ca8210.c (84454B)
1/* 2 * http://www.cascoda.com/products/ca-821x/ 3 * Copyright (c) 2016, Cascoda, Ltd. 4 * All rights reserved. 5 * 6 * This code is dual-licensed under both GPLv2 and 3-clause BSD. What follows is 7 * the license notice for both respectively. 8 * 9 ******************************************************************************* 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 2 14 * of the License, or (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 ******************************************************************************* 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions are met: 25 * 26 * 1. Redistributions of source code must retain the above copyright notice, 27 * this list of conditions and the following disclaimer. 28 * 29 * 2. Redistributions in binary form must reproduce the above copyright notice, 30 * this list of conditions and the following disclaimer in the documentation 31 * and/or other materials provided with the distribution. 32 * 33 * 3. Neither the name of the copyright holder nor the names of its contributors 34 * may be used to endorse or promote products derived from this software without 35 * specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 38 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE 41 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 42 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 43 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 44 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 45 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 47 * POSSIBILITY OF SUCH DAMAGE. 48 */ 49 50#include <linux/cdev.h> 51#include <linux/clk-provider.h> 52#include <linux/debugfs.h> 53#include <linux/delay.h> 54#include <linux/gpio.h> 55#include <linux/ieee802154.h> 56#include <linux/io.h> 57#include <linux/kfifo.h> 58#include <linux/of.h> 59#include <linux/of_device.h> 60#include <linux/of_gpio.h> 61#include <linux/module.h> 62#include <linux/mutex.h> 63#include <linux/poll.h> 64#include <linux/skbuff.h> 65#include <linux/slab.h> 66#include <linux/spi/spi.h> 67#include <linux/spinlock.h> 68#include <linux/string.h> 69#include <linux/workqueue.h> 70#include <linux/interrupt.h> 71 72#include <net/ieee802154_netdev.h> 73#include <net/mac802154.h> 74 75#define DRIVER_NAME "ca8210" 76 77/* external clock frequencies */ 78#define ONE_MHZ 1000000 79#define TWO_MHZ (2 * ONE_MHZ) 80#define FOUR_MHZ (4 * ONE_MHZ) 81#define EIGHT_MHZ (8 * ONE_MHZ) 82#define SIXTEEN_MHZ (16 * ONE_MHZ) 83 84/* spi constants */ 85#define CA8210_SPI_BUF_SIZE 256 86#define CA8210_SYNC_TIMEOUT 1000 /* Timeout for synchronous commands [ms] */ 87 88/* test interface constants */ 89#define CA8210_TEST_INT_FILE_NAME "ca8210_test" 90#define CA8210_TEST_INT_FIFO_SIZE 256 91 92/* HWME attribute IDs */ 93#define HWME_EDTHRESHOLD (0x04) 94#define HWME_EDVALUE (0x06) 95#define HWME_SYSCLKOUT (0x0F) 96#define HWME_LQILIMIT (0x11) 97 98/* TDME attribute IDs */ 99#define TDME_CHANNEL (0x00) 100#define TDME_ATM_CONFIG (0x06) 101 102#define MAX_HWME_ATTRIBUTE_SIZE 16 103#define MAX_TDME_ATTRIBUTE_SIZE 2 104 105/* PHY/MAC PIB Attribute Enumerations */ 106#define PHY_CURRENT_CHANNEL (0x00) 107#define PHY_TRANSMIT_POWER (0x02) 108#define PHY_CCA_MODE (0x03) 109#define MAC_ASSOCIATION_PERMIT (0x41) 110#define MAC_AUTO_REQUEST (0x42) 111#define MAC_BATT_LIFE_EXT (0x43) 112#define MAC_BATT_LIFE_EXT_PERIODS (0x44) 113#define MAC_BEACON_PAYLOAD (0x45) 114#define MAC_BEACON_PAYLOAD_LENGTH (0x46) 115#define MAC_BEACON_ORDER (0x47) 116#define MAC_GTS_PERMIT (0x4d) 117#define MAC_MAX_CSMA_BACKOFFS (0x4e) 118#define MAC_MIN_BE (0x4f) 119#define MAC_PAN_ID (0x50) 120#define MAC_PROMISCUOUS_MODE (0x51) 121#define MAC_RX_ON_WHEN_IDLE (0x52) 122#define MAC_SHORT_ADDRESS (0x53) 123#define MAC_SUPERFRAME_ORDER (0x54) 124#define MAC_ASSOCIATED_PAN_COORD (0x56) 125#define MAC_MAX_BE (0x57) 126#define MAC_MAX_FRAME_RETRIES (0x59) 127#define MAC_RESPONSE_WAIT_TIME (0x5A) 128#define MAC_SECURITY_ENABLED (0x5D) 129 130#define MAC_AUTO_REQUEST_SECURITY_LEVEL (0x78) 131#define MAC_AUTO_REQUEST_KEY_ID_MODE (0x79) 132 133#define NS_IEEE_ADDRESS (0xFF) /* Non-standard IEEE address */ 134 135/* MAC Address Mode Definitions */ 136#define MAC_MODE_NO_ADDR (0x00) 137#define MAC_MODE_SHORT_ADDR (0x02) 138#define MAC_MODE_LONG_ADDR (0x03) 139 140/* MAC constants */ 141#define MAX_BEACON_OVERHEAD (75) 142#define MAX_BEACON_PAYLOAD_LENGTH (IEEE802154_MTU - MAX_BEACON_OVERHEAD) 143 144#define MAX_ATTRIBUTE_SIZE (122) 145#define MAX_DATA_SIZE (114) 146 147#define CA8210_VALID_CHANNELS (0x07FFF800) 148 149/* MAC workarounds for V1.1 and MPW silicon (V0.x) */ 150#define CA8210_MAC_WORKAROUNDS (0) 151#define CA8210_MAC_MPW (0) 152 153/* memory manipulation macros */ 154#define LS_BYTE(x) ((u8)((x) & 0xFF)) 155#define MS_BYTE(x) ((u8)(((x) >> 8) & 0xFF)) 156 157/* message ID codes in SPI commands */ 158/* downstream */ 159#define MCPS_DATA_REQUEST (0x00) 160#define MLME_ASSOCIATE_REQUEST (0x02) 161#define MLME_ASSOCIATE_RESPONSE (0x03) 162#define MLME_DISASSOCIATE_REQUEST (0x04) 163#define MLME_GET_REQUEST (0x05) 164#define MLME_ORPHAN_RESPONSE (0x06) 165#define MLME_RESET_REQUEST (0x07) 166#define MLME_RX_ENABLE_REQUEST (0x08) 167#define MLME_SCAN_REQUEST (0x09) 168#define MLME_SET_REQUEST (0x0A) 169#define MLME_START_REQUEST (0x0B) 170#define MLME_POLL_REQUEST (0x0D) 171#define HWME_SET_REQUEST (0x0E) 172#define HWME_GET_REQUEST (0x0F) 173#define TDME_SETSFR_REQUEST (0x11) 174#define TDME_GETSFR_REQUEST (0x12) 175#define TDME_SET_REQUEST (0x14) 176/* upstream */ 177#define MCPS_DATA_INDICATION (0x00) 178#define MCPS_DATA_CONFIRM (0x01) 179#define MLME_RESET_CONFIRM (0x0A) 180#define MLME_SET_CONFIRM (0x0E) 181#define MLME_START_CONFIRM (0x0F) 182#define HWME_SET_CONFIRM (0x12) 183#define HWME_GET_CONFIRM (0x13) 184#define HWME_WAKEUP_INDICATION (0x15) 185#define TDME_SETSFR_CONFIRM (0x17) 186 187/* SPI command IDs */ 188/* bit indicating a confirm or indication from slave to master */ 189#define SPI_S2M (0x20) 190/* bit indicating a synchronous message */ 191#define SPI_SYN (0x40) 192 193/* SPI command definitions */ 194#define SPI_IDLE (0xFF) 195#define SPI_NACK (0xF0) 196 197#define SPI_MCPS_DATA_REQUEST (MCPS_DATA_REQUEST) 198#define SPI_MCPS_DATA_INDICATION (MCPS_DATA_INDICATION + SPI_S2M) 199#define SPI_MCPS_DATA_CONFIRM (MCPS_DATA_CONFIRM + SPI_S2M) 200 201#define SPI_MLME_ASSOCIATE_REQUEST (MLME_ASSOCIATE_REQUEST) 202#define SPI_MLME_RESET_REQUEST (MLME_RESET_REQUEST + SPI_SYN) 203#define SPI_MLME_SET_REQUEST (MLME_SET_REQUEST + SPI_SYN) 204#define SPI_MLME_START_REQUEST (MLME_START_REQUEST + SPI_SYN) 205#define SPI_MLME_RESET_CONFIRM (MLME_RESET_CONFIRM + SPI_S2M + SPI_SYN) 206#define SPI_MLME_SET_CONFIRM (MLME_SET_CONFIRM + SPI_S2M + SPI_SYN) 207#define SPI_MLME_START_CONFIRM (MLME_START_CONFIRM + SPI_S2M + SPI_SYN) 208 209#define SPI_HWME_SET_REQUEST (HWME_SET_REQUEST + SPI_SYN) 210#define SPI_HWME_GET_REQUEST (HWME_GET_REQUEST + SPI_SYN) 211#define SPI_HWME_SET_CONFIRM (HWME_SET_CONFIRM + SPI_S2M + SPI_SYN) 212#define SPI_HWME_GET_CONFIRM (HWME_GET_CONFIRM + SPI_S2M + SPI_SYN) 213#define SPI_HWME_WAKEUP_INDICATION (HWME_WAKEUP_INDICATION + SPI_S2M) 214 215#define SPI_TDME_SETSFR_REQUEST (TDME_SETSFR_REQUEST + SPI_SYN) 216#define SPI_TDME_SET_REQUEST (TDME_SET_REQUEST + SPI_SYN) 217#define SPI_TDME_SETSFR_CONFIRM (TDME_SETSFR_CONFIRM + SPI_S2M + SPI_SYN) 218 219/* TDME SFR addresses */ 220/* Page 0 */ 221#define CA8210_SFR_PACFG (0xB1) 222#define CA8210_SFR_MACCON (0xD8) 223#define CA8210_SFR_PACFGIB (0xFE) 224/* Page 1 */ 225#define CA8210_SFR_LOTXCAL (0xBF) 226#define CA8210_SFR_PTHRH (0xD1) 227#define CA8210_SFR_PRECFG (0xD3) 228#define CA8210_SFR_LNAGX40 (0xE1) 229#define CA8210_SFR_LNAGX41 (0xE2) 230#define CA8210_SFR_LNAGX42 (0xE3) 231#define CA8210_SFR_LNAGX43 (0xE4) 232#define CA8210_SFR_LNAGX44 (0xE5) 233#define CA8210_SFR_LNAGX45 (0xE6) 234#define CA8210_SFR_LNAGX46 (0xE7) 235#define CA8210_SFR_LNAGX47 (0xE9) 236 237#define PACFGIB_DEFAULT_CURRENT (0x3F) 238#define PTHRH_DEFAULT_THRESHOLD (0x5A) 239#define LNAGX40_DEFAULT_GAIN (0x29) /* 10dB */ 240#define LNAGX41_DEFAULT_GAIN (0x54) /* 21dB */ 241#define LNAGX42_DEFAULT_GAIN (0x6C) /* 27dB */ 242#define LNAGX43_DEFAULT_GAIN (0x7A) /* 30dB */ 243#define LNAGX44_DEFAULT_GAIN (0x84) /* 33dB */ 244#define LNAGX45_DEFAULT_GAIN (0x8B) /* 34dB */ 245#define LNAGX46_DEFAULT_GAIN (0x92) /* 36dB */ 246#define LNAGX47_DEFAULT_GAIN (0x96) /* 37dB */ 247 248#define CA8210_IOCTL_HARD_RESET (0x00) 249 250/* Structs/Enums */ 251 252/** 253 * struct cas_control - spi transfer structure 254 * @msg: spi_message for each exchange 255 * @transfer: spi_transfer for each exchange 256 * @tx_buf: source array for transmission 257 * @tx_in_buf: array storing bytes received during transmission 258 * @priv: pointer to private data 259 * 260 * This structure stores all the necessary data passed around during a single 261 * spi exchange. 262 */ 263struct cas_control { 264 struct spi_message msg; 265 struct spi_transfer transfer; 266 267 u8 tx_buf[CA8210_SPI_BUF_SIZE]; 268 u8 tx_in_buf[CA8210_SPI_BUF_SIZE]; 269 270 struct ca8210_priv *priv; 271}; 272 273/** 274 * struct ca8210_test - ca8210 test interface structure 275 * @ca8210_dfs_spi_int: pointer to the entry in the debug fs for this device 276 * @up_fifo: fifo for upstream messages 277 * @readq: read wait queue 278 * 279 * This structure stores all the data pertaining to the debug interface 280 */ 281struct ca8210_test { 282 struct dentry *ca8210_dfs_spi_int; 283 struct kfifo up_fifo; 284 wait_queue_head_t readq; 285}; 286 287/** 288 * struct ca8210_priv - ca8210 private data structure 289 * @spi: pointer to the ca8210 spi device object 290 * @hw: pointer to the ca8210 ieee802154_hw object 291 * @hw_registered: true if hw has been registered with ieee802154 292 * @lock: spinlock protecting the private data area 293 * @mlme_workqueue: workqueue for triggering MLME Reset 294 * @irq_workqueue: workqueue for irq processing 295 * @tx_skb: current socket buffer to transmit 296 * @nextmsduhandle: msdu handle to pass to the 15.4 MAC layer for the 297 * next transmission 298 * @clk: external clock provided by the ca8210 299 * @last_dsn: sequence number of last data packet received, for 300 * resend detection 301 * @test: test interface data section for this instance 302 * @async_tx_pending: true if an asynchronous transmission was started and 303 * is not complete 304 * @sync_command_response: pointer to buffer to fill with sync response 305 * @ca8210_is_awake: nonzero if ca8210 is initialised, ready for comms 306 * @sync_down: counts number of downstream synchronous commands 307 * @sync_up: counts number of upstream synchronous commands 308 * @spi_transfer_complete: completion object for a single spi_transfer 309 * @sync_exchange_complete: completion object for a complete synchronous API 310 * exchange 311 * @promiscuous: whether the ca8210 is in promiscuous mode or not 312 * @retries: records how many times the current pending spi 313 * transfer has been retried 314 */ 315struct ca8210_priv { 316 struct spi_device *spi; 317 struct ieee802154_hw *hw; 318 bool hw_registered; 319 spinlock_t lock; 320 struct workqueue_struct *mlme_workqueue; 321 struct workqueue_struct *irq_workqueue; 322 struct sk_buff *tx_skb; 323 u8 nextmsduhandle; 324 struct clk *clk; 325 int last_dsn; 326 struct ca8210_test test; 327 bool async_tx_pending; 328 u8 *sync_command_response; 329 struct completion ca8210_is_awake; 330 int sync_down, sync_up; 331 struct completion spi_transfer_complete, sync_exchange_complete; 332 bool promiscuous; 333 int retries; 334}; 335 336/** 337 * struct work_priv_container - link between a work object and the relevant 338 * device's private data 339 * @work: work object being executed 340 * @priv: device's private data section 341 * 342 */ 343struct work_priv_container { 344 struct work_struct work; 345 struct ca8210_priv *priv; 346}; 347 348/** 349 * struct ca8210_platform_data - ca8210 platform data structure 350 * @extclockenable: true if the external clock is to be enabled 351 * @extclockfreq: frequency of the external clock 352 * @extclockgpio: ca8210 output gpio of the external clock 353 * @gpio_reset: gpio number of ca8210 reset line 354 * @gpio_irq: gpio number of ca8210 interrupt line 355 * @irq_id: identifier for the ca8210 irq 356 * 357 */ 358struct ca8210_platform_data { 359 bool extclockenable; 360 unsigned int extclockfreq; 361 unsigned int extclockgpio; 362 int gpio_reset; 363 int gpio_irq; 364 int irq_id; 365}; 366 367/** 368 * struct fulladdr - full MAC addressing information structure 369 * @mode: address mode (none, short, extended) 370 * @pan_id: 16-bit LE pan id 371 * @address: LE address, variable length as specified by mode 372 * 373 */ 374struct fulladdr { 375 u8 mode; 376 u8 pan_id[2]; 377 u8 address[8]; 378}; 379 380/** 381 * union macaddr: generic MAC address container 382 * @short_address: 16-bit short address 383 * @ieee_address: 64-bit extended address as LE byte array 384 * 385 */ 386union macaddr { 387 u16 short_address; 388 u8 ieee_address[8]; 389}; 390 391/** 392 * struct secspec: security specification for SAP commands 393 * @security_level: 0-7, controls level of authentication & encryption 394 * @key_id_mode: 0-3, specifies how to obtain key 395 * @key_source: extended key retrieval data 396 * @key_index: single-byte key identifier 397 * 398 */ 399struct secspec { 400 u8 security_level; 401 u8 key_id_mode; 402 u8 key_source[8]; 403 u8 key_index; 404}; 405 406/* downlink functions parameter set definitions */ 407struct mcps_data_request_pset { 408 u8 src_addr_mode; 409 struct fulladdr dst; 410 u8 msdu_length; 411 u8 msdu_handle; 412 u8 tx_options; 413 u8 msdu[MAX_DATA_SIZE]; 414}; 415 416struct mlme_set_request_pset { 417 u8 pib_attribute; 418 u8 pib_attribute_index; 419 u8 pib_attribute_length; 420 u8 pib_attribute_value[MAX_ATTRIBUTE_SIZE]; 421}; 422 423struct hwme_set_request_pset { 424 u8 hw_attribute; 425 u8 hw_attribute_length; 426 u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE]; 427}; 428 429struct hwme_get_request_pset { 430 u8 hw_attribute; 431}; 432 433struct tdme_setsfr_request_pset { 434 u8 sfr_page; 435 u8 sfr_address; 436 u8 sfr_value; 437}; 438 439/* uplink functions parameter set definitions */ 440struct hwme_set_confirm_pset { 441 u8 status; 442 u8 hw_attribute; 443}; 444 445struct hwme_get_confirm_pset { 446 u8 status; 447 u8 hw_attribute; 448 u8 hw_attribute_length; 449 u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE]; 450}; 451 452struct tdme_setsfr_confirm_pset { 453 u8 status; 454 u8 sfr_page; 455 u8 sfr_address; 456}; 457 458struct mac_message { 459 u8 command_id; 460 u8 length; 461 union { 462 struct mcps_data_request_pset data_req; 463 struct mlme_set_request_pset set_req; 464 struct hwme_set_request_pset hwme_set_req; 465 struct hwme_get_request_pset hwme_get_req; 466 struct tdme_setsfr_request_pset tdme_set_sfr_req; 467 struct hwme_set_confirm_pset hwme_set_cnf; 468 struct hwme_get_confirm_pset hwme_get_cnf; 469 struct tdme_setsfr_confirm_pset tdme_set_sfr_cnf; 470 u8 u8param; 471 u8 status; 472 u8 payload[148]; 473 } pdata; 474}; 475 476union pa_cfg_sfr { 477 struct { 478 u8 bias_current_trim : 3; 479 u8 /* reserved */ : 1; 480 u8 buffer_capacitor_trim : 3; 481 u8 boost : 1; 482 }; 483 u8 paib; 484}; 485 486struct preamble_cfg_sfr { 487 u8 timeout_symbols : 3; 488 u8 acquisition_symbols : 3; 489 u8 search_symbols : 2; 490}; 491 492static int (*cascoda_api_upstream)( 493 const u8 *buf, 494 size_t len, 495 void *device_ref 496); 497 498/** 499 * link_to_linux_err() - Translates an 802.15.4 return code into the closest 500 * linux error 501 * @link_status: 802.15.4 status code 502 * 503 * Return: 0 or Linux error code 504 */ 505static int link_to_linux_err(int link_status) 506{ 507 if (link_status < 0) { 508 /* status is already a Linux code */ 509 return link_status; 510 } 511 switch (link_status) { 512 case IEEE802154_SUCCESS: 513 case IEEE802154_REALIGNMENT: 514 return 0; 515 case IEEE802154_IMPROPER_KEY_TYPE: 516 return -EKEYREJECTED; 517 case IEEE802154_IMPROPER_SECURITY_LEVEL: 518 case IEEE802154_UNSUPPORTED_LEGACY: 519 case IEEE802154_DENIED: 520 return -EACCES; 521 case IEEE802154_BEACON_LOST: 522 case IEEE802154_NO_ACK: 523 case IEEE802154_NO_BEACON: 524 return -ENETUNREACH; 525 case IEEE802154_CHANNEL_ACCESS_FAILURE: 526 case IEEE802154_TX_ACTIVE: 527 case IEEE802154_SCAN_IN_PROGRESS: 528 return -EBUSY; 529 case IEEE802154_DISABLE_TRX_FAILURE: 530 case IEEE802154_OUT_OF_CAP: 531 return -EAGAIN; 532 case IEEE802154_FRAME_TOO_LONG: 533 return -EMSGSIZE; 534 case IEEE802154_INVALID_GTS: 535 case IEEE802154_PAST_TIME: 536 return -EBADSLT; 537 case IEEE802154_INVALID_HANDLE: 538 return -EBADMSG; 539 case IEEE802154_INVALID_PARAMETER: 540 case IEEE802154_UNSUPPORTED_ATTRIBUTE: 541 case IEEE802154_ON_TIME_TOO_LONG: 542 case IEEE802154_INVALID_INDEX: 543 return -EINVAL; 544 case IEEE802154_NO_DATA: 545 return -ENODATA; 546 case IEEE802154_NO_SHORT_ADDRESS: 547 return -EFAULT; 548 case IEEE802154_PAN_ID_CONFLICT: 549 return -EADDRINUSE; 550 case IEEE802154_TRANSACTION_EXPIRED: 551 return -ETIME; 552 case IEEE802154_TRANSACTION_OVERFLOW: 553 return -ENOBUFS; 554 case IEEE802154_UNAVAILABLE_KEY: 555 return -ENOKEY; 556 case IEEE802154_INVALID_ADDRESS: 557 return -ENXIO; 558 case IEEE802154_TRACKING_OFF: 559 case IEEE802154_SUPERFRAME_OVERLAP: 560 return -EREMOTEIO; 561 case IEEE802154_LIMIT_REACHED: 562 return -EDQUOT; 563 case IEEE802154_READ_ONLY: 564 return -EROFS; 565 default: 566 return -EPROTO; 567 } 568} 569 570/** 571 * ca8210_test_int_driver_write() - Writes a message to the test interface to be 572 * read by the userspace 573 * @buf: Buffer containing upstream message 574 * @len: length of message to write 575 * @spi: SPI device of message originator 576 * 577 * Return: 0 or linux error code 578 */ 579static int ca8210_test_int_driver_write( 580 const u8 *buf, 581 size_t len, 582 void *spi 583) 584{ 585 struct ca8210_priv *priv = spi_get_drvdata(spi); 586 struct ca8210_test *test = &priv->test; 587 char *fifo_buffer; 588 int i; 589 590 dev_dbg( 591 &priv->spi->dev, 592 "test_interface: Buffering upstream message:\n" 593 ); 594 for (i = 0; i < len; i++) 595 dev_dbg(&priv->spi->dev, "%#03x\n", buf[i]); 596 597 fifo_buffer = kmemdup(buf, len, GFP_KERNEL); 598 if (!fifo_buffer) 599 return -ENOMEM; 600 kfifo_in(&test->up_fifo, &fifo_buffer, 4); 601 wake_up_interruptible(&priv->test.readq); 602 603 return 0; 604} 605 606/* SPI Operation */ 607 608static int ca8210_net_rx( 609 struct ieee802154_hw *hw, 610 u8 *command, 611 size_t len 612); 613static u8 mlme_reset_request_sync( 614 u8 set_default_pib, 615 void *device_ref 616); 617static int ca8210_spi_transfer( 618 struct spi_device *spi, 619 const u8 *buf, 620 size_t len 621); 622 623/** 624 * ca8210_reset_send() - Hard resets the ca8210 for a given time 625 * @spi: Pointer to target ca8210 spi device 626 * @ms: Milliseconds to hold the reset line low for 627 */ 628static void ca8210_reset_send(struct spi_device *spi, unsigned int ms) 629{ 630 struct ca8210_platform_data *pdata = spi->dev.platform_data; 631 struct ca8210_priv *priv = spi_get_drvdata(spi); 632 long status; 633 634 gpio_set_value(pdata->gpio_reset, 0); 635 reinit_completion(&priv->ca8210_is_awake); 636 msleep(ms); 637 gpio_set_value(pdata->gpio_reset, 1); 638 priv->promiscuous = false; 639 640 /* Wait until wakeup indication seen */ 641 status = wait_for_completion_interruptible_timeout( 642 &priv->ca8210_is_awake, 643 msecs_to_jiffies(CA8210_SYNC_TIMEOUT) 644 ); 645 if (status == 0) { 646 dev_crit( 647 &spi->dev, 648 "Fatal: No wakeup from ca8210 after reset!\n" 649 ); 650 } 651 652 dev_dbg(&spi->dev, "Reset the device\n"); 653} 654 655/** 656 * ca8210_mlme_reset_worker() - Resets the MLME, Called when the MAC OVERFLOW 657 * condition happens. 658 * @work: Pointer to work being executed 659 */ 660static void ca8210_mlme_reset_worker(struct work_struct *work) 661{ 662 struct work_priv_container *wpc = container_of( 663 work, 664 struct work_priv_container, 665 work 666 ); 667 struct ca8210_priv *priv = wpc->priv; 668 669 mlme_reset_request_sync(0, priv->spi); 670 kfree(wpc); 671} 672 673/** 674 * ca8210_rx_done() - Calls various message dispatches responding to a received 675 * command 676 * @cas_ctl: Pointer to the cas_control object for the relevant spi transfer 677 * 678 * Presents a received SAP command from the ca8210 to the Cascoda EVBME, test 679 * interface and network driver. 680 */ 681static void ca8210_rx_done(struct cas_control *cas_ctl) 682{ 683 u8 *buf; 684 unsigned int len; 685 struct work_priv_container *mlme_reset_wpc; 686 struct ca8210_priv *priv = cas_ctl->priv; 687 688 buf = cas_ctl->tx_in_buf; 689 len = buf[1] + 2; 690 if (len > CA8210_SPI_BUF_SIZE) { 691 dev_crit( 692 &priv->spi->dev, 693 "Received packet len (%u) erroneously long\n", 694 len 695 ); 696 goto finish; 697 } 698 699 if (buf[0] & SPI_SYN) { 700 if (priv->sync_command_response) { 701 memcpy(priv->sync_command_response, buf, len); 702 complete(&priv->sync_exchange_complete); 703 } else { 704 if (cascoda_api_upstream) 705 cascoda_api_upstream(buf, len, priv->spi); 706 priv->sync_up++; 707 } 708 } else { 709 if (cascoda_api_upstream) 710 cascoda_api_upstream(buf, len, priv->spi); 711 } 712 713 ca8210_net_rx(priv->hw, buf, len); 714 if (buf[0] == SPI_MCPS_DATA_CONFIRM) { 715 if (buf[3] == IEEE802154_TRANSACTION_OVERFLOW) { 716 dev_info( 717 &priv->spi->dev, 718 "Waiting for transaction overflow to stabilise...\n"); 719 msleep(2000); 720 dev_info( 721 &priv->spi->dev, 722 "Resetting MAC...\n"); 723 724 mlme_reset_wpc = kmalloc(sizeof(*mlme_reset_wpc), 725 GFP_KERNEL); 726 if (!mlme_reset_wpc) 727 goto finish; 728 INIT_WORK( 729 &mlme_reset_wpc->work, 730 ca8210_mlme_reset_worker 731 ); 732 mlme_reset_wpc->priv = priv; 733 queue_work(priv->mlme_workqueue, &mlme_reset_wpc->work); 734 } 735 } else if (buf[0] == SPI_HWME_WAKEUP_INDICATION) { 736 dev_notice( 737 &priv->spi->dev, 738 "Wakeup indication received, reason:\n" 739 ); 740 switch (buf[2]) { 741 case 0: 742 dev_notice( 743 &priv->spi->dev, 744 "Transceiver woken up from Power Up / System Reset\n" 745 ); 746 break; 747 case 1: 748 dev_notice( 749 &priv->spi->dev, 750 "Watchdog Timer Time-Out\n" 751 ); 752 break; 753 case 2: 754 dev_notice( 755 &priv->spi->dev, 756 "Transceiver woken up from Power-Off by Sleep Timer Time-Out\n"); 757 break; 758 case 3: 759 dev_notice( 760 &priv->spi->dev, 761 "Transceiver woken up from Power-Off by GPIO Activity\n" 762 ); 763 break; 764 case 4: 765 dev_notice( 766 &priv->spi->dev, 767 "Transceiver woken up from Standby by Sleep Timer Time-Out\n" 768 ); 769 break; 770 case 5: 771 dev_notice( 772 &priv->spi->dev, 773 "Transceiver woken up from Standby by GPIO Activity\n" 774 ); 775 break; 776 case 6: 777 dev_notice( 778 &priv->spi->dev, 779 "Sleep-Timer Time-Out in Active Mode\n" 780 ); 781 break; 782 default: 783 dev_warn(&priv->spi->dev, "Wakeup reason unknown\n"); 784 break; 785 } 786 complete(&priv->ca8210_is_awake); 787 } 788 789finish:; 790} 791 792static void ca8210_remove(struct spi_device *spi_device); 793 794/** 795 * ca8210_spi_transfer_complete() - Called when a single spi transfer has 796 * completed 797 * @context: Pointer to the cas_control object for the finished transfer 798 */ 799static void ca8210_spi_transfer_complete(void *context) 800{ 801 struct cas_control *cas_ctl = context; 802 struct ca8210_priv *priv = cas_ctl->priv; 803 bool duplex_rx = false; 804 int i; 805 u8 retry_buffer[CA8210_SPI_BUF_SIZE]; 806 807 if ( 808 cas_ctl->tx_in_buf[0] == SPI_NACK || 809 (cas_ctl->tx_in_buf[0] == SPI_IDLE && 810 cas_ctl->tx_in_buf[1] == SPI_NACK) 811 ) { 812 /* ca8210 is busy */ 813 dev_info(&priv->spi->dev, "ca8210 was busy during attempted write\n"); 814 if (cas_ctl->tx_buf[0] == SPI_IDLE) { 815 dev_warn( 816 &priv->spi->dev, 817 "IRQ servicing NACKd, dropping transfer\n" 818 ); 819 kfree(cas_ctl); 820 return; 821 } 822 if (priv->retries > 3) { 823 dev_err(&priv->spi->dev, "too many retries!\n"); 824 kfree(cas_ctl); 825 ca8210_remove(priv->spi); 826 return; 827 } 828 memcpy(retry_buffer, cas_ctl->tx_buf, CA8210_SPI_BUF_SIZE); 829 kfree(cas_ctl); 830 ca8210_spi_transfer( 831 priv->spi, 832 retry_buffer, 833 CA8210_SPI_BUF_SIZE 834 ); 835 priv->retries++; 836 dev_info(&priv->spi->dev, "retried spi write\n"); 837 return; 838 } else if ( 839 cas_ctl->tx_in_buf[0] != SPI_IDLE && 840 cas_ctl->tx_in_buf[0] != SPI_NACK 841 ) { 842 duplex_rx = true; 843 } 844 845 if (duplex_rx) { 846 dev_dbg(&priv->spi->dev, "READ CMD DURING TX\n"); 847 for (i = 0; i < cas_ctl->tx_in_buf[1] + 2; i++) 848 dev_dbg( 849 &priv->spi->dev, 850 "%#03x\n", 851 cas_ctl->tx_in_buf[i] 852 ); 853 ca8210_rx_done(cas_ctl); 854 } 855 complete(&priv->spi_transfer_complete); 856 kfree(cas_ctl); 857 priv->retries = 0; 858} 859 860/** 861 * ca8210_spi_transfer() - Initiate duplex spi transfer with ca8210 862 * @spi: Pointer to spi device for transfer 863 * @buf: Octet array to send 864 * @len: length of the buffer being sent 865 * 866 * Return: 0 or linux error code 867 */ 868static int ca8210_spi_transfer( 869 struct spi_device *spi, 870 const u8 *buf, 871 size_t len 872) 873{ 874 int i, status = 0; 875 struct ca8210_priv *priv; 876 struct cas_control *cas_ctl; 877 878 if (!spi) { 879 pr_crit("NULL spi device passed to %s\n", __func__); 880 return -ENODEV; 881 } 882 883 priv = spi_get_drvdata(spi); 884 reinit_completion(&priv->spi_transfer_complete); 885 886 dev_dbg(&spi->dev, "%s called\n", __func__); 887 888 cas_ctl = kmalloc(sizeof(*cas_ctl), GFP_ATOMIC); 889 if (!cas_ctl) 890 return -ENOMEM; 891 892 cas_ctl->priv = priv; 893 memset(cas_ctl->tx_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE); 894 memset(cas_ctl->tx_in_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE); 895 memcpy(cas_ctl->tx_buf, buf, len); 896 897 for (i = 0; i < len; i++) 898 dev_dbg(&spi->dev, "%#03x\n", cas_ctl->tx_buf[i]); 899 900 spi_message_init(&cas_ctl->msg); 901 902 cas_ctl->transfer.tx_nbits = 1; /* 1 MOSI line */ 903 cas_ctl->transfer.rx_nbits = 1; /* 1 MISO line */ 904 cas_ctl->transfer.speed_hz = 0; /* Use device setting */ 905 cas_ctl->transfer.bits_per_word = 0; /* Use device setting */ 906 cas_ctl->transfer.tx_buf = cas_ctl->tx_buf; 907 cas_ctl->transfer.rx_buf = cas_ctl->tx_in_buf; 908 cas_ctl->transfer.delay.value = 0; 909 cas_ctl->transfer.delay.unit = SPI_DELAY_UNIT_USECS; 910 cas_ctl->transfer.cs_change = 0; 911 cas_ctl->transfer.len = sizeof(struct mac_message); 912 cas_ctl->msg.complete = ca8210_spi_transfer_complete; 913 cas_ctl->msg.context = cas_ctl; 914 915 spi_message_add_tail( 916 &cas_ctl->transfer, 917 &cas_ctl->msg 918 ); 919 920 status = spi_async(spi, &cas_ctl->msg); 921 if (status < 0) { 922 dev_crit( 923 &spi->dev, 924 "status %d from spi_sync in write\n", 925 status 926 ); 927 } 928 929 return status; 930} 931 932/** 933 * ca8210_spi_exchange() - Exchange API/SAP commands with the radio 934 * @buf: Octet array of command being sent downstream 935 * @len: length of buf 936 * @response: buffer for storing synchronous response 937 * @device_ref: spi_device pointer for ca8210 938 * 939 * Effectively calls ca8210_spi_transfer to write buf[] to the spi, then for 940 * synchronous commands waits for the corresponding response to be read from 941 * the spi before returning. The response is written to the response parameter. 942 * 943 * Return: 0 or linux error code 944 */ 945static int ca8210_spi_exchange( 946 const u8 *buf, 947 size_t len, 948 u8 *response, 949 void *device_ref 950) 951{ 952 int status = 0; 953 struct spi_device *spi = device_ref; 954 struct ca8210_priv *priv = spi->dev.driver_data; 955 long wait_remaining; 956 957 if ((buf[0] & SPI_SYN) && response) { /* if sync wait for confirm */ 958 reinit_completion(&priv->sync_exchange_complete); 959 priv->sync_command_response = response; 960 } 961 962 do { 963 reinit_completion(&priv->spi_transfer_complete); 964 status = ca8210_spi_transfer(priv->spi, buf, len); 965 if (status) { 966 dev_warn( 967 &spi->dev, 968 "spi write failed, returned %d\n", 969 status 970 ); 971 if (status == -EBUSY) 972 continue; 973 if (((buf[0] & SPI_SYN) && response)) 974 complete(&priv->sync_exchange_complete); 975 goto cleanup; 976 } 977 978 wait_remaining = wait_for_completion_interruptible_timeout( 979 &priv->spi_transfer_complete, 980 msecs_to_jiffies(1000) 981 ); 982 if (wait_remaining == -ERESTARTSYS) { 983 status = -ERESTARTSYS; 984 } else if (wait_remaining == 0) { 985 dev_err( 986 &spi->dev, 987 "SPI downstream transfer timed out!\n" 988 ); 989 status = -ETIME; 990 goto cleanup; 991 } 992 } while (status < 0); 993 994 if (!((buf[0] & SPI_SYN) && response)) 995 goto cleanup; 996 997 wait_remaining = wait_for_completion_interruptible_timeout( 998 &priv->sync_exchange_complete, 999 msecs_to_jiffies(CA8210_SYNC_TIMEOUT) 1000 ); 1001 if (wait_remaining == -ERESTARTSYS) { 1002 status = -ERESTARTSYS; 1003 } else if (wait_remaining == 0) { 1004 dev_err( 1005 &spi->dev, 1006 "Synchronous confirm timeout\n" 1007 ); 1008 status = -ETIME; 1009 } 1010 1011cleanup: 1012 priv->sync_command_response = NULL; 1013 return status; 1014} 1015 1016/** 1017 * ca8210_interrupt_handler() - Called when an irq is received from the ca8210 1018 * @irq: Id of the irq being handled 1019 * @dev_id: Pointer passed by the system, pointing to the ca8210's private data 1020 * 1021 * This function is called when the irq line from the ca8210 is asserted, 1022 * signifying that the ca8210 has a message to send upstream to us. Starts the 1023 * asynchronous spi read. 1024 * 1025 * Return: irq return code 1026 */ 1027static irqreturn_t ca8210_interrupt_handler(int irq, void *dev_id) 1028{ 1029 struct ca8210_priv *priv = dev_id; 1030 int status; 1031 1032 dev_dbg(&priv->spi->dev, "irq: Interrupt occurred\n"); 1033 do { 1034 status = ca8210_spi_transfer(priv->spi, NULL, 0); 1035 if (status && (status != -EBUSY)) { 1036 dev_warn( 1037 &priv->spi->dev, 1038 "spi read failed, returned %d\n", 1039 status 1040 ); 1041 } 1042 } while (status == -EBUSY); 1043 return IRQ_HANDLED; 1044} 1045 1046static int (*cascoda_api_downstream)( 1047 const u8 *buf, 1048 size_t len, 1049 u8 *response, 1050 void *device_ref 1051) = ca8210_spi_exchange; 1052 1053/* Cascoda API / 15.4 SAP Primitives */ 1054 1055/** 1056 * tdme_setsfr_request_sync() - TDME_SETSFR_request/confirm according to API 1057 * @sfr_page: SFR Page 1058 * @sfr_address: SFR Address 1059 * @sfr_value: SFR Value 1060 * @device_ref: Nondescript pointer to target device 1061 * 1062 * Return: 802.15.4 status code of TDME-SETSFR.confirm 1063 */ 1064static u8 tdme_setsfr_request_sync( 1065 u8 sfr_page, 1066 u8 sfr_address, 1067 u8 sfr_value, 1068 void *device_ref 1069) 1070{ 1071 int ret; 1072 struct mac_message command, response; 1073 struct spi_device *spi = device_ref; 1074 1075 command.command_id = SPI_TDME_SETSFR_REQUEST; 1076 command.length = 3; 1077 command.pdata.tdme_set_sfr_req.sfr_page = sfr_page; 1078 command.pdata.tdme_set_sfr_req.sfr_address = sfr_address; 1079 command.pdata.tdme_set_sfr_req.sfr_value = sfr_value; 1080 response.command_id = SPI_IDLE; 1081 ret = cascoda_api_downstream( 1082 &command.command_id, 1083 command.length + 2, 1084 &response.command_id, 1085 device_ref 1086 ); 1087 if (ret) { 1088 dev_crit(&spi->dev, "cascoda_api_downstream returned %d", ret); 1089 return IEEE802154_SYSTEM_ERROR; 1090 } 1091 1092 if (response.command_id != SPI_TDME_SETSFR_CONFIRM) { 1093 dev_crit( 1094 &spi->dev, 1095 "sync response to SPI_TDME_SETSFR_REQUEST was not SPI_TDME_SETSFR_CONFIRM, it was %d\n", 1096 response.command_id 1097 ); 1098 return IEEE802154_SYSTEM_ERROR; 1099 } 1100 1101 return response.pdata.tdme_set_sfr_cnf.status; 1102} 1103 1104/** 1105 * tdme_chipinit() - TDME Chip Register Default Initialisation Macro 1106 * @device_ref: Nondescript pointer to target device 1107 * 1108 * Return: 802.15.4 status code of API calls 1109 */ 1110static u8 tdme_chipinit(void *device_ref) 1111{ 1112 u8 status = IEEE802154_SUCCESS; 1113 u8 sfr_address; 1114 struct spi_device *spi = device_ref; 1115 struct preamble_cfg_sfr pre_cfg_value = { 1116 .timeout_symbols = 3, 1117 .acquisition_symbols = 3, 1118 .search_symbols = 1, 1119 }; 1120 /* LNA Gain Settings */ 1121 status = tdme_setsfr_request_sync( 1122 1, (sfr_address = CA8210_SFR_LNAGX40), 1123 LNAGX40_DEFAULT_GAIN, device_ref); 1124 if (status) 1125 goto finish; 1126 status = tdme_setsfr_request_sync( 1127 1, (sfr_address = CA8210_SFR_LNAGX41), 1128 LNAGX41_DEFAULT_GAIN, device_ref); 1129 if (status) 1130 goto finish; 1131 status = tdme_setsfr_request_sync( 1132 1, (sfr_address = CA8210_SFR_LNAGX42), 1133 LNAGX42_DEFAULT_GAIN, device_ref); 1134 if (status) 1135 goto finish; 1136 status = tdme_setsfr_request_sync( 1137 1, (sfr_address = CA8210_SFR_LNAGX43), 1138 LNAGX43_DEFAULT_GAIN, device_ref); 1139 if (status) 1140 goto finish; 1141 status = tdme_setsfr_request_sync( 1142 1, (sfr_address = CA8210_SFR_LNAGX44), 1143 LNAGX44_DEFAULT_GAIN, device_ref); 1144 if (status) 1145 goto finish; 1146 status = tdme_setsfr_request_sync( 1147 1, (sfr_address = CA8210_SFR_LNAGX45), 1148 LNAGX45_DEFAULT_GAIN, device_ref); 1149 if (status) 1150 goto finish; 1151 status = tdme_setsfr_request_sync( 1152 1, (sfr_address = CA8210_SFR_LNAGX46), 1153 LNAGX46_DEFAULT_GAIN, device_ref); 1154 if (status) 1155 goto finish; 1156 status = tdme_setsfr_request_sync( 1157 1, (sfr_address = CA8210_SFR_LNAGX47), 1158 LNAGX47_DEFAULT_GAIN, device_ref); 1159 if (status) 1160 goto finish; 1161 /* Preamble Timing Config */ 1162 status = tdme_setsfr_request_sync( 1163 1, (sfr_address = CA8210_SFR_PRECFG), 1164 *((u8 *)&pre_cfg_value), device_ref); 1165 if (status) 1166 goto finish; 1167 /* Preamble Threshold High */ 1168 status = tdme_setsfr_request_sync( 1169 1, (sfr_address = CA8210_SFR_PTHRH), 1170 PTHRH_DEFAULT_THRESHOLD, device_ref); 1171 if (status) 1172 goto finish; 1173 /* Tx Output Power 8 dBm */ 1174 status = tdme_setsfr_request_sync( 1175 0, (sfr_address = CA8210_SFR_PACFGIB), 1176 PACFGIB_DEFAULT_CURRENT, device_ref); 1177 if (status) 1178 goto finish; 1179 1180finish: 1181 if (status != IEEE802154_SUCCESS) { 1182 dev_err( 1183 &spi->dev, 1184 "failed to set sfr at %#03x, status = %#03x\n", 1185 sfr_address, 1186 status 1187 ); 1188 } 1189 return status; 1190} 1191 1192/** 1193 * tdme_channelinit() - TDME Channel Register Default Initialisation Macro (Tx) 1194 * @channel: 802.15.4 channel to initialise chip for 1195 * @device_ref: Nondescript pointer to target device 1196 * 1197 * Return: 802.15.4 status code of API calls 1198 */ 1199static u8 tdme_channelinit(u8 channel, void *device_ref) 1200{ 1201 /* Transceiver front-end local oscillator tx two-point calibration 1202 * value. Tuned for the hardware. 1203 */ 1204 u8 txcalval; 1205 1206 if (channel >= 25) 1207 txcalval = 0xA7; 1208 else if (channel >= 23) 1209 txcalval = 0xA8; 1210 else if (channel >= 22) 1211 txcalval = 0xA9; 1212 else if (channel >= 20) 1213 txcalval = 0xAA; 1214 else if (channel >= 17) 1215 txcalval = 0xAB; 1216 else if (channel >= 16) 1217 txcalval = 0xAC; 1218 else if (channel >= 14) 1219 txcalval = 0xAD; 1220 else if (channel >= 12) 1221 txcalval = 0xAE; 1222 else 1223 txcalval = 0xAF; 1224 1225 return tdme_setsfr_request_sync( 1226 1, 1227 CA8210_SFR_LOTXCAL, 1228 txcalval, 1229 device_ref 1230 ); /* LO Tx Cal */ 1231} 1232 1233/** 1234 * tdme_checkpibattribute() - Checks Attribute Values that are not checked in 1235 * MAC 1236 * @pib_attribute: Attribute Number 1237 * @pib_attribute_length: Attribute length 1238 * @pib_attribute_value: Pointer to Attribute Value 1239 * 1240 * Return: 802.15.4 status code of checks 1241 */ 1242static u8 tdme_checkpibattribute( 1243 u8 pib_attribute, 1244 u8 pib_attribute_length, 1245 const void *pib_attribute_value 1246) 1247{ 1248 u8 status = IEEE802154_SUCCESS; 1249 u8 value; 1250 1251 value = *((u8 *)pib_attribute_value); 1252 1253 switch (pib_attribute) { 1254 /* PHY */ 1255 case PHY_TRANSMIT_POWER: 1256 if (value > 0x3F) 1257 status = IEEE802154_INVALID_PARAMETER; 1258 break; 1259 case PHY_CCA_MODE: 1260 if (value > 0x03) 1261 status = IEEE802154_INVALID_PARAMETER; 1262 break; 1263 /* MAC */ 1264 case MAC_BATT_LIFE_EXT_PERIODS: 1265 if (value < 6 || value > 41) 1266 status = IEEE802154_INVALID_PARAMETER; 1267 break; 1268 case MAC_BEACON_PAYLOAD: 1269 if (pib_attribute_length > MAX_BEACON_PAYLOAD_LENGTH) 1270 status = IEEE802154_INVALID_PARAMETER; 1271 break; 1272 case MAC_BEACON_PAYLOAD_LENGTH: 1273 if (value > MAX_BEACON_PAYLOAD_LENGTH) 1274 status = IEEE802154_INVALID_PARAMETER; 1275 break; 1276 case MAC_BEACON_ORDER: 1277 if (value > 15) 1278 status = IEEE802154_INVALID_PARAMETER; 1279 break; 1280 case MAC_MAX_BE: 1281 if (value < 3 || value > 8) 1282 status = IEEE802154_INVALID_PARAMETER; 1283 break; 1284 case MAC_MAX_CSMA_BACKOFFS: 1285 if (value > 5) 1286 status = IEEE802154_INVALID_PARAMETER; 1287 break; 1288 case MAC_MAX_FRAME_RETRIES: 1289 if (value > 7) 1290 status = IEEE802154_INVALID_PARAMETER; 1291 break; 1292 case MAC_MIN_BE: 1293 if (value > 8) 1294 status = IEEE802154_INVALID_PARAMETER; 1295 break; 1296 case MAC_RESPONSE_WAIT_TIME: 1297 if (value < 2 || value > 64) 1298 status = IEEE802154_INVALID_PARAMETER; 1299 break; 1300 case MAC_SUPERFRAME_ORDER: 1301 if (value > 15) 1302 status = IEEE802154_INVALID_PARAMETER; 1303 break; 1304 /* boolean */ 1305 case MAC_ASSOCIATED_PAN_COORD: 1306 case MAC_ASSOCIATION_PERMIT: 1307 case MAC_AUTO_REQUEST: 1308 case MAC_BATT_LIFE_EXT: 1309 case MAC_GTS_PERMIT: 1310 case MAC_PROMISCUOUS_MODE: 1311 case MAC_RX_ON_WHEN_IDLE: 1312 case MAC_SECURITY_ENABLED: 1313 if (value > 1) 1314 status = IEEE802154_INVALID_PARAMETER; 1315 break; 1316 /* MAC SEC */ 1317 case MAC_AUTO_REQUEST_SECURITY_LEVEL: 1318 if (value > 7) 1319 status = IEEE802154_INVALID_PARAMETER; 1320 break; 1321 case MAC_AUTO_REQUEST_KEY_ID_MODE: 1322 if (value > 3) 1323 status = IEEE802154_INVALID_PARAMETER; 1324 break; 1325 default: 1326 break; 1327 } 1328 1329 return status; 1330} 1331 1332/** 1333 * tdme_settxpower() - Sets the tx power for MLME_SET phyTransmitPower 1334 * @txp: Transmit Power 1335 * @device_ref: Nondescript pointer to target device 1336 * 1337 * Normalised to 802.15.4 Definition (6-bit, signed): 1338 * Bit 7-6: not used 1339 * Bit 5-0: tx power (-32 - +31 dB) 1340 * 1341 * Return: 802.15.4 status code of api calls 1342 */ 1343static u8 tdme_settxpower(u8 txp, void *device_ref) 1344{ 1345 u8 status; 1346 s8 txp_val; 1347 u8 txp_ext; 1348 union pa_cfg_sfr pa_cfg_val; 1349 1350 /* extend from 6 to 8 bit */ 1351 txp_ext = 0x3F & txp; 1352 if (txp_ext & 0x20) 1353 txp_ext += 0xC0; 1354 txp_val = (s8)txp_ext; 1355 1356 if (CA8210_MAC_MPW) { 1357 if (txp_val > 0) { 1358 /* 8 dBm: ptrim = 5, itrim = +3 => +4 dBm */ 1359 pa_cfg_val.bias_current_trim = 3; 1360 pa_cfg_val.buffer_capacitor_trim = 5; 1361 pa_cfg_val.boost = 1; 1362 } else { 1363 /* 0 dBm: ptrim = 7, itrim = +3 => -6 dBm */ 1364 pa_cfg_val.bias_current_trim = 3; 1365 pa_cfg_val.buffer_capacitor_trim = 7; 1366 pa_cfg_val.boost = 0; 1367 } 1368 /* write PACFG */ 1369 status = tdme_setsfr_request_sync( 1370 0, 1371 CA8210_SFR_PACFG, 1372 pa_cfg_val.paib, 1373 device_ref 1374 ); 1375 } else { 1376 /* Look-Up Table for Setting Current and Frequency Trim values 1377 * for desired Output Power 1378 */ 1379 if (txp_val > 8) { 1380 pa_cfg_val.paib = 0x3F; 1381 } else if (txp_val == 8) { 1382 pa_cfg_val.paib = 0x32; 1383 } else if (txp_val == 7) { 1384 pa_cfg_val.paib = 0x22; 1385 } else if (txp_val == 6) { 1386 pa_cfg_val.paib = 0x18; 1387 } else if (txp_val == 5) { 1388 pa_cfg_val.paib = 0x10; 1389 } else if (txp_val == 4) { 1390 pa_cfg_val.paib = 0x0C; 1391 } else if (txp_val == 3) { 1392 pa_cfg_val.paib = 0x08; 1393 } else if (txp_val == 2) { 1394 pa_cfg_val.paib = 0x05; 1395 } else if (txp_val == 1) { 1396 pa_cfg_val.paib = 0x03; 1397 } else if (txp_val == 0) { 1398 pa_cfg_val.paib = 0x01; 1399 } else { /* < 0 */ 1400 pa_cfg_val.paib = 0x00; 1401 } 1402 /* write PACFGIB */ 1403 status = tdme_setsfr_request_sync( 1404 0, 1405 CA8210_SFR_PACFGIB, 1406 pa_cfg_val.paib, 1407 device_ref 1408 ); 1409 } 1410 1411 return status; 1412} 1413 1414/** 1415 * mcps_data_request() - mcps_data_request (Send Data) according to API Spec 1416 * @src_addr_mode: Source Addressing Mode 1417 * @dst_address_mode: Destination Addressing Mode 1418 * @dst_pan_id: Destination PAN ID 1419 * @dst_addr: Pointer to Destination Address 1420 * @msdu_length: length of Data 1421 * @msdu: Pointer to Data 1422 * @msdu_handle: Handle of Data 1423 * @tx_options: Tx Options Bit Field 1424 * @security: Pointer to Security Structure or NULL 1425 * @device_ref: Nondescript pointer to target device 1426 * 1427 * Return: 802.15.4 status code of action 1428 */ 1429static u8 mcps_data_request( 1430 u8 src_addr_mode, 1431 u8 dst_address_mode, 1432 u16 dst_pan_id, 1433 union macaddr *dst_addr, 1434 u8 msdu_length, 1435 u8 *msdu, 1436 u8 msdu_handle, 1437 u8 tx_options, 1438 struct secspec *security, 1439 void *device_ref 1440) 1441{ 1442 struct secspec *psec; 1443 struct mac_message command; 1444 1445 command.command_id = SPI_MCPS_DATA_REQUEST; 1446 command.pdata.data_req.src_addr_mode = src_addr_mode; 1447 command.pdata.data_req.dst.mode = dst_address_mode; 1448 if (dst_address_mode != MAC_MODE_NO_ADDR) { 1449 command.pdata.data_req.dst.pan_id[0] = LS_BYTE(dst_pan_id); 1450 command.pdata.data_req.dst.pan_id[1] = MS_BYTE(dst_pan_id); 1451 if (dst_address_mode == MAC_MODE_SHORT_ADDR) { 1452 command.pdata.data_req.dst.address[0] = LS_BYTE( 1453 dst_addr->short_address 1454 ); 1455 command.pdata.data_req.dst.address[1] = MS_BYTE( 1456 dst_addr->short_address 1457 ); 1458 } else { /* MAC_MODE_LONG_ADDR*/ 1459 memcpy( 1460 command.pdata.data_req.dst.address, 1461 dst_addr->ieee_address, 1462 8 1463 ); 1464 } 1465 } 1466 command.pdata.data_req.msdu_length = msdu_length; 1467 command.pdata.data_req.msdu_handle = msdu_handle; 1468 command.pdata.data_req.tx_options = tx_options; 1469 memcpy(command.pdata.data_req.msdu, msdu, msdu_length); 1470 psec = (struct secspec *)(command.pdata.data_req.msdu + msdu_length); 1471 command.length = sizeof(struct mcps_data_request_pset) - 1472 MAX_DATA_SIZE + msdu_length; 1473 if (!security || security->security_level == 0) { 1474 psec->security_level = 0; 1475 command.length += 1; 1476 } else { 1477 *psec = *security; 1478 command.length += sizeof(struct secspec); 1479 } 1480 1481 if (ca8210_spi_transfer(device_ref, &command.command_id, 1482 command.length + 2)) 1483 return IEEE802154_SYSTEM_ERROR; 1484 1485 return IEEE802154_SUCCESS; 1486} 1487 1488/** 1489 * mlme_reset_request_sync() - MLME_RESET_request/confirm according to API Spec 1490 * @set_default_pib: Set defaults in PIB 1491 * @device_ref: Nondescript pointer to target device 1492 * 1493 * Return: 802.15.4 status code of MLME-RESET.confirm 1494 */ 1495static u8 mlme_reset_request_sync( 1496 u8 set_default_pib, 1497 void *device_ref 1498) 1499{ 1500 u8 status; 1501 struct mac_message command, response; 1502 struct spi_device *spi = device_ref; 1503 1504 command.command_id = SPI_MLME_RESET_REQUEST; 1505 command.length = 1; 1506 command.pdata.u8param = set_default_pib; 1507 1508 if (cascoda_api_downstream( 1509 &command.command_id, 1510 command.length + 2, 1511 &response.command_id, 1512 device_ref)) { 1513 dev_err(&spi->dev, "cascoda_api_downstream failed\n"); 1514 return IEEE802154_SYSTEM_ERROR; 1515 } 1516 1517 if (response.command_id != SPI_MLME_RESET_CONFIRM) 1518 return IEEE802154_SYSTEM_ERROR; 1519 1520 status = response.pdata.status; 1521 1522 /* reset COORD Bit for Channel Filtering as Coordinator */ 1523 if (CA8210_MAC_WORKAROUNDS && set_default_pib && !status) { 1524 status = tdme_setsfr_request_sync( 1525 0, 1526 CA8210_SFR_MACCON, 1527 0, 1528 device_ref 1529 ); 1530 } 1531 1532 return status; 1533} 1534 1535/** 1536 * mlme_set_request_sync() - MLME_SET_request/confirm according to API Spec 1537 * @pib_attribute: Attribute Number 1538 * @pib_attribute_index: Index within Attribute if an Array 1539 * @pib_attribute_length: Attribute length 1540 * @pib_attribute_value: Pointer to Attribute Value 1541 * @device_ref: Nondescript pointer to target device 1542 * 1543 * Return: 802.15.4 status code of MLME-SET.confirm 1544 */ 1545static u8 mlme_set_request_sync( 1546 u8 pib_attribute, 1547 u8 pib_attribute_index, 1548 u8 pib_attribute_length, 1549 const void *pib_attribute_value, 1550 void *device_ref 1551) 1552{ 1553 u8 status; 1554 struct mac_message command, response; 1555 1556 /* pre-check the validity of pib_attribute values that are not checked 1557 * in MAC 1558 */ 1559 if (tdme_checkpibattribute( 1560 pib_attribute, pib_attribute_length, pib_attribute_value)) { 1561 return IEEE802154_INVALID_PARAMETER; 1562 } 1563 1564 if (pib_attribute == PHY_CURRENT_CHANNEL) { 1565 status = tdme_channelinit( 1566 *((u8 *)pib_attribute_value), 1567 device_ref 1568 ); 1569 if (status) 1570 return status; 1571 } 1572 1573 if (pib_attribute == PHY_TRANSMIT_POWER) { 1574 return tdme_settxpower( 1575 *((u8 *)pib_attribute_value), 1576 device_ref 1577 ); 1578 } 1579 1580 command.command_id = SPI_MLME_SET_REQUEST; 1581 command.length = sizeof(struct mlme_set_request_pset) - 1582 MAX_ATTRIBUTE_SIZE + pib_attribute_length; 1583 command.pdata.set_req.pib_attribute = pib_attribute; 1584 command.pdata.set_req.pib_attribute_index = pib_attribute_index; 1585 command.pdata.set_req.pib_attribute_length = pib_attribute_length; 1586 memcpy( 1587 command.pdata.set_req.pib_attribute_value, 1588 pib_attribute_value, 1589 pib_attribute_length 1590 ); 1591 1592 if (cascoda_api_downstream( 1593 &command.command_id, 1594 command.length + 2, 1595 &response.command_id, 1596 device_ref)) { 1597 return IEEE802154_SYSTEM_ERROR; 1598 } 1599 1600 if (response.command_id != SPI_MLME_SET_CONFIRM) 1601 return IEEE802154_SYSTEM_ERROR; 1602 1603 return response.pdata.status; 1604} 1605 1606/** 1607 * hwme_set_request_sync() - HWME_SET_request/confirm according to API Spec 1608 * @hw_attribute: Attribute Number 1609 * @hw_attribute_length: Attribute length 1610 * @hw_attribute_value: Pointer to Attribute Value 1611 * @device_ref: Nondescript pointer to target device 1612 * 1613 * Return: 802.15.4 status code of HWME-SET.confirm 1614 */ 1615static u8 hwme_set_request_sync( 1616 u8 hw_attribute, 1617 u8 hw_attribute_length, 1618 u8 *hw_attribute_value, 1619 void *device_ref 1620) 1621{ 1622 struct mac_message command, response; 1623 1624 command.command_id = SPI_HWME_SET_REQUEST; 1625 command.length = 2 + hw_attribute_length; 1626 command.pdata.hwme_set_req.hw_attribute = hw_attribute; 1627 command.pdata.hwme_set_req.hw_attribute_length = hw_attribute_length; 1628 memcpy( 1629 command.pdata.hwme_set_req.hw_attribute_value, 1630 hw_attribute_value, 1631 hw_attribute_length 1632 ); 1633 1634 if (cascoda_api_downstream( 1635 &command.command_id, 1636 command.length + 2, 1637 &response.command_id, 1638 device_ref)) { 1639 return IEEE802154_SYSTEM_ERROR; 1640 } 1641 1642 if (response.command_id != SPI_HWME_SET_CONFIRM) 1643 return IEEE802154_SYSTEM_ERROR; 1644 1645 return response.pdata.hwme_set_cnf.status; 1646} 1647 1648/** 1649 * hwme_get_request_sync() - HWME_GET_request/confirm according to API Spec 1650 * @hw_attribute: Attribute Number 1651 * @hw_attribute_length: Attribute length 1652 * @hw_attribute_value: Pointer to Attribute Value 1653 * @device_ref: Nondescript pointer to target device 1654 * 1655 * Return: 802.15.4 status code of HWME-GET.confirm 1656 */ 1657static u8 hwme_get_request_sync( 1658 u8 hw_attribute, 1659 u8 *hw_attribute_length, 1660 u8 *hw_attribute_value, 1661 void *device_ref 1662) 1663{ 1664 struct mac_message command, response; 1665 1666 command.command_id = SPI_HWME_GET_REQUEST; 1667 command.length = 1; 1668 command.pdata.hwme_get_req.hw_attribute = hw_attribute; 1669 1670 if (cascoda_api_downstream( 1671 &command.command_id, 1672 command.length + 2, 1673 &response.command_id, 1674 device_ref)) { 1675 return IEEE802154_SYSTEM_ERROR; 1676 } 1677 1678 if (response.command_id != SPI_HWME_GET_CONFIRM) 1679 return IEEE802154_SYSTEM_ERROR; 1680 1681 if (response.pdata.hwme_get_cnf.status == IEEE802154_SUCCESS) { 1682 *hw_attribute_length = 1683 response.pdata.hwme_get_cnf.hw_attribute_length; 1684 memcpy( 1685 hw_attribute_value, 1686 response.pdata.hwme_get_cnf.hw_attribute_value, 1687 *hw_attribute_length 1688 ); 1689 } 1690 1691 return response.pdata.hwme_get_cnf.status; 1692} 1693 1694/* Network driver operation */ 1695 1696/** 1697 * ca8210_async_xmit_complete() - Called to announce that an asynchronous 1698 * transmission has finished 1699 * @hw: ieee802154_hw of ca8210 that has finished exchange 1700 * @msduhandle: Identifier of transmission that has completed 1701 * @status: Returned 802.15.4 status code of the transmission 1702 * 1703 * Return: 0 or linux error code 1704 */ 1705static int ca8210_async_xmit_complete( 1706 struct ieee802154_hw *hw, 1707 u8 msduhandle, 1708 u8 status) 1709{ 1710 struct ca8210_priv *priv = hw->priv; 1711 1712 if (priv->nextmsduhandle != msduhandle) { 1713 dev_err( 1714 &priv->spi->dev, 1715 "Unexpected msdu_handle on data confirm, Expected %d, got %d\n", 1716 priv->nextmsduhandle, 1717 msduhandle 1718 ); 1719 return -EIO; 1720 } 1721 1722 priv->async_tx_pending = false; 1723 priv->nextmsduhandle++; 1724 1725 if (status) { 1726 dev_err( 1727 &priv->spi->dev, 1728 "Link transmission unsuccessful, status = %d\n", 1729 status 1730 ); 1731 if (status != IEEE802154_TRANSACTION_OVERFLOW) { 1732 ieee802154_xmit_error(priv->hw, priv->tx_skb, status); 1733 return 0; 1734 } 1735 } 1736 ieee802154_xmit_complete(priv->hw, priv->tx_skb, true); 1737 1738 return 0; 1739} 1740 1741/** 1742 * ca8210_skb_rx() - Contructs a properly framed socket buffer from a received 1743 * MCPS_DATA_indication 1744 * @hw: ieee802154_hw that MCPS_DATA_indication was received by 1745 * @len: length of MCPS_DATA_indication 1746 * @data_ind: Octet array of MCPS_DATA_indication 1747 * 1748 * Called by the spi driver whenever a SAP command is received, this function 1749 * will ascertain whether the command is of interest to the network driver and 1750 * take necessary action. 1751 * 1752 * Return: 0 or linux error code 1753 */ 1754static int ca8210_skb_rx( 1755 struct ieee802154_hw *hw, 1756 size_t len, 1757 u8 *data_ind 1758) 1759{ 1760 struct ieee802154_hdr hdr; 1761 int msdulen; 1762 int hlen; 1763 u8 mpdulinkquality = data_ind[23]; 1764 struct sk_buff *skb; 1765 struct ca8210_priv *priv = hw->priv; 1766 1767 /* Allocate mtu size buffer for every rx packet */ 1768 skb = dev_alloc_skb(IEEE802154_MTU + sizeof(hdr)); 1769 if (!skb) 1770 return -ENOMEM; 1771 1772 skb_reserve(skb, sizeof(hdr)); 1773 1774 msdulen = data_ind[22]; /* msdu_length */ 1775 if (msdulen > IEEE802154_MTU) { 1776 dev_err( 1777 &priv->spi->dev, 1778 "received erroneously large msdu length!\n" 1779 ); 1780 kfree_skb(skb); 1781 return -EMSGSIZE; 1782 } 1783 dev_dbg(&priv->spi->dev, "skb buffer length = %d\n", msdulen); 1784 1785 if (priv->promiscuous) 1786 goto copy_payload; 1787 1788 /* Populate hdr */ 1789 hdr.sec.level = data_ind[29 + msdulen]; 1790 dev_dbg(&priv->spi->dev, "security level: %#03x\n", hdr.sec.level); 1791 if (hdr.sec.level > 0) { 1792 hdr.sec.key_id_mode = data_ind[30 + msdulen]; 1793 memcpy(&hdr.sec.extended_src, &data_ind[31 + msdulen], 8); 1794 hdr.sec.key_id = data_ind[39 + msdulen]; 1795 } 1796 hdr.source.mode = data_ind[0]; 1797 dev_dbg(&priv->spi->dev, "srcAddrMode: %#03x\n", hdr.source.mode); 1798 hdr.source.pan_id = *(u16 *)&data_ind[1]; 1799 dev_dbg(&priv->spi->dev, "srcPanId: %#06x\n", hdr.source.pan_id); 1800 memcpy(&hdr.source.extended_addr, &data_ind[3], 8); 1801 hdr.dest.mode = data_ind[11]; 1802 dev_dbg(&priv->spi->dev, "dstAddrMode: %#03x\n", hdr.dest.mode); 1803 hdr.dest.pan_id = *(u16 *)&data_ind[12]; 1804 dev_dbg(&priv->spi->dev, "dstPanId: %#06x\n", hdr.dest.pan_id); 1805 memcpy(&hdr.dest.extended_addr, &data_ind[14], 8); 1806 1807 /* Fill in FC implicitly */ 1808 hdr.fc.type = 1; /* Data frame */ 1809 if (hdr.sec.level) 1810 hdr.fc.security_enabled = 1; 1811 else 1812 hdr.fc.security_enabled = 0; 1813 if (data_ind[1] != data_ind[12] || data_ind[2] != data_ind[13]) 1814 hdr.fc.intra_pan = 1; 1815 else 1816 hdr.fc.intra_pan = 0; 1817 hdr.fc.dest_addr_mode = hdr.dest.mode; 1818 hdr.fc.source_addr_mode = hdr.source.mode; 1819 1820 /* Add hdr to front of buffer */ 1821 hlen = ieee802154_hdr_push(skb, &hdr); 1822 1823 if (hlen < 0) { 1824 dev_crit(&priv->spi->dev, "failed to push mac hdr onto skb!\n"); 1825 kfree_skb(skb); 1826 return hlen; 1827 } 1828 1829 skb_reset_mac_header(skb); 1830 skb->mac_len = hlen; 1831 1832copy_payload: 1833 /* Add <msdulen> bytes of space to the back of the buffer */ 1834 /* Copy msdu to skb */ 1835 skb_put_data(skb, &data_ind[29], msdulen); 1836 1837 ieee802154_rx_irqsafe(hw, skb, mpdulinkquality); 1838 return 0; 1839} 1840 1841/** 1842 * ca8210_net_rx() - Acts upon received SAP commands relevant to the network 1843 * driver 1844 * @hw: ieee802154_hw that command was received by 1845 * @command: Octet array of received command 1846 * @len: length of the received command 1847 * 1848 * Called by the spi driver whenever a SAP command is received, this function 1849 * will ascertain whether the command is of interest to the network driver and 1850 * take necessary action. 1851 * 1852 * Return: 0 or linux error code 1853 */ 1854static int ca8210_net_rx(struct ieee802154_hw *hw, u8 *command, size_t len) 1855{ 1856 struct ca8210_priv *priv = hw->priv; 1857 unsigned long flags; 1858 u8 status; 1859 1860 dev_dbg(&priv->spi->dev, "%s: CmdID = %d\n", __func__, command[0]); 1861 1862 if (command[0] == SPI_MCPS_DATA_INDICATION) { 1863 /* Received data */ 1864 spin_lock_irqsave(&priv->lock, flags); 1865 if (command[26] == priv->last_dsn) { 1866 dev_dbg( 1867 &priv->spi->dev, 1868 "DSN %d resend received, ignoring...\n", 1869 command[26] 1870 ); 1871 spin_unlock_irqrestore(&priv->lock, flags); 1872 return 0; 1873 } 1874 priv->last_dsn = command[26]; 1875 spin_unlock_irqrestore(&priv->lock, flags); 1876 return ca8210_skb_rx(hw, len - 2, command + 2); 1877 } else if (command[0] == SPI_MCPS_DATA_CONFIRM) { 1878 status = command[3]; 1879 if (priv->async_tx_pending) { 1880 return ca8210_async_xmit_complete( 1881 hw, 1882 command[2], 1883 status 1884 ); 1885 } 1886 } 1887 1888 return 0; 1889} 1890 1891/** 1892 * ca8210_skb_tx() - Transmits a given socket buffer using the ca8210 1893 * @skb: Socket buffer to transmit 1894 * @msduhandle: Data identifier to pass to the 802.15.4 MAC 1895 * @priv: Pointer to private data section of target ca8210 1896 * 1897 * Return: 0 or linux error code 1898 */ 1899static int ca8210_skb_tx( 1900 struct sk_buff *skb, 1901 u8 msduhandle, 1902 struct ca8210_priv *priv 1903) 1904{ 1905 int status; 1906 struct ieee802154_hdr header = { }; 1907 struct secspec secspec; 1908 unsigned int mac_len; 1909 1910 dev_dbg(&priv->spi->dev, "%s called\n", __func__); 1911 1912 /* Get addressing info from skb - ieee802154 layer creates a full 1913 * packet 1914 */ 1915 mac_len = ieee802154_hdr_peek_addrs(skb, &header); 1916 1917 secspec.security_level = header.sec.level; 1918 secspec.key_id_mode = header.sec.key_id_mode; 1919 if (secspec.key_id_mode == 2) 1920 memcpy(secspec.key_source, &header.sec.short_src, 4); 1921 else if (secspec.key_id_mode == 3) 1922 memcpy(secspec.key_source, &header.sec.extended_src, 8); 1923 secspec.key_index = header.sec.key_id; 1924 1925 /* Pass to Cascoda API */ 1926 status = mcps_data_request( 1927 header.source.mode, 1928 header.dest.mode, 1929 header.dest.pan_id, 1930 (union macaddr *)&header.dest.extended_addr, 1931 skb->len - mac_len, 1932 &skb->data[mac_len], 1933 msduhandle, 1934 header.fc.ack_request, 1935 &secspec, 1936 priv->spi 1937 ); 1938 return link_to_linux_err(status); 1939} 1940 1941/** 1942 * ca8210_start() - Starts the network driver 1943 * @hw: ieee802154_hw of ca8210 being started 1944 * 1945 * Return: 0 or linux error code 1946 */ 1947static int ca8210_start(struct ieee802154_hw *hw) 1948{ 1949 int status; 1950 u8 rx_on_when_idle; 1951 u8 lqi_threshold = 0; 1952 struct ca8210_priv *priv = hw->priv; 1953 1954 priv->last_dsn = -1; 1955 /* Turn receiver on when idle for now just to test rx */ 1956 rx_on_when_idle = 1; 1957 status = mlme_set_request_sync( 1958 MAC_RX_ON_WHEN_IDLE, 1959 0, 1960 1, 1961 &rx_on_when_idle, 1962 priv->spi 1963 ); 1964 if (status) { 1965 dev_crit( 1966 &priv->spi->dev, 1967 "Setting rx_on_when_idle failed, status = %d\n", 1968 status 1969 ); 1970 return link_to_linux_err(status); 1971 } 1972 status = hwme_set_request_sync( 1973 HWME_LQILIMIT, 1974 1, 1975 &lqi_threshold, 1976 priv->spi 1977 ); 1978 if (status) { 1979 dev_crit( 1980 &priv->spi->dev, 1981 "Setting lqilimit failed, status = %d\n", 1982 status 1983 ); 1984 return link_to_linux_err(status); 1985 } 1986 1987 return 0; 1988} 1989 1990/** 1991 * ca8210_stop() - Stops the network driver 1992 * @hw: ieee802154_hw of ca8210 being stopped 1993 * 1994 * Return: 0 or linux error code 1995 */ 1996static void ca8210_stop(struct ieee802154_hw *hw) 1997{ 1998} 1999 2000/** 2001 * ca8210_xmit_async() - Asynchronously transmits a given socket buffer using 2002 * the ca8210 2003 * @hw: ieee802154_hw of ca8210 to transmit from 2004 * @skb: Socket buffer to transmit 2005 * 2006 * Return: 0 or linux error code 2007 */ 2008static int ca8210_xmit_async(struct ieee802154_hw *hw, struct sk_buff *skb) 2009{ 2010 struct ca8210_priv *priv = hw->priv; 2011 int status; 2012 2013 dev_dbg(&priv->spi->dev, "calling %s\n", __func__); 2014 2015 priv->tx_skb = skb; 2016 priv->async_tx_pending = true; 2017 status = ca8210_skb_tx(skb, priv->nextmsduhandle, priv); 2018 return status; 2019} 2020 2021/** 2022 * ca8210_get_ed() - Returns the measured energy on the current channel at this 2023 * instant in time 2024 * @hw: ieee802154_hw of target ca8210 2025 * @level: Measured Energy Detect level 2026 * 2027 * Return: 0 or linux error code 2028 */ 2029static int ca8210_get_ed(struct ieee802154_hw *hw, u8 *level) 2030{ 2031 u8 lenvar; 2032 struct ca8210_priv *priv = hw->priv; 2033 2034 return link_to_linux_err( 2035 hwme_get_request_sync(HWME_EDVALUE, &lenvar, level, priv->spi) 2036 ); 2037} 2038 2039/** 2040 * ca8210_set_channel() - Sets the current operating 802.15.4 channel of the 2041 * ca8210 2042 * @hw: ieee802154_hw of target ca8210 2043 * @page: Channel page to set 2044 * @channel: Channel number to set 2045 * 2046 * Return: 0 or linux error code 2047 */ 2048static int ca8210_set_channel( 2049 struct ieee802154_hw *hw, 2050 u8 page, 2051 u8 channel 2052) 2053{ 2054 u8 status; 2055 struct ca8210_priv *priv = hw->priv; 2056 2057 status = mlme_set_request_sync( 2058 PHY_CURRENT_CHANNEL, 2059 0, 2060 1, 2061 &channel, 2062 priv->spi 2063 ); 2064 if (status) { 2065 dev_err( 2066 &priv->spi->dev, 2067 "error setting channel, MLME-SET.confirm status = %d\n", 2068 status 2069 ); 2070 } 2071 return link_to_linux_err(status); 2072} 2073 2074/** 2075 * ca8210_set_hw_addr_filt() - Sets the address filtering parameters of the 2076 * ca8210 2077 * @hw: ieee802154_hw of target ca8210 2078 * @filt: Filtering parameters 2079 * @changed: Bitmap representing which parameters to change 2080 * 2081 * Effectively just sets the actual addressing information identifying this node 2082 * as all filtering is performed by the ca8210 as detailed in the IEEE 802.15.4 2083 * 2006 specification. 2084 * 2085 * Return: 0 or linux error code 2086 */ 2087static int ca8210_set_hw_addr_filt( 2088 struct ieee802154_hw *hw, 2089 struct ieee802154_hw_addr_filt *filt, 2090 unsigned long changed 2091) 2092{ 2093 u8 status = 0; 2094 struct ca8210_priv *priv = hw->priv; 2095 2096 if (changed & IEEE802154_AFILT_PANID_CHANGED) { 2097 status = mlme_set_request_sync( 2098 MAC_PAN_ID, 2099 0, 2100 2, 2101 &filt->pan_id, priv->spi 2102 ); 2103 if (status) { 2104 dev_err( 2105 &priv->spi->dev, 2106 "error setting pan id, MLME-SET.confirm status = %d", 2107 status 2108 ); 2109 return link_to_linux_err(status); 2110 } 2111 } 2112 if (changed & IEEE802154_AFILT_SADDR_CHANGED) { 2113 status = mlme_set_request_sync( 2114 MAC_SHORT_ADDRESS, 2115 0, 2116 2, 2117 &filt->short_addr, priv->spi 2118 ); 2119 if (status) { 2120 dev_err( 2121 &priv->spi->dev, 2122 "error setting short address, MLME-SET.confirm status = %d", 2123 status 2124 ); 2125 return link_to_linux_err(status); 2126 } 2127 } 2128 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { 2129 status = mlme_set_request_sync( 2130 NS_IEEE_ADDRESS, 2131 0, 2132 8, 2133 &filt->ieee_addr, 2134 priv->spi 2135 ); 2136 if (status) { 2137 dev_err( 2138 &priv->spi->dev, 2139 "error setting ieee address, MLME-SET.confirm status = %d", 2140 status 2141 ); 2142 return link_to_linux_err(status); 2143 } 2144 } 2145 /* TODO: Should use MLME_START to set coord bit? */ 2146 return 0; 2147} 2148 2149/** 2150 * ca8210_set_tx_power() - Sets the transmit power of the ca8210 2151 * @hw: ieee802154_hw of target ca8210 2152 * @mbm: Transmit power in mBm (dBm*100) 2153 * 2154 * Return: 0 or linux error code 2155 */ 2156static int ca8210_set_tx_power(struct ieee802154_hw *hw, s32 mbm) 2157{ 2158 struct ca8210_priv *priv = hw->priv; 2159 2160 mbm /= 100; 2161 return link_to_linux_err( 2162 mlme_set_request_sync(PHY_TRANSMIT_POWER, 0, 1, &mbm, priv->spi) 2163 ); 2164} 2165 2166/** 2167 * ca8210_set_cca_mode() - Sets the clear channel assessment mode of the ca8210 2168 * @hw: ieee802154_hw of target ca8210 2169 * @cca: CCA mode to set 2170 * 2171 * Return: 0 or linux error code 2172 */ 2173static int ca8210_set_cca_mode( 2174 struct ieee802154_hw *hw, 2175 const struct wpan_phy_cca *cca 2176) 2177{ 2178 u8 status; 2179 u8 cca_mode; 2180 struct ca8210_priv *priv = hw->priv; 2181 2182 cca_mode = cca->mode & 3; 2183 if (cca_mode == 3 && cca->opt == NL802154_CCA_OPT_ENERGY_CARRIER_OR) { 2184 /* cca_mode 0 == CS OR ED, 3 == CS AND ED */ 2185 cca_mode = 0; 2186 } 2187 status = mlme_set_request_sync( 2188 PHY_CCA_MODE, 2189 0, 2190 1, 2191 &cca_mode, 2192 priv->spi 2193 ); 2194 if (status) { 2195 dev_err( 2196 &priv->spi->dev, 2197 "error setting cca mode, MLME-SET.confirm status = %d", 2198 status 2199 ); 2200 } 2201 return link_to_linux_err(status); 2202} 2203 2204/** 2205 * ca8210_set_cca_ed_level() - Sets the CCA ED level of the ca8210 2206 * @hw: ieee802154_hw of target ca8210 2207 * @level: ED level to set (in mbm) 2208 * 2209 * Sets the minimum threshold of measured energy above which the ca8210 will 2210 * back off and retry a transmission. 2211 * 2212 * Return: 0 or linux error code 2213 */ 2214static int ca8210_set_cca_ed_level(struct ieee802154_hw *hw, s32 level) 2215{ 2216 u8 status; 2217 u8 ed_threshold = (level / 100) * 2 + 256; 2218 struct ca8210_priv *priv = hw->priv; 2219 2220 status = hwme_set_request_sync( 2221 HWME_EDTHRESHOLD, 2222 1, 2223 &ed_threshold, 2224 priv->spi 2225 ); 2226 if (status) { 2227 dev_err( 2228 &priv->spi->dev, 2229 "error setting ed threshold, HWME-SET.confirm status = %d", 2230 status 2231 ); 2232 } 2233 return link_to_linux_err(status); 2234} 2235 2236/** 2237 * ca8210_set_csma_params() - Sets the CSMA parameters of the ca8210 2238 * @hw: ieee802154_hw of target ca8210 2239 * @min_be: Minimum backoff exponent when backing off a transmission 2240 * @max_be: Maximum backoff exponent when backing off a transmission 2241 * @retries: Number of times to retry after backing off 2242 * 2243 * Return: 0 or linux error code 2244 */ 2245static int ca8210_set_csma_params( 2246 struct ieee802154_hw *hw, 2247 u8 min_be, 2248 u8 max_be, 2249 u8 retries 2250) 2251{ 2252 u8 status; 2253 struct ca8210_priv *priv = hw->priv; 2254 2255 status = mlme_set_request_sync(MAC_MIN_BE, 0, 1, &min_be, priv->spi); 2256 if (status) { 2257 dev_err( 2258 &priv->spi->dev, 2259 "error setting min be, MLME-SET.confirm status = %d", 2260 status 2261 ); 2262 return link_to_linux_err(status); 2263 } 2264 status = mlme_set_request_sync(MAC_MAX_BE, 0, 1, &max_be, priv->spi); 2265 if (status) { 2266 dev_err( 2267 &priv->spi->dev, 2268 "error setting max be, MLME-SET.confirm status = %d", 2269 status 2270 ); 2271 return link_to_linux_err(status); 2272 } 2273 status = mlme_set_request_sync( 2274 MAC_MAX_CSMA_BACKOFFS, 2275 0, 2276 1, 2277 &retries, 2278 priv->spi 2279 ); 2280 if (status) { 2281 dev_err( 2282 &priv->spi->dev, 2283 "error setting max csma backoffs, MLME-SET.confirm status = %d", 2284 status 2285 ); 2286 } 2287 return link_to_linux_err(status); 2288} 2289 2290/** 2291 * ca8210_set_frame_retries() - Sets the maximum frame retries of the ca8210 2292 * @hw: ieee802154_hw of target ca8210 2293 * @retries: Number of retries 2294 * 2295 * Sets the number of times to retry a transmission if no acknowledgment was 2296 * was received from the other end when one was requested. 2297 * 2298 * Return: 0 or linux error code 2299 */ 2300static int ca8210_set_frame_retries(struct ieee802154_hw *hw, s8 retries) 2301{ 2302 u8 status; 2303 struct ca8210_priv *priv = hw->priv; 2304 2305 status = mlme_set_request_sync( 2306 MAC_MAX_FRAME_RETRIES, 2307 0, 2308 1, 2309 &retries, 2310 priv->spi 2311 ); 2312 if (status) { 2313 dev_err( 2314 &priv->spi->dev, 2315 "error setting frame retries, MLME-SET.confirm status = %d", 2316 status 2317 ); 2318 } 2319 return link_to_linux_err(status); 2320} 2321 2322static int ca8210_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) 2323{ 2324 u8 status; 2325 struct ca8210_priv *priv = hw->priv; 2326 2327 status = mlme_set_request_sync( 2328 MAC_PROMISCUOUS_MODE, 2329 0, 2330 1, 2331 (const void *)&on, 2332 priv->spi 2333 ); 2334 if (status) { 2335 dev_err( 2336 &priv->spi->dev, 2337 "error setting promiscuous mode, MLME-SET.confirm status = %d", 2338 status 2339 ); 2340 } else { 2341 priv->promiscuous = on; 2342 } 2343 return link_to_linux_err(status); 2344} 2345 2346static const struct ieee802154_ops ca8210_phy_ops = { 2347 .start = ca8210_start, 2348 .stop = ca8210_stop, 2349 .xmit_async = ca8210_xmit_async, 2350 .ed = ca8210_get_ed, 2351 .set_channel = ca8210_set_channel, 2352 .set_hw_addr_filt = ca8210_set_hw_addr_filt, 2353 .set_txpower = ca8210_set_tx_power, 2354 .set_cca_mode = ca8210_set_cca_mode, 2355 .set_cca_ed_level = ca8210_set_cca_ed_level, 2356 .set_csma_params = ca8210_set_csma_params, 2357 .set_frame_retries = ca8210_set_frame_retries, 2358 .set_promiscuous_mode = ca8210_set_promiscuous_mode 2359}; 2360 2361/* Test/EVBME Interface */ 2362 2363/** 2364 * ca8210_test_int_open() - Opens the test interface to the userspace 2365 * @inodp: inode representation of file interface 2366 * @filp: file interface 2367 * 2368 * Return: 0 or linux error code 2369 */ 2370static int ca8210_test_int_open(struct inode *inodp, struct file *filp) 2371{ 2372 struct ca8210_priv *priv = inodp->i_private; 2373 2374 filp->private_data = priv; 2375 return 0; 2376} 2377 2378/** 2379 * ca8210_test_check_upstream() - Checks a command received from the upstream 2380 * testing interface for required action 2381 * @buf: Buffer containing command to check 2382 * @device_ref: Nondescript pointer to target device 2383 * 2384 * Return: 0 or linux error code 2385 */ 2386static int ca8210_test_check_upstream(u8 *buf, void *device_ref) 2387{ 2388 int ret; 2389 u8 response[CA8210_SPI_BUF_SIZE]; 2390 2391 if (buf[0] == SPI_MLME_SET_REQUEST) { 2392 ret = tdme_checkpibattribute(buf[2], buf[4], buf + 5); 2393 if (ret) { 2394 response[0] = SPI_MLME_SET_CONFIRM; 2395 response[1] = 3; 2396 response[2] = IEEE802154_INVALID_PARAMETER; 2397 response[3] = buf[2]; 2398 response[4] = buf[3]; 2399 if (cascoda_api_upstream) 2400 cascoda_api_upstream(response, 5, device_ref); 2401 return ret; 2402 } 2403 } 2404 if (buf[0] == SPI_MLME_ASSOCIATE_REQUEST) { 2405 return tdme_channelinit(buf[2], device_ref); 2406 } else if (buf[0] == SPI_MLME_START_REQUEST) { 2407 return tdme_channelinit(buf[4], device_ref); 2408 } else if ( 2409 (buf[0] == SPI_MLME_SET_REQUEST) && 2410 (buf[2] == PHY_CURRENT_CHANNEL) 2411 ) { 2412 return tdme_channelinit(buf[5], device_ref); 2413 } else if ( 2414 (buf[0] == SPI_TDME_SET_REQUEST) && 2415 (buf[2] == TDME_CHANNEL) 2416 ) { 2417 return tdme_channelinit(buf[4], device_ref); 2418 } else if ( 2419 (CA8210_MAC_WORKAROUNDS) && 2420 (buf[0] == SPI_MLME_RESET_REQUEST) && 2421 (buf[2] == 1) 2422 ) { 2423 /* reset COORD Bit for Channel Filtering as Coordinator */ 2424 return tdme_setsfr_request_sync( 2425 0, 2426 CA8210_SFR_MACCON, 2427 0, 2428 device_ref 2429 ); 2430 } 2431 return 0; 2432} /* End of EVBMECheckSerialCommand() */ 2433 2434/** 2435 * ca8210_test_int_user_write() - Called by a process in userspace to send a 2436 * message to the ca8210 drivers 2437 * @filp: file interface 2438 * @in_buf: Buffer containing message to write 2439 * @len: length of message 2440 * @off: file offset 2441 * 2442 * Return: 0 or linux error code 2443 */ 2444static ssize_t ca8210_test_int_user_write( 2445 struct file *filp, 2446 const char __user *in_buf, 2447 size_t len, 2448 loff_t *off 2449) 2450{ 2451 int ret; 2452 struct ca8210_priv *priv = filp->private_data; 2453 u8 command[CA8210_SPI_BUF_SIZE]; 2454 2455 memset(command, SPI_IDLE, 6); 2456 if (len > CA8210_SPI_BUF_SIZE || len < 2) { 2457 dev_warn( 2458 &priv->spi->dev, 2459 "userspace requested erroneous write length (%zu)\n", 2460 len 2461 ); 2462 return -EBADE; 2463 } 2464 2465 ret = copy_from_user(command, in_buf, len); 2466 if (ret) { 2467 dev_err( 2468 &priv->spi->dev, 2469 "%d bytes could not be copied from userspace\n", 2470 ret 2471 ); 2472 return -EIO; 2473 } 2474 if (len != command[1] + 2) { 2475 dev_err( 2476 &priv->spi->dev, 2477 "write len does not match packet length field\n" 2478 ); 2479 return -EBADE; 2480 } 2481 2482 ret = ca8210_test_check_upstream(command, priv->spi); 2483 if (ret == 0) { 2484 ret = ca8210_spi_exchange( 2485 command, 2486 command[1] + 2, 2487 NULL, 2488 priv->spi 2489 ); 2490 if (ret < 0) { 2491 /* effectively 0 bytes were written successfully */ 2492 dev_err( 2493 &priv->spi->dev, 2494 "spi exchange failed\n" 2495 ); 2496 return ret; 2497 } 2498 if (command[0] & SPI_SYN) 2499 priv->sync_down++; 2500 } 2501 2502 return len; 2503} 2504 2505/** 2506 * ca8210_test_int_user_read() - Called by a process in userspace to read a 2507 * message from the ca8210 drivers 2508 * @filp: file interface 2509 * @buf: Buffer to write message to 2510 * @len: length of message to read (ignored) 2511 * @offp: file offset 2512 * 2513 * If the O_NONBLOCK flag was set when opening the file then this function will 2514 * not block, i.e. it will return if the fifo is empty. Otherwise the function 2515 * will block, i.e. wait until new data arrives. 2516 * 2517 * Return: number of bytes read 2518 */ 2519static ssize_t ca8210_test_int_user_read( 2520 struct file *filp, 2521 char __user *buf, 2522 size_t len, 2523 loff_t *offp 2524) 2525{ 2526 int i, cmdlen; 2527 struct ca8210_priv *priv = filp->private_data; 2528 unsigned char *fifo_buffer; 2529 unsigned long bytes_not_copied; 2530 2531 if (filp->f_flags & O_NONBLOCK) { 2532 /* Non-blocking mode */ 2533 if (kfifo_is_empty(&priv->test.up_fifo)) 2534 return 0; 2535 } else { 2536 /* Blocking mode */ 2537 wait_event_interruptible( 2538 priv->test.readq, 2539 !kfifo_is_empty(&priv->test.up_fifo) 2540 ); 2541 } 2542 2543 if (kfifo_out(&priv->test.up_fifo, &fifo_buffer, 4) != 4) { 2544 dev_err( 2545 &priv->spi->dev, 2546 "test_interface: Wrong number of elements popped from upstream fifo\n" 2547 ); 2548 return 0; 2549 } 2550 cmdlen = fifo_buffer[1]; 2551 bytes_not_copied = cmdlen + 2; 2552 2553 bytes_not_copied = copy_to_user(buf, fifo_buffer, bytes_not_copied); 2554 if (bytes_not_copied > 0) { 2555 dev_err( 2556 &priv->spi->dev, 2557 "%lu bytes could not be copied to user space!\n", 2558 bytes_not_copied 2559 ); 2560 } 2561 2562 dev_dbg(&priv->spi->dev, "test_interface: Cmd len = %d\n", cmdlen); 2563 2564 dev_dbg(&priv->spi->dev, "test_interface: Read\n"); 2565 for (i = 0; i < cmdlen + 2; i++) 2566 dev_dbg(&priv->spi->dev, "%#03x\n", fifo_buffer[i]); 2567 2568 kfree(fifo_buffer); 2569 2570 return cmdlen + 2; 2571} 2572 2573/** 2574 * ca8210_test_int_ioctl() - Called by a process in userspace to enact an 2575 * arbitrary action 2576 * @filp: file interface 2577 * @ioctl_num: which action to enact 2578 * @ioctl_param: arbitrary parameter for the action 2579 * 2580 * Return: status 2581 */ 2582static long ca8210_test_int_ioctl( 2583 struct file *filp, 2584 unsigned int ioctl_num, 2585 unsigned long ioctl_param 2586) 2587{ 2588 struct ca8210_priv *priv = filp->private_data; 2589 2590 switch (ioctl_num) { 2591 case CA8210_IOCTL_HARD_RESET: 2592 ca8210_reset_send(priv->spi, ioctl_param); 2593 break; 2594 default: 2595 break; 2596 } 2597 return 0; 2598} 2599 2600/** 2601 * ca8210_test_int_poll() - Called by a process in userspace to determine which 2602 * actions are currently possible for the file 2603 * @filp: file interface 2604 * @ptable: poll table 2605 * 2606 * Return: set of poll return flags 2607 */ 2608static __poll_t ca8210_test_int_poll( 2609 struct file *filp, 2610 struct poll_table_struct *ptable 2611) 2612{ 2613 __poll_t return_flags = 0; 2614 struct ca8210_priv *priv = filp->private_data; 2615 2616 poll_wait(filp, &priv->test.readq, ptable); 2617 if (!kfifo_is_empty(&priv->test.up_fifo)) 2618 return_flags |= (EPOLLIN | EPOLLRDNORM); 2619 if (wait_event_interruptible( 2620 priv->test.readq, 2621 !kfifo_is_empty(&priv->test.up_fifo))) { 2622 return EPOLLERR; 2623 } 2624 return return_flags; 2625} 2626 2627static const struct file_operations test_int_fops = { 2628 .read = ca8210_test_int_user_read, 2629 .write = ca8210_test_int_user_write, 2630 .open = ca8210_test_int_open, 2631 .release = NULL, 2632 .unlocked_ioctl = ca8210_test_int_ioctl, 2633 .poll = ca8210_test_int_poll 2634}; 2635 2636/* Init/Deinit */ 2637 2638/** 2639 * ca8210_get_platform_data() - Populate a ca8210_platform_data object 2640 * @spi_device: Pointer to ca8210 spi device object to get data for 2641 * @pdata: Pointer to ca8210_platform_data object to populate 2642 * 2643 * Return: 0 or linux error code 2644 */ 2645static int ca8210_get_platform_data( 2646 struct spi_device *spi_device, 2647 struct ca8210_platform_data *pdata 2648) 2649{ 2650 int ret = 0; 2651 2652 if (!spi_device->dev.of_node) 2653 return -EINVAL; 2654 2655 pdata->extclockenable = of_property_read_bool( 2656 spi_device->dev.of_node, 2657 "extclock-enable" 2658 ); 2659 if (pdata->extclockenable) { 2660 ret = of_property_read_u32( 2661 spi_device->dev.of_node, 2662 "extclock-freq", 2663 &pdata->extclockfreq 2664 ); 2665 if (ret < 0) 2666 return ret; 2667 2668 ret = of_property_read_u32( 2669 spi_device->dev.of_node, 2670 "extclock-gpio", 2671 &pdata->extclockgpio 2672 ); 2673 } 2674 2675 return ret; 2676} 2677 2678/** 2679 * ca8210_config_extern_clk() - Configure the external clock provided by the 2680 * ca8210 2681 * @pdata: Pointer to ca8210_platform_data containing clock parameters 2682 * @spi: Pointer to target ca8210 spi device 2683 * @on: True to turn the clock on, false to turn off 2684 * 2685 * The external clock is configured with a frequency and output pin taken from 2686 * the platform data. 2687 * 2688 * Return: 0 or linux error code 2689 */ 2690static int ca8210_config_extern_clk( 2691 struct ca8210_platform_data *pdata, 2692 struct spi_device *spi, 2693 bool on 2694) 2695{ 2696 u8 clkparam[2]; 2697 2698 if (on) { 2699 dev_info(&spi->dev, "Switching external clock on\n"); 2700 switch (pdata->extclockfreq) { 2701 case SIXTEEN_MHZ: 2702 clkparam[0] = 1; 2703 break; 2704 case EIGHT_MHZ: 2705 clkparam[0] = 2; 2706 break; 2707 case FOUR_MHZ: 2708 clkparam[0] = 3; 2709 break; 2710 case TWO_MHZ: 2711 clkparam[0] = 4; 2712 break; 2713 case ONE_MHZ: 2714 clkparam[0] = 5; 2715 break; 2716 default: 2717 dev_crit(&spi->dev, "Invalid extclock-freq\n"); 2718 return -EINVAL; 2719 } 2720 clkparam[1] = pdata->extclockgpio; 2721 } else { 2722 dev_info(&spi->dev, "Switching external clock off\n"); 2723 clkparam[0] = 0; /* off */ 2724 clkparam[1] = 0; 2725 } 2726 return link_to_linux_err( 2727 hwme_set_request_sync(HWME_SYSCLKOUT, 2, clkparam, spi) 2728 ); 2729} 2730 2731/** 2732 * ca8210_register_ext_clock() - Register ca8210's external clock with kernel 2733 * @spi: Pointer to target ca8210 spi device 2734 * 2735 * Return: 0 or linux error code 2736 */ 2737static int ca8210_register_ext_clock(struct spi_device *spi) 2738{ 2739 struct device_node *np = spi->dev.of_node; 2740 struct ca8210_priv *priv = spi_get_drvdata(spi); 2741 struct ca8210_platform_data *pdata = spi->dev.platform_data; 2742 int ret = 0; 2743 2744 if (!np) 2745 return -EFAULT; 2746 2747 priv->clk = clk_register_fixed_rate( 2748 &spi->dev, 2749 np->name, 2750 NULL, 2751 0, 2752 pdata->extclockfreq 2753 ); 2754 2755 if (IS_ERR(priv->clk)) { 2756 dev_crit(&spi->dev, "Failed to register external clk\n"); 2757 return PTR_ERR(priv->clk); 2758 } 2759 ret = of_clk_add_provider(np, of_clk_src_simple_get, priv->clk); 2760 if (ret) { 2761 clk_unregister(priv->clk); 2762 dev_crit( 2763 &spi->dev, 2764 "Failed to register external clock as clock provider\n" 2765 ); 2766 } else { 2767 dev_info(&spi->dev, "External clock set as clock provider\n"); 2768 } 2769 2770 return ret; 2771} 2772 2773/** 2774 * ca8210_unregister_ext_clock() - Unregister ca8210's external clock with 2775 * kernel 2776 * @spi: Pointer to target ca8210 spi device 2777 */ 2778static void ca8210_unregister_ext_clock(struct spi_device *spi) 2779{ 2780 struct ca8210_priv *priv = spi_get_drvdata(spi); 2781 2782 if (!priv->clk) 2783 return 2784 2785 of_clk_del_provider(spi->dev.of_node); 2786 clk_unregister(priv->clk); 2787 dev_info(&spi->dev, "External clock unregistered\n"); 2788} 2789 2790/** 2791 * ca8210_reset_init() - Initialise the reset input to the ca8210 2792 * @spi: Pointer to target ca8210 spi device 2793 * 2794 * Return: 0 or linux error code 2795 */ 2796static int ca8210_reset_init(struct spi_device *spi) 2797{ 2798 int ret; 2799 struct ca8210_platform_data *pdata = spi->dev.platform_data; 2800 2801 pdata->gpio_reset = of_get_named_gpio( 2802 spi->dev.of_node, 2803 "reset-gpio", 2804 0 2805 ); 2806 2807 ret = gpio_direction_output(pdata->gpio_reset, 1); 2808 if (ret < 0) { 2809 dev_crit( 2810 &spi->dev, 2811 "Reset GPIO %d did not set to output mode\n", 2812 pdata->gpio_reset 2813 ); 2814 } 2815 2816 return ret; 2817} 2818 2819/** 2820 * ca8210_interrupt_init() - Initialise the irq output from the ca8210 2821 * @spi: Pointer to target ca8210 spi device 2822 * 2823 * Return: 0 or linux error code 2824 */ 2825static int ca8210_interrupt_init(struct spi_device *spi) 2826{ 2827 int ret; 2828 struct ca8210_platform_data *pdata = spi->dev.platform_data; 2829 2830 pdata->gpio_irq = of_get_named_gpio( 2831 spi->dev.of_node, 2832 "irq-gpio", 2833 0 2834 ); 2835 2836 pdata->irq_id = gpio_to_irq(pdata->gpio_irq); 2837 if (pdata->irq_id < 0) { 2838 dev_crit( 2839 &spi->dev, 2840 "Could not get irq for gpio pin %d\n", 2841 pdata->gpio_irq 2842 ); 2843 gpio_free(pdata->gpio_irq); 2844 return pdata->irq_id; 2845 } 2846 2847 ret = request_irq( 2848 pdata->irq_id, 2849 ca8210_interrupt_handler, 2850 IRQF_TRIGGER_FALLING, 2851 "ca8210-irq", 2852 spi_get_drvdata(spi) 2853 ); 2854 if (ret) { 2855 dev_crit(&spi->dev, "request_irq %d failed\n", pdata->irq_id); 2856 gpio_unexport(pdata->gpio_irq); 2857 gpio_free(pdata->gpio_irq); 2858 } 2859 2860 return ret; 2861} 2862 2863/** 2864 * ca8210_dev_com_init() - Initialise the spi communication component 2865 * @priv: Pointer to private data structure 2866 * 2867 * Return: 0 or linux error code 2868 */ 2869static int ca8210_dev_com_init(struct ca8210_priv *priv) 2870{ 2871 priv->mlme_workqueue = alloc_ordered_workqueue( 2872 "MLME work queue", 2873 WQ_UNBOUND 2874 ); 2875 if (!priv->mlme_workqueue) { 2876 dev_crit(&priv->spi->dev, "alloc of mlme_workqueue failed!\n"); 2877 return -ENOMEM; 2878 } 2879 2880 priv->irq_workqueue = alloc_ordered_workqueue( 2881 "ca8210 irq worker", 2882 WQ_UNBOUND 2883 ); 2884 if (!priv->irq_workqueue) { 2885 dev_crit(&priv->spi->dev, "alloc of irq_workqueue failed!\n"); 2886 destroy_workqueue(priv->mlme_workqueue); 2887 return -ENOMEM; 2888 } 2889 2890 return 0; 2891} 2892 2893/** 2894 * ca8210_dev_com_clear() - Deinitialise the spi communication component 2895 * @priv: Pointer to private data structure 2896 */ 2897static void ca8210_dev_com_clear(struct ca8210_priv *priv) 2898{ 2899 destroy_workqueue(priv->mlme_workqueue); 2900 destroy_workqueue(priv->irq_workqueue); 2901} 2902 2903#define CA8210_MAX_TX_POWERS (9) 2904static const s32 ca8210_tx_powers[CA8210_MAX_TX_POWERS] = { 2905 800, 700, 600, 500, 400, 300, 200, 100, 0 2906}; 2907 2908#define CA8210_MAX_ED_LEVELS (21) 2909static const s32 ca8210_ed_levels[CA8210_MAX_ED_LEVELS] = { 2910 -10300, -10250, -10200, -10150, -10100, -10050, -10000, -9950, -9900, 2911 -9850, -9800, -9750, -9700, -9650, -9600, -9550, -9500, -9450, -9400, 2912 -9350, -9300 2913}; 2914 2915/** 2916 * ca8210_hw_setup() - Populate the ieee802154_hw phy attributes with the 2917 * ca8210's defaults 2918 * @ca8210_hw: Pointer to ieee802154_hw to populate 2919 */ 2920static void ca8210_hw_setup(struct ieee802154_hw *ca8210_hw) 2921{ 2922 /* Support channels 11-26 */ 2923 ca8210_hw->phy->supported.channels[0] = CA8210_VALID_CHANNELS; 2924 ca8210_hw->phy->supported.tx_powers_size = CA8210_MAX_TX_POWERS; 2925 ca8210_hw->phy->supported.tx_powers = ca8210_tx_powers; 2926 ca8210_hw->phy->supported.cca_ed_levels_size = CA8210_MAX_ED_LEVELS; 2927 ca8210_hw->phy->supported.cca_ed_levels = ca8210_ed_levels; 2928 ca8210_hw->phy->current_channel = 18; 2929 ca8210_hw->phy->current_page = 0; 2930 ca8210_hw->phy->transmit_power = 800; 2931 ca8210_hw->phy->cca.mode = NL802154_CCA_ENERGY_CARRIER; 2932 ca8210_hw->phy->cca.opt = NL802154_CCA_OPT_ENERGY_CARRIER_AND; 2933 ca8210_hw->phy->cca_ed_level = -9800; 2934 ca8210_hw->phy->symbol_duration = 16; 2935 ca8210_hw->phy->lifs_period = 40 * ca8210_hw->phy->symbol_duration; 2936 ca8210_hw->phy->sifs_period = 12 * ca8210_hw->phy->symbol_duration; 2937 ca8210_hw->flags = 2938 IEEE802154_HW_AFILT | 2939 IEEE802154_HW_OMIT_CKSUM | 2940 IEEE802154_HW_FRAME_RETRIES | 2941 IEEE802154_HW_PROMISCUOUS | 2942 IEEE802154_HW_CSMA_PARAMS; 2943 ca8210_hw->phy->flags = 2944 WPAN_PHY_FLAG_TXPOWER | 2945 WPAN_PHY_FLAG_CCA_ED_LEVEL | 2946 WPAN_PHY_FLAG_CCA_MODE; 2947} 2948 2949/** 2950 * ca8210_test_interface_init() - Initialise the test file interface 2951 * @priv: Pointer to private data structure 2952 * 2953 * Provided as an alternative to the standard linux network interface, the test 2954 * interface exposes a file in the filesystem (ca8210_test) that allows 2955 * 802.15.4 SAP Commands and Cascoda EVBME commands to be sent directly to 2956 * the stack. 2957 * 2958 * Return: 0 or linux error code 2959 */ 2960static int ca8210_test_interface_init(struct ca8210_priv *priv) 2961{ 2962 struct ca8210_test *test = &priv->test; 2963 char node_name[32]; 2964 2965 snprintf( 2966 node_name, 2967 sizeof(node_name), 2968 "ca8210@%d_%d", 2969 priv->spi->master->bus_num, 2970 priv->spi->chip_select 2971 ); 2972 2973 test->ca8210_dfs_spi_int = debugfs_create_file( 2974 node_name, 2975 0600, /* S_IRUSR | S_IWUSR */ 2976 NULL, 2977 priv, 2978 &test_int_fops 2979 ); 2980 2981 debugfs_create_symlink("ca8210", NULL, node_name); 2982 init_waitqueue_head(&test->readq); 2983 return kfifo_alloc( 2984 &test->up_fifo, 2985 CA8210_TEST_INT_FIFO_SIZE, 2986 GFP_KERNEL 2987 ); 2988} 2989 2990/** 2991 * ca8210_test_interface_clear() - Deinitialise the test file interface 2992 * @priv: Pointer to private data structure 2993 */ 2994static void ca8210_test_interface_clear(struct ca8210_priv *priv) 2995{ 2996 struct ca8210_test *test = &priv->test; 2997 2998 debugfs_remove(test->ca8210_dfs_spi_int); 2999 kfifo_free(&test->up_fifo); 3000 dev_info(&priv->spi->dev, "Test interface removed\n"); 3001} 3002 3003/** 3004 * ca8210_remove() - Shut down a ca8210 upon being disconnected 3005 * @spi_device: Pointer to spi device data structure 3006 * 3007 * Return: 0 or linux error code 3008 */ 3009static void ca8210_remove(struct spi_device *spi_device) 3010{ 3011 struct ca8210_priv *priv; 3012 struct ca8210_platform_data *pdata; 3013 3014 dev_info(&spi_device->dev, "Removing ca8210\n"); 3015 3016 pdata = spi_device->dev.platform_data; 3017 if (pdata) { 3018 if (pdata->extclockenable) { 3019 ca8210_unregister_ext_clock(spi_device); 3020 ca8210_config_extern_clk(pdata, spi_device, 0); 3021 } 3022 free_irq(pdata->irq_id, spi_device->dev.driver_data); 3023 kfree(pdata); 3024 spi_device->dev.platform_data = NULL; 3025 } 3026 /* get spi_device private data */ 3027 priv = spi_get_drvdata(spi_device); 3028 if (priv) { 3029 dev_info( 3030 &spi_device->dev, 3031 "sync_down = %d, sync_up = %d\n", 3032 priv->sync_down, 3033 priv->sync_up 3034 ); 3035 ca8210_dev_com_clear(spi_device->dev.driver_data); 3036 if (priv->hw) { 3037 if (priv->hw_registered) 3038 ieee802154_unregister_hw(priv->hw); 3039 ieee802154_free_hw(priv->hw); 3040 priv->hw = NULL; 3041 dev_info( 3042 &spi_device->dev, 3043 "Unregistered & freed ieee802154_hw.\n" 3044 ); 3045 } 3046 if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) 3047 ca8210_test_interface_clear(priv); 3048 } 3049} 3050 3051/** 3052 * ca8210_probe() - Set up a connected ca8210 upon being detected by the system 3053 * @spi_device: Pointer to spi device data structure 3054 * 3055 * Return: 0 or linux error code 3056 */ 3057static int ca8210_probe(struct spi_device *spi_device) 3058{ 3059 struct ca8210_priv *priv; 3060 struct ieee802154_hw *hw; 3061 struct ca8210_platform_data *pdata; 3062 int ret; 3063 3064 dev_info(&spi_device->dev, "Inserting ca8210\n"); 3065 3066 /* allocate ieee802154_hw and private data */ 3067 hw = ieee802154_alloc_hw(sizeof(struct ca8210_priv), &ca8210_phy_ops); 3068 if (!hw) { 3069 dev_crit(&spi_device->dev, "ieee802154_alloc_hw failed\n"); 3070 ret = -ENOMEM; 3071 goto error; 3072 } 3073 3074 priv = hw->priv; 3075 priv->hw = hw; 3076 priv->spi = spi_device; 3077 hw->parent = &spi_device->dev; 3078 spin_lock_init(&priv->lock); 3079 priv->async_tx_pending = false; 3080 priv->hw_registered = false; 3081 priv->sync_up = 0; 3082 priv->sync_down = 0; 3083 priv->promiscuous = false; 3084 priv->retries = 0; 3085 init_completion(&priv->ca8210_is_awake); 3086 init_completion(&priv->spi_transfer_complete); 3087 init_completion(&priv->sync_exchange_complete); 3088 spi_set_drvdata(priv->spi, priv); 3089 if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) { 3090 cascoda_api_upstream = ca8210_test_int_driver_write; 3091 ca8210_test_interface_init(priv); 3092 } else { 3093 cascoda_api_upstream = NULL; 3094 } 3095 ca8210_hw_setup(hw); 3096 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); 3097 3098 pdata = kmalloc(sizeof(*pdata), GFP_KERNEL); 3099 if (!pdata) { 3100 ret = -ENOMEM; 3101 goto error; 3102 } 3103 3104 priv->spi->dev.platform_data = pdata; 3105 ret = ca8210_get_platform_data(priv->spi, pdata); 3106 if (ret) { 3107 dev_crit(&spi_device->dev, "ca8210_get_platform_data failed\n"); 3108 goto error; 3109 } 3110 3111 ret = ca8210_dev_com_init(priv); 3112 if (ret) { 3113 dev_crit(&spi_device->dev, "ca8210_dev_com_init failed\n"); 3114 goto error; 3115 } 3116 ret = ca8210_reset_init(priv->spi); 3117 if (ret) { 3118 dev_crit(&spi_device->dev, "ca8210_reset_init failed\n"); 3119 goto error; 3120 } 3121 3122 ret = ca8210_interrupt_init(priv->spi); 3123 if (ret) { 3124 dev_crit(&spi_device->dev, "ca8210_interrupt_init failed\n"); 3125 goto error; 3126 } 3127 3128 msleep(100); 3129 3130 ca8210_reset_send(priv->spi, 1); 3131 3132 ret = tdme_chipinit(priv->spi); 3133 if (ret) { 3134 dev_crit(&spi_device->dev, "tdme_chipinit failed\n"); 3135 goto error; 3136 } 3137 3138 if (pdata->extclockenable) { 3139 ret = ca8210_config_extern_clk(pdata, priv->spi, 1); 3140 if (ret) { 3141 dev_crit( 3142 &spi_device->dev, 3143 "ca8210_config_extern_clk failed\n" 3144 ); 3145 goto error; 3146 } 3147 ret = ca8210_register_ext_clock(priv->spi); 3148 if (ret) { 3149 dev_crit( 3150 &spi_device->dev, 3151 "ca8210_register_ext_clock failed\n" 3152 ); 3153 goto error; 3154 } 3155 } 3156 3157 ret = ieee802154_register_hw(hw); 3158 if (ret) { 3159 dev_crit(&spi_device->dev, "ieee802154_register_hw failed\n"); 3160 goto error; 3161 } 3162 priv->hw_registered = true; 3163 3164 return 0; 3165error: 3166 msleep(100); /* wait for pending spi transfers to complete */ 3167 ca8210_remove(spi_device); 3168 return link_to_linux_err(ret); 3169} 3170 3171static const struct of_device_id ca8210_of_ids[] = { 3172 {.compatible = "cascoda,ca8210", }, 3173 {}, 3174}; 3175MODULE_DEVICE_TABLE(of, ca8210_of_ids); 3176 3177static struct spi_driver ca8210_spi_driver = { 3178 .driver = { 3179 .name = DRIVER_NAME, 3180 .owner = THIS_MODULE, 3181 .of_match_table = of_match_ptr(ca8210_of_ids), 3182 }, 3183 .probe = ca8210_probe, 3184 .remove = ca8210_remove 3185}; 3186 3187module_spi_driver(ca8210_spi_driver); 3188 3189MODULE_AUTHOR("Harry Morris <h.morris@cascoda.com>"); 3190MODULE_DESCRIPTION("CA-8210 SoftMAC driver"); 3191MODULE_LICENSE("Dual BSD/GPL"); 3192MODULE_VERSION("1.0");