cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sfp.c (65988B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/acpi.h>
      3#include <linux/ctype.h>
      4#include <linux/debugfs.h>
      5#include <linux/delay.h>
      6#include <linux/gpio/consumer.h>
      7#include <linux/hwmon.h>
      8#include <linux/i2c.h>
      9#include <linux/interrupt.h>
     10#include <linux/jiffies.h>
     11#include <linux/mdio/mdio-i2c.h>
     12#include <linux/module.h>
     13#include <linux/mutex.h>
     14#include <linux/of.h>
     15#include <linux/phy.h>
     16#include <linux/platform_device.h>
     17#include <linux/rtnetlink.h>
     18#include <linux/slab.h>
     19#include <linux/workqueue.h>
     20
     21#include "sfp.h"
     22#include "swphy.h"
     23
     24enum {
     25	GPIO_MODDEF0,
     26	GPIO_LOS,
     27	GPIO_TX_FAULT,
     28	GPIO_TX_DISABLE,
     29	GPIO_RATE_SELECT,
     30	GPIO_MAX,
     31
     32	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
     33	SFP_F_LOS = BIT(GPIO_LOS),
     34	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
     35	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
     36	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
     37
     38	SFP_E_INSERT = 0,
     39	SFP_E_REMOVE,
     40	SFP_E_DEV_ATTACH,
     41	SFP_E_DEV_DETACH,
     42	SFP_E_DEV_DOWN,
     43	SFP_E_DEV_UP,
     44	SFP_E_TX_FAULT,
     45	SFP_E_TX_CLEAR,
     46	SFP_E_LOS_HIGH,
     47	SFP_E_LOS_LOW,
     48	SFP_E_TIMEOUT,
     49
     50	SFP_MOD_EMPTY = 0,
     51	SFP_MOD_ERROR,
     52	SFP_MOD_PROBE,
     53	SFP_MOD_WAITDEV,
     54	SFP_MOD_HPOWER,
     55	SFP_MOD_WAITPWR,
     56	SFP_MOD_PRESENT,
     57
     58	SFP_DEV_DETACHED = 0,
     59	SFP_DEV_DOWN,
     60	SFP_DEV_UP,
     61
     62	SFP_S_DOWN = 0,
     63	SFP_S_FAIL,
     64	SFP_S_WAIT,
     65	SFP_S_INIT,
     66	SFP_S_INIT_PHY,
     67	SFP_S_INIT_TX_FAULT,
     68	SFP_S_WAIT_LOS,
     69	SFP_S_LINK_UP,
     70	SFP_S_TX_FAULT,
     71	SFP_S_REINIT,
     72	SFP_S_TX_DISABLE,
     73};
     74
     75static const char  * const mod_state_strings[] = {
     76	[SFP_MOD_EMPTY] = "empty",
     77	[SFP_MOD_ERROR] = "error",
     78	[SFP_MOD_PROBE] = "probe",
     79	[SFP_MOD_WAITDEV] = "waitdev",
     80	[SFP_MOD_HPOWER] = "hpower",
     81	[SFP_MOD_WAITPWR] = "waitpwr",
     82	[SFP_MOD_PRESENT] = "present",
     83};
     84
     85static const char *mod_state_to_str(unsigned short mod_state)
     86{
     87	if (mod_state >= ARRAY_SIZE(mod_state_strings))
     88		return "Unknown module state";
     89	return mod_state_strings[mod_state];
     90}
     91
     92static const char * const dev_state_strings[] = {
     93	[SFP_DEV_DETACHED] = "detached",
     94	[SFP_DEV_DOWN] = "down",
     95	[SFP_DEV_UP] = "up",
     96};
     97
     98static const char *dev_state_to_str(unsigned short dev_state)
     99{
    100	if (dev_state >= ARRAY_SIZE(dev_state_strings))
    101		return "Unknown device state";
    102	return dev_state_strings[dev_state];
    103}
    104
    105static const char * const event_strings[] = {
    106	[SFP_E_INSERT] = "insert",
    107	[SFP_E_REMOVE] = "remove",
    108	[SFP_E_DEV_ATTACH] = "dev_attach",
    109	[SFP_E_DEV_DETACH] = "dev_detach",
    110	[SFP_E_DEV_DOWN] = "dev_down",
    111	[SFP_E_DEV_UP] = "dev_up",
    112	[SFP_E_TX_FAULT] = "tx_fault",
    113	[SFP_E_TX_CLEAR] = "tx_clear",
    114	[SFP_E_LOS_HIGH] = "los_high",
    115	[SFP_E_LOS_LOW] = "los_low",
    116	[SFP_E_TIMEOUT] = "timeout",
    117};
    118
    119static const char *event_to_str(unsigned short event)
    120{
    121	if (event >= ARRAY_SIZE(event_strings))
    122		return "Unknown event";
    123	return event_strings[event];
    124}
    125
    126static const char * const sm_state_strings[] = {
    127	[SFP_S_DOWN] = "down",
    128	[SFP_S_FAIL] = "fail",
    129	[SFP_S_WAIT] = "wait",
    130	[SFP_S_INIT] = "init",
    131	[SFP_S_INIT_PHY] = "init_phy",
    132	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
    133	[SFP_S_WAIT_LOS] = "wait_los",
    134	[SFP_S_LINK_UP] = "link_up",
    135	[SFP_S_TX_FAULT] = "tx_fault",
    136	[SFP_S_REINIT] = "reinit",
    137	[SFP_S_TX_DISABLE] = "tx_disable",
    138};
    139
    140static const char *sm_state_to_str(unsigned short sm_state)
    141{
    142	if (sm_state >= ARRAY_SIZE(sm_state_strings))
    143		return "Unknown state";
    144	return sm_state_strings[sm_state];
    145}
    146
    147static const char *gpio_of_names[] = {
    148	"mod-def0",
    149	"los",
    150	"tx-fault",
    151	"tx-disable",
    152	"rate-select0",
    153};
    154
    155static const enum gpiod_flags gpio_flags[] = {
    156	GPIOD_IN,
    157	GPIOD_IN,
    158	GPIOD_IN,
    159	GPIOD_ASIS,
    160	GPIOD_ASIS,
    161};
    162
    163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
    164 * non-cooled module to initialise its laser safety circuitry. We wait
    165 * an initial T_WAIT period before we check the tx fault to give any PHY
    166 * on board (for a copper SFP) time to initialise.
    167 */
    168#define T_WAIT			msecs_to_jiffies(50)
    169#define T_START_UP		msecs_to_jiffies(300)
    170#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
    171
    172/* t_reset is the time required to assert the TX_DISABLE signal to reset
    173 * an indicated TX_FAULT.
    174 */
    175#define T_RESET_US		10
    176#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
    177
    178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
    179 * time. If the TX_FAULT signal is not deasserted after this number of
    180 * attempts at clearing it, we decide that the module is faulty.
    181 * N_FAULT is the same but after the module has initialised.
    182 */
    183#define N_FAULT_INIT		5
    184#define N_FAULT			5
    185
    186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
    187 * R_PHY_RETRY is the number of attempts.
    188 */
    189#define T_PHY_RETRY		msecs_to_jiffies(50)
    190#define R_PHY_RETRY		12
    191
    192/* SFP module presence detection is poor: the three MOD DEF signals are
    193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
    194 * connect before the I2C bus on MOD DEF 1/2.
    195 *
    196 * The SFF-8472 specifies t_serial ("Time from power on until module is
    197 * ready for data transmission over the two wire serial bus.") as 300ms.
    198 */
    199#define T_SERIAL		msecs_to_jiffies(300)
    200#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
    201#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
    202#define R_PROBE_RETRY_INIT	10
    203#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
    204#define R_PROBE_RETRY_SLOW	12
    205
    206/* SFP modules appear to always have their PHY configured for bus address
    207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
    208 */
    209#define SFP_PHY_ADDR	22
    210
    211struct sff_data {
    212	unsigned int gpios;
    213	bool (*module_supported)(const struct sfp_eeprom_id *id);
    214};
    215
    216struct sfp {
    217	struct device *dev;
    218	struct i2c_adapter *i2c;
    219	struct mii_bus *i2c_mii;
    220	struct sfp_bus *sfp_bus;
    221	struct phy_device *mod_phy;
    222	const struct sff_data *type;
    223	size_t i2c_block_size;
    224	u32 max_power_mW;
    225
    226	unsigned int (*get_state)(struct sfp *);
    227	void (*set_state)(struct sfp *, unsigned int);
    228	int (*read)(struct sfp *, bool, u8, void *, size_t);
    229	int (*write)(struct sfp *, bool, u8, void *, size_t);
    230
    231	struct gpio_desc *gpio[GPIO_MAX];
    232	int gpio_irq[GPIO_MAX];
    233
    234	bool need_poll;
    235
    236	struct mutex st_mutex;			/* Protects state */
    237	unsigned int state_soft_mask;
    238	unsigned int state;
    239	struct delayed_work poll;
    240	struct delayed_work timeout;
    241	struct mutex sm_mutex;			/* Protects state machine */
    242	unsigned char sm_mod_state;
    243	unsigned char sm_mod_tries_init;
    244	unsigned char sm_mod_tries;
    245	unsigned char sm_dev_state;
    246	unsigned short sm_state;
    247	unsigned char sm_fault_retries;
    248	unsigned char sm_phy_retries;
    249
    250	struct sfp_eeprom_id id;
    251	unsigned int module_power_mW;
    252	unsigned int module_t_start_up;
    253	bool tx_fault_ignore;
    254
    255#if IS_ENABLED(CONFIG_HWMON)
    256	struct sfp_diag diag;
    257	struct delayed_work hwmon_probe;
    258	unsigned int hwmon_tries;
    259	struct device *hwmon_dev;
    260	char *hwmon_name;
    261#endif
    262
    263#if IS_ENABLED(CONFIG_DEBUG_FS)
    264	struct dentry *debugfs_dir;
    265#endif
    266};
    267
    268static bool sff_module_supported(const struct sfp_eeprom_id *id)
    269{
    270	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
    271	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
    272}
    273
    274static const struct sff_data sff_data = {
    275	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
    276	.module_supported = sff_module_supported,
    277};
    278
    279static bool sfp_module_supported(const struct sfp_eeprom_id *id)
    280{
    281	if (id->base.phys_id == SFF8024_ID_SFP &&
    282	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
    283		return true;
    284
    285	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
    286	 * phys id SFF instead of SFP. Therefore mark this module explicitly
    287	 * as supported based on vendor name and pn match.
    288	 */
    289	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
    290	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
    291	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
    292	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
    293		return true;
    294
    295	return false;
    296}
    297
    298static const struct sff_data sfp_data = {
    299	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
    300		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
    301	.module_supported = sfp_module_supported,
    302};
    303
    304static const struct of_device_id sfp_of_match[] = {
    305	{ .compatible = "sff,sff", .data = &sff_data, },
    306	{ .compatible = "sff,sfp", .data = &sfp_data, },
    307	{ },
    308};
    309MODULE_DEVICE_TABLE(of, sfp_of_match);
    310
    311static unsigned long poll_jiffies;
    312
    313static unsigned int sfp_gpio_get_state(struct sfp *sfp)
    314{
    315	unsigned int i, state, v;
    316
    317	for (i = state = 0; i < GPIO_MAX; i++) {
    318		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
    319			continue;
    320
    321		v = gpiod_get_value_cansleep(sfp->gpio[i]);
    322		if (v)
    323			state |= BIT(i);
    324	}
    325
    326	return state;
    327}
    328
    329static unsigned int sff_gpio_get_state(struct sfp *sfp)
    330{
    331	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
    332}
    333
    334static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
    335{
    336	if (state & SFP_F_PRESENT) {
    337		/* If the module is present, drive the signals */
    338		if (sfp->gpio[GPIO_TX_DISABLE])
    339			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
    340					       state & SFP_F_TX_DISABLE);
    341		if (state & SFP_F_RATE_SELECT)
    342			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
    343					       state & SFP_F_RATE_SELECT);
    344	} else {
    345		/* Otherwise, let them float to the pull-ups */
    346		if (sfp->gpio[GPIO_TX_DISABLE])
    347			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
    348		if (state & SFP_F_RATE_SELECT)
    349			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
    350	}
    351}
    352
    353static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
    354			size_t len)
    355{
    356	struct i2c_msg msgs[2];
    357	u8 bus_addr = a2 ? 0x51 : 0x50;
    358	size_t block_size = sfp->i2c_block_size;
    359	size_t this_len;
    360	int ret;
    361
    362	msgs[0].addr = bus_addr;
    363	msgs[0].flags = 0;
    364	msgs[0].len = 1;
    365	msgs[0].buf = &dev_addr;
    366	msgs[1].addr = bus_addr;
    367	msgs[1].flags = I2C_M_RD;
    368	msgs[1].len = len;
    369	msgs[1].buf = buf;
    370
    371	while (len) {
    372		this_len = len;
    373		if (this_len > block_size)
    374			this_len = block_size;
    375
    376		msgs[1].len = this_len;
    377
    378		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
    379		if (ret < 0)
    380			return ret;
    381
    382		if (ret != ARRAY_SIZE(msgs))
    383			break;
    384
    385		msgs[1].buf += this_len;
    386		dev_addr += this_len;
    387		len -= this_len;
    388	}
    389
    390	return msgs[1].buf - (u8 *)buf;
    391}
    392
    393static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
    394	size_t len)
    395{
    396	struct i2c_msg msgs[1];
    397	u8 bus_addr = a2 ? 0x51 : 0x50;
    398	int ret;
    399
    400	msgs[0].addr = bus_addr;
    401	msgs[0].flags = 0;
    402	msgs[0].len = 1 + len;
    403	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
    404	if (!msgs[0].buf)
    405		return -ENOMEM;
    406
    407	msgs[0].buf[0] = dev_addr;
    408	memcpy(&msgs[0].buf[1], buf, len);
    409
    410	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
    411
    412	kfree(msgs[0].buf);
    413
    414	if (ret < 0)
    415		return ret;
    416
    417	return ret == ARRAY_SIZE(msgs) ? len : 0;
    418}
    419
    420static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
    421{
    422	struct mii_bus *i2c_mii;
    423	int ret;
    424
    425	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
    426		return -EINVAL;
    427
    428	sfp->i2c = i2c;
    429	sfp->read = sfp_i2c_read;
    430	sfp->write = sfp_i2c_write;
    431
    432	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
    433	if (IS_ERR(i2c_mii))
    434		return PTR_ERR(i2c_mii);
    435
    436	i2c_mii->name = "SFP I2C Bus";
    437	i2c_mii->phy_mask = ~0;
    438
    439	ret = mdiobus_register(i2c_mii);
    440	if (ret < 0) {
    441		mdiobus_free(i2c_mii);
    442		return ret;
    443	}
    444
    445	sfp->i2c_mii = i2c_mii;
    446
    447	return 0;
    448}
    449
    450/* Interface */
    451static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
    452{
    453	return sfp->read(sfp, a2, addr, buf, len);
    454}
    455
    456static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
    457{
    458	return sfp->write(sfp, a2, addr, buf, len);
    459}
    460
    461static unsigned int sfp_soft_get_state(struct sfp *sfp)
    462{
    463	unsigned int state = 0;
    464	u8 status;
    465	int ret;
    466
    467	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
    468	if (ret == sizeof(status)) {
    469		if (status & SFP_STATUS_RX_LOS)
    470			state |= SFP_F_LOS;
    471		if (status & SFP_STATUS_TX_FAULT)
    472			state |= SFP_F_TX_FAULT;
    473	} else {
    474		dev_err_ratelimited(sfp->dev,
    475				    "failed to read SFP soft status: %pe\n",
    476				    ERR_PTR(ret));
    477		/* Preserve the current state */
    478		state = sfp->state;
    479	}
    480
    481	return state & sfp->state_soft_mask;
    482}
    483
    484static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
    485{
    486	u8 status;
    487
    488	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
    489		     sizeof(status)) {
    490		if (state & SFP_F_TX_DISABLE)
    491			status |= SFP_STATUS_TX_DISABLE_FORCE;
    492		else
    493			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
    494
    495		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
    496	}
    497}
    498
    499static void sfp_soft_start_poll(struct sfp *sfp)
    500{
    501	const struct sfp_eeprom_id *id = &sfp->id;
    502
    503	sfp->state_soft_mask = 0;
    504	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
    505	    !sfp->gpio[GPIO_TX_DISABLE])
    506		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
    507	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
    508	    !sfp->gpio[GPIO_TX_FAULT])
    509		sfp->state_soft_mask |= SFP_F_TX_FAULT;
    510	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
    511	    !sfp->gpio[GPIO_LOS])
    512		sfp->state_soft_mask |= SFP_F_LOS;
    513
    514	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
    515	    !sfp->need_poll)
    516		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
    517}
    518
    519static void sfp_soft_stop_poll(struct sfp *sfp)
    520{
    521	sfp->state_soft_mask = 0;
    522}
    523
    524static unsigned int sfp_get_state(struct sfp *sfp)
    525{
    526	unsigned int state = sfp->get_state(sfp);
    527
    528	if (state & SFP_F_PRESENT &&
    529	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
    530		state |= sfp_soft_get_state(sfp);
    531
    532	return state;
    533}
    534
    535static void sfp_set_state(struct sfp *sfp, unsigned int state)
    536{
    537	sfp->set_state(sfp, state);
    538
    539	if (state & SFP_F_PRESENT &&
    540	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
    541		sfp_soft_set_state(sfp, state);
    542}
    543
    544static unsigned int sfp_check(void *buf, size_t len)
    545{
    546	u8 *p, check;
    547
    548	for (p = buf, check = 0; len; p++, len--)
    549		check += *p;
    550
    551	return check;
    552}
    553
    554/* hwmon */
    555#if IS_ENABLED(CONFIG_HWMON)
    556static umode_t sfp_hwmon_is_visible(const void *data,
    557				    enum hwmon_sensor_types type,
    558				    u32 attr, int channel)
    559{
    560	const struct sfp *sfp = data;
    561
    562	switch (type) {
    563	case hwmon_temp:
    564		switch (attr) {
    565		case hwmon_temp_min_alarm:
    566		case hwmon_temp_max_alarm:
    567		case hwmon_temp_lcrit_alarm:
    568		case hwmon_temp_crit_alarm:
    569		case hwmon_temp_min:
    570		case hwmon_temp_max:
    571		case hwmon_temp_lcrit:
    572		case hwmon_temp_crit:
    573			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
    574				return 0;
    575			fallthrough;
    576		case hwmon_temp_input:
    577		case hwmon_temp_label:
    578			return 0444;
    579		default:
    580			return 0;
    581		}
    582	case hwmon_in:
    583		switch (attr) {
    584		case hwmon_in_min_alarm:
    585		case hwmon_in_max_alarm:
    586		case hwmon_in_lcrit_alarm:
    587		case hwmon_in_crit_alarm:
    588		case hwmon_in_min:
    589		case hwmon_in_max:
    590		case hwmon_in_lcrit:
    591		case hwmon_in_crit:
    592			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
    593				return 0;
    594			fallthrough;
    595		case hwmon_in_input:
    596		case hwmon_in_label:
    597			return 0444;
    598		default:
    599			return 0;
    600		}
    601	case hwmon_curr:
    602		switch (attr) {
    603		case hwmon_curr_min_alarm:
    604		case hwmon_curr_max_alarm:
    605		case hwmon_curr_lcrit_alarm:
    606		case hwmon_curr_crit_alarm:
    607		case hwmon_curr_min:
    608		case hwmon_curr_max:
    609		case hwmon_curr_lcrit:
    610		case hwmon_curr_crit:
    611			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
    612				return 0;
    613			fallthrough;
    614		case hwmon_curr_input:
    615		case hwmon_curr_label:
    616			return 0444;
    617		default:
    618			return 0;
    619		}
    620	case hwmon_power:
    621		/* External calibration of receive power requires
    622		 * floating point arithmetic. Doing that in the kernel
    623		 * is not easy, so just skip it. If the module does
    624		 * not require external calibration, we can however
    625		 * show receiver power, since FP is then not needed.
    626		 */
    627		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
    628		    channel == 1)
    629			return 0;
    630		switch (attr) {
    631		case hwmon_power_min_alarm:
    632		case hwmon_power_max_alarm:
    633		case hwmon_power_lcrit_alarm:
    634		case hwmon_power_crit_alarm:
    635		case hwmon_power_min:
    636		case hwmon_power_max:
    637		case hwmon_power_lcrit:
    638		case hwmon_power_crit:
    639			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
    640				return 0;
    641			fallthrough;
    642		case hwmon_power_input:
    643		case hwmon_power_label:
    644			return 0444;
    645		default:
    646			return 0;
    647		}
    648	default:
    649		return 0;
    650	}
    651}
    652
    653static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
    654{
    655	__be16 val;
    656	int err;
    657
    658	err = sfp_read(sfp, true, reg, &val, sizeof(val));
    659	if (err < 0)
    660		return err;
    661
    662	*value = be16_to_cpu(val);
    663
    664	return 0;
    665}
    666
    667static void sfp_hwmon_to_rx_power(long *value)
    668{
    669	*value = DIV_ROUND_CLOSEST(*value, 10);
    670}
    671
    672static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
    673				long *value)
    674{
    675	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
    676		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
    677}
    678
    679static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
    680{
    681	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
    682			    be16_to_cpu(sfp->diag.cal_t_offset), value);
    683
    684	if (*value >= 0x8000)
    685		*value -= 0x10000;
    686
    687	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
    688}
    689
    690static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
    691{
    692	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
    693			    be16_to_cpu(sfp->diag.cal_v_offset), value);
    694
    695	*value = DIV_ROUND_CLOSEST(*value, 10);
    696}
    697
    698static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
    699{
    700	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
    701			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
    702
    703	*value = DIV_ROUND_CLOSEST(*value, 500);
    704}
    705
    706static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
    707{
    708	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
    709			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
    710
    711	*value = DIV_ROUND_CLOSEST(*value, 10);
    712}
    713
    714static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
    715{
    716	int err;
    717
    718	err = sfp_hwmon_read_sensor(sfp, reg, value);
    719	if (err < 0)
    720		return err;
    721
    722	sfp_hwmon_calibrate_temp(sfp, value);
    723
    724	return 0;
    725}
    726
    727static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
    728{
    729	int err;
    730
    731	err = sfp_hwmon_read_sensor(sfp, reg, value);
    732	if (err < 0)
    733		return err;
    734
    735	sfp_hwmon_calibrate_vcc(sfp, value);
    736
    737	return 0;
    738}
    739
    740static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
    741{
    742	int err;
    743
    744	err = sfp_hwmon_read_sensor(sfp, reg, value);
    745	if (err < 0)
    746		return err;
    747
    748	sfp_hwmon_calibrate_bias(sfp, value);
    749
    750	return 0;
    751}
    752
    753static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
    754{
    755	int err;
    756
    757	err = sfp_hwmon_read_sensor(sfp, reg, value);
    758	if (err < 0)
    759		return err;
    760
    761	sfp_hwmon_calibrate_tx_power(sfp, value);
    762
    763	return 0;
    764}
    765
    766static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
    767{
    768	int err;
    769
    770	err = sfp_hwmon_read_sensor(sfp, reg, value);
    771	if (err < 0)
    772		return err;
    773
    774	sfp_hwmon_to_rx_power(value);
    775
    776	return 0;
    777}
    778
    779static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
    780{
    781	u8 status;
    782	int err;
    783
    784	switch (attr) {
    785	case hwmon_temp_input:
    786		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
    787
    788	case hwmon_temp_lcrit:
    789		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
    790		sfp_hwmon_calibrate_temp(sfp, value);
    791		return 0;
    792
    793	case hwmon_temp_min:
    794		*value = be16_to_cpu(sfp->diag.temp_low_warn);
    795		sfp_hwmon_calibrate_temp(sfp, value);
    796		return 0;
    797	case hwmon_temp_max:
    798		*value = be16_to_cpu(sfp->diag.temp_high_warn);
    799		sfp_hwmon_calibrate_temp(sfp, value);
    800		return 0;
    801
    802	case hwmon_temp_crit:
    803		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
    804		sfp_hwmon_calibrate_temp(sfp, value);
    805		return 0;
    806
    807	case hwmon_temp_lcrit_alarm:
    808		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
    809		if (err < 0)
    810			return err;
    811
    812		*value = !!(status & SFP_ALARM0_TEMP_LOW);
    813		return 0;
    814
    815	case hwmon_temp_min_alarm:
    816		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
    817		if (err < 0)
    818			return err;
    819
    820		*value = !!(status & SFP_WARN0_TEMP_LOW);
    821		return 0;
    822
    823	case hwmon_temp_max_alarm:
    824		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
    825		if (err < 0)
    826			return err;
    827
    828		*value = !!(status & SFP_WARN0_TEMP_HIGH);
    829		return 0;
    830
    831	case hwmon_temp_crit_alarm:
    832		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
    833		if (err < 0)
    834			return err;
    835
    836		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
    837		return 0;
    838	default:
    839		return -EOPNOTSUPP;
    840	}
    841
    842	return -EOPNOTSUPP;
    843}
    844
    845static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
    846{
    847	u8 status;
    848	int err;
    849
    850	switch (attr) {
    851	case hwmon_in_input:
    852		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
    853
    854	case hwmon_in_lcrit:
    855		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
    856		sfp_hwmon_calibrate_vcc(sfp, value);
    857		return 0;
    858
    859	case hwmon_in_min:
    860		*value = be16_to_cpu(sfp->diag.volt_low_warn);
    861		sfp_hwmon_calibrate_vcc(sfp, value);
    862		return 0;
    863
    864	case hwmon_in_max:
    865		*value = be16_to_cpu(sfp->diag.volt_high_warn);
    866		sfp_hwmon_calibrate_vcc(sfp, value);
    867		return 0;
    868
    869	case hwmon_in_crit:
    870		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
    871		sfp_hwmon_calibrate_vcc(sfp, value);
    872		return 0;
    873
    874	case hwmon_in_lcrit_alarm:
    875		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
    876		if (err < 0)
    877			return err;
    878
    879		*value = !!(status & SFP_ALARM0_VCC_LOW);
    880		return 0;
    881
    882	case hwmon_in_min_alarm:
    883		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
    884		if (err < 0)
    885			return err;
    886
    887		*value = !!(status & SFP_WARN0_VCC_LOW);
    888		return 0;
    889
    890	case hwmon_in_max_alarm:
    891		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
    892		if (err < 0)
    893			return err;
    894
    895		*value = !!(status & SFP_WARN0_VCC_HIGH);
    896		return 0;
    897
    898	case hwmon_in_crit_alarm:
    899		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
    900		if (err < 0)
    901			return err;
    902
    903		*value = !!(status & SFP_ALARM0_VCC_HIGH);
    904		return 0;
    905	default:
    906		return -EOPNOTSUPP;
    907	}
    908
    909	return -EOPNOTSUPP;
    910}
    911
    912static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
    913{
    914	u8 status;
    915	int err;
    916
    917	switch (attr) {
    918	case hwmon_curr_input:
    919		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
    920
    921	case hwmon_curr_lcrit:
    922		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
    923		sfp_hwmon_calibrate_bias(sfp, value);
    924		return 0;
    925
    926	case hwmon_curr_min:
    927		*value = be16_to_cpu(sfp->diag.bias_low_warn);
    928		sfp_hwmon_calibrate_bias(sfp, value);
    929		return 0;
    930
    931	case hwmon_curr_max:
    932		*value = be16_to_cpu(sfp->diag.bias_high_warn);
    933		sfp_hwmon_calibrate_bias(sfp, value);
    934		return 0;
    935
    936	case hwmon_curr_crit:
    937		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
    938		sfp_hwmon_calibrate_bias(sfp, value);
    939		return 0;
    940
    941	case hwmon_curr_lcrit_alarm:
    942		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
    943		if (err < 0)
    944			return err;
    945
    946		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
    947		return 0;
    948
    949	case hwmon_curr_min_alarm:
    950		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
    951		if (err < 0)
    952			return err;
    953
    954		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
    955		return 0;
    956
    957	case hwmon_curr_max_alarm:
    958		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
    959		if (err < 0)
    960			return err;
    961
    962		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
    963		return 0;
    964
    965	case hwmon_curr_crit_alarm:
    966		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
    967		if (err < 0)
    968			return err;
    969
    970		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
    971		return 0;
    972	default:
    973		return -EOPNOTSUPP;
    974	}
    975
    976	return -EOPNOTSUPP;
    977}
    978
    979static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
    980{
    981	u8 status;
    982	int err;
    983
    984	switch (attr) {
    985	case hwmon_power_input:
    986		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
    987
    988	case hwmon_power_lcrit:
    989		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
    990		sfp_hwmon_calibrate_tx_power(sfp, value);
    991		return 0;
    992
    993	case hwmon_power_min:
    994		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
    995		sfp_hwmon_calibrate_tx_power(sfp, value);
    996		return 0;
    997
    998	case hwmon_power_max:
    999		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
   1000		sfp_hwmon_calibrate_tx_power(sfp, value);
   1001		return 0;
   1002
   1003	case hwmon_power_crit:
   1004		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
   1005		sfp_hwmon_calibrate_tx_power(sfp, value);
   1006		return 0;
   1007
   1008	case hwmon_power_lcrit_alarm:
   1009		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
   1010		if (err < 0)
   1011			return err;
   1012
   1013		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
   1014		return 0;
   1015
   1016	case hwmon_power_min_alarm:
   1017		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
   1018		if (err < 0)
   1019			return err;
   1020
   1021		*value = !!(status & SFP_WARN0_TXPWR_LOW);
   1022		return 0;
   1023
   1024	case hwmon_power_max_alarm:
   1025		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
   1026		if (err < 0)
   1027			return err;
   1028
   1029		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
   1030		return 0;
   1031
   1032	case hwmon_power_crit_alarm:
   1033		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
   1034		if (err < 0)
   1035			return err;
   1036
   1037		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
   1038		return 0;
   1039	default:
   1040		return -EOPNOTSUPP;
   1041	}
   1042
   1043	return -EOPNOTSUPP;
   1044}
   1045
   1046static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
   1047{
   1048	u8 status;
   1049	int err;
   1050
   1051	switch (attr) {
   1052	case hwmon_power_input:
   1053		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
   1054
   1055	case hwmon_power_lcrit:
   1056		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
   1057		sfp_hwmon_to_rx_power(value);
   1058		return 0;
   1059
   1060	case hwmon_power_min:
   1061		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
   1062		sfp_hwmon_to_rx_power(value);
   1063		return 0;
   1064
   1065	case hwmon_power_max:
   1066		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
   1067		sfp_hwmon_to_rx_power(value);
   1068		return 0;
   1069
   1070	case hwmon_power_crit:
   1071		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
   1072		sfp_hwmon_to_rx_power(value);
   1073		return 0;
   1074
   1075	case hwmon_power_lcrit_alarm:
   1076		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
   1077		if (err < 0)
   1078			return err;
   1079
   1080		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
   1081		return 0;
   1082
   1083	case hwmon_power_min_alarm:
   1084		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
   1085		if (err < 0)
   1086			return err;
   1087
   1088		*value = !!(status & SFP_WARN1_RXPWR_LOW);
   1089		return 0;
   1090
   1091	case hwmon_power_max_alarm:
   1092		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
   1093		if (err < 0)
   1094			return err;
   1095
   1096		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
   1097		return 0;
   1098
   1099	case hwmon_power_crit_alarm:
   1100		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
   1101		if (err < 0)
   1102			return err;
   1103
   1104		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
   1105		return 0;
   1106	default:
   1107		return -EOPNOTSUPP;
   1108	}
   1109
   1110	return -EOPNOTSUPP;
   1111}
   1112
   1113static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
   1114			  u32 attr, int channel, long *value)
   1115{
   1116	struct sfp *sfp = dev_get_drvdata(dev);
   1117
   1118	switch (type) {
   1119	case hwmon_temp:
   1120		return sfp_hwmon_temp(sfp, attr, value);
   1121	case hwmon_in:
   1122		return sfp_hwmon_vcc(sfp, attr, value);
   1123	case hwmon_curr:
   1124		return sfp_hwmon_bias(sfp, attr, value);
   1125	case hwmon_power:
   1126		switch (channel) {
   1127		case 0:
   1128			return sfp_hwmon_tx_power(sfp, attr, value);
   1129		case 1:
   1130			return sfp_hwmon_rx_power(sfp, attr, value);
   1131		default:
   1132			return -EOPNOTSUPP;
   1133		}
   1134	default:
   1135		return -EOPNOTSUPP;
   1136	}
   1137}
   1138
   1139static const char *const sfp_hwmon_power_labels[] = {
   1140	"TX_power",
   1141	"RX_power",
   1142};
   1143
   1144static int sfp_hwmon_read_string(struct device *dev,
   1145				 enum hwmon_sensor_types type,
   1146				 u32 attr, int channel, const char **str)
   1147{
   1148	switch (type) {
   1149	case hwmon_curr:
   1150		switch (attr) {
   1151		case hwmon_curr_label:
   1152			*str = "bias";
   1153			return 0;
   1154		default:
   1155			return -EOPNOTSUPP;
   1156		}
   1157		break;
   1158	case hwmon_temp:
   1159		switch (attr) {
   1160		case hwmon_temp_label:
   1161			*str = "temperature";
   1162			return 0;
   1163		default:
   1164			return -EOPNOTSUPP;
   1165		}
   1166		break;
   1167	case hwmon_in:
   1168		switch (attr) {
   1169		case hwmon_in_label:
   1170			*str = "VCC";
   1171			return 0;
   1172		default:
   1173			return -EOPNOTSUPP;
   1174		}
   1175		break;
   1176	case hwmon_power:
   1177		switch (attr) {
   1178		case hwmon_power_label:
   1179			*str = sfp_hwmon_power_labels[channel];
   1180			return 0;
   1181		default:
   1182			return -EOPNOTSUPP;
   1183		}
   1184		break;
   1185	default:
   1186		return -EOPNOTSUPP;
   1187	}
   1188
   1189	return -EOPNOTSUPP;
   1190}
   1191
   1192static const struct hwmon_ops sfp_hwmon_ops = {
   1193	.is_visible = sfp_hwmon_is_visible,
   1194	.read = sfp_hwmon_read,
   1195	.read_string = sfp_hwmon_read_string,
   1196};
   1197
   1198static u32 sfp_hwmon_chip_config[] = {
   1199	HWMON_C_REGISTER_TZ,
   1200	0,
   1201};
   1202
   1203static const struct hwmon_channel_info sfp_hwmon_chip = {
   1204	.type = hwmon_chip,
   1205	.config = sfp_hwmon_chip_config,
   1206};
   1207
   1208static u32 sfp_hwmon_temp_config[] = {
   1209	HWMON_T_INPUT |
   1210	HWMON_T_MAX | HWMON_T_MIN |
   1211	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
   1212	HWMON_T_CRIT | HWMON_T_LCRIT |
   1213	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
   1214	HWMON_T_LABEL,
   1215	0,
   1216};
   1217
   1218static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
   1219	.type = hwmon_temp,
   1220	.config = sfp_hwmon_temp_config,
   1221};
   1222
   1223static u32 sfp_hwmon_vcc_config[] = {
   1224	HWMON_I_INPUT |
   1225	HWMON_I_MAX | HWMON_I_MIN |
   1226	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
   1227	HWMON_I_CRIT | HWMON_I_LCRIT |
   1228	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
   1229	HWMON_I_LABEL,
   1230	0,
   1231};
   1232
   1233static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
   1234	.type = hwmon_in,
   1235	.config = sfp_hwmon_vcc_config,
   1236};
   1237
   1238static u32 sfp_hwmon_bias_config[] = {
   1239	HWMON_C_INPUT |
   1240	HWMON_C_MAX | HWMON_C_MIN |
   1241	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
   1242	HWMON_C_CRIT | HWMON_C_LCRIT |
   1243	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
   1244	HWMON_C_LABEL,
   1245	0,
   1246};
   1247
   1248static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
   1249	.type = hwmon_curr,
   1250	.config = sfp_hwmon_bias_config,
   1251};
   1252
   1253static u32 sfp_hwmon_power_config[] = {
   1254	/* Transmit power */
   1255	HWMON_P_INPUT |
   1256	HWMON_P_MAX | HWMON_P_MIN |
   1257	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
   1258	HWMON_P_CRIT | HWMON_P_LCRIT |
   1259	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
   1260	HWMON_P_LABEL,
   1261	/* Receive power */
   1262	HWMON_P_INPUT |
   1263	HWMON_P_MAX | HWMON_P_MIN |
   1264	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
   1265	HWMON_P_CRIT | HWMON_P_LCRIT |
   1266	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
   1267	HWMON_P_LABEL,
   1268	0,
   1269};
   1270
   1271static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
   1272	.type = hwmon_power,
   1273	.config = sfp_hwmon_power_config,
   1274};
   1275
   1276static const struct hwmon_channel_info *sfp_hwmon_info[] = {
   1277	&sfp_hwmon_chip,
   1278	&sfp_hwmon_vcc_channel_info,
   1279	&sfp_hwmon_temp_channel_info,
   1280	&sfp_hwmon_bias_channel_info,
   1281	&sfp_hwmon_power_channel_info,
   1282	NULL,
   1283};
   1284
   1285static const struct hwmon_chip_info sfp_hwmon_chip_info = {
   1286	.ops = &sfp_hwmon_ops,
   1287	.info = sfp_hwmon_info,
   1288};
   1289
   1290static void sfp_hwmon_probe(struct work_struct *work)
   1291{
   1292	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
   1293	int err, i;
   1294
   1295	/* hwmon interface needs to access 16bit registers in atomic way to
   1296	 * guarantee coherency of the diagnostic monitoring data. If it is not
   1297	 * possible to guarantee coherency because EEPROM is broken in such way
   1298	 * that does not support atomic 16bit read operation then we have to
   1299	 * skip registration of hwmon device.
   1300	 */
   1301	if (sfp->i2c_block_size < 2) {
   1302		dev_info(sfp->dev,
   1303			 "skipping hwmon device registration due to broken EEPROM\n");
   1304		dev_info(sfp->dev,
   1305			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
   1306		return;
   1307	}
   1308
   1309	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
   1310	if (err < 0) {
   1311		if (sfp->hwmon_tries--) {
   1312			mod_delayed_work(system_wq, &sfp->hwmon_probe,
   1313					 T_PROBE_RETRY_SLOW);
   1314		} else {
   1315			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
   1316				 ERR_PTR(err));
   1317		}
   1318		return;
   1319	}
   1320
   1321	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
   1322	if (!sfp->hwmon_name) {
   1323		dev_err(sfp->dev, "out of memory for hwmon name\n");
   1324		return;
   1325	}
   1326
   1327	for (i = 0; sfp->hwmon_name[i]; i++)
   1328		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
   1329			sfp->hwmon_name[i] = '_';
   1330
   1331	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
   1332							 sfp->hwmon_name, sfp,
   1333							 &sfp_hwmon_chip_info,
   1334							 NULL);
   1335	if (IS_ERR(sfp->hwmon_dev))
   1336		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
   1337			PTR_ERR(sfp->hwmon_dev));
   1338}
   1339
   1340static int sfp_hwmon_insert(struct sfp *sfp)
   1341{
   1342	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
   1343		return 0;
   1344
   1345	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
   1346		return 0;
   1347
   1348	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
   1349		/* This driver in general does not support address
   1350		 * change.
   1351		 */
   1352		return 0;
   1353
   1354	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
   1355	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
   1356
   1357	return 0;
   1358}
   1359
   1360static void sfp_hwmon_remove(struct sfp *sfp)
   1361{
   1362	cancel_delayed_work_sync(&sfp->hwmon_probe);
   1363	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
   1364		hwmon_device_unregister(sfp->hwmon_dev);
   1365		sfp->hwmon_dev = NULL;
   1366		kfree(sfp->hwmon_name);
   1367	}
   1368}
   1369
   1370static int sfp_hwmon_init(struct sfp *sfp)
   1371{
   1372	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
   1373
   1374	return 0;
   1375}
   1376
   1377static void sfp_hwmon_exit(struct sfp *sfp)
   1378{
   1379	cancel_delayed_work_sync(&sfp->hwmon_probe);
   1380}
   1381#else
   1382static int sfp_hwmon_insert(struct sfp *sfp)
   1383{
   1384	return 0;
   1385}
   1386
   1387static void sfp_hwmon_remove(struct sfp *sfp)
   1388{
   1389}
   1390
   1391static int sfp_hwmon_init(struct sfp *sfp)
   1392{
   1393	return 0;
   1394}
   1395
   1396static void sfp_hwmon_exit(struct sfp *sfp)
   1397{
   1398}
   1399#endif
   1400
   1401/* Helpers */
   1402static void sfp_module_tx_disable(struct sfp *sfp)
   1403{
   1404	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
   1405		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
   1406	sfp->state |= SFP_F_TX_DISABLE;
   1407	sfp_set_state(sfp, sfp->state);
   1408}
   1409
   1410static void sfp_module_tx_enable(struct sfp *sfp)
   1411{
   1412	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
   1413		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
   1414	sfp->state &= ~SFP_F_TX_DISABLE;
   1415	sfp_set_state(sfp, sfp->state);
   1416}
   1417
   1418#if IS_ENABLED(CONFIG_DEBUG_FS)
   1419static int sfp_debug_state_show(struct seq_file *s, void *data)
   1420{
   1421	struct sfp *sfp = s->private;
   1422
   1423	seq_printf(s, "Module state: %s\n",
   1424		   mod_state_to_str(sfp->sm_mod_state));
   1425	seq_printf(s, "Module probe attempts: %d %d\n",
   1426		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
   1427		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
   1428	seq_printf(s, "Device state: %s\n",
   1429		   dev_state_to_str(sfp->sm_dev_state));
   1430	seq_printf(s, "Main state: %s\n",
   1431		   sm_state_to_str(sfp->sm_state));
   1432	seq_printf(s, "Fault recovery remaining retries: %d\n",
   1433		   sfp->sm_fault_retries);
   1434	seq_printf(s, "PHY probe remaining retries: %d\n",
   1435		   sfp->sm_phy_retries);
   1436	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
   1437	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
   1438	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
   1439	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
   1440	return 0;
   1441}
   1442DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
   1443
   1444static void sfp_debugfs_init(struct sfp *sfp)
   1445{
   1446	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
   1447
   1448	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
   1449			    &sfp_debug_state_fops);
   1450}
   1451
   1452static void sfp_debugfs_exit(struct sfp *sfp)
   1453{
   1454	debugfs_remove_recursive(sfp->debugfs_dir);
   1455}
   1456#else
   1457static void sfp_debugfs_init(struct sfp *sfp)
   1458{
   1459}
   1460
   1461static void sfp_debugfs_exit(struct sfp *sfp)
   1462{
   1463}
   1464#endif
   1465
   1466static void sfp_module_tx_fault_reset(struct sfp *sfp)
   1467{
   1468	unsigned int state = sfp->state;
   1469
   1470	if (state & SFP_F_TX_DISABLE)
   1471		return;
   1472
   1473	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
   1474
   1475	udelay(T_RESET_US);
   1476
   1477	sfp_set_state(sfp, state);
   1478}
   1479
   1480/* SFP state machine */
   1481static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
   1482{
   1483	if (timeout)
   1484		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
   1485				 timeout);
   1486	else
   1487		cancel_delayed_work(&sfp->timeout);
   1488}
   1489
   1490static void sfp_sm_next(struct sfp *sfp, unsigned int state,
   1491			unsigned int timeout)
   1492{
   1493	sfp->sm_state = state;
   1494	sfp_sm_set_timer(sfp, timeout);
   1495}
   1496
   1497static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
   1498			    unsigned int timeout)
   1499{
   1500	sfp->sm_mod_state = state;
   1501	sfp_sm_set_timer(sfp, timeout);
   1502}
   1503
   1504static void sfp_sm_phy_detach(struct sfp *sfp)
   1505{
   1506	sfp_remove_phy(sfp->sfp_bus);
   1507	phy_device_remove(sfp->mod_phy);
   1508	phy_device_free(sfp->mod_phy);
   1509	sfp->mod_phy = NULL;
   1510}
   1511
   1512static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
   1513{
   1514	struct phy_device *phy;
   1515	int err;
   1516
   1517	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
   1518	if (phy == ERR_PTR(-ENODEV))
   1519		return PTR_ERR(phy);
   1520	if (IS_ERR(phy)) {
   1521		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
   1522		return PTR_ERR(phy);
   1523	}
   1524
   1525	err = phy_device_register(phy);
   1526	if (err) {
   1527		phy_device_free(phy);
   1528		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
   1529			ERR_PTR(err));
   1530		return err;
   1531	}
   1532
   1533	err = sfp_add_phy(sfp->sfp_bus, phy);
   1534	if (err) {
   1535		phy_device_remove(phy);
   1536		phy_device_free(phy);
   1537		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
   1538		return err;
   1539	}
   1540
   1541	sfp->mod_phy = phy;
   1542
   1543	return 0;
   1544}
   1545
   1546static void sfp_sm_link_up(struct sfp *sfp)
   1547{
   1548	sfp_link_up(sfp->sfp_bus);
   1549	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
   1550}
   1551
   1552static void sfp_sm_link_down(struct sfp *sfp)
   1553{
   1554	sfp_link_down(sfp->sfp_bus);
   1555}
   1556
   1557static void sfp_sm_link_check_los(struct sfp *sfp)
   1558{
   1559	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
   1560	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
   1561	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
   1562	bool los = false;
   1563
   1564	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
   1565	 * are set, we assume that no LOS signal is available. If both are
   1566	 * set, we assume LOS is not implemented (and is meaningless.)
   1567	 */
   1568	if (los_options == los_inverted)
   1569		los = !(sfp->state & SFP_F_LOS);
   1570	else if (los_options == los_normal)
   1571		los = !!(sfp->state & SFP_F_LOS);
   1572
   1573	if (los)
   1574		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
   1575	else
   1576		sfp_sm_link_up(sfp);
   1577}
   1578
   1579static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
   1580{
   1581	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
   1582	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
   1583	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
   1584
   1585	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
   1586	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
   1587}
   1588
   1589static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
   1590{
   1591	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
   1592	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
   1593	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
   1594
   1595	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
   1596	       (los_options == los_normal && event == SFP_E_LOS_LOW);
   1597}
   1598
   1599static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
   1600{
   1601	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
   1602		dev_err(sfp->dev,
   1603			"module persistently indicates fault, disabling\n");
   1604		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
   1605	} else {
   1606		if (warn)
   1607			dev_err(sfp->dev, "module transmit fault indicated\n");
   1608
   1609		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
   1610	}
   1611}
   1612
   1613/* Probe a SFP for a PHY device if the module supports copper - the PHY
   1614 * normally sits at I2C bus address 0x56, and may either be a clause 22
   1615 * or clause 45 PHY.
   1616 *
   1617 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
   1618 * negotiation enabled, but some may be in 1000base-X - which is for the
   1619 * PHY driver to determine.
   1620 *
   1621 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
   1622 * mode according to the negotiated line speed.
   1623 */
   1624static int sfp_sm_probe_for_phy(struct sfp *sfp)
   1625{
   1626	int err = 0;
   1627
   1628	switch (sfp->id.base.extended_cc) {
   1629	case SFF8024_ECC_10GBASE_T_SFI:
   1630	case SFF8024_ECC_10GBASE_T_SR:
   1631	case SFF8024_ECC_5GBASE_T:
   1632	case SFF8024_ECC_2_5GBASE_T:
   1633		err = sfp_sm_probe_phy(sfp, true);
   1634		break;
   1635
   1636	default:
   1637		if (sfp->id.base.e1000_base_t)
   1638			err = sfp_sm_probe_phy(sfp, false);
   1639		break;
   1640	}
   1641	return err;
   1642}
   1643
   1644static int sfp_module_parse_power(struct sfp *sfp)
   1645{
   1646	u32 power_mW = 1000;
   1647	bool supports_a2;
   1648
   1649	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
   1650		power_mW = 1500;
   1651	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
   1652		power_mW = 2000;
   1653
   1654	supports_a2 = sfp->id.ext.sff8472_compliance !=
   1655				SFP_SFF8472_COMPLIANCE_NONE ||
   1656		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
   1657
   1658	if (power_mW > sfp->max_power_mW) {
   1659		/* Module power specification exceeds the allowed maximum. */
   1660		if (!supports_a2) {
   1661			/* The module appears not to implement bus address
   1662			 * 0xa2, so assume that the module powers up in the
   1663			 * indicated mode.
   1664			 */
   1665			dev_err(sfp->dev,
   1666				"Host does not support %u.%uW modules\n",
   1667				power_mW / 1000, (power_mW / 100) % 10);
   1668			return -EINVAL;
   1669		} else {
   1670			dev_warn(sfp->dev,
   1671				 "Host does not support %u.%uW modules, module left in power mode 1\n",
   1672				 power_mW / 1000, (power_mW / 100) % 10);
   1673			return 0;
   1674		}
   1675	}
   1676
   1677	if (power_mW <= 1000) {
   1678		/* Modules below 1W do not require a power change sequence */
   1679		sfp->module_power_mW = power_mW;
   1680		return 0;
   1681	}
   1682
   1683	if (!supports_a2) {
   1684		/* The module power level is below the host maximum and the
   1685		 * module appears not to implement bus address 0xa2, so assume
   1686		 * that the module powers up in the indicated mode.
   1687		 */
   1688		return 0;
   1689	}
   1690
   1691	/* If the module requires a higher power mode, but also requires
   1692	 * an address change sequence, warn the user that the module may
   1693	 * not be functional.
   1694	 */
   1695	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
   1696		dev_warn(sfp->dev,
   1697			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
   1698			 power_mW / 1000, (power_mW / 100) % 10);
   1699		return 0;
   1700	}
   1701
   1702	sfp->module_power_mW = power_mW;
   1703
   1704	return 0;
   1705}
   1706
   1707static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
   1708{
   1709	u8 val;
   1710	int err;
   1711
   1712	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
   1713	if (err != sizeof(val)) {
   1714		dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
   1715		return -EAGAIN;
   1716	}
   1717
   1718	/* DM7052 reports as a high power module, responds to reads (with
   1719	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
   1720	 * if the bit is already set, we're already in high power mode.
   1721	 */
   1722	if (!!(val & BIT(0)) == enable)
   1723		return 0;
   1724
   1725	if (enable)
   1726		val |= BIT(0);
   1727	else
   1728		val &= ~BIT(0);
   1729
   1730	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
   1731	if (err != sizeof(val)) {
   1732		dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
   1733			ERR_PTR(err));
   1734		return -EAGAIN;
   1735	}
   1736
   1737	if (enable)
   1738		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
   1739			 sfp->module_power_mW / 1000,
   1740			 (sfp->module_power_mW / 100) % 10);
   1741
   1742	return 0;
   1743}
   1744
   1745/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
   1746 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
   1747 * not support multibyte reads from the EEPROM. Each multi-byte read
   1748 * operation returns just one byte of EEPROM followed by zeros. There is
   1749 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
   1750 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
   1751 * name and vendor id into EEPROM, so there is even no way to detect if
   1752 * module is V-SOL V2801F. Therefore check for those zeros in the read
   1753 * data and then based on check switch to reading EEPROM to one byte
   1754 * at a time.
   1755 */
   1756static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
   1757{
   1758	size_t i, block_size = sfp->i2c_block_size;
   1759
   1760	/* Already using byte IO */
   1761	if (block_size == 1)
   1762		return false;
   1763
   1764	for (i = 1; i < len; i += block_size) {
   1765		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
   1766			return false;
   1767	}
   1768	return true;
   1769}
   1770
   1771static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
   1772{
   1773	u8 check;
   1774	int err;
   1775
   1776	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
   1777	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
   1778	    id->base.connector != SFF8024_CONNECTOR_LC) {
   1779		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
   1780		id->base.phys_id = SFF8024_ID_SFF_8472;
   1781		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
   1782		id->base.connector = SFF8024_CONNECTOR_LC;
   1783		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
   1784		if (err != 3) {
   1785			dev_err(sfp->dev,
   1786				"Failed to rewrite module EEPROM: %pe\n",
   1787				ERR_PTR(err));
   1788			return err;
   1789		}
   1790
   1791		/* Cotsworks modules have been found to require a delay between write operations. */
   1792		mdelay(50);
   1793
   1794		/* Update base structure checksum */
   1795		check = sfp_check(&id->base, sizeof(id->base) - 1);
   1796		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
   1797		if (err != 1) {
   1798			dev_err(sfp->dev,
   1799				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
   1800				ERR_PTR(err));
   1801			return err;
   1802		}
   1803	}
   1804	return 0;
   1805}
   1806
   1807static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
   1808{
   1809	/* SFP module inserted - read I2C data */
   1810	struct sfp_eeprom_id id;
   1811	bool cotsworks_sfbg;
   1812	bool cotsworks;
   1813	u8 check;
   1814	int ret;
   1815
   1816	/* Some SFP modules and also some Linux I2C drivers do not like reads
   1817	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
   1818	 * a time.
   1819	 */
   1820	sfp->i2c_block_size = 16;
   1821
   1822	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
   1823	if (ret < 0) {
   1824		if (report)
   1825			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
   1826				ERR_PTR(ret));
   1827		return -EAGAIN;
   1828	}
   1829
   1830	if (ret != sizeof(id.base)) {
   1831		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
   1832		return -EAGAIN;
   1833	}
   1834
   1835	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
   1836	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
   1837	 * that EEPROM supports atomic 16bit read operation for diagnostic
   1838	 * fields, so do not switch to one byte reading at a time unless it
   1839	 * is really required and we have no other option.
   1840	 */
   1841	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
   1842		dev_info(sfp->dev,
   1843			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
   1844		dev_info(sfp->dev,
   1845			 "Switching to reading EEPROM to one byte at a time\n");
   1846		sfp->i2c_block_size = 1;
   1847
   1848		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
   1849		if (ret < 0) {
   1850			if (report)
   1851				dev_err(sfp->dev,
   1852					"failed to read EEPROM: %pe\n",
   1853					ERR_PTR(ret));
   1854			return -EAGAIN;
   1855		}
   1856
   1857		if (ret != sizeof(id.base)) {
   1858			dev_err(sfp->dev, "EEPROM short read: %pe\n",
   1859				ERR_PTR(ret));
   1860			return -EAGAIN;
   1861		}
   1862	}
   1863
   1864	/* Cotsworks do not seem to update the checksums when they
   1865	 * do the final programming with the final module part number,
   1866	 * serial number and date code.
   1867	 */
   1868	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
   1869	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
   1870
   1871	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
   1872	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
   1873	 * Cotsworks PN matches and bytes are not correct.
   1874	 */
   1875	if (cotsworks && cotsworks_sfbg) {
   1876		ret = sfp_cotsworks_fixup_check(sfp, &id);
   1877		if (ret < 0)
   1878			return ret;
   1879	}
   1880
   1881	/* Validate the checksum over the base structure */
   1882	check = sfp_check(&id.base, sizeof(id.base) - 1);
   1883	if (check != id.base.cc_base) {
   1884		if (cotsworks) {
   1885			dev_warn(sfp->dev,
   1886				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
   1887				 check, id.base.cc_base);
   1888		} else {
   1889			dev_err(sfp->dev,
   1890				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
   1891				check, id.base.cc_base);
   1892			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
   1893				       16, 1, &id, sizeof(id), true);
   1894			return -EINVAL;
   1895		}
   1896	}
   1897
   1898	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
   1899	if (ret < 0) {
   1900		if (report)
   1901			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
   1902				ERR_PTR(ret));
   1903		return -EAGAIN;
   1904	}
   1905
   1906	if (ret != sizeof(id.ext)) {
   1907		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
   1908		return -EAGAIN;
   1909	}
   1910
   1911	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
   1912	if (check != id.ext.cc_ext) {
   1913		if (cotsworks) {
   1914			dev_warn(sfp->dev,
   1915				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
   1916				 check, id.ext.cc_ext);
   1917		} else {
   1918			dev_err(sfp->dev,
   1919				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
   1920				check, id.ext.cc_ext);
   1921			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
   1922				       16, 1, &id, sizeof(id), true);
   1923			memset(&id.ext, 0, sizeof(id.ext));
   1924		}
   1925	}
   1926
   1927	sfp->id = id;
   1928
   1929	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
   1930		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
   1931		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
   1932		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
   1933		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
   1934		 (int)sizeof(id.ext.datecode), id.ext.datecode);
   1935
   1936	/* Check whether we support this module */
   1937	if (!sfp->type->module_supported(&id)) {
   1938		dev_err(sfp->dev,
   1939			"module is not supported - phys id 0x%02x 0x%02x\n",
   1940			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
   1941		return -EINVAL;
   1942	}
   1943
   1944	/* If the module requires address swap mode, warn about it */
   1945	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
   1946		dev_warn(sfp->dev,
   1947			 "module address swap to access page 0xA2 is not supported.\n");
   1948
   1949	/* Parse the module power requirement */
   1950	ret = sfp_module_parse_power(sfp);
   1951	if (ret < 0)
   1952		return ret;
   1953
   1954	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
   1955	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
   1956		sfp->module_t_start_up = T_START_UP_BAD_GPON;
   1957	else
   1958		sfp->module_t_start_up = T_START_UP;
   1959
   1960	if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
   1961	    !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
   1962		sfp->tx_fault_ignore = true;
   1963	else
   1964		sfp->tx_fault_ignore = false;
   1965
   1966	return 0;
   1967}
   1968
   1969static void sfp_sm_mod_remove(struct sfp *sfp)
   1970{
   1971	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
   1972		sfp_module_remove(sfp->sfp_bus);
   1973
   1974	sfp_hwmon_remove(sfp);
   1975
   1976	memset(&sfp->id, 0, sizeof(sfp->id));
   1977	sfp->module_power_mW = 0;
   1978
   1979	dev_info(sfp->dev, "module removed\n");
   1980}
   1981
   1982/* This state machine tracks the upstream's state */
   1983static void sfp_sm_device(struct sfp *sfp, unsigned int event)
   1984{
   1985	switch (sfp->sm_dev_state) {
   1986	default:
   1987		if (event == SFP_E_DEV_ATTACH)
   1988			sfp->sm_dev_state = SFP_DEV_DOWN;
   1989		break;
   1990
   1991	case SFP_DEV_DOWN:
   1992		if (event == SFP_E_DEV_DETACH)
   1993			sfp->sm_dev_state = SFP_DEV_DETACHED;
   1994		else if (event == SFP_E_DEV_UP)
   1995			sfp->sm_dev_state = SFP_DEV_UP;
   1996		break;
   1997
   1998	case SFP_DEV_UP:
   1999		if (event == SFP_E_DEV_DETACH)
   2000			sfp->sm_dev_state = SFP_DEV_DETACHED;
   2001		else if (event == SFP_E_DEV_DOWN)
   2002			sfp->sm_dev_state = SFP_DEV_DOWN;
   2003		break;
   2004	}
   2005}
   2006
   2007/* This state machine tracks the insert/remove state of the module, probes
   2008 * the on-board EEPROM, and sets up the power level.
   2009 */
   2010static void sfp_sm_module(struct sfp *sfp, unsigned int event)
   2011{
   2012	int err;
   2013
   2014	/* Handle remove event globally, it resets this state machine */
   2015	if (event == SFP_E_REMOVE) {
   2016		if (sfp->sm_mod_state > SFP_MOD_PROBE)
   2017			sfp_sm_mod_remove(sfp);
   2018		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
   2019		return;
   2020	}
   2021
   2022	/* Handle device detach globally */
   2023	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
   2024	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
   2025		if (sfp->module_power_mW > 1000 &&
   2026		    sfp->sm_mod_state > SFP_MOD_HPOWER)
   2027			sfp_sm_mod_hpower(sfp, false);
   2028		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
   2029		return;
   2030	}
   2031
   2032	switch (sfp->sm_mod_state) {
   2033	default:
   2034		if (event == SFP_E_INSERT) {
   2035			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
   2036			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
   2037			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
   2038		}
   2039		break;
   2040
   2041	case SFP_MOD_PROBE:
   2042		/* Wait for T_PROBE_INIT to time out */
   2043		if (event != SFP_E_TIMEOUT)
   2044			break;
   2045
   2046		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
   2047		if (err == -EAGAIN) {
   2048			if (sfp->sm_mod_tries_init &&
   2049			   --sfp->sm_mod_tries_init) {
   2050				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
   2051				break;
   2052			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
   2053				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
   2054					dev_warn(sfp->dev,
   2055						 "please wait, module slow to respond\n");
   2056				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
   2057				break;
   2058			}
   2059		}
   2060		if (err < 0) {
   2061			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
   2062			break;
   2063		}
   2064
   2065		err = sfp_hwmon_insert(sfp);
   2066		if (err)
   2067			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
   2068				 ERR_PTR(err));
   2069
   2070		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
   2071		fallthrough;
   2072	case SFP_MOD_WAITDEV:
   2073		/* Ensure that the device is attached before proceeding */
   2074		if (sfp->sm_dev_state < SFP_DEV_DOWN)
   2075			break;
   2076
   2077		/* Report the module insertion to the upstream device */
   2078		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
   2079		if (err < 0) {
   2080			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
   2081			break;
   2082		}
   2083
   2084		/* If this is a power level 1 module, we are done */
   2085		if (sfp->module_power_mW <= 1000)
   2086			goto insert;
   2087
   2088		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
   2089		fallthrough;
   2090	case SFP_MOD_HPOWER:
   2091		/* Enable high power mode */
   2092		err = sfp_sm_mod_hpower(sfp, true);
   2093		if (err < 0) {
   2094			if (err != -EAGAIN) {
   2095				sfp_module_remove(sfp->sfp_bus);
   2096				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
   2097			} else {
   2098				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
   2099			}
   2100			break;
   2101		}
   2102
   2103		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
   2104		break;
   2105
   2106	case SFP_MOD_WAITPWR:
   2107		/* Wait for T_HPOWER_LEVEL to time out */
   2108		if (event != SFP_E_TIMEOUT)
   2109			break;
   2110
   2111	insert:
   2112		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
   2113		break;
   2114
   2115	case SFP_MOD_PRESENT:
   2116	case SFP_MOD_ERROR:
   2117		break;
   2118	}
   2119}
   2120
   2121static void sfp_sm_main(struct sfp *sfp, unsigned int event)
   2122{
   2123	unsigned long timeout;
   2124	int ret;
   2125
   2126	/* Some events are global */
   2127	if (sfp->sm_state != SFP_S_DOWN &&
   2128	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
   2129	     sfp->sm_dev_state != SFP_DEV_UP)) {
   2130		if (sfp->sm_state == SFP_S_LINK_UP &&
   2131		    sfp->sm_dev_state == SFP_DEV_UP)
   2132			sfp_sm_link_down(sfp);
   2133		if (sfp->sm_state > SFP_S_INIT)
   2134			sfp_module_stop(sfp->sfp_bus);
   2135		if (sfp->mod_phy)
   2136			sfp_sm_phy_detach(sfp);
   2137		sfp_module_tx_disable(sfp);
   2138		sfp_soft_stop_poll(sfp);
   2139		sfp_sm_next(sfp, SFP_S_DOWN, 0);
   2140		return;
   2141	}
   2142
   2143	/* The main state machine */
   2144	switch (sfp->sm_state) {
   2145	case SFP_S_DOWN:
   2146		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
   2147		    sfp->sm_dev_state != SFP_DEV_UP)
   2148			break;
   2149
   2150		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
   2151			sfp_soft_start_poll(sfp);
   2152
   2153		sfp_module_tx_enable(sfp);
   2154
   2155		/* Initialise the fault clearance retries */
   2156		sfp->sm_fault_retries = N_FAULT_INIT;
   2157
   2158		/* We need to check the TX_FAULT state, which is not defined
   2159		 * while TX_DISABLE is asserted. The earliest we want to do
   2160		 * anything (such as probe for a PHY) is 50ms.
   2161		 */
   2162		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
   2163		break;
   2164
   2165	case SFP_S_WAIT:
   2166		if (event != SFP_E_TIMEOUT)
   2167			break;
   2168
   2169		if (sfp->state & SFP_F_TX_FAULT) {
   2170			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
   2171			 * from the TX_DISABLE deassertion for the module to
   2172			 * initialise, which is indicated by TX_FAULT
   2173			 * deasserting.
   2174			 */
   2175			timeout = sfp->module_t_start_up;
   2176			if (timeout > T_WAIT)
   2177				timeout -= T_WAIT;
   2178			else
   2179				timeout = 1;
   2180
   2181			sfp_sm_next(sfp, SFP_S_INIT, timeout);
   2182		} else {
   2183			/* TX_FAULT is not asserted, assume the module has
   2184			 * finished initialising.
   2185			 */
   2186			goto init_done;
   2187		}
   2188		break;
   2189
   2190	case SFP_S_INIT:
   2191		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
   2192			/* TX_FAULT is still asserted after t_init
   2193			 * or t_start_up, so assume there is a fault.
   2194			 */
   2195			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
   2196				     sfp->sm_fault_retries == N_FAULT_INIT);
   2197		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
   2198	init_done:
   2199			sfp->sm_phy_retries = R_PHY_RETRY;
   2200			goto phy_probe;
   2201		}
   2202		break;
   2203
   2204	case SFP_S_INIT_PHY:
   2205		if (event != SFP_E_TIMEOUT)
   2206			break;
   2207	phy_probe:
   2208		/* TX_FAULT deasserted or we timed out with TX_FAULT
   2209		 * clear.  Probe for the PHY and check the LOS state.
   2210		 */
   2211		ret = sfp_sm_probe_for_phy(sfp);
   2212		if (ret == -ENODEV) {
   2213			if (--sfp->sm_phy_retries) {
   2214				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
   2215				break;
   2216			} else {
   2217				dev_info(sfp->dev, "no PHY detected\n");
   2218			}
   2219		} else if (ret) {
   2220			sfp_sm_next(sfp, SFP_S_FAIL, 0);
   2221			break;
   2222		}
   2223		if (sfp_module_start(sfp->sfp_bus)) {
   2224			sfp_sm_next(sfp, SFP_S_FAIL, 0);
   2225			break;
   2226		}
   2227		sfp_sm_link_check_los(sfp);
   2228
   2229		/* Reset the fault retry count */
   2230		sfp->sm_fault_retries = N_FAULT;
   2231		break;
   2232
   2233	case SFP_S_INIT_TX_FAULT:
   2234		if (event == SFP_E_TIMEOUT) {
   2235			sfp_module_tx_fault_reset(sfp);
   2236			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
   2237		}
   2238		break;
   2239
   2240	case SFP_S_WAIT_LOS:
   2241		if (event == SFP_E_TX_FAULT)
   2242			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
   2243		else if (sfp_los_event_inactive(sfp, event))
   2244			sfp_sm_link_up(sfp);
   2245		break;
   2246
   2247	case SFP_S_LINK_UP:
   2248		if (event == SFP_E_TX_FAULT) {
   2249			sfp_sm_link_down(sfp);
   2250			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
   2251		} else if (sfp_los_event_active(sfp, event)) {
   2252			sfp_sm_link_down(sfp);
   2253			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
   2254		}
   2255		break;
   2256
   2257	case SFP_S_TX_FAULT:
   2258		if (event == SFP_E_TIMEOUT) {
   2259			sfp_module_tx_fault_reset(sfp);
   2260			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
   2261		}
   2262		break;
   2263
   2264	case SFP_S_REINIT:
   2265		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
   2266			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
   2267		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
   2268			dev_info(sfp->dev, "module transmit fault recovered\n");
   2269			sfp_sm_link_check_los(sfp);
   2270		}
   2271		break;
   2272
   2273	case SFP_S_TX_DISABLE:
   2274		break;
   2275	}
   2276}
   2277
   2278static void sfp_sm_event(struct sfp *sfp, unsigned int event)
   2279{
   2280	mutex_lock(&sfp->sm_mutex);
   2281
   2282	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
   2283		mod_state_to_str(sfp->sm_mod_state),
   2284		dev_state_to_str(sfp->sm_dev_state),
   2285		sm_state_to_str(sfp->sm_state),
   2286		event_to_str(event));
   2287
   2288	sfp_sm_device(sfp, event);
   2289	sfp_sm_module(sfp, event);
   2290	sfp_sm_main(sfp, event);
   2291
   2292	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
   2293		mod_state_to_str(sfp->sm_mod_state),
   2294		dev_state_to_str(sfp->sm_dev_state),
   2295		sm_state_to_str(sfp->sm_state));
   2296
   2297	mutex_unlock(&sfp->sm_mutex);
   2298}
   2299
   2300static void sfp_attach(struct sfp *sfp)
   2301{
   2302	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
   2303}
   2304
   2305static void sfp_detach(struct sfp *sfp)
   2306{
   2307	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
   2308}
   2309
   2310static void sfp_start(struct sfp *sfp)
   2311{
   2312	sfp_sm_event(sfp, SFP_E_DEV_UP);
   2313}
   2314
   2315static void sfp_stop(struct sfp *sfp)
   2316{
   2317	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
   2318}
   2319
   2320static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
   2321{
   2322	/* locking... and check module is present */
   2323
   2324	if (sfp->id.ext.sff8472_compliance &&
   2325	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
   2326		modinfo->type = ETH_MODULE_SFF_8472;
   2327		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
   2328	} else {
   2329		modinfo->type = ETH_MODULE_SFF_8079;
   2330		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
   2331	}
   2332	return 0;
   2333}
   2334
   2335static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
   2336			     u8 *data)
   2337{
   2338	unsigned int first, last, len;
   2339	int ret;
   2340
   2341	if (ee->len == 0)
   2342		return -EINVAL;
   2343
   2344	first = ee->offset;
   2345	last = ee->offset + ee->len;
   2346	if (first < ETH_MODULE_SFF_8079_LEN) {
   2347		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
   2348		len -= first;
   2349
   2350		ret = sfp_read(sfp, false, first, data, len);
   2351		if (ret < 0)
   2352			return ret;
   2353
   2354		first += len;
   2355		data += len;
   2356	}
   2357	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
   2358		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
   2359		len -= first;
   2360		first -= ETH_MODULE_SFF_8079_LEN;
   2361
   2362		ret = sfp_read(sfp, true, first, data, len);
   2363		if (ret < 0)
   2364			return ret;
   2365	}
   2366	return 0;
   2367}
   2368
   2369static int sfp_module_eeprom_by_page(struct sfp *sfp,
   2370				     const struct ethtool_module_eeprom *page,
   2371				     struct netlink_ext_ack *extack)
   2372{
   2373	if (page->bank) {
   2374		NL_SET_ERR_MSG(extack, "Banks not supported");
   2375		return -EOPNOTSUPP;
   2376	}
   2377
   2378	if (page->page) {
   2379		NL_SET_ERR_MSG(extack, "Only page 0 supported");
   2380		return -EOPNOTSUPP;
   2381	}
   2382
   2383	if (page->i2c_address != 0x50 &&
   2384	    page->i2c_address != 0x51) {
   2385		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
   2386		return -EOPNOTSUPP;
   2387	}
   2388
   2389	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
   2390			page->data, page->length);
   2391};
   2392
   2393static const struct sfp_socket_ops sfp_module_ops = {
   2394	.attach = sfp_attach,
   2395	.detach = sfp_detach,
   2396	.start = sfp_start,
   2397	.stop = sfp_stop,
   2398	.module_info = sfp_module_info,
   2399	.module_eeprom = sfp_module_eeprom,
   2400	.module_eeprom_by_page = sfp_module_eeprom_by_page,
   2401};
   2402
   2403static void sfp_timeout(struct work_struct *work)
   2404{
   2405	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
   2406
   2407	rtnl_lock();
   2408	sfp_sm_event(sfp, SFP_E_TIMEOUT);
   2409	rtnl_unlock();
   2410}
   2411
   2412static void sfp_check_state(struct sfp *sfp)
   2413{
   2414	unsigned int state, i, changed;
   2415
   2416	mutex_lock(&sfp->st_mutex);
   2417	state = sfp_get_state(sfp);
   2418	changed = state ^ sfp->state;
   2419	if (sfp->tx_fault_ignore)
   2420		changed &= SFP_F_PRESENT | SFP_F_LOS;
   2421	else
   2422		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
   2423
   2424	for (i = 0; i < GPIO_MAX; i++)
   2425		if (changed & BIT(i))
   2426			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
   2427				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
   2428
   2429	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
   2430	sfp->state = state;
   2431
   2432	rtnl_lock();
   2433	if (changed & SFP_F_PRESENT)
   2434		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
   2435				SFP_E_INSERT : SFP_E_REMOVE);
   2436
   2437	if (changed & SFP_F_TX_FAULT)
   2438		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
   2439				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
   2440
   2441	if (changed & SFP_F_LOS)
   2442		sfp_sm_event(sfp, state & SFP_F_LOS ?
   2443				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
   2444	rtnl_unlock();
   2445	mutex_unlock(&sfp->st_mutex);
   2446}
   2447
   2448static irqreturn_t sfp_irq(int irq, void *data)
   2449{
   2450	struct sfp *sfp = data;
   2451
   2452	sfp_check_state(sfp);
   2453
   2454	return IRQ_HANDLED;
   2455}
   2456
   2457static void sfp_poll(struct work_struct *work)
   2458{
   2459	struct sfp *sfp = container_of(work, struct sfp, poll.work);
   2460
   2461	sfp_check_state(sfp);
   2462
   2463	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
   2464	    sfp->need_poll)
   2465		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
   2466}
   2467
   2468static struct sfp *sfp_alloc(struct device *dev)
   2469{
   2470	struct sfp *sfp;
   2471
   2472	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
   2473	if (!sfp)
   2474		return ERR_PTR(-ENOMEM);
   2475
   2476	sfp->dev = dev;
   2477
   2478	mutex_init(&sfp->sm_mutex);
   2479	mutex_init(&sfp->st_mutex);
   2480	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
   2481	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
   2482
   2483	sfp_hwmon_init(sfp);
   2484
   2485	return sfp;
   2486}
   2487
   2488static void sfp_cleanup(void *data)
   2489{
   2490	struct sfp *sfp = data;
   2491
   2492	sfp_hwmon_exit(sfp);
   2493
   2494	cancel_delayed_work_sync(&sfp->poll);
   2495	cancel_delayed_work_sync(&sfp->timeout);
   2496	if (sfp->i2c_mii) {
   2497		mdiobus_unregister(sfp->i2c_mii);
   2498		mdiobus_free(sfp->i2c_mii);
   2499	}
   2500	if (sfp->i2c)
   2501		i2c_put_adapter(sfp->i2c);
   2502	kfree(sfp);
   2503}
   2504
   2505static int sfp_probe(struct platform_device *pdev)
   2506{
   2507	const struct sff_data *sff;
   2508	struct i2c_adapter *i2c;
   2509	char *sfp_irq_name;
   2510	struct sfp *sfp;
   2511	int err, i;
   2512
   2513	sfp = sfp_alloc(&pdev->dev);
   2514	if (IS_ERR(sfp))
   2515		return PTR_ERR(sfp);
   2516
   2517	platform_set_drvdata(pdev, sfp);
   2518
   2519	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
   2520	if (err < 0)
   2521		return err;
   2522
   2523	sff = sfp->type = &sfp_data;
   2524
   2525	if (pdev->dev.of_node) {
   2526		struct device_node *node = pdev->dev.of_node;
   2527		const struct of_device_id *id;
   2528		struct device_node *np;
   2529
   2530		id = of_match_node(sfp_of_match, node);
   2531		if (WARN_ON(!id))
   2532			return -EINVAL;
   2533
   2534		sff = sfp->type = id->data;
   2535
   2536		np = of_parse_phandle(node, "i2c-bus", 0);
   2537		if (!np) {
   2538			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
   2539			return -ENODEV;
   2540		}
   2541
   2542		i2c = of_find_i2c_adapter_by_node(np);
   2543		of_node_put(np);
   2544	} else if (has_acpi_companion(&pdev->dev)) {
   2545		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
   2546		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
   2547		struct fwnode_reference_args args;
   2548		struct acpi_handle *acpi_handle;
   2549		int ret;
   2550
   2551		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
   2552		if (ret || !is_acpi_device_node(args.fwnode)) {
   2553			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
   2554			return -ENODEV;
   2555		}
   2556
   2557		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
   2558		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
   2559	} else {
   2560		return -EINVAL;
   2561	}
   2562
   2563	if (!i2c)
   2564		return -EPROBE_DEFER;
   2565
   2566	err = sfp_i2c_configure(sfp, i2c);
   2567	if (err < 0) {
   2568		i2c_put_adapter(i2c);
   2569		return err;
   2570	}
   2571
   2572	for (i = 0; i < GPIO_MAX; i++)
   2573		if (sff->gpios & BIT(i)) {
   2574			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
   2575					   gpio_of_names[i], gpio_flags[i]);
   2576			if (IS_ERR(sfp->gpio[i]))
   2577				return PTR_ERR(sfp->gpio[i]);
   2578		}
   2579
   2580	sfp->get_state = sfp_gpio_get_state;
   2581	sfp->set_state = sfp_gpio_set_state;
   2582
   2583	/* Modules that have no detect signal are always present */
   2584	if (!(sfp->gpio[GPIO_MODDEF0]))
   2585		sfp->get_state = sff_gpio_get_state;
   2586
   2587	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
   2588				 &sfp->max_power_mW);
   2589	if (!sfp->max_power_mW)
   2590		sfp->max_power_mW = 1000;
   2591
   2592	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
   2593		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
   2594
   2595	/* Get the initial state, and always signal TX disable,
   2596	 * since the network interface will not be up.
   2597	 */
   2598	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
   2599
   2600	if (sfp->gpio[GPIO_RATE_SELECT] &&
   2601	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
   2602		sfp->state |= SFP_F_RATE_SELECT;
   2603	sfp_set_state(sfp, sfp->state);
   2604	sfp_module_tx_disable(sfp);
   2605	if (sfp->state & SFP_F_PRESENT) {
   2606		rtnl_lock();
   2607		sfp_sm_event(sfp, SFP_E_INSERT);
   2608		rtnl_unlock();
   2609	}
   2610
   2611	for (i = 0; i < GPIO_MAX; i++) {
   2612		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
   2613			continue;
   2614
   2615		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
   2616		if (sfp->gpio_irq[i] < 0) {
   2617			sfp->gpio_irq[i] = 0;
   2618			sfp->need_poll = true;
   2619			continue;
   2620		}
   2621
   2622		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
   2623					      "%s-%s", dev_name(sfp->dev),
   2624					      gpio_of_names[i]);
   2625
   2626		if (!sfp_irq_name)
   2627			return -ENOMEM;
   2628
   2629		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
   2630						NULL, sfp_irq,
   2631						IRQF_ONESHOT |
   2632						IRQF_TRIGGER_RISING |
   2633						IRQF_TRIGGER_FALLING,
   2634						sfp_irq_name, sfp);
   2635		if (err) {
   2636			sfp->gpio_irq[i] = 0;
   2637			sfp->need_poll = true;
   2638		}
   2639	}
   2640
   2641	if (sfp->need_poll)
   2642		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
   2643
   2644	/* We could have an issue in cases no Tx disable pin is available or
   2645	 * wired as modules using a laser as their light source will continue to
   2646	 * be active when the fiber is removed. This could be a safety issue and
   2647	 * we should at least warn the user about that.
   2648	 */
   2649	if (!sfp->gpio[GPIO_TX_DISABLE])
   2650		dev_warn(sfp->dev,
   2651			 "No tx_disable pin: SFP modules will always be emitting.\n");
   2652
   2653	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
   2654	if (!sfp->sfp_bus)
   2655		return -ENOMEM;
   2656
   2657	sfp_debugfs_init(sfp);
   2658
   2659	return 0;
   2660}
   2661
   2662static int sfp_remove(struct platform_device *pdev)
   2663{
   2664	struct sfp *sfp = platform_get_drvdata(pdev);
   2665
   2666	sfp_debugfs_exit(sfp);
   2667	sfp_unregister_socket(sfp->sfp_bus);
   2668
   2669	rtnl_lock();
   2670	sfp_sm_event(sfp, SFP_E_REMOVE);
   2671	rtnl_unlock();
   2672
   2673	return 0;
   2674}
   2675
   2676static void sfp_shutdown(struct platform_device *pdev)
   2677{
   2678	struct sfp *sfp = platform_get_drvdata(pdev);
   2679	int i;
   2680
   2681	for (i = 0; i < GPIO_MAX; i++) {
   2682		if (!sfp->gpio_irq[i])
   2683			continue;
   2684
   2685		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
   2686	}
   2687
   2688	cancel_delayed_work_sync(&sfp->poll);
   2689	cancel_delayed_work_sync(&sfp->timeout);
   2690}
   2691
   2692static struct platform_driver sfp_driver = {
   2693	.probe = sfp_probe,
   2694	.remove = sfp_remove,
   2695	.shutdown = sfp_shutdown,
   2696	.driver = {
   2697		.name = "sfp",
   2698		.of_match_table = sfp_of_match,
   2699	},
   2700};
   2701
   2702static int sfp_init(void)
   2703{
   2704	poll_jiffies = msecs_to_jiffies(100);
   2705
   2706	return platform_driver_register(&sfp_driver);
   2707}
   2708module_init(sfp_init);
   2709
   2710static void sfp_exit(void)
   2711{
   2712	platform_driver_unregister(&sfp_driver);
   2713}
   2714module_exit(sfp_exit);
   2715
   2716MODULE_ALIAS("platform:sfp");
   2717MODULE_AUTHOR("Russell King");
   2718MODULE_LICENSE("GPL v2");