cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ppp_async.c (23936B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * PPP async serial channel driver for Linux.
      4 *
      5 * Copyright 1999 Paul Mackerras.
      6 *
      7 * This driver provides the encapsulation and framing for sending
      8 * and receiving PPP frames over async serial lines.  It relies on
      9 * the generic PPP layer to give it frames to send and to process
     10 * received frames.  It implements the PPP line discipline.
     11 *
     12 * Part of the code in this driver was inspired by the old async-only
     13 * PPP driver, written by Michael Callahan and Al Longyear, and
     14 * subsequently hacked by Paul Mackerras.
     15 */
     16
     17#include <linux/module.h>
     18#include <linux/kernel.h>
     19#include <linux/skbuff.h>
     20#include <linux/tty.h>
     21#include <linux/netdevice.h>
     22#include <linux/poll.h>
     23#include <linux/crc-ccitt.h>
     24#include <linux/ppp_defs.h>
     25#include <linux/ppp-ioctl.h>
     26#include <linux/ppp_channel.h>
     27#include <linux/spinlock.h>
     28#include <linux/init.h>
     29#include <linux/interrupt.h>
     30#include <linux/jiffies.h>
     31#include <linux/slab.h>
     32#include <asm/unaligned.h>
     33#include <linux/uaccess.h>
     34#include <asm/string.h>
     35
     36#define PPP_VERSION	"2.4.2"
     37
     38#define OBUFSIZE	4096
     39
     40/* Structure for storing local state. */
     41struct asyncppp {
     42	struct tty_struct *tty;
     43	unsigned int	flags;
     44	unsigned int	state;
     45	unsigned int	rbits;
     46	int		mru;
     47	spinlock_t	xmit_lock;
     48	spinlock_t	recv_lock;
     49	unsigned long	xmit_flags;
     50	u32		xaccm[8];
     51	u32		raccm;
     52	unsigned int	bytes_sent;
     53	unsigned int	bytes_rcvd;
     54
     55	struct sk_buff	*tpkt;
     56	int		tpkt_pos;
     57	u16		tfcs;
     58	unsigned char	*optr;
     59	unsigned char	*olim;
     60	unsigned long	last_xmit;
     61
     62	struct sk_buff	*rpkt;
     63	int		lcp_fcs;
     64	struct sk_buff_head rqueue;
     65
     66	struct tasklet_struct tsk;
     67
     68	refcount_t	refcnt;
     69	struct completion dead;
     70	struct ppp_channel chan;	/* interface to generic ppp layer */
     71	unsigned char	obuf[OBUFSIZE];
     72};
     73
     74/* Bit numbers in xmit_flags */
     75#define XMIT_WAKEUP	0
     76#define XMIT_FULL	1
     77#define XMIT_BUSY	2
     78
     79/* State bits */
     80#define SC_TOSS		1
     81#define SC_ESCAPE	2
     82#define SC_PREV_ERROR	4
     83
     84/* Bits in rbits */
     85#define SC_RCV_BITS	(SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
     86
     87static int flag_time = HZ;
     88module_param(flag_time, int, 0);
     89MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
     90MODULE_LICENSE("GPL");
     91MODULE_ALIAS_LDISC(N_PPP);
     92
     93/*
     94 * Prototypes.
     95 */
     96static int ppp_async_encode(struct asyncppp *ap);
     97static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
     98static int ppp_async_push(struct asyncppp *ap);
     99static void ppp_async_flush_output(struct asyncppp *ap);
    100static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
    101			    const char *flags, int count);
    102static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
    103			   unsigned long arg);
    104static void ppp_async_process(struct tasklet_struct *t);
    105
    106static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
    107			   int len, int inbound);
    108
    109static const struct ppp_channel_ops async_ops = {
    110	.start_xmit = ppp_async_send,
    111	.ioctl      = ppp_async_ioctl,
    112};
    113
    114/*
    115 * Routines implementing the PPP line discipline.
    116 */
    117
    118/*
    119 * We have a potential race on dereferencing tty->disc_data,
    120 * because the tty layer provides no locking at all - thus one
    121 * cpu could be running ppp_asynctty_receive while another
    122 * calls ppp_asynctty_close, which zeroes tty->disc_data and
    123 * frees the memory that ppp_asynctty_receive is using.  The best
    124 * way to fix this is to use a rwlock in the tty struct, but for now
    125 * we use a single global rwlock for all ttys in ppp line discipline.
    126 *
    127 * FIXME: this is no longer true. The _close path for the ldisc is
    128 * now guaranteed to be sane.
    129 */
    130static DEFINE_RWLOCK(disc_data_lock);
    131
    132static struct asyncppp *ap_get(struct tty_struct *tty)
    133{
    134	struct asyncppp *ap;
    135
    136	read_lock(&disc_data_lock);
    137	ap = tty->disc_data;
    138	if (ap != NULL)
    139		refcount_inc(&ap->refcnt);
    140	read_unlock(&disc_data_lock);
    141	return ap;
    142}
    143
    144static void ap_put(struct asyncppp *ap)
    145{
    146	if (refcount_dec_and_test(&ap->refcnt))
    147		complete(&ap->dead);
    148}
    149
    150/*
    151 * Called when a tty is put into PPP line discipline. Called in process
    152 * context.
    153 */
    154static int
    155ppp_asynctty_open(struct tty_struct *tty)
    156{
    157	struct asyncppp *ap;
    158	int err;
    159	int speed;
    160
    161	if (tty->ops->write == NULL)
    162		return -EOPNOTSUPP;
    163
    164	err = -ENOMEM;
    165	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
    166	if (!ap)
    167		goto out;
    168
    169	/* initialize the asyncppp structure */
    170	ap->tty = tty;
    171	ap->mru = PPP_MRU;
    172	spin_lock_init(&ap->xmit_lock);
    173	spin_lock_init(&ap->recv_lock);
    174	ap->xaccm[0] = ~0U;
    175	ap->xaccm[3] = 0x60000000U;
    176	ap->raccm = ~0U;
    177	ap->optr = ap->obuf;
    178	ap->olim = ap->obuf;
    179	ap->lcp_fcs = -1;
    180
    181	skb_queue_head_init(&ap->rqueue);
    182	tasklet_setup(&ap->tsk, ppp_async_process);
    183
    184	refcount_set(&ap->refcnt, 1);
    185	init_completion(&ap->dead);
    186
    187	ap->chan.private = ap;
    188	ap->chan.ops = &async_ops;
    189	ap->chan.mtu = PPP_MRU;
    190	speed = tty_get_baud_rate(tty);
    191	ap->chan.speed = speed;
    192	err = ppp_register_channel(&ap->chan);
    193	if (err)
    194		goto out_free;
    195
    196	tty->disc_data = ap;
    197	tty->receive_room = 65536;
    198	return 0;
    199
    200 out_free:
    201	kfree(ap);
    202 out:
    203	return err;
    204}
    205
    206/*
    207 * Called when the tty is put into another line discipline
    208 * or it hangs up.  We have to wait for any cpu currently
    209 * executing in any of the other ppp_asynctty_* routines to
    210 * finish before we can call ppp_unregister_channel and free
    211 * the asyncppp struct.  This routine must be called from
    212 * process context, not interrupt or softirq context.
    213 */
    214static void
    215ppp_asynctty_close(struct tty_struct *tty)
    216{
    217	struct asyncppp *ap;
    218
    219	write_lock_irq(&disc_data_lock);
    220	ap = tty->disc_data;
    221	tty->disc_data = NULL;
    222	write_unlock_irq(&disc_data_lock);
    223	if (!ap)
    224		return;
    225
    226	/*
    227	 * We have now ensured that nobody can start using ap from now
    228	 * on, but we have to wait for all existing users to finish.
    229	 * Note that ppp_unregister_channel ensures that no calls to
    230	 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
    231	 * by the time it returns.
    232	 */
    233	if (!refcount_dec_and_test(&ap->refcnt))
    234		wait_for_completion(&ap->dead);
    235	tasklet_kill(&ap->tsk);
    236
    237	ppp_unregister_channel(&ap->chan);
    238	kfree_skb(ap->rpkt);
    239	skb_queue_purge(&ap->rqueue);
    240	kfree_skb(ap->tpkt);
    241	kfree(ap);
    242}
    243
    244/*
    245 * Called on tty hangup in process context.
    246 *
    247 * Wait for I/O to driver to complete and unregister PPP channel.
    248 * This is already done by the close routine, so just call that.
    249 */
    250static void ppp_asynctty_hangup(struct tty_struct *tty)
    251{
    252	ppp_asynctty_close(tty);
    253}
    254
    255/*
    256 * Read does nothing - no data is ever available this way.
    257 * Pppd reads and writes packets via /dev/ppp instead.
    258 */
    259static ssize_t
    260ppp_asynctty_read(struct tty_struct *tty, struct file *file,
    261		  unsigned char *buf, size_t count,
    262		  void **cookie, unsigned long offset)
    263{
    264	return -EAGAIN;
    265}
    266
    267/*
    268 * Write on the tty does nothing, the packets all come in
    269 * from the ppp generic stuff.
    270 */
    271static ssize_t
    272ppp_asynctty_write(struct tty_struct *tty, struct file *file,
    273		   const unsigned char *buf, size_t count)
    274{
    275	return -EAGAIN;
    276}
    277
    278/*
    279 * Called in process context only. May be re-entered by multiple
    280 * ioctl calling threads.
    281 */
    282
    283static int
    284ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
    285{
    286	struct asyncppp *ap = ap_get(tty);
    287	int err, val;
    288	int __user *p = (int __user *)arg;
    289
    290	if (!ap)
    291		return -ENXIO;
    292	err = -EFAULT;
    293	switch (cmd) {
    294	case PPPIOCGCHAN:
    295		err = -EFAULT;
    296		if (put_user(ppp_channel_index(&ap->chan), p))
    297			break;
    298		err = 0;
    299		break;
    300
    301	case PPPIOCGUNIT:
    302		err = -EFAULT;
    303		if (put_user(ppp_unit_number(&ap->chan), p))
    304			break;
    305		err = 0;
    306		break;
    307
    308	case TCFLSH:
    309		/* flush our buffers and the serial port's buffer */
    310		if (arg == TCIOFLUSH || arg == TCOFLUSH)
    311			ppp_async_flush_output(ap);
    312		err = n_tty_ioctl_helper(tty, cmd, arg);
    313		break;
    314
    315	case FIONREAD:
    316		val = 0;
    317		if (put_user(val, p))
    318			break;
    319		err = 0;
    320		break;
    321
    322	default:
    323		/* Try the various mode ioctls */
    324		err = tty_mode_ioctl(tty, cmd, arg);
    325	}
    326
    327	ap_put(ap);
    328	return err;
    329}
    330
    331/* No kernel lock - fine */
    332static __poll_t
    333ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
    334{
    335	return 0;
    336}
    337
    338/* May sleep, don't call from interrupt level or with interrupts disabled */
    339static void
    340ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
    341		  const char *cflags, int count)
    342{
    343	struct asyncppp *ap = ap_get(tty);
    344	unsigned long flags;
    345
    346	if (!ap)
    347		return;
    348	spin_lock_irqsave(&ap->recv_lock, flags);
    349	ppp_async_input(ap, buf, cflags, count);
    350	spin_unlock_irqrestore(&ap->recv_lock, flags);
    351	if (!skb_queue_empty(&ap->rqueue))
    352		tasklet_schedule(&ap->tsk);
    353	ap_put(ap);
    354	tty_unthrottle(tty);
    355}
    356
    357static void
    358ppp_asynctty_wakeup(struct tty_struct *tty)
    359{
    360	struct asyncppp *ap = ap_get(tty);
    361
    362	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
    363	if (!ap)
    364		return;
    365	set_bit(XMIT_WAKEUP, &ap->xmit_flags);
    366	tasklet_schedule(&ap->tsk);
    367	ap_put(ap);
    368}
    369
    370
    371static struct tty_ldisc_ops ppp_ldisc = {
    372	.owner  = THIS_MODULE,
    373	.num	= N_PPP,
    374	.name	= "ppp",
    375	.open	= ppp_asynctty_open,
    376	.close	= ppp_asynctty_close,
    377	.hangup	= ppp_asynctty_hangup,
    378	.read	= ppp_asynctty_read,
    379	.write	= ppp_asynctty_write,
    380	.ioctl	= ppp_asynctty_ioctl,
    381	.poll	= ppp_asynctty_poll,
    382	.receive_buf = ppp_asynctty_receive,
    383	.write_wakeup = ppp_asynctty_wakeup,
    384};
    385
    386static int __init
    387ppp_async_init(void)
    388{
    389	int err;
    390
    391	err = tty_register_ldisc(&ppp_ldisc);
    392	if (err != 0)
    393		printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
    394		       err);
    395	return err;
    396}
    397
    398/*
    399 * The following routines provide the PPP channel interface.
    400 */
    401static int
    402ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
    403{
    404	struct asyncppp *ap = chan->private;
    405	void __user *argp = (void __user *)arg;
    406	int __user *p = argp;
    407	int err, val;
    408	u32 accm[8];
    409
    410	err = -EFAULT;
    411	switch (cmd) {
    412	case PPPIOCGFLAGS:
    413		val = ap->flags | ap->rbits;
    414		if (put_user(val, p))
    415			break;
    416		err = 0;
    417		break;
    418	case PPPIOCSFLAGS:
    419		if (get_user(val, p))
    420			break;
    421		ap->flags = val & ~SC_RCV_BITS;
    422		spin_lock_irq(&ap->recv_lock);
    423		ap->rbits = val & SC_RCV_BITS;
    424		spin_unlock_irq(&ap->recv_lock);
    425		err = 0;
    426		break;
    427
    428	case PPPIOCGASYNCMAP:
    429		if (put_user(ap->xaccm[0], (u32 __user *)argp))
    430			break;
    431		err = 0;
    432		break;
    433	case PPPIOCSASYNCMAP:
    434		if (get_user(ap->xaccm[0], (u32 __user *)argp))
    435			break;
    436		err = 0;
    437		break;
    438
    439	case PPPIOCGRASYNCMAP:
    440		if (put_user(ap->raccm, (u32 __user *)argp))
    441			break;
    442		err = 0;
    443		break;
    444	case PPPIOCSRASYNCMAP:
    445		if (get_user(ap->raccm, (u32 __user *)argp))
    446			break;
    447		err = 0;
    448		break;
    449
    450	case PPPIOCGXASYNCMAP:
    451		if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
    452			break;
    453		err = 0;
    454		break;
    455	case PPPIOCSXASYNCMAP:
    456		if (copy_from_user(accm, argp, sizeof(accm)))
    457			break;
    458		accm[2] &= ~0x40000000U;	/* can't escape 0x5e */
    459		accm[3] |= 0x60000000U;		/* must escape 0x7d, 0x7e */
    460		memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
    461		err = 0;
    462		break;
    463
    464	case PPPIOCGMRU:
    465		if (put_user(ap->mru, p))
    466			break;
    467		err = 0;
    468		break;
    469	case PPPIOCSMRU:
    470		if (get_user(val, p))
    471			break;
    472		if (val < PPP_MRU)
    473			val = PPP_MRU;
    474		ap->mru = val;
    475		err = 0;
    476		break;
    477
    478	default:
    479		err = -ENOTTY;
    480	}
    481
    482	return err;
    483}
    484
    485/*
    486 * This is called at softirq level to deliver received packets
    487 * to the ppp_generic code, and to tell the ppp_generic code
    488 * if we can accept more output now.
    489 */
    490static void ppp_async_process(struct tasklet_struct *t)
    491{
    492	struct asyncppp *ap = from_tasklet(ap, t, tsk);
    493	struct sk_buff *skb;
    494
    495	/* process received packets */
    496	while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
    497		if (skb->cb[0])
    498			ppp_input_error(&ap->chan, 0);
    499		ppp_input(&ap->chan, skb);
    500	}
    501
    502	/* try to push more stuff out */
    503	if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
    504		ppp_output_wakeup(&ap->chan);
    505}
    506
    507/*
    508 * Procedures for encapsulation and framing.
    509 */
    510
    511/*
    512 * Procedure to encode the data for async serial transmission.
    513 * Does octet stuffing (escaping), puts the address/control bytes
    514 * on if A/C compression is disabled, and does protocol compression.
    515 * Assumes ap->tpkt != 0 on entry.
    516 * Returns 1 if we finished the current frame, 0 otherwise.
    517 */
    518
    519#define PUT_BYTE(ap, buf, c, islcp)	do {		\
    520	if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
    521		*buf++ = PPP_ESCAPE;			\
    522		*buf++ = c ^ PPP_TRANS;			\
    523	} else						\
    524		*buf++ = c;				\
    525} while (0)
    526
    527static int
    528ppp_async_encode(struct asyncppp *ap)
    529{
    530	int fcs, i, count, c, proto;
    531	unsigned char *buf, *buflim;
    532	unsigned char *data;
    533	int islcp;
    534
    535	buf = ap->obuf;
    536	ap->olim = buf;
    537	ap->optr = buf;
    538	i = ap->tpkt_pos;
    539	data = ap->tpkt->data;
    540	count = ap->tpkt->len;
    541	fcs = ap->tfcs;
    542	proto = get_unaligned_be16(data);
    543
    544	/*
    545	 * LCP packets with code values between 1 (configure-reqest)
    546	 * and 7 (code-reject) must be sent as though no options
    547	 * had been negotiated.
    548	 */
    549	islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
    550
    551	if (i == 0) {
    552		if (islcp)
    553			async_lcp_peek(ap, data, count, 0);
    554
    555		/*
    556		 * Start of a new packet - insert the leading FLAG
    557		 * character if necessary.
    558		 */
    559		if (islcp || flag_time == 0 ||
    560		    time_after_eq(jiffies, ap->last_xmit + flag_time))
    561			*buf++ = PPP_FLAG;
    562		ap->last_xmit = jiffies;
    563		fcs = PPP_INITFCS;
    564
    565		/*
    566		 * Put in the address/control bytes if necessary
    567		 */
    568		if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
    569			PUT_BYTE(ap, buf, 0xff, islcp);
    570			fcs = PPP_FCS(fcs, 0xff);
    571			PUT_BYTE(ap, buf, 0x03, islcp);
    572			fcs = PPP_FCS(fcs, 0x03);
    573		}
    574	}
    575
    576	/*
    577	 * Once we put in the last byte, we need to put in the FCS
    578	 * and closing flag, so make sure there is at least 7 bytes
    579	 * of free space in the output buffer.
    580	 */
    581	buflim = ap->obuf + OBUFSIZE - 6;
    582	while (i < count && buf < buflim) {
    583		c = data[i++];
    584		if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
    585			continue;	/* compress protocol field */
    586		fcs = PPP_FCS(fcs, c);
    587		PUT_BYTE(ap, buf, c, islcp);
    588	}
    589
    590	if (i < count) {
    591		/*
    592		 * Remember where we are up to in this packet.
    593		 */
    594		ap->olim = buf;
    595		ap->tpkt_pos = i;
    596		ap->tfcs = fcs;
    597		return 0;
    598	}
    599
    600	/*
    601	 * We have finished the packet.  Add the FCS and flag.
    602	 */
    603	fcs = ~fcs;
    604	c = fcs & 0xff;
    605	PUT_BYTE(ap, buf, c, islcp);
    606	c = (fcs >> 8) & 0xff;
    607	PUT_BYTE(ap, buf, c, islcp);
    608	*buf++ = PPP_FLAG;
    609	ap->olim = buf;
    610
    611	consume_skb(ap->tpkt);
    612	ap->tpkt = NULL;
    613	return 1;
    614}
    615
    616/*
    617 * Transmit-side routines.
    618 */
    619
    620/*
    621 * Send a packet to the peer over an async tty line.
    622 * Returns 1 iff the packet was accepted.
    623 * If the packet was not accepted, we will call ppp_output_wakeup
    624 * at some later time.
    625 */
    626static int
    627ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
    628{
    629	struct asyncppp *ap = chan->private;
    630
    631	ppp_async_push(ap);
    632
    633	if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
    634		return 0;	/* already full */
    635	ap->tpkt = skb;
    636	ap->tpkt_pos = 0;
    637
    638	ppp_async_push(ap);
    639	return 1;
    640}
    641
    642/*
    643 * Push as much data as possible out to the tty.
    644 */
    645static int
    646ppp_async_push(struct asyncppp *ap)
    647{
    648	int avail, sent, done = 0;
    649	struct tty_struct *tty = ap->tty;
    650	int tty_stuffed = 0;
    651
    652	/*
    653	 * We can get called recursively here if the tty write
    654	 * function calls our wakeup function.  This can happen
    655	 * for example on a pty with both the master and slave
    656	 * set to PPP line discipline.
    657	 * We use the XMIT_BUSY bit to detect this and get out,
    658	 * leaving the XMIT_WAKEUP bit set to tell the other
    659	 * instance that it may now be able to write more now.
    660	 */
    661	if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
    662		return 0;
    663	spin_lock_bh(&ap->xmit_lock);
    664	for (;;) {
    665		if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
    666			tty_stuffed = 0;
    667		if (!tty_stuffed && ap->optr < ap->olim) {
    668			avail = ap->olim - ap->optr;
    669			set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
    670			sent = tty->ops->write(tty, ap->optr, avail);
    671			if (sent < 0)
    672				goto flush;	/* error, e.g. loss of CD */
    673			ap->optr += sent;
    674			if (sent < avail)
    675				tty_stuffed = 1;
    676			continue;
    677		}
    678		if (ap->optr >= ap->olim && ap->tpkt) {
    679			if (ppp_async_encode(ap)) {
    680				/* finished processing ap->tpkt */
    681				clear_bit(XMIT_FULL, &ap->xmit_flags);
    682				done = 1;
    683			}
    684			continue;
    685		}
    686		/*
    687		 * We haven't made any progress this time around.
    688		 * Clear XMIT_BUSY to let other callers in, but
    689		 * after doing so we have to check if anyone set
    690		 * XMIT_WAKEUP since we last checked it.  If they
    691		 * did, we should try again to set XMIT_BUSY and go
    692		 * around again in case XMIT_BUSY was still set when
    693		 * the other caller tried.
    694		 */
    695		clear_bit(XMIT_BUSY, &ap->xmit_flags);
    696		/* any more work to do? if not, exit the loop */
    697		if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
    698		      (!tty_stuffed && ap->tpkt)))
    699			break;
    700		/* more work to do, see if we can do it now */
    701		if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
    702			break;
    703	}
    704	spin_unlock_bh(&ap->xmit_lock);
    705	return done;
    706
    707flush:
    708	clear_bit(XMIT_BUSY, &ap->xmit_flags);
    709	if (ap->tpkt) {
    710		kfree_skb(ap->tpkt);
    711		ap->tpkt = NULL;
    712		clear_bit(XMIT_FULL, &ap->xmit_flags);
    713		done = 1;
    714	}
    715	ap->optr = ap->olim;
    716	spin_unlock_bh(&ap->xmit_lock);
    717	return done;
    718}
    719
    720/*
    721 * Flush output from our internal buffers.
    722 * Called for the TCFLSH ioctl. Can be entered in parallel
    723 * but this is covered by the xmit_lock.
    724 */
    725static void
    726ppp_async_flush_output(struct asyncppp *ap)
    727{
    728	int done = 0;
    729
    730	spin_lock_bh(&ap->xmit_lock);
    731	ap->optr = ap->olim;
    732	if (ap->tpkt != NULL) {
    733		kfree_skb(ap->tpkt);
    734		ap->tpkt = NULL;
    735		clear_bit(XMIT_FULL, &ap->xmit_flags);
    736		done = 1;
    737	}
    738	spin_unlock_bh(&ap->xmit_lock);
    739	if (done)
    740		ppp_output_wakeup(&ap->chan);
    741}
    742
    743/*
    744 * Receive-side routines.
    745 */
    746
    747/* see how many ordinary chars there are at the start of buf */
    748static inline int
    749scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
    750{
    751	int i, c;
    752
    753	for (i = 0; i < count; ++i) {
    754		c = buf[i];
    755		if (c == PPP_ESCAPE || c == PPP_FLAG ||
    756		    (c < 0x20 && (ap->raccm & (1 << c)) != 0))
    757			break;
    758	}
    759	return i;
    760}
    761
    762/* called when a flag is seen - do end-of-packet processing */
    763static void
    764process_input_packet(struct asyncppp *ap)
    765{
    766	struct sk_buff *skb;
    767	unsigned char *p;
    768	unsigned int len, fcs;
    769
    770	skb = ap->rpkt;
    771	if (ap->state & (SC_TOSS | SC_ESCAPE))
    772		goto err;
    773
    774	if (skb == NULL)
    775		return;		/* 0-length packet */
    776
    777	/* check the FCS */
    778	p = skb->data;
    779	len = skb->len;
    780	if (len < 3)
    781		goto err;	/* too short */
    782	fcs = PPP_INITFCS;
    783	for (; len > 0; --len)
    784		fcs = PPP_FCS(fcs, *p++);
    785	if (fcs != PPP_GOODFCS)
    786		goto err;	/* bad FCS */
    787	skb_trim(skb, skb->len - 2);
    788
    789	/* check for address/control and protocol compression */
    790	p = skb->data;
    791	if (p[0] == PPP_ALLSTATIONS) {
    792		/* chop off address/control */
    793		if (p[1] != PPP_UI || skb->len < 3)
    794			goto err;
    795		p = skb_pull(skb, 2);
    796	}
    797
    798	/* If protocol field is not compressed, it can be LCP packet */
    799	if (!(p[0] & 0x01)) {
    800		unsigned int proto;
    801
    802		if (skb->len < 2)
    803			goto err;
    804		proto = (p[0] << 8) + p[1];
    805		if (proto == PPP_LCP)
    806			async_lcp_peek(ap, p, skb->len, 1);
    807	}
    808
    809	/* queue the frame to be processed */
    810	skb->cb[0] = ap->state;
    811	skb_queue_tail(&ap->rqueue, skb);
    812	ap->rpkt = NULL;
    813	ap->state = 0;
    814	return;
    815
    816 err:
    817	/* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
    818	ap->state = SC_PREV_ERROR;
    819	if (skb) {
    820		/* make skb appear as freshly allocated */
    821		skb_trim(skb, 0);
    822		skb_reserve(skb, - skb_headroom(skb));
    823	}
    824}
    825
    826/* Called when the tty driver has data for us. Runs parallel with the
    827   other ldisc functions but will not be re-entered */
    828
    829static void
    830ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
    831		const char *flags, int count)
    832{
    833	struct sk_buff *skb;
    834	int c, i, j, n, s, f;
    835	unsigned char *sp;
    836
    837	/* update bits used for 8-bit cleanness detection */
    838	if (~ap->rbits & SC_RCV_BITS) {
    839		s = 0;
    840		for (i = 0; i < count; ++i) {
    841			c = buf[i];
    842			if (flags && flags[i] != 0)
    843				continue;
    844			s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
    845			c = ((c >> 4) ^ c) & 0xf;
    846			s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
    847		}
    848		ap->rbits |= s;
    849	}
    850
    851	while (count > 0) {
    852		/* scan through and see how many chars we can do in bulk */
    853		if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
    854			n = 1;
    855		else
    856			n = scan_ordinary(ap, buf, count);
    857
    858		f = 0;
    859		if (flags && (ap->state & SC_TOSS) == 0) {
    860			/* check the flags to see if any char had an error */
    861			for (j = 0; j < n; ++j)
    862				if ((f = flags[j]) != 0)
    863					break;
    864		}
    865		if (f != 0) {
    866			/* start tossing */
    867			ap->state |= SC_TOSS;
    868
    869		} else if (n > 0 && (ap->state & SC_TOSS) == 0) {
    870			/* stuff the chars in the skb */
    871			skb = ap->rpkt;
    872			if (!skb) {
    873				skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
    874				if (!skb)
    875					goto nomem;
    876				ap->rpkt = skb;
    877			}
    878			if (skb->len == 0) {
    879				/* Try to get the payload 4-byte aligned.
    880				 * This should match the
    881				 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
    882				 * process_input_packet, but we do not have
    883				 * enough chars here to test buf[1] and buf[2].
    884				 */
    885				if (buf[0] != PPP_ALLSTATIONS)
    886					skb_reserve(skb, 2 + (buf[0] & 1));
    887			}
    888			if (n > skb_tailroom(skb)) {
    889				/* packet overflowed MRU */
    890				ap->state |= SC_TOSS;
    891			} else {
    892				sp = skb_put_data(skb, buf, n);
    893				if (ap->state & SC_ESCAPE) {
    894					sp[0] ^= PPP_TRANS;
    895					ap->state &= ~SC_ESCAPE;
    896				}
    897			}
    898		}
    899
    900		if (n >= count)
    901			break;
    902
    903		c = buf[n];
    904		if (flags != NULL && flags[n] != 0) {
    905			ap->state |= SC_TOSS;
    906		} else if (c == PPP_FLAG) {
    907			process_input_packet(ap);
    908		} else if (c == PPP_ESCAPE) {
    909			ap->state |= SC_ESCAPE;
    910		} else if (I_IXON(ap->tty)) {
    911			if (c == START_CHAR(ap->tty))
    912				start_tty(ap->tty);
    913			else if (c == STOP_CHAR(ap->tty))
    914				stop_tty(ap->tty);
    915		}
    916		/* otherwise it's a char in the recv ACCM */
    917		++n;
    918
    919		buf += n;
    920		if (flags)
    921			flags += n;
    922		count -= n;
    923	}
    924	return;
    925
    926 nomem:
    927	printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
    928	ap->state |= SC_TOSS;
    929}
    930
    931/*
    932 * We look at LCP frames going past so that we can notice
    933 * and react to the LCP configure-ack from the peer.
    934 * In the situation where the peer has been sent a configure-ack
    935 * already, LCP is up once it has sent its configure-ack
    936 * so the immediately following packet can be sent with the
    937 * configured LCP options.  This allows us to process the following
    938 * packet correctly without pppd needing to respond quickly.
    939 *
    940 * We only respond to the received configure-ack if we have just
    941 * sent a configure-request, and the configure-ack contains the
    942 * same data (this is checked using a 16-bit crc of the data).
    943 */
    944#define CONFREQ		1	/* LCP code field values */
    945#define CONFACK		2
    946#define LCP_MRU		1	/* LCP option numbers */
    947#define LCP_ASYNCMAP	2
    948
    949static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
    950			   int len, int inbound)
    951{
    952	int dlen, fcs, i, code;
    953	u32 val;
    954
    955	data += 2;		/* skip protocol bytes */
    956	len -= 2;
    957	if (len < 4)		/* 4 = code, ID, length */
    958		return;
    959	code = data[0];
    960	if (code != CONFACK && code != CONFREQ)
    961		return;
    962	dlen = get_unaligned_be16(data + 2);
    963	if (len < dlen)
    964		return;		/* packet got truncated or length is bogus */
    965
    966	if (code == (inbound? CONFACK: CONFREQ)) {
    967		/*
    968		 * sent confreq or received confack:
    969		 * calculate the crc of the data from the ID field on.
    970		 */
    971		fcs = PPP_INITFCS;
    972		for (i = 1; i < dlen; ++i)
    973			fcs = PPP_FCS(fcs, data[i]);
    974
    975		if (!inbound) {
    976			/* outbound confreq - remember the crc for later */
    977			ap->lcp_fcs = fcs;
    978			return;
    979		}
    980
    981		/* received confack, check the crc */
    982		fcs ^= ap->lcp_fcs;
    983		ap->lcp_fcs = -1;
    984		if (fcs != 0)
    985			return;
    986	} else if (inbound)
    987		return;	/* not interested in received confreq */
    988
    989	/* process the options in the confack */
    990	data += 4;
    991	dlen -= 4;
    992	/* data[0] is code, data[1] is length */
    993	while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
    994		switch (data[0]) {
    995		case LCP_MRU:
    996			val = get_unaligned_be16(data + 2);
    997			if (inbound)
    998				ap->mru = val;
    999			else
   1000				ap->chan.mtu = val;
   1001			break;
   1002		case LCP_ASYNCMAP:
   1003			val = get_unaligned_be32(data + 2);
   1004			if (inbound)
   1005				ap->raccm = val;
   1006			else
   1007				ap->xaccm[0] = val;
   1008			break;
   1009		}
   1010		dlen -= data[1];
   1011		data += data[1];
   1012	}
   1013}
   1014
   1015static void __exit ppp_async_cleanup(void)
   1016{
   1017	tty_unregister_ldisc(&ppp_ldisc);
   1018}
   1019
   1020module_init(ppp_async_init);
   1021module_exit(ppp_async_cleanup);