593 *
    594 * Assumptions:
    595 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
    596 *   on Intel-based systems) is done by the operating system outside this
    597 *   routine.
    598 *
    599 *       System interrupts are enabled through this call.
    600 *
    601 * Side Effects:
    602 *   Interrupts are disabled, then reenabled at the adapter.
    603 */
    604
    605static irqreturn_t skfp_interrupt(int irq, void *dev_id)
    606{
    607	struct net_device *dev = dev_id;
    608	struct s_smc *smc;	/* private board structure pointer */
    609	skfddi_priv *bp;
    610
    611	smc = netdev_priv(dev);
    612	bp = &smc->os;
    613
    614	// IRQs enabled or disabled ?
    615	if (inpd(ADDR(B0_IMSK)) == 0) {
    616		// IRQs are disabled: must be shared interrupt
    617		return IRQ_NONE;
    618	}
    619	// Note: At this point, IRQs are enabled.
    620	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
    621		// Adapter did not issue an IRQ: must be shared interrupt
    622		return IRQ_NONE;
    623	}
    624	CLI_FBI();		// Disable IRQs from our adapter.
    625	spin_lock(&bp->DriverLock);
    626
    627	// Call interrupt handler in hardware module (HWM).
    628	fddi_isr(smc);
    629
    630	if (smc->os.ResetRequested) {
    631		ResetAdapter(smc);
    632		smc->os.ResetRequested = FALSE;
    633	}
    634	spin_unlock(&bp->DriverLock);
    635	STI_FBI();		// Enable IRQs from our adapter.
    636
    637	return IRQ_HANDLED;
    638}				// skfp_interrupt
    639
    640
    641/*
    642 * ======================
    643 * = skfp_ctl_get_stats =
    644 * ======================
    645 *   
    646 * Overview:
    647 *   Get statistics for FDDI adapter
    648 *  
    649 * Returns:
    650 *   Pointer to FDDI statistics structure
    651 *       
    652 * Arguments:
    653 *   dev - pointer to device information
    654 *
    655 * Functional Description:
    656 *   Gets current MIB objects from adapter, then
    657 *   returns FDDI statistics structure as defined
    658 *   in if_fddi.h.
    659 *
    660 *   Note: Since the FDDI statistics structure is
    661 *   still new and the device structure doesn't
    662 *   have an FDDI-specific get statistics handler,
    663 *   we'll return the FDDI statistics structure as
    664 *   a pointer to an Ethernet statistics structure.
    665 *   That way, at least the first part of the statistics
    666 *   structure can be decoded properly.
    667 *   We'll have to pay attention to this routine as the
    668 *   device structure becomes more mature and LAN media
    669 *   independent.
    670 *
    671 */
    672static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
    673{
    674	struct s_smc *bp = netdev_priv(dev);
    675
    676	/* Fill the bp->stats structure with driver-maintained counters */
    677
    678	bp->os.MacStat.port_bs_flag[0] = 0x1234;
    679	bp->os.MacStat.port_bs_flag[1] = 0x5678;
    680// goos: need to fill out fddi statistic
    681#if 0
    682	/* Get FDDI SMT MIB objects */
    683
    684/* Fill the bp->stats structure with the SMT MIB object values */
    685
    686	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
    687	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
    688	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
    689	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
    690	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
    691	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
    692	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
    693	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
    694	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
    695	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
    696	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
    697	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
    698	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
    699	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
    700	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
    701	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
    702	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
    703	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
    704	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
    705	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
    706	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
    707	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
    708	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
    709	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
    710	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
    711	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
    712	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
    713	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
    714	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
    715	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
    716	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
    717	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
    718	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
    719	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
    720	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
    721	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
    722	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
    723	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
    724	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
    725	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
    726	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
    727	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
    728	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
    729	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
    730	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
    731	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
    732	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
    733	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
    734	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
    735	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
    736	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
    737	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
    738	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
    739	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
    740	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
    741	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
    742	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
    743	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
    744	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
    745	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
    746	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
    747	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
    748	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
    749	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
    750	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
    751	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
    752	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
    753	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
    754	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
    755	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
    756	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
    757	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
    758	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
    759	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
    760	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
    761	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
    762	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
    763	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
    764	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
    765	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
    766	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
    767	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
    768	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
    769	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
    770	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
    771	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
    772	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
    773	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
    774	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
    775	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
    776	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
    777	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
    778
    779
    780	/* Fill the bp->stats structure with the FDDI counter values */
    781
    782	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
    783	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
    784	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
    785	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
    786	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
    787	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
    788	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
    789	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
    790	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
    791	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
    792	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
    793
    794#endif
    795	return (struct net_device_stats *)&bp->os.MacStat;
    796}				// ctl_get_stat
    797
    798
    799/*
    800 * ==============================
    801 * = skfp_ctl_set_multicast_list =
    802 * ==============================
    803 *   
    804 * Overview:
    805 *   Enable/Disable LLC frame promiscuous mode reception
    806 *   on the adapter and/or update multicast address table.
    807 *  
    808 * Returns:
    809 *   None
    810 *       
    811 * Arguments:
    812 *   dev - pointer to device information
    813 *
    814 * Functional Description:
    815 *   This function acquires the driver lock and only calls
    816 *   skfp_ctl_set_multicast_list_wo_lock then.
    817 *   This routine follows a fairly simple algorithm for setting the
    818 *   adapter filters and CAM:
    819 *
    820 *      if IFF_PROMISC flag is set
    821 *              enable promiscuous mode
    822 *      else
    823 *              disable promiscuous mode
    824 *              if number of multicast addresses <= max. multicast number
    825 *                      add mc addresses to adapter table
    826 *              else
    827 *                      enable promiscuous mode
    828 *              update adapter filters
    829 *
    830 * Assumptions:
    831 *   Multicast addresses are presented in canonical (LSB) format.
    832 *
    833 * Side Effects:
    834 *   On-board adapter filters are updated.
    835 */
    836static void skfp_ctl_set_multicast_list(struct net_device *dev)
    837{
    838	struct s_smc *smc = netdev_priv(dev);
    839	skfddi_priv *bp = &smc->os;
    840	unsigned long Flags;
    841
    842	spin_lock_irqsave(&bp->DriverLock, Flags);
    843	skfp_ctl_set_multicast_list_wo_lock(dev);
    844	spin_unlock_irqrestore(&bp->DriverLock, Flags);
    845}				// skfp_ctl_set_multicast_list
    846
    847
    848
    849static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
    850{
    851	struct s_smc *smc = netdev_priv(dev);
    852	struct netdev_hw_addr *ha;
    853
    854	/* Enable promiscuous mode, if necessary */
    855	if (dev->flags & IFF_PROMISC) {
    856		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
    857		pr_debug("PROMISCUOUS MODE ENABLED\n");
    858	}
    859	/* Else, update multicast address table */
    860	else {
    861		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
    862		pr_debug("PROMISCUOUS MODE DISABLED\n");
    863
    864		// Reset all MC addresses
    865		mac_clear_multicast(smc);
    866		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
    867
    868		if (dev->flags & IFF_ALLMULTI) {
    869			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
    870			pr_debug("ENABLE ALL MC ADDRESSES\n");
    871		} else if (!netdev_mc_empty(dev)) {
    872			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
    873				/* use exact filtering */
    874
    875				// point to first multicast addr
    876				netdev_for_each_mc_addr(ha, dev) {
    877					mac_add_multicast(smc,
    878						(struct fddi_addr *)ha->addr,
    879						1);
    880
    881					pr_debug("ENABLE MC ADDRESS: %pMF\n",
    882						 ha->addr);
    883				}
    884
    885			} else {	// more MC addresses than HW supports
    886
    887				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
    888				pr_debug("ENABLE ALL MC ADDRESSES\n");
    889			}
    890		} else {	// no MC addresses
    891
    892			pr_debug("DISABLE ALL MC ADDRESSES\n");
    893		}
    894
    895		/* Update adapter filters */
    896		mac_update_multicast(smc);
    897	}
    898}				// skfp_ctl_set_multicast_list_wo_lock
    899
    900
    901/*
    902 * ===========================
    903 * = skfp_ctl_set_mac_address =
    904 * ===========================
    905 *   
    906 * Overview:
    907 *   set new mac address on adapter and update dev_addr field in device table.
    908 *  
    909 * Returns:
    910 *   None
    911 *       
    912 * Arguments:
    913 *   dev  - pointer to device information
    914 *   addr - pointer to sockaddr structure containing unicast address to set
    915 *
    916 * Assumptions:
    917 *   The address pointed to by addr->sa_data is a valid unicast
    918 *   address and is presented in canonical (LSB) format.
    919 */
    920static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
    921{
    922	struct s_smc *smc = netdev_priv(dev);
    923	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
    924	skfddi_priv *bp = &smc->os;
    925	unsigned long Flags;
    926
    927
    928	dev_addr_set(dev, p_sockaddr->sa_data);
    929	spin_lock_irqsave(&bp->DriverLock, Flags);
    930	ResetAdapter(smc);
    931	spin_unlock_irqrestore(&bp->DriverLock, Flags);
    932
    933	return 0;		/* always return zero */
    934}				// skfp_ctl_set_mac_address
    935
    936
    937/*
    938 * =======================
    939 * = skfp_siocdevprivate =
    940 * =======================
    941 *   
    942 * Overview:
    943 *
    944 * Perform IOCTL call functions here. Some are privileged operations and the
    945 * effective uid is checked in those cases.
    946 *  
    947 * Returns:
    948 *   status value
    949 *   0 - success
    950 *   other - failure
    951 *       
    952 * Arguments:
    953 *   dev  - pointer to device information
    954 *   rq - pointer to ioctl request structure
    955 *   cmd - ?
    956 *
    957 */
    958
    959
    960static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
    961{
    962	struct s_smc *smc = netdev_priv(dev);
    963	skfddi_priv *lp = &smc->os;
    964	struct s_skfp_ioctl ioc;
    965	int status = 0;
    966
    967	if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl)))
    968		return -EFAULT;
    969
    970	if (in_compat_syscall())
    971		return -EOPNOTSUPP;
    972
    973	switch (ioc.cmd) {
    974	case SKFP_GET_STATS:	/* Get the driver statistics */
    975		ioc.len = sizeof(lp->MacStat);
    976		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
    977				? -EFAULT : 0;
    978		break;
    979	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
    980		if (!capable(CAP_NET_ADMIN)) {
    981			status = -EPERM;
    982		} else {
    983			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
    984		}
    985		break;
    986	default:
    987		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
    988		status = -EOPNOTSUPP;
    989
    990	}			// switch
    991
    992	return status;
    993}				// skfp_ioctl
    994
    995
    996/*
    997 * =====================
    998 * = skfp_send_pkt     =
    999 * =====================
   1000 *   
   1001 * Overview:
   1002 *   Queues a packet for transmission and try to transmit it.
   1003 *  
   1004 * Returns:
   1005 *   Condition code
   1006 *       
   1007 * Arguments:
   1008 *   skb - pointer to sk_buff to queue for transmission
   1009 *   dev - pointer to device information
   1010 *
   1011 * Functional Description:
   1012 *   Here we assume that an incoming skb transmit request
   1013 *   is contained in a single physically contiguous buffer
   1014 *   in which the virtual address of the start of packet
   1015 *   (skb->data) can be converted to a physical address
   1016 *   by using dma_map_single().
   1017 *
   1018 *   We have an internal queue for packets we can not send 
   1019 *   immediately. Packets in this queue can be given to the 
   1020 *   adapter if transmit buffers are freed.
   1021 *
   1022 *   We can't free the skb until after it's been DMA'd
   1023 *   out by the adapter, so we'll keep it in the driver and
   1024 *   return it in mac_drv_tx_complete.
   1025 *
   1026 * Return Codes:
   1027 *   0 - driver has queued and/or sent packet
   1028 *       1 - caller should requeue the sk_buff for later transmission
   1029 *
   1030 * Assumptions:
   1031 *   The entire packet is stored in one physically
   1032 *   contiguous buffer which is not cached and whose
   1033 *   32-bit physical address can be determined.
   1034 *
   1035 *   It's vital that this routine is NOT reentered for the
   1036 *   same board and that the OS is not in another section of
   1037 *   code (eg. skfp_interrupt) for the same board on a
   1038 *   different thread.
   1039 *
   1040 * Side Effects:
   1041 *   None
   1042 */
   1043static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
   1044				       struct net_device *dev)
   1045{
   1046	struct s_smc *smc = netdev_priv(dev);
   1047	skfddi_priv *bp = &smc->os;
   1048
   1049	pr_debug("skfp_send_pkt\n");
   1050
   1051	/*
   1052	 * Verify that incoming transmit request is OK
   1053	 *
   1054	 * Note: The packet size check is consistent with other
   1055	 *               Linux device drivers, although the correct packet
   1056	 *               size should be verified before calling the
   1057	 *               transmit routine.
   1058	 */
   1059
   1060	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
   1061		bp->MacStat.gen.tx_errors++;	/* bump error counter */
   1062		// dequeue packets from xmt queue and send them
   1063		netif_start_queue(dev);
   1064		dev_kfree_skb(skb);
   1065		return NETDEV_TX_OK;	/* return "success" */
   1066	}
   1067	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
   1068
   1069		netif_stop_queue(dev);
   1070		return NETDEV_TX_BUSY;
   1071	}
   1072	bp->QueueSkb--;
   1073	skb_queue_tail(&bp->SendSkbQueue, skb);
   1074	send_queued_packets(netdev_priv(dev));
   1075	if (bp->QueueSkb == 0) {
   1076		netif_stop_queue(dev);
   1077	}
   1078	return NETDEV_TX_OK;
   1079
   1080}				// skfp_send_pkt
   1081
   1082
   1083/*
   1084 * =======================
   1085 * = send_queued_packets =
   1086 * =======================
   1087 *   
   1088 * Overview:
   1089 *   Send packets from the driver queue as long as there are some and
   1090 *   transmit resources are available.
   1091 *  
   1092 * Returns:
   1093 *   None
   1094 *       
   1095 * Arguments:
   1096 *   smc - pointer to smc (adapter) structure
   1097 *
   1098 * Functional Description:
   1099 *   Take a packet from queue if there is any. If not, then we are done.
   1100 *   Check if there are resources to send the packet. If not, requeue it
   1101 *   and exit. 
   1102 *   Set packet descriptor flags and give packet to adapter.
   1103 *   Check if any send resources can be freed (we do not use the
   1104 *   transmit complete interrupt).
   1105 */
   1106static void send_queued_packets(struct s_smc *smc)
   1107{
   1108	skfddi_priv *bp = &smc->os;
   1109	struct sk_buff *skb;
   1110	unsigned char fc;
   1111	int queue;
   1112	struct s_smt_fp_txd *txd;	// Current TxD.
   1113	dma_addr_t dma_address;
   1114	unsigned long Flags;
   1115
   1116	int frame_status;	// HWM tx frame status.
   1117
   1118	pr_debug("send queued packets\n");
   1119	for (;;) {
   1120		// send first buffer from queue
   1121		skb = skb_dequeue(&bp->SendSkbQueue);
   1122
   1123		if (!skb) {
   1124			pr_debug("queue empty\n");
   1125			return;
   1126		}		// queue empty !
   1127
   1128		spin_lock_irqsave(&bp->DriverLock, Flags);
   1129		fc = skb->data[0];
   1130		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
   1131#ifdef ESS
   1132		// Check if the frame may/must be sent as a synchronous frame.
   1133
   1134		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
   1135			// It's an LLC frame.
   1136			if (!smc->ess.sync_bw_available)
   1137				fc &= ~FC_SYNC_BIT; // No bandwidth available.
   1138
   1139			else {	// Bandwidth is available.
   1140
   1141				if (smc->mib.fddiESSSynchTxMode) {
   1142					// Send as sync. frame.
   1143					fc |= FC_SYNC_BIT;
   1144				}
   1145			}
   1146		}
   1147#endif				// ESS
   1148		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
   1149
   1150		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
   1151			// Unable to send the frame.
   1152
   1153			if ((frame_status & RING_DOWN) != 0) {
   1154				// Ring is down.
   1155				pr_debug("Tx attempt while ring down.\n");
   1156			} else if ((frame_status & OUT_OF_TXD) != 0) {
   1157				pr_debug("%s: out of TXDs.\n", bp->dev->name);
   1158			} else {
   1159				pr_debug("%s: out of transmit resources",
   1160					bp->dev->name);
   1161			}
   1162
   1163			// Note: We will retry the operation as soon as
   1164			// transmit resources become available.
   1165			skb_queue_head(&bp->SendSkbQueue, skb);
   1166			spin_unlock_irqrestore(&bp->DriverLock, Flags);
   1167			return;	// Packet has been queued.
   1168
   1169		}		// if (unable to send frame)
   1170
   1171		bp->QueueSkb++;	// one packet less in local queue
   1172
   1173		// source address in packet ?
   1174		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
   1175
   1176		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
   1177
   1178		dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
   1179					     skb->len, DMA_TO_DEVICE);
   1180		if (frame_status & LAN_TX) {
   1181			txd->txd_os.skb = skb;			// save skb
   1182			txd->txd_os.dma_addr = dma_address;	// save dma mapping
   1183		}
   1184		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
   1185                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
   1186
   1187		if (!(frame_status & LAN_TX)) {		// local only frame
   1188			dma_unmap_single(&(&bp->pdev)->dev, dma_address,
   1189					 skb->len, DMA_TO_DEVICE);
   1190			dev_kfree_skb_irq(skb);
   1191		}
   1192		spin_unlock_irqrestore(&bp->DriverLock, Flags);
   1193	}			// for
   1194
   1195	return;			// never reached
   1196
   1197}				// send_queued_packets
   1198
   1199
   1200/************************
   1201 * 
   1202 * CheckSourceAddress
   1203 *
   1204 * Verify if the source address is set. Insert it if necessary.
   1205 *
   1206 ************************/
   1207static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
   1208{
   1209	unsigned char SRBit;
   1210
   1211	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
   1212
   1213		return;
   1214	if ((unsigned short) frame[1 + 10] != 0)
   1215		return;
   1216	SRBit = frame[1 + 6] & 0x01;
   1217	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
   1218	frame[8] |= SRBit;
   1219}				// CheckSourceAddress
   1220
   1221
   1222/************************
   1223 *
   1224 *	ResetAdapter
   1225 *
   1226 *	Reset the adapter and bring it back to operational mode.
   1227 * Args
   1228 *	smc - A pointer to the SMT context struct.
   1229 * Out
   1230 *	Nothing.
   1231 *
   1232 ************************/
   1233static void ResetAdapter(struct s_smc *smc)
   1234{
   1235
   1236	pr_debug("[fddi: ResetAdapter]\n");
   1237
   1238	// Stop the adapter.
   1239
   1240	card_stop(smc);		// Stop all activity.
   1241
   1242	// Clear the transmit and receive descriptor queues.
   1243	mac_drv_clear_tx_queue(smc);
   1244	mac_drv_clear_rx_queue(smc);
   1245
   1246	// Restart the adapter.
   1247
   1248	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
   1249
   1250	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
   1251
   1252	smt_online(smc, 1);	// Insert into the ring again.
   1253	STI_FBI();
   1254
   1255	// Restore original receive mode (multicasts, promiscuous, etc.).
   1256	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
   1257}				// ResetAdapter
   1258
   1259
   1260//--------------- functions called by hardware module ----------------
   1261
   1262/************************
   1263 *
   1264 *	llc_restart_tx
   1265 *
   1266 *	The hardware driver calls this routine when the transmit complete
   1267 *	interrupt bits (end of frame) for the synchronous or asynchronous
   1268 *	queue is set.
   1269 *
   1270 * NOTE The hardware driver calls this function also if no packets are queued.
   1271 *	The routine must be able to handle this case.
   1272 * Args
   1273 *	smc - A pointer to the SMT context struct.
   1274 * Out
   1275 *	Nothing.
   1276 *
   1277 ************************/
   1278void llc_restart_tx(struct s_smc *smc)
   1279{
   1280	skfddi_priv *bp = &smc->os;
   1281
   1282	pr_debug("[llc_restart_tx]\n");
   1283
   1284	// Try to send queued packets
   1285	spin_unlock(&bp->DriverLock);
   1286	send_queued_packets(smc);
   1287	spin_lock(&bp->DriverLock);
   1288	netif_start_queue(bp->dev);// system may send again if it was blocked
   1289
   1290}				// llc_restart_tx
   1291
   1292
   1293/************************
   1294 *
   1295 *	mac_drv_get_space
   1296 *
   1297 *	The hardware module calls this function to allocate the memory
   1298 *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
   1299 * Args
   1300 *	smc - A pointer to the SMT context struct.
   1301 *
   1302 *	size - Size of memory in bytes to allocate.
   1303 * Out
   1304 *	!= 0	A pointer to the virtual address of the allocated memory.
   1305 *	== 0	Allocation error.
   1306 *
   1307 ************************/
   1308void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
   1309{
   1310	void *virt;
   1311
   1312	pr_debug("mac_drv_get_space (%d bytes), ", size);
   1313	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
   1314
   1315	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
   1316		printk("Unexpected SMT memory size requested: %d\n", size);
   1317		return NULL;
   1318	}
   1319	smc->os.SharedMemHeap += size;	// Move heap pointer.
   1320
   1321	pr_debug("mac_drv_get_space end\n");
   1322	pr_debug("virt addr: %lx\n", (ulong) virt);
   1323	pr_debug("bus  addr: %lx\n", (ulong)
   1324	       (smc->os.SharedMemDMA +
   1325		((char *) virt - (char *)smc->os.SharedMemAddr)));
   1326	return virt;
   1327}				// mac_drv_get_space
   1328
   1329
   1330/************************
   1331 *
   1332 *	mac_drv_get_desc_mem
   1333 *
   1334 *	This function is called by the hardware dependent module.
   1335 *	It allocates the memory for the RxD and TxD descriptors.
   1336 *
   1337 *	This memory must be non-cached, non-movable and non-swappable.
   1338 *	This memory should start at a physical page boundary.
   1339 * Args
   1340 *	smc - A pointer to the SMT context struct.
   1341 *
   1342 *	size - Size of memory in bytes to allocate.
   1343 * Out
   1344 *	!= 0	A pointer to the virtual address of the allocated memory.
   1345 *	== 0	Allocation error.
   1346 *
   1347 ************************/
   1348void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
   1349{
   1350
   1351	char *virt;
   1352
   1353	pr_debug("mac_drv_get_desc_mem\n");
   1354
   1355	// Descriptor memory must be aligned on 16-byte boundary.
   1356
   1357	virt = mac_drv_get_space(smc, size);
   1358
   1359	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
   1360	size = size % 16;
   1361
   1362	pr_debug("Allocate %u bytes alignment gap ", size);
   1363	pr_debug("for descriptor memory.\n");
   1364
   1365	if (!mac_drv_get_space(smc, size)) {
   1366		printk("fddi: Unable to align descriptor memory.\n");
   1367		return NULL;
   1368	}
   1369	return virt + size;
   1370}				// mac_drv_get_desc_mem
   1371
   1372
   1373/************************
   1374 *
   1375 *	mac_drv_virt2phys
   1376 *
   1377 *	Get the physical address of a given virtual address.
   1378 * Args
   1379 *	smc - A pointer to the SMT context struct.
   1380 *
   1381 *	virt - A (virtual) pointer into our 'shared' memory area.
   1382 * Out
   1383 *	Physical address of the given virtual address.
   1384 *
   1385 ************************/
   1386unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
   1387{
   1388	return smc->os.SharedMemDMA +
   1389		((char *) virt - (char *)smc->os.SharedMemAddr);
   1390}				// mac_drv_virt2phys
   1391
   1392
   1393/************************
   1394 *
   1395 *	dma_master
   1396 *
   1397 *	The HWM calls this function, when the driver leads through a DMA
   1398 *	transfer. If the OS-specific module must prepare the system hardware
   1399 *	for the DMA transfer, it should do it in this function.
   1400 *
   1401 *	The hardware module calls this dma_master if it wants to send an SMT
   1402 *	frame.  This means that the virt address passed in here is part of
   1403 *      the 'shared' memory area.
   1404 * Args
   1405 *	smc - A pointer to the SMT context struct.
   1406 *
   1407 *	virt - The virtual address of the data.
   1408 *
   1409 *	len - The length in bytes of the data.
   1410 *
   1411 *	flag - Indicates the transmit direction and the buffer type:
   1412 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
   1413 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
   1414 *		SMT_BUF (0x80)	SMT buffer
   1415 *
   1416 *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
   1417 * Out
   1418 *	Returns the pyhsical address for the DMA transfer.
   1419 *
   1420 ************************/
   1421u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
   1422{
   1423	return smc->os.SharedMemDMA +
   1424		((char *) virt - (char *)smc->os.SharedMemAddr);
   1425}				// dma_master
   1426
   1427
   1428/************************
   1429 *
   1430 *	dma_complete
   1431 *
   1432 *	The hardware module calls this routine when it has completed a DMA
   1433 *	transfer. If the operating system dependent module has set up the DMA
   1434 *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
   1435 *	the DMA channel.
   1436 * Args
   1437 *	smc - A pointer to the SMT context struct.
   1438 *
   1439 *	descr - A pointer to a TxD or RxD, respectively.
   1440 *
   1441 *	flag - Indicates the DMA transfer direction / SMT buffer:
   1442 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
   1443 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
   1444 *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
   1445 * Out
   1446 *	Nothing.
   1447 *
   1448 ************************/
   1449void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
   1450{
   1451	/* For TX buffers, there are two cases.  If it is an SMT transmit
   1452	 * buffer, there is nothing to do since we use consistent memory
   1453	 * for the 'shared' memory area.  The other case is for normal
   1454	 * transmit packets given to us by the networking stack, and in
   1455	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
   1456	 * below.
   1457	 *
   1458	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
   1459	 * because the hardware module is about to potentially look at
   1460	 * the contents of the buffer.  If we did not call the PCI DMA
   1461	 * unmap first, the hardware module could read inconsistent data.
   1462	 */
   1463	if (flag & DMA_WR) {
   1464		skfddi_priv *bp = &smc->os;
   1465		volatile struct s_smt_fp_rxd *r = &descr->r;
   1466
   1467		/* If SKB is NULL, we used the local buffer. */
   1468		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
   1469			int MaxFrameSize = bp->MaxFrameSize;
   1470
   1471			dma_unmap_single(&(&bp->pdev)->dev,
   1472					 r->rxd_os.dma_addr, MaxFrameSize,
   1473					 DMA_FROM_DEVICE);
   1474			r->rxd_os.dma_addr = 0;
   1475		}
   1476	}
   1477}				// dma_complete
   1478
   1479
   1480/************************
   1481 *
   1482 *	mac_drv_tx_complete
   1483 *
   1484 *	Transmit of a packet is complete. Release the tx staging buffer.
   1485 *
   1486 * Args
   1487 *	smc - A pointer to the SMT context struct.
   1488 *
   1489 *	txd - A pointer to the last TxD which is used by the frame.
   1490 * Out
   1491 *	Returns nothing.
   1492 *
   1493 ************************/
   1494void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
   1495{
   1496	struct sk_buff *skb;
   1497
   1498	pr_debug("entering mac_drv_tx_complete\n");
   1499	// Check if this TxD points to a skb
   1500
   1501	if (!(skb = txd->txd_os.skb)) {
   1502		pr_debug("TXD with no skb assigned.\n");
   1503		return;
   1504	}
   1505	txd->txd_os.skb = NULL;
   1506
   1507	// release the DMA mapping
   1508	dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
   1509			 skb->len, DMA_TO_DEVICE);
   1510	txd->txd_os.dma_addr = 0;
   1511
   1512	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
   1513	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
   1514
   1515	// free the skb
   1516	dev_kfree_skb_irq(skb);
   1517
   1518	pr_debug("leaving mac_drv_tx_complete\n");
   1519}				// mac_drv_tx_complete
   1520
   1521
   1522/************************
   1523 *
   1524 * dump packets to logfile
   1525 *
   1526 ************************/
   1527#ifdef DUMPPACKETS
   1528void dump_data(unsigned char *Data, int length)
   1529{
   1530	printk(KERN_INFO "---Packet start---\n");
   1531	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
   1532	printk(KERN_INFO "------------------\n");
   1533}				// dump_data
   1534#else
   1535#define dump_data(data,len)
   1536#endif				// DUMPPACKETS
   1537
   1538/************************
   1539 *
   1540 *	mac_drv_rx_complete
   1541 *
   1542 *	The hardware module calls this function if an LLC frame is received
   1543 *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
   1544 *	from the network will be passed to the LLC layer by this function
   1545 *	if passing is enabled.
   1546 *
   1547 *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
   1548 *	be received. It also fills the RxD ring with new receive buffers if
   1549 *	some can be queued.
   1550 * Args
   1551 *	smc - A pointer to the SMT context struct.
   1552 *
   1553 *	rxd - A pointer to the first RxD which is used by the receive frame.
   1554 *
   1555 *	frag_count - Count of RxDs used by the received frame.
   1556 *
   1557 *	len - Frame length.
   1558 * Out
   1559 *	Nothing.
   1560 *
   1561 ************************/
   1562void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
   1563			 int frag_count, int len)
   1564{
   1565	skfddi_priv *bp = &smc->os;
   1566	struct sk_buff *skb;
   1567	unsigned char *virt, *cp;
   1568	unsigned short ri;
   1569	u_int RifLength;
   1570
   1571	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
   1572	if (frag_count != 1) {	// This is not allowed to happen.
   1573
   1574		printk("fddi: Multi-fragment receive!\n");
   1575		goto RequeueRxd;	// Re-use the given RXD(s).
   1576
   1577	}
   1578	skb = rxd->rxd_os.skb;
   1579	if (!skb) {
   1580		pr_debug("No skb in rxd\n");
   1581		smc->os.MacStat.gen.rx_errors++;
   1582		goto RequeueRxd;
   1583	}
   1584	virt = skb->data;
   1585
   1586	// The DMA mapping was released in dma_complete above.
   1587
   1588	dump_data(skb->data, len);
   1589
   1590	/*
   1591	 * FDDI Frame format:
   1592	 * +-------+-------+-------+------------+--------+------------+
   1593	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
   1594	 * +-------+-------+-------+------------+--------+------------+
   1595	 *
   1596	 * FC = Frame Control
   1597	 * DA = Destination Address
   1598	 * SA = Source Address
   1599	 * RIF = Routing Information Field
   1600	 * LLC = Logical Link Control
   1601	 */
   1602
   1603	// Remove Routing Information Field (RIF), if present.
   1604
   1605	if ((virt[1 + 6] & FDDI_RII) == 0)
   1606		RifLength = 0;
   1607	else {
   1608		int n;
   1609// goos: RIF removal has still to be tested
   1610		pr_debug("RIF found\n");
   1611		// Get RIF length from Routing Control (RC) field.
   1612		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
   1613
   1614		ri = ntohs(*((__be16 *) cp));
   1615		RifLength = ri & FDDI_RCF_LEN_MASK;
   1616		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
   1617			printk("fddi: Invalid RIF.\n");
   1618			goto RequeueRxd;	// Discard the frame.
   1619
   1620		}
   1621		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
   1622		// regions overlap
   1623
   1624		virt = cp + RifLength;
   1625		for (n = FDDI_MAC_HDR_LEN; n; n--)
   1626			*--virt = *--cp;
   1627		// adjust sbd->data pointer
   1628		skb_pull(skb, RifLength);
   1629		len -= RifLength;
   1630		RifLength = 0;
   1631	}
   1632
   1633	// Count statistics.
   1634	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
   1635						// packets.
   1636	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
   1637
   1638	// virt points to header again
   1639	if (virt[1] & 0x01) {	// Check group (multicast) bit.
   1640
   1641		smc->os.MacStat.gen.multicast++;
   1642	}
   1643
   1644	// deliver frame to system
   1645	rxd->rxd_os.skb = NULL;
   1646	skb_trim(skb, len);
   1647	skb->protocol = fddi_type_trans(skb, bp->dev);
   1648
   1649	netif_rx(skb);
   1650
   1651	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
   1652	return;
   1653
   1654      RequeueRxd:
   1655	pr_debug("Rx: re-queue RXD.\n");
   1656	mac_drv_requeue_rxd(smc, rxd, frag_count);
   1657	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
   1658						// not indicated.
   1659
   1660}				// mac_drv_rx_complete
   1661
   1662
   1663/************************
   1664 *
   1665 *	mac_drv_requeue_rxd
   1666 *
   1667 *	The hardware module calls this function to request the OS-specific
   1668 *	module to queue the receive buffer(s) represented by the pointer
   1669 *	to the RxD and the frag_count into the receive queue again. This
   1670 *	buffer was filled with an invalid frame or an SMT frame.
   1671 * Args
   1672 *	smc - A pointer to the SMT context struct.
   1673 *
   1674 *	rxd - A pointer to the first RxD which is used by the receive frame.
   1675 *
   1676 *	frag_count - Count of RxDs used by the received frame.
   1677 * Out
   1678 *	Nothing.
   1679 *
   1680 ************************/
   1681void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
   1682			 int frag_count)
   1683{
   1684	volatile struct s_smt_fp_rxd *next_rxd;
   1685	volatile struct s_smt_fp_rxd *src_rxd;
   1686	struct sk_buff *skb;
   1687	int MaxFrameSize;
   1688	unsigned char *v_addr;
   1689	dma_addr_t b_addr;
   1690
   1691	if (frag_count != 1)	// This is not allowed to happen.
   1692
   1693		printk("fddi: Multi-fragment requeue!\n");
   1694
   1695	MaxFrameSize = smc->os.MaxFrameSize;
   1696	src_rxd = rxd;
   1697	for (; frag_count > 0; frag_count--) {
   1698		next_rxd = src_rxd->rxd_next;
   1699		rxd = HWM_GET_CURR_RXD(smc);
   1700
   1701		skb = src_rxd->rxd_os.skb;
   1702		if (skb == NULL) {	// this should not happen
   1703
   1704			pr_debug("Requeue with no skb in rxd!\n");
   1705			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
   1706			if (skb) {
   1707				// we got a skb
   1708				rxd->rxd_os.skb = skb;
   1709				skb_reserve(skb, 3);
   1710				skb_put(skb, MaxFrameSize);
   1711				v_addr = skb->data;
   1712				b_addr = dma_map_single(&(&smc->os.pdev)->dev,
   1713							v_addr, MaxFrameSize,
   1714							DMA_FROM_DEVICE);
   1715				rxd->rxd_os.dma_addr = b_addr;
   1716			} else {
   1717				// no skb available, use local buffer
   1718				pr_debug("Queueing invalid buffer!\n");
   1719				rxd->rxd_os.skb = NULL;
   1720				v_addr = smc->os.LocalRxBuffer;
   1721				b_addr = smc->os.LocalRxBufferDMA;
   1722			}
   1723		} else {
   1724			// we use skb from old rxd
   1725			rxd->rxd_os.skb = skb;
   1726			v_addr = skb->data;
   1727			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
   1728						MaxFrameSize, DMA_FROM_DEVICE);
   1729			rxd->rxd_os.dma_addr = b_addr;
   1730		}
   1731		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
   1732			    FIRST_FRAG | LAST_FRAG);
   1733
   1734		src_rxd = next_rxd;
   1735	}
   1736}				// mac_drv_requeue_rxd
   1737
   1738
   1739/************************
   1740 *
   1741 *	mac_drv_fill_rxd
   1742 *
   1743 *	The hardware module calls this function at initialization time
   1744 *	to fill the RxD ring with receive buffers. It is also called by
   1745 *	mac_drv_rx_complete if rx_free is large enough to queue some new
   1746 *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
   1747 *	receive buffers as long as enough RxDs and receive buffers are
   1748 *	available.
   1749 * Args
   1750 *	smc - A pointer to the SMT context struct.
   1751 * Out
   1752 *	Nothing.
   1753 *
   1754 ************************/
   1755void mac_drv_fill_rxd(struct s_smc *smc)
   1756{
   1757	int MaxFrameSize;
   1758	unsigned char *v_addr;
   1759	unsigned long b_addr;
   1760	struct sk_buff *skb;
   1761	volatile struct s_smt_fp_rxd *rxd;
   1762
   1763	pr_debug("entering mac_drv_fill_rxd\n");
   1764
   1765	// Walk through the list of free receive buffers, passing receive
   1766	// buffers to the HWM as long as RXDs are available.
   1767
   1768	MaxFrameSize = smc->os.MaxFrameSize;
   1769	// Check if there is any RXD left.
   1770	while (HWM_GET_RX_FREE(smc) > 0) {
   1771		pr_debug(".\n");
   1772
   1773		rxd = HWM_GET_CURR_RXD(smc);
   1774		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
   1775		if (skb) {
   1776			// we got a skb
   1777			skb_reserve(skb, 3);
   1778			skb_put(skb, MaxFrameSize);
   1779			v_addr = skb->data;
   1780			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
   1781						MaxFrameSize, DMA_FROM_DEVICE);
   1782			rxd->rxd_os.dma_addr = b_addr;
   1783		} else {
   1784			// no skb available, use local buffer
   1785			// System has run out of buffer memory, but we want to
   1786			// keep the receiver running in hope of better times.
   1787			// Multiple descriptors may point to this local buffer,
   1788			// so data in it must be considered invalid.
   1789			pr_debug("Queueing invalid buffer!\n");
   1790			v_addr = smc->os.LocalRxBuffer;
   1791			b_addr = smc->os.LocalRxBufferDMA;
   1792		}
   1793
   1794		rxd->rxd_os.skb = skb;
   1795
   1796		// Pass receive buffer to HWM.
   1797		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
   1798			    FIRST_FRAG | LAST_FRAG);
   1799	}
   1800	pr_debug("leaving mac_drv_fill_rxd\n");
   1801}				// mac_drv_fill_rxd
   1802
   1803
   1804/************************
   1805 *
   1806 *	mac_drv_clear_rxd
   1807 *
   1808 *	The hardware module calls this function to release unused
   1809 *	receive buffers.
   1810 * Args
   1811 *	smc - A pointer to the SMT context struct.
   1812 *
   1813 *	rxd - A pointer to the first RxD which is used by the receive buffer.
   1814 *
   1815 *	frag_count - Count of RxDs used by the receive buffer.
   1816 * Out
   1817 *	Nothing.
   1818 *
   1819 ************************/
   1820void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
   1821		       int frag_count)
   1822{
   1823
   1824	struct sk_buff *skb;
   1825
   1826	pr_debug("entering mac_drv_clear_rxd\n");
   1827
   1828	if (frag_count != 1)	// This is not allowed to happen.
   1829
   1830		printk("fddi: Multi-fragment clear!\n");
   1831
   1832	for (; frag_count > 0; frag_count--) {
   1833		skb = rxd->rxd_os.skb;
   1834		if (skb != NULL) {
   1835			skfddi_priv *bp = &smc->os;
   1836			int MaxFrameSize = bp->MaxFrameSize;
   1837
   1838			dma_unmap_single(&(&bp->pdev)->dev,
   1839					 rxd->rxd_os.dma_addr, MaxFrameSize,
   1840					 DMA_FROM_DEVICE);
   1841
   1842			dev_kfree_skb(skb);
   1843			rxd->rxd_os.skb = NULL;
   1844		}
   1845		rxd = rxd->rxd_next;	// Next RXD.
   1846
   1847	}
   1848}				// mac_drv_clear_rxd
   1849
   1850
   1851/************************
   1852 *
   1853 *	mac_drv_rx_init
   1854 *
   1855 *	The hardware module calls this routine when an SMT or NSA frame of the
   1856 *	local SMT should be delivered to the LLC layer.
   1857 *
   1858 *	It is necessary to have this function, because there is no other way to
   1859 *	copy the contents of SMT MBufs into receive buffers.
   1860 *
   1861 *	mac_drv_rx_init allocates the required target memory for this frame,
   1862 *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
   1863 * Args
   1864 *	smc - A pointer to the SMT context struct.
   1865 *
   1866 *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
   1867 *
   1868 *	fc - The Frame Control field of the received frame.
   1869 *
   1870 *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
   1871 *
   1872 *	la_len - The length of the lookahead data stored in the lookahead
   1873 *	buffer (may be zero).
   1874 * Out
   1875 *	Always returns zero (0).
   1876 *
   1877 ************************/
   1878int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
   1879		    char *look_ahead, int la_len)
   1880{
   1881	struct sk_buff *skb;
   1882
   1883	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
   1884
   1885	// "Received" a SMT or NSA frame of the local SMT.
   1886
   1887	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
   1888		pr_debug("fddi: Discard invalid local SMT frame\n");
   1889		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
   1890		       len, la_len, (unsigned long) look_ahead);
   1891		return 0;
   1892	}
   1893	skb = alloc_skb(len + 3, GFP_ATOMIC);
   1894	if (!skb) {
   1895		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
   1896		return 0;
   1897	}
   1898	skb_reserve(skb, 3);
   1899	skb_put(skb, len);
   1900	skb_copy_to_linear_data(skb, look_ahead, len);
   1901
   1902	// deliver frame to system
   1903	skb->protocol = fddi_type_trans(skb, smc->os.dev);
   1904	netif_rx(skb);
   1905
   1906	return 0;
   1907}				// mac_drv_rx_init
   1908
   1909
   1910/************************
   1911 *
   1912 *	smt_timer_poll
   1913 *
   1914 *	This routine is called periodically by the SMT module to clean up the
   1915 *	driver.
   1916 *
   1917 *	Return any queued frames back to the upper protocol layers if the ring
   1918 *	is down.
   1919 * Args
   1920 *	smc - A pointer to the SMT context struct.
   1921 * Out
   1922 *	Nothing.
   1923 *
   1924 ************************/
   1925void smt_timer_poll(struct s_smc *smc)
   1926{
   1927}				// smt_timer_poll
   1928
   1929
   1930/************************
   1931 *
   1932 *	ring_status_indication
   1933 *
   1934 *	This function indicates a change of the ring state.
   1935 * Args
   1936 *	smc - A pointer to the SMT context struct.
   1937 *
   1938 *	status - The current ring status.
   1939 * Out
   1940 *	Nothing.
   1941 *
   1942 ************************/
   1943void ring_status_indication(struct s_smc *smc, u_long status)
   1944{
   1945	pr_debug("ring_status_indication( ");
   1946	if (status & RS_RES15)
   1947		pr_debug("RS_RES15 ");
   1948	if (status & RS_HARDERROR)
   1949		pr_debug("RS_HARDERROR ");
   1950	if (status & RS_SOFTERROR)
   1951		pr_debug("RS_SOFTERROR ");
   1952	if (status & RS_BEACON)
   1953		pr_debug("RS_BEACON ");
   1954	if (status & RS_PATHTEST)
   1955		pr_debug("RS_PATHTEST ");
   1956	if (status & RS_SELFTEST)
   1957		pr_debug("RS_SELFTEST ");
   1958	if (status & RS_RES9)
   1959		pr_debug("RS_RES9 ");
   1960	if (status & RS_DISCONNECT)
   1961		pr_debug("RS_DISCONNECT ");
   1962	if (status & RS_RES7)
   1963		pr_debug("RS_RES7 ");
   1964	if (status & RS_DUPADDR)
   1965		pr_debug("RS_DUPADDR ");
   1966	if (status & RS_NORINGOP)
   1967		pr_debug("RS_NORINGOP ");
   1968	if (status & RS_VERSION)
   1969		pr_debug("RS_VERSION ");
   1970	if (status & RS_STUCKBYPASSS)
   1971		pr_debug("RS_STUCKBYPASSS ");
   1972	if (status & RS_EVENT)
   1973		pr_debug("RS_EVENT ");
   1974	if (status & RS_RINGOPCHANGE)
   1975		pr_debug("RS_RINGOPCHANGE ");
   1976	if (status & RS_RES0)
   1977		pr_debug("RS_RES0 ");
   1978	pr_debug("]\n");
   1979}				// ring_status_indication
   1980
   1981
   1982/************************
   1983 *
   1984 *	smt_get_time
   1985 *
   1986 *	Gets the current time from the system.
   1987 * Args
   1988 *	None.
   1989 * Out
   1990 *	The current time in TICKS_PER_SECOND.
   1991 *
   1992 *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
   1993 *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
   1994 *	to the time returned by smt_get_time().
   1995 *
   1996 ************************/
   1997unsigned long smt_get_time(void)
   1998{
   1999	return jiffies;
   2000}				// smt_get_time
   2001
   2002
   2003/************************
   2004 *
   2005 *	smt_stat_counter
   2006 *
   2007 *	Status counter update (ring_op, fifo full).
   2008 * Args
   2009 *	smc - A pointer to the SMT context struct.
   2010 *
   2011 *	stat -	= 0: A ring operational change occurred.
   2012 *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
   2013 * Out
   2014 *	Nothing.
   2015 *
   2016 ************************/
   2017void smt_stat_counter(struct s_smc *smc, int stat)
   2018{
   2019//      BOOLEAN RingIsUp ;
   2020
   2021	pr_debug("smt_stat_counter\n");
   2022	switch (stat) {
   2023	case 0:
   2024		pr_debug("Ring operational change.\n");
   2025		break;
   2026	case 1:
   2027		pr_debug("Receive fifo overflow.\n");
   2028		smc->os.MacStat.gen.rx_errors++;
   2029		break;
   2030	default:
   2031		pr_debug("Unknown status (%d).\n", stat);
   2032		break;
   2033	}
   2034}				// smt_stat_counter
   2035
   2036
   2037/************************
   2038 *
   2039 *	cfm_state_change
   2040 *
   2041 *	Sets CFM state in custom statistics.
   2042 * Args
   2043 *	smc - A pointer to the SMT context struct.
   2044 *
   2045 *	c_state - Possible values are:
   2046 *
   2047 *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
   2048 *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
   2049 * Out
   2050 *	Nothing.
   2051 *
   2052 ************************/
   2053void cfm_state_change(struct s_smc *smc, int c_state)
   2054{
   2055#ifdef DRIVERDEBUG
   2056	char *s;
   2057
   2058	switch (c_state) {
   2059	case SC0_ISOLATED:
   2060		s = "SC0_ISOLATED";
   2061		break;
   2062	case SC1_WRAP_A:
   2063		s = "SC1_WRAP_A";
   2064		break;
   2065	case SC2_WRAP_B:
   2066		s = "SC2_WRAP_B";
   2067		break;
   2068	case SC4_THRU_A:
   2069		s = "SC4_THRU_A";
   2070		break;
   2071	case SC5_THRU_B:
   2072		s = "SC5_THRU_B";
   2073		break;
   2074	case SC7_WRAP_S:
   2075		s = "SC7_WRAP_S";
   2076		break;
   2077	case SC9_C_WRAP_A:
   2078		s = "SC9_C_WRAP_A";
   2079		break;
   2080	case SC10_C_WRAP_B:
   2081		s = "SC10_C_WRAP_B";
   2082		break;
   2083	case SC11_C_WRAP_S:
   2084		s = "SC11_C_WRAP_S";
   2085		break;
   2086	default:
   2087		pr_debug("cfm_state_change: unknown %d\n", c_state);
   2088		return;
   2089	}
   2090	pr_debug("cfm_state_change: %s\n", s);
   2091#endif				// DRIVERDEBUG
   2092}				// cfm_state_change
   2093
   2094
   2095/************************
   2096 *
   2097 *	ecm_state_change
   2098 *
   2099 *	Sets ECM state in custom statistics.
   2100 * Args
   2101 *	smc - A pointer to the SMT context struct.
   2102 *
   2103 *	e_state - Possible values are:
   2104 *
   2105 *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
   2106 *		SC5_THRU_B (7), SC7_WRAP_S (8)
   2107 * Out
   2108 *	Nothing.
   2109 *
   2110 ************************/
   2111void ecm_state_change(struct s_smc *smc, int e_state)
   2112{
   2113#ifdef DRIVERDEBUG
   2114	char *s;
   2115
   2116	switch (e_state) {
   2117	case EC0_OUT:
   2118		s = "EC0_OUT";
   2119		break;
   2120	case EC1_IN:
   2121		s = "EC1_IN";
   2122		break;
   2123	case EC2_TRACE:
   2124		s = "EC2_TRACE";
   2125		break;
   2126	case EC3_LEAVE:
   2127		s = "EC3_LEAVE";
   2128		break;
   2129	case EC4_PATH_TEST:
   2130		s = "EC4_PATH_TEST";
   2131		break;
   2132	case EC5_INSERT:
   2133		s = "EC5_INSERT";
   2134		break;
   2135	case EC6_CHECK:
   2136		s = "EC6_CHECK";
   2137		break;
   2138	case EC7_DEINSERT:
   2139		s = "EC7_DEINSERT";
   2140		break;
   2141	default:
   2142		s = "unknown";
   2143		break;
   2144	}
   2145	pr_debug("ecm_state_change: %s\n", s);
   2146#endif				//DRIVERDEBUG
   2147}				// ecm_state_change
   2148
   2149
   2150/************************
   2151 *
   2152 *	rmt_state_change
   2153 *
   2154 *	Sets RMT state in custom statistics.
   2155 * Args
   2156 *	smc - A pointer to the SMT context struct.
   2157 *
   2158 *	r_state - Possible values are:
   2159 *
   2160 *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
   2161 *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
   2162 * Out
   2163 *	Nothing.
   2164 *
   2165 ************************/
   2166void rmt_state_change(struct s_smc *smc, int r_state)
   2167{
   2168#ifdef DRIVERDEBUG
   2169	char *s;
   2170
   2171	switch (r_state) {
   2172	case RM0_ISOLATED:
   2173		s = "RM0_ISOLATED";
   2174		break;
   2175	case RM1_NON_OP:
   2176		s = "RM1_NON_OP - not operational";
   2177		break;
   2178	case RM2_RING_OP:
   2179		s = "RM2_RING_OP - ring operational";
   2180		break;
   2181	case RM3_DETECT:
   2182		s = "RM3_DETECT - detect dupl addresses";
   2183		break;
   2184	case RM4_NON_OP_DUP:
   2185		s = "RM4_NON_OP_DUP - dupl. addr detected";
   2186		break;
   2187	case RM5_RING_OP_DUP:
   2188		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
   2189		break;
   2190	case RM6_DIRECTED:
   2191		s = "RM6_DIRECTED - sending directed beacons";
   2192		break;
   2193	case RM7_TRACE:
   2194		s = "RM7_TRACE - trace initiated";
   2195		break;
   2196	default:
   2197		s = "unknown";
   2198		break;
   2199	}
   2200	pr_debug("[rmt_state_change: %s]\n", s);
   2201#endif				// DRIVERDEBUG
   2202}				// rmt_state_change
   2203
   2204
   2205/************************
   2206 *
   2207 *	drv_reset_indication
   2208 *
   2209 *	This function is called by the SMT when it has detected a severe
   2210 *	hardware problem. The driver should perform a reset on the adapter
   2211 *	as soon as possible, but not from within this function.
   2212 * Args
   2213 *	smc - A pointer to the SMT context struct.
   2214 * Out
   2215 *	Nothing.
   2216 *
   2217 ************************/
   2218void drv_reset_indication(struct s_smc *smc)
   2219{
   2220	pr_debug("entering drv_reset_indication\n");
   2221
   2222	smc->os.ResetRequested = TRUE;	// Set flag.
   2223
   2224}				// drv_reset_indication
   2225
   2226static struct pci_driver skfddi_pci_driver = {
   2227	.name		= "skfddi",
   2228	.id_table	= skfddi_pci_tbl,
   2229	.probe		= skfp_init_one,
   2230	.remove		= skfp_remove_one,
   2231};
   2232
   2233module_pci_driver(skfddi_pci_driver);