cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vrf.c (48076B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * vrf.c: device driver to encapsulate a VRF space
      4 *
      5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
      6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
      7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
      8 *
      9 * Based on dummy, team and ipvlan drivers
     10 */
     11
     12#include <linux/ethtool.h>
     13#include <linux/module.h>
     14#include <linux/kernel.h>
     15#include <linux/netdevice.h>
     16#include <linux/etherdevice.h>
     17#include <linux/ip.h>
     18#include <linux/init.h>
     19#include <linux/moduleparam.h>
     20#include <linux/netfilter.h>
     21#include <linux/rtnetlink.h>
     22#include <net/rtnetlink.h>
     23#include <linux/u64_stats_sync.h>
     24#include <linux/hashtable.h>
     25#include <linux/spinlock_types.h>
     26
     27#include <linux/inetdevice.h>
     28#include <net/arp.h>
     29#include <net/ip.h>
     30#include <net/ip_fib.h>
     31#include <net/ip6_fib.h>
     32#include <net/ip6_route.h>
     33#include <net/route.h>
     34#include <net/addrconf.h>
     35#include <net/l3mdev.h>
     36#include <net/fib_rules.h>
     37#include <net/sch_generic.h>
     38#include <net/netns/generic.h>
     39#include <net/netfilter/nf_conntrack.h>
     40
     41#define DRV_NAME	"vrf"
     42#define DRV_VERSION	"1.1"
     43
     44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
     45
     46#define HT_MAP_BITS	4
     47#define HASH_INITVAL	((u32)0xcafef00d)
     48
     49struct  vrf_map {
     50	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
     51	spinlock_t vmap_lock;
     52
     53	/* shared_tables:
     54	 * count how many distinct tables do not comply with the strict mode
     55	 * requirement.
     56	 * shared_tables value must be 0 in order to enable the strict mode.
     57	 *
     58	 * example of the evolution of shared_tables:
     59	 *                                                        | time
     60	 * add  vrf0 --> table 100        shared_tables = 0       | t0
     61	 * add  vrf1 --> table 101        shared_tables = 0       | t1
     62	 * add  vrf2 --> table 100        shared_tables = 1       | t2
     63	 * add  vrf3 --> table 100        shared_tables = 1       | t3
     64	 * add  vrf4 --> table 101        shared_tables = 2       v t4
     65	 *
     66	 * shared_tables is a "step function" (or "staircase function")
     67	 * and it is increased by one when the second vrf is associated to a
     68	 * table.
     69	 *
     70	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
     71	 *
     72	 * at t3, another dev (vrf3) is bound to the same table 100 but the
     73	 * value of shared_tables is still 1.
     74	 * This means that no matter how many new vrfs will register on the
     75	 * table 100, the shared_tables will not increase (considering only
     76	 * table 100).
     77	 *
     78	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
     79	 *
     80	 * Looking at the value of shared_tables we can immediately know if
     81	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
     82	 * can be enforced iff shared_tables = 0.
     83	 *
     84	 * Conversely, shared_tables is decreased when a vrf is de-associated
     85	 * from a table with exactly two associated vrfs.
     86	 */
     87	u32 shared_tables;
     88
     89	bool strict_mode;
     90};
     91
     92struct vrf_map_elem {
     93	struct hlist_node hnode;
     94	struct list_head vrf_list;  /* VRFs registered to this table */
     95
     96	u32 table_id;
     97	int users;
     98	int ifindex;
     99};
    100
    101static unsigned int vrf_net_id;
    102
    103/* per netns vrf data */
    104struct netns_vrf {
    105	/* protected by rtnl lock */
    106	bool add_fib_rules;
    107
    108	struct vrf_map vmap;
    109	struct ctl_table_header	*ctl_hdr;
    110};
    111
    112struct net_vrf {
    113	struct rtable __rcu	*rth;
    114	struct rt6_info	__rcu	*rt6;
    115#if IS_ENABLED(CONFIG_IPV6)
    116	struct fib6_table	*fib6_table;
    117#endif
    118	u32                     tb_id;
    119
    120	struct list_head	me_list;   /* entry in vrf_map_elem */
    121	int			ifindex;
    122};
    123
    124struct pcpu_dstats {
    125	u64			tx_pkts;
    126	u64			tx_bytes;
    127	u64			tx_drps;
    128	u64			rx_pkts;
    129	u64			rx_bytes;
    130	u64			rx_drps;
    131	struct u64_stats_sync	syncp;
    132};
    133
    134static void vrf_rx_stats(struct net_device *dev, int len)
    135{
    136	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
    137
    138	u64_stats_update_begin(&dstats->syncp);
    139	dstats->rx_pkts++;
    140	dstats->rx_bytes += len;
    141	u64_stats_update_end(&dstats->syncp);
    142}
    143
    144static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
    145{
    146	vrf_dev->stats.tx_errors++;
    147	kfree_skb(skb);
    148}
    149
    150static void vrf_get_stats64(struct net_device *dev,
    151			    struct rtnl_link_stats64 *stats)
    152{
    153	int i;
    154
    155	for_each_possible_cpu(i) {
    156		const struct pcpu_dstats *dstats;
    157		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
    158		unsigned int start;
    159
    160		dstats = per_cpu_ptr(dev->dstats, i);
    161		do {
    162			start = u64_stats_fetch_begin_irq(&dstats->syncp);
    163			tbytes = dstats->tx_bytes;
    164			tpkts = dstats->tx_pkts;
    165			tdrops = dstats->tx_drps;
    166			rbytes = dstats->rx_bytes;
    167			rpkts = dstats->rx_pkts;
    168		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
    169		stats->tx_bytes += tbytes;
    170		stats->tx_packets += tpkts;
    171		stats->tx_dropped += tdrops;
    172		stats->rx_bytes += rbytes;
    173		stats->rx_packets += rpkts;
    174	}
    175}
    176
    177static struct vrf_map *netns_vrf_map(struct net *net)
    178{
    179	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
    180
    181	return &nn_vrf->vmap;
    182}
    183
    184static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
    185{
    186	return netns_vrf_map(dev_net(dev));
    187}
    188
    189static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
    190{
    191	struct list_head *me_head = &me->vrf_list;
    192	struct net_vrf *vrf;
    193
    194	if (list_empty(me_head))
    195		return -ENODEV;
    196
    197	vrf = list_first_entry(me_head, struct net_vrf, me_list);
    198
    199	return vrf->ifindex;
    200}
    201
    202static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
    203{
    204	struct vrf_map_elem *me;
    205
    206	me = kmalloc(sizeof(*me), flags);
    207	if (!me)
    208		return NULL;
    209
    210	return me;
    211}
    212
    213static void vrf_map_elem_free(struct vrf_map_elem *me)
    214{
    215	kfree(me);
    216}
    217
    218static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
    219			      int ifindex, int users)
    220{
    221	me->table_id = table_id;
    222	me->ifindex = ifindex;
    223	me->users = users;
    224	INIT_LIST_HEAD(&me->vrf_list);
    225}
    226
    227static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
    228						u32 table_id)
    229{
    230	struct vrf_map_elem *me;
    231	u32 key;
    232
    233	key = jhash_1word(table_id, HASH_INITVAL);
    234	hash_for_each_possible(vmap->ht, me, hnode, key) {
    235		if (me->table_id == table_id)
    236			return me;
    237	}
    238
    239	return NULL;
    240}
    241
    242static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
    243{
    244	u32 table_id = me->table_id;
    245	u32 key;
    246
    247	key = jhash_1word(table_id, HASH_INITVAL);
    248	hash_add(vmap->ht, &me->hnode, key);
    249}
    250
    251static void vrf_map_del_elem(struct vrf_map_elem *me)
    252{
    253	hash_del(&me->hnode);
    254}
    255
    256static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
    257{
    258	spin_lock(&vmap->vmap_lock);
    259}
    260
    261static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
    262{
    263	spin_unlock(&vmap->vmap_lock);
    264}
    265
    266/* called with rtnl lock held */
    267static int
    268vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
    269{
    270	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
    271	struct net_vrf *vrf = netdev_priv(dev);
    272	struct vrf_map_elem *new_me, *me;
    273	u32 table_id = vrf->tb_id;
    274	bool free_new_me = false;
    275	int users;
    276	int res;
    277
    278	/* we pre-allocate elements used in the spin-locked section (so that we
    279	 * keep the spinlock as short as possible).
    280	 */
    281	new_me = vrf_map_elem_alloc(GFP_KERNEL);
    282	if (!new_me)
    283		return -ENOMEM;
    284
    285	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
    286
    287	vrf_map_lock(vmap);
    288
    289	me = vrf_map_lookup_elem(vmap, table_id);
    290	if (!me) {
    291		me = new_me;
    292		vrf_map_add_elem(vmap, me);
    293		goto link_vrf;
    294	}
    295
    296	/* we already have an entry in the vrf_map, so it means there is (at
    297	 * least) a vrf registered on the specific table.
    298	 */
    299	free_new_me = true;
    300	if (vmap->strict_mode) {
    301		/* vrfs cannot share the same table */
    302		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
    303		res = -EBUSY;
    304		goto unlock;
    305	}
    306
    307link_vrf:
    308	users = ++me->users;
    309	if (users == 2)
    310		++vmap->shared_tables;
    311
    312	list_add(&vrf->me_list, &me->vrf_list);
    313
    314	res = 0;
    315
    316unlock:
    317	vrf_map_unlock(vmap);
    318
    319	/* clean-up, if needed */
    320	if (free_new_me)
    321		vrf_map_elem_free(new_me);
    322
    323	return res;
    324}
    325
    326/* called with rtnl lock held */
    327static void vrf_map_unregister_dev(struct net_device *dev)
    328{
    329	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
    330	struct net_vrf *vrf = netdev_priv(dev);
    331	u32 table_id = vrf->tb_id;
    332	struct vrf_map_elem *me;
    333	int users;
    334
    335	vrf_map_lock(vmap);
    336
    337	me = vrf_map_lookup_elem(vmap, table_id);
    338	if (!me)
    339		goto unlock;
    340
    341	list_del(&vrf->me_list);
    342
    343	users = --me->users;
    344	if (users == 1) {
    345		--vmap->shared_tables;
    346	} else if (users == 0) {
    347		vrf_map_del_elem(me);
    348
    349		/* no one will refer to this element anymore */
    350		vrf_map_elem_free(me);
    351	}
    352
    353unlock:
    354	vrf_map_unlock(vmap);
    355}
    356
    357/* return the vrf device index associated with the table_id */
    358static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
    359{
    360	struct vrf_map *vmap = netns_vrf_map(net);
    361	struct vrf_map_elem *me;
    362	int ifindex;
    363
    364	vrf_map_lock(vmap);
    365
    366	if (!vmap->strict_mode) {
    367		ifindex = -EPERM;
    368		goto unlock;
    369	}
    370
    371	me = vrf_map_lookup_elem(vmap, table_id);
    372	if (!me) {
    373		ifindex = -ENODEV;
    374		goto unlock;
    375	}
    376
    377	ifindex = vrf_map_elem_get_vrf_ifindex(me);
    378
    379unlock:
    380	vrf_map_unlock(vmap);
    381
    382	return ifindex;
    383}
    384
    385/* by default VRF devices do not have a qdisc and are expected
    386 * to be created with only a single queue.
    387 */
    388static bool qdisc_tx_is_default(const struct net_device *dev)
    389{
    390	struct netdev_queue *txq;
    391	struct Qdisc *qdisc;
    392
    393	if (dev->num_tx_queues > 1)
    394		return false;
    395
    396	txq = netdev_get_tx_queue(dev, 0);
    397	qdisc = rcu_access_pointer(txq->qdisc);
    398
    399	return !qdisc->enqueue;
    400}
    401
    402/* Local traffic destined to local address. Reinsert the packet to rx
    403 * path, similar to loopback handling.
    404 */
    405static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
    406			  struct dst_entry *dst)
    407{
    408	int len = skb->len;
    409
    410	skb_orphan(skb);
    411
    412	skb_dst_set(skb, dst);
    413
    414	/* set pkt_type to avoid skb hitting packet taps twice -
    415	 * once on Tx and again in Rx processing
    416	 */
    417	skb->pkt_type = PACKET_LOOPBACK;
    418
    419	skb->protocol = eth_type_trans(skb, dev);
    420
    421	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
    422		vrf_rx_stats(dev, len);
    423	else
    424		this_cpu_inc(dev->dstats->rx_drps);
    425
    426	return NETDEV_TX_OK;
    427}
    428
    429static void vrf_nf_set_untracked(struct sk_buff *skb)
    430{
    431	if (skb_get_nfct(skb) == 0)
    432		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
    433}
    434
    435static void vrf_nf_reset_ct(struct sk_buff *skb)
    436{
    437	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
    438		nf_reset_ct(skb);
    439}
    440
    441#if IS_ENABLED(CONFIG_IPV6)
    442static int vrf_ip6_local_out(struct net *net, struct sock *sk,
    443			     struct sk_buff *skb)
    444{
    445	int err;
    446
    447	vrf_nf_reset_ct(skb);
    448
    449	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
    450		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
    451
    452	if (likely(err == 1))
    453		err = dst_output(net, sk, skb);
    454
    455	return err;
    456}
    457
    458static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
    459					   struct net_device *dev)
    460{
    461	const struct ipv6hdr *iph;
    462	struct net *net = dev_net(skb->dev);
    463	struct flowi6 fl6;
    464	int ret = NET_XMIT_DROP;
    465	struct dst_entry *dst;
    466	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
    467
    468	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
    469		goto err;
    470
    471	iph = ipv6_hdr(skb);
    472
    473	memset(&fl6, 0, sizeof(fl6));
    474	/* needed to match OIF rule */
    475	fl6.flowi6_l3mdev = dev->ifindex;
    476	fl6.flowi6_iif = LOOPBACK_IFINDEX;
    477	fl6.daddr = iph->daddr;
    478	fl6.saddr = iph->saddr;
    479	fl6.flowlabel = ip6_flowinfo(iph);
    480	fl6.flowi6_mark = skb->mark;
    481	fl6.flowi6_proto = iph->nexthdr;
    482
    483	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
    484	if (IS_ERR(dst) || dst == dst_null)
    485		goto err;
    486
    487	skb_dst_drop(skb);
    488
    489	/* if dst.dev is the VRF device again this is locally originated traffic
    490	 * destined to a local address. Short circuit to Rx path.
    491	 */
    492	if (dst->dev == dev)
    493		return vrf_local_xmit(skb, dev, dst);
    494
    495	skb_dst_set(skb, dst);
    496
    497	/* strip the ethernet header added for pass through VRF device */
    498	__skb_pull(skb, skb_network_offset(skb));
    499
    500	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
    501	ret = vrf_ip6_local_out(net, skb->sk, skb);
    502	if (unlikely(net_xmit_eval(ret)))
    503		dev->stats.tx_errors++;
    504	else
    505		ret = NET_XMIT_SUCCESS;
    506
    507	return ret;
    508err:
    509	vrf_tx_error(dev, skb);
    510	return NET_XMIT_DROP;
    511}
    512#else
    513static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
    514					   struct net_device *dev)
    515{
    516	vrf_tx_error(dev, skb);
    517	return NET_XMIT_DROP;
    518}
    519#endif
    520
    521/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
    522static int vrf_ip_local_out(struct net *net, struct sock *sk,
    523			    struct sk_buff *skb)
    524{
    525	int err;
    526
    527	vrf_nf_reset_ct(skb);
    528
    529	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
    530		      skb, NULL, skb_dst(skb)->dev, dst_output);
    531	if (likely(err == 1))
    532		err = dst_output(net, sk, skb);
    533
    534	return err;
    535}
    536
    537static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
    538					   struct net_device *vrf_dev)
    539{
    540	struct iphdr *ip4h;
    541	int ret = NET_XMIT_DROP;
    542	struct flowi4 fl4;
    543	struct net *net = dev_net(vrf_dev);
    544	struct rtable *rt;
    545
    546	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
    547		goto err;
    548
    549	ip4h = ip_hdr(skb);
    550
    551	memset(&fl4, 0, sizeof(fl4));
    552	/* needed to match OIF rule */
    553	fl4.flowi4_l3mdev = vrf_dev->ifindex;
    554	fl4.flowi4_iif = LOOPBACK_IFINDEX;
    555	fl4.flowi4_tos = RT_TOS(ip4h->tos);
    556	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
    557	fl4.flowi4_proto = ip4h->protocol;
    558	fl4.daddr = ip4h->daddr;
    559	fl4.saddr = ip4h->saddr;
    560
    561	rt = ip_route_output_flow(net, &fl4, NULL);
    562	if (IS_ERR(rt))
    563		goto err;
    564
    565	skb_dst_drop(skb);
    566
    567	/* if dst.dev is the VRF device again this is locally originated traffic
    568	 * destined to a local address. Short circuit to Rx path.
    569	 */
    570	if (rt->dst.dev == vrf_dev)
    571		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
    572
    573	skb_dst_set(skb, &rt->dst);
    574
    575	/* strip the ethernet header added for pass through VRF device */
    576	__skb_pull(skb, skb_network_offset(skb));
    577
    578	if (!ip4h->saddr) {
    579		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
    580					       RT_SCOPE_LINK);
    581	}
    582
    583	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
    584	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
    585	if (unlikely(net_xmit_eval(ret)))
    586		vrf_dev->stats.tx_errors++;
    587	else
    588		ret = NET_XMIT_SUCCESS;
    589
    590out:
    591	return ret;
    592err:
    593	vrf_tx_error(vrf_dev, skb);
    594	goto out;
    595}
    596
    597static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
    598{
    599	switch (skb->protocol) {
    600	case htons(ETH_P_IP):
    601		return vrf_process_v4_outbound(skb, dev);
    602	case htons(ETH_P_IPV6):
    603		return vrf_process_v6_outbound(skb, dev);
    604	default:
    605		vrf_tx_error(dev, skb);
    606		return NET_XMIT_DROP;
    607	}
    608}
    609
    610static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
    611{
    612	int len = skb->len;
    613	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
    614
    615	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
    616		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
    617
    618		u64_stats_update_begin(&dstats->syncp);
    619		dstats->tx_pkts++;
    620		dstats->tx_bytes += len;
    621		u64_stats_update_end(&dstats->syncp);
    622	} else {
    623		this_cpu_inc(dev->dstats->tx_drps);
    624	}
    625
    626	return ret;
    627}
    628
    629static void vrf_finish_direct(struct sk_buff *skb)
    630{
    631	struct net_device *vrf_dev = skb->dev;
    632
    633	if (!list_empty(&vrf_dev->ptype_all) &&
    634	    likely(skb_headroom(skb) >= ETH_HLEN)) {
    635		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
    636
    637		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
    638		eth_zero_addr(eth->h_dest);
    639		eth->h_proto = skb->protocol;
    640
    641		rcu_read_lock_bh();
    642		dev_queue_xmit_nit(skb, vrf_dev);
    643		rcu_read_unlock_bh();
    644
    645		skb_pull(skb, ETH_HLEN);
    646	}
    647
    648	vrf_nf_reset_ct(skb);
    649}
    650
    651#if IS_ENABLED(CONFIG_IPV6)
    652/* modelled after ip6_finish_output2 */
    653static int vrf_finish_output6(struct net *net, struct sock *sk,
    654			      struct sk_buff *skb)
    655{
    656	struct dst_entry *dst = skb_dst(skb);
    657	struct net_device *dev = dst->dev;
    658	const struct in6_addr *nexthop;
    659	struct neighbour *neigh;
    660	int ret;
    661
    662	vrf_nf_reset_ct(skb);
    663
    664	skb->protocol = htons(ETH_P_IPV6);
    665	skb->dev = dev;
    666
    667	rcu_read_lock_bh();
    668	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
    669	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
    670	if (unlikely(!neigh))
    671		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
    672	if (!IS_ERR(neigh)) {
    673		sock_confirm_neigh(skb, neigh);
    674		ret = neigh_output(neigh, skb, false);
    675		rcu_read_unlock_bh();
    676		return ret;
    677	}
    678	rcu_read_unlock_bh();
    679
    680	IP6_INC_STATS(dev_net(dst->dev),
    681		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
    682	kfree_skb(skb);
    683	return -EINVAL;
    684}
    685
    686/* modelled after ip6_output */
    687static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
    688{
    689	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
    690			    net, sk, skb, NULL, skb_dst(skb)->dev,
    691			    vrf_finish_output6,
    692			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
    693}
    694
    695/* set dst on skb to send packet to us via dev_xmit path. Allows
    696 * packet to go through device based features such as qdisc, netfilter
    697 * hooks and packet sockets with skb->dev set to vrf device.
    698 */
    699static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
    700					    struct sk_buff *skb)
    701{
    702	struct net_vrf *vrf = netdev_priv(vrf_dev);
    703	struct dst_entry *dst = NULL;
    704	struct rt6_info *rt6;
    705
    706	rcu_read_lock();
    707
    708	rt6 = rcu_dereference(vrf->rt6);
    709	if (likely(rt6)) {
    710		dst = &rt6->dst;
    711		dst_hold(dst);
    712	}
    713
    714	rcu_read_unlock();
    715
    716	if (unlikely(!dst)) {
    717		vrf_tx_error(vrf_dev, skb);
    718		return NULL;
    719	}
    720
    721	skb_dst_drop(skb);
    722	skb_dst_set(skb, dst);
    723
    724	return skb;
    725}
    726
    727static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
    728				     struct sk_buff *skb)
    729{
    730	vrf_finish_direct(skb);
    731
    732	return vrf_ip6_local_out(net, sk, skb);
    733}
    734
    735static int vrf_output6_direct(struct net *net, struct sock *sk,
    736			      struct sk_buff *skb)
    737{
    738	int err = 1;
    739
    740	skb->protocol = htons(ETH_P_IPV6);
    741
    742	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
    743		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
    744			      NULL, skb->dev, vrf_output6_direct_finish);
    745
    746	if (likely(err == 1))
    747		vrf_finish_direct(skb);
    748
    749	return err;
    750}
    751
    752static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
    753				     struct sk_buff *skb)
    754{
    755	int err;
    756
    757	err = vrf_output6_direct(net, sk, skb);
    758	if (likely(err == 1))
    759		err = vrf_ip6_local_out(net, sk, skb);
    760
    761	return err;
    762}
    763
    764static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
    765					  struct sock *sk,
    766					  struct sk_buff *skb)
    767{
    768	struct net *net = dev_net(vrf_dev);
    769	int err;
    770
    771	skb->dev = vrf_dev;
    772
    773	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
    774		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
    775
    776	if (likely(err == 1))
    777		err = vrf_output6_direct(net, sk, skb);
    778
    779	if (likely(err == 1))
    780		return skb;
    781
    782	return NULL;
    783}
    784
    785static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
    786				   struct sock *sk,
    787				   struct sk_buff *skb)
    788{
    789	/* don't divert link scope packets */
    790	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
    791		return skb;
    792
    793	vrf_nf_set_untracked(skb);
    794
    795	if (qdisc_tx_is_default(vrf_dev) ||
    796	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
    797		return vrf_ip6_out_direct(vrf_dev, sk, skb);
    798
    799	return vrf_ip6_out_redirect(vrf_dev, skb);
    800}
    801
    802/* holding rtnl */
    803static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
    804{
    805	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
    806	struct net *net = dev_net(dev);
    807	struct dst_entry *dst;
    808
    809	RCU_INIT_POINTER(vrf->rt6, NULL);
    810	synchronize_rcu();
    811
    812	/* move dev in dst's to loopback so this VRF device can be deleted
    813	 * - based on dst_ifdown
    814	 */
    815	if (rt6) {
    816		dst = &rt6->dst;
    817		dev_replace_track(dst->dev, net->loopback_dev,
    818				  &dst->dev_tracker, GFP_KERNEL);
    819		dst->dev = net->loopback_dev;
    820		dst_release(dst);
    821	}
    822}
    823
    824static int vrf_rt6_create(struct net_device *dev)
    825{
    826	int flags = DST_NOPOLICY | DST_NOXFRM;
    827	struct net_vrf *vrf = netdev_priv(dev);
    828	struct net *net = dev_net(dev);
    829	struct rt6_info *rt6;
    830	int rc = -ENOMEM;
    831
    832	/* IPv6 can be CONFIG enabled and then disabled runtime */
    833	if (!ipv6_mod_enabled())
    834		return 0;
    835
    836	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
    837	if (!vrf->fib6_table)
    838		goto out;
    839
    840	/* create a dst for routing packets out a VRF device */
    841	rt6 = ip6_dst_alloc(net, dev, flags);
    842	if (!rt6)
    843		goto out;
    844
    845	rt6->dst.output	= vrf_output6;
    846
    847	rcu_assign_pointer(vrf->rt6, rt6);
    848
    849	rc = 0;
    850out:
    851	return rc;
    852}
    853#else
    854static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
    855				   struct sock *sk,
    856				   struct sk_buff *skb)
    857{
    858	return skb;
    859}
    860
    861static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
    862{
    863}
    864
    865static int vrf_rt6_create(struct net_device *dev)
    866{
    867	return 0;
    868}
    869#endif
    870
    871/* modelled after ip_finish_output2 */
    872static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
    873{
    874	struct dst_entry *dst = skb_dst(skb);
    875	struct rtable *rt = (struct rtable *)dst;
    876	struct net_device *dev = dst->dev;
    877	unsigned int hh_len = LL_RESERVED_SPACE(dev);
    878	struct neighbour *neigh;
    879	bool is_v6gw = false;
    880
    881	vrf_nf_reset_ct(skb);
    882
    883	/* Be paranoid, rather than too clever. */
    884	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
    885		skb = skb_expand_head(skb, hh_len);
    886		if (!skb) {
    887			dev->stats.tx_errors++;
    888			return -ENOMEM;
    889		}
    890	}
    891
    892	rcu_read_lock_bh();
    893
    894	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
    895	if (!IS_ERR(neigh)) {
    896		int ret;
    897
    898		sock_confirm_neigh(skb, neigh);
    899		/* if crossing protocols, can not use the cached header */
    900		ret = neigh_output(neigh, skb, is_v6gw);
    901		rcu_read_unlock_bh();
    902		return ret;
    903	}
    904
    905	rcu_read_unlock_bh();
    906	vrf_tx_error(skb->dev, skb);
    907	return -EINVAL;
    908}
    909
    910static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
    911{
    912	struct net_device *dev = skb_dst(skb)->dev;
    913
    914	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
    915
    916	skb->dev = dev;
    917	skb->protocol = htons(ETH_P_IP);
    918
    919	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
    920			    net, sk, skb, NULL, dev,
    921			    vrf_finish_output,
    922			    !(IPCB(skb)->flags & IPSKB_REROUTED));
    923}
    924
    925/* set dst on skb to send packet to us via dev_xmit path. Allows
    926 * packet to go through device based features such as qdisc, netfilter
    927 * hooks and packet sockets with skb->dev set to vrf device.
    928 */
    929static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
    930					   struct sk_buff *skb)
    931{
    932	struct net_vrf *vrf = netdev_priv(vrf_dev);
    933	struct dst_entry *dst = NULL;
    934	struct rtable *rth;
    935
    936	rcu_read_lock();
    937
    938	rth = rcu_dereference(vrf->rth);
    939	if (likely(rth)) {
    940		dst = &rth->dst;
    941		dst_hold(dst);
    942	}
    943
    944	rcu_read_unlock();
    945
    946	if (unlikely(!dst)) {
    947		vrf_tx_error(vrf_dev, skb);
    948		return NULL;
    949	}
    950
    951	skb_dst_drop(skb);
    952	skb_dst_set(skb, dst);
    953
    954	return skb;
    955}
    956
    957static int vrf_output_direct_finish(struct net *net, struct sock *sk,
    958				    struct sk_buff *skb)
    959{
    960	vrf_finish_direct(skb);
    961
    962	return vrf_ip_local_out(net, sk, skb);
    963}
    964
    965static int vrf_output_direct(struct net *net, struct sock *sk,
    966			     struct sk_buff *skb)
    967{
    968	int err = 1;
    969
    970	skb->protocol = htons(ETH_P_IP);
    971
    972	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
    973		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
    974			      NULL, skb->dev, vrf_output_direct_finish);
    975
    976	if (likely(err == 1))
    977		vrf_finish_direct(skb);
    978
    979	return err;
    980}
    981
    982static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
    983				    struct sk_buff *skb)
    984{
    985	int err;
    986
    987	err = vrf_output_direct(net, sk, skb);
    988	if (likely(err == 1))
    989		err = vrf_ip_local_out(net, sk, skb);
    990
    991	return err;
    992}
    993
    994static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
    995					 struct sock *sk,
    996					 struct sk_buff *skb)
    997{
    998	struct net *net = dev_net(vrf_dev);
    999	int err;
   1000
   1001	skb->dev = vrf_dev;
   1002
   1003	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
   1004		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
   1005
   1006	if (likely(err == 1))
   1007		err = vrf_output_direct(net, sk, skb);
   1008
   1009	if (likely(err == 1))
   1010		return skb;
   1011
   1012	return NULL;
   1013}
   1014
   1015static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
   1016				  struct sock *sk,
   1017				  struct sk_buff *skb)
   1018{
   1019	/* don't divert multicast or local broadcast */
   1020	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
   1021	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
   1022		return skb;
   1023
   1024	vrf_nf_set_untracked(skb);
   1025
   1026	if (qdisc_tx_is_default(vrf_dev) ||
   1027	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
   1028		return vrf_ip_out_direct(vrf_dev, sk, skb);
   1029
   1030	return vrf_ip_out_redirect(vrf_dev, skb);
   1031}
   1032
   1033/* called with rcu lock held */
   1034static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
   1035				  struct sock *sk,
   1036				  struct sk_buff *skb,
   1037				  u16 proto)
   1038{
   1039	switch (proto) {
   1040	case AF_INET:
   1041		return vrf_ip_out(vrf_dev, sk, skb);
   1042	case AF_INET6:
   1043		return vrf_ip6_out(vrf_dev, sk, skb);
   1044	}
   1045
   1046	return skb;
   1047}
   1048
   1049/* holding rtnl */
   1050static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
   1051{
   1052	struct rtable *rth = rtnl_dereference(vrf->rth);
   1053	struct net *net = dev_net(dev);
   1054	struct dst_entry *dst;
   1055
   1056	RCU_INIT_POINTER(vrf->rth, NULL);
   1057	synchronize_rcu();
   1058
   1059	/* move dev in dst's to loopback so this VRF device can be deleted
   1060	 * - based on dst_ifdown
   1061	 */
   1062	if (rth) {
   1063		dst = &rth->dst;
   1064		dev_replace_track(dst->dev, net->loopback_dev,
   1065				  &dst->dev_tracker, GFP_KERNEL);
   1066		dst->dev = net->loopback_dev;
   1067		dst_release(dst);
   1068	}
   1069}
   1070
   1071static int vrf_rtable_create(struct net_device *dev)
   1072{
   1073	struct net_vrf *vrf = netdev_priv(dev);
   1074	struct rtable *rth;
   1075
   1076	if (!fib_new_table(dev_net(dev), vrf->tb_id))
   1077		return -ENOMEM;
   1078
   1079	/* create a dst for routing packets out through a VRF device */
   1080	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
   1081	if (!rth)
   1082		return -ENOMEM;
   1083
   1084	rth->dst.output	= vrf_output;
   1085
   1086	rcu_assign_pointer(vrf->rth, rth);
   1087
   1088	return 0;
   1089}
   1090
   1091/**************************** device handling ********************/
   1092
   1093/* cycle interface to flush neighbor cache and move routes across tables */
   1094static void cycle_netdev(struct net_device *dev,
   1095			 struct netlink_ext_ack *extack)
   1096{
   1097	unsigned int flags = dev->flags;
   1098	int ret;
   1099
   1100	if (!netif_running(dev))
   1101		return;
   1102
   1103	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
   1104	if (ret >= 0)
   1105		ret = dev_change_flags(dev, flags, extack);
   1106
   1107	if (ret < 0) {
   1108		netdev_err(dev,
   1109			   "Failed to cycle device %s; route tables might be wrong!\n",
   1110			   dev->name);
   1111	}
   1112}
   1113
   1114static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
   1115			    struct netlink_ext_ack *extack)
   1116{
   1117	int ret;
   1118
   1119	/* do not allow loopback device to be enslaved to a VRF.
   1120	 * The vrf device acts as the loopback for the vrf.
   1121	 */
   1122	if (port_dev == dev_net(dev)->loopback_dev) {
   1123		NL_SET_ERR_MSG(extack,
   1124			       "Can not enslave loopback device to a VRF");
   1125		return -EOPNOTSUPP;
   1126	}
   1127
   1128	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
   1129	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
   1130	if (ret < 0)
   1131		goto err;
   1132
   1133	cycle_netdev(port_dev, extack);
   1134
   1135	return 0;
   1136
   1137err:
   1138	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
   1139	return ret;
   1140}
   1141
   1142static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
   1143			 struct netlink_ext_ack *extack)
   1144{
   1145	if (netif_is_l3_master(port_dev)) {
   1146		NL_SET_ERR_MSG(extack,
   1147			       "Can not enslave an L3 master device to a VRF");
   1148		return -EINVAL;
   1149	}
   1150
   1151	if (netif_is_l3_slave(port_dev))
   1152		return -EINVAL;
   1153
   1154	return do_vrf_add_slave(dev, port_dev, extack);
   1155}
   1156
   1157/* inverse of do_vrf_add_slave */
   1158static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
   1159{
   1160	netdev_upper_dev_unlink(port_dev, dev);
   1161	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
   1162
   1163	cycle_netdev(port_dev, NULL);
   1164
   1165	return 0;
   1166}
   1167
   1168static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
   1169{
   1170	return do_vrf_del_slave(dev, port_dev);
   1171}
   1172
   1173static void vrf_dev_uninit(struct net_device *dev)
   1174{
   1175	struct net_vrf *vrf = netdev_priv(dev);
   1176
   1177	vrf_rtable_release(dev, vrf);
   1178	vrf_rt6_release(dev, vrf);
   1179
   1180	free_percpu(dev->dstats);
   1181	dev->dstats = NULL;
   1182}
   1183
   1184static int vrf_dev_init(struct net_device *dev)
   1185{
   1186	struct net_vrf *vrf = netdev_priv(dev);
   1187
   1188	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
   1189	if (!dev->dstats)
   1190		goto out_nomem;
   1191
   1192	/* create the default dst which points back to us */
   1193	if (vrf_rtable_create(dev) != 0)
   1194		goto out_stats;
   1195
   1196	if (vrf_rt6_create(dev) != 0)
   1197		goto out_rth;
   1198
   1199	dev->flags = IFF_MASTER | IFF_NOARP;
   1200
   1201	/* similarly, oper state is irrelevant; set to up to avoid confusion */
   1202	dev->operstate = IF_OPER_UP;
   1203	netdev_lockdep_set_classes(dev);
   1204	return 0;
   1205
   1206out_rth:
   1207	vrf_rtable_release(dev, vrf);
   1208out_stats:
   1209	free_percpu(dev->dstats);
   1210	dev->dstats = NULL;
   1211out_nomem:
   1212	return -ENOMEM;
   1213}
   1214
   1215static const struct net_device_ops vrf_netdev_ops = {
   1216	.ndo_init		= vrf_dev_init,
   1217	.ndo_uninit		= vrf_dev_uninit,
   1218	.ndo_start_xmit		= vrf_xmit,
   1219	.ndo_set_mac_address	= eth_mac_addr,
   1220	.ndo_get_stats64	= vrf_get_stats64,
   1221	.ndo_add_slave		= vrf_add_slave,
   1222	.ndo_del_slave		= vrf_del_slave,
   1223};
   1224
   1225static u32 vrf_fib_table(const struct net_device *dev)
   1226{
   1227	struct net_vrf *vrf = netdev_priv(dev);
   1228
   1229	return vrf->tb_id;
   1230}
   1231
   1232static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
   1233{
   1234	kfree_skb(skb);
   1235	return 0;
   1236}
   1237
   1238static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
   1239				      struct sk_buff *skb,
   1240				      struct net_device *dev)
   1241{
   1242	struct net *net = dev_net(dev);
   1243
   1244	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
   1245		skb = NULL;    /* kfree_skb(skb) handled by nf code */
   1246
   1247	return skb;
   1248}
   1249
   1250static int vrf_prepare_mac_header(struct sk_buff *skb,
   1251				  struct net_device *vrf_dev, u16 proto)
   1252{
   1253	struct ethhdr *eth;
   1254	int err;
   1255
   1256	/* in general, we do not know if there is enough space in the head of
   1257	 * the packet for hosting the mac header.
   1258	 */
   1259	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
   1260	if (unlikely(err))
   1261		/* no space in the skb head */
   1262		return -ENOBUFS;
   1263
   1264	__skb_push(skb, ETH_HLEN);
   1265	eth = (struct ethhdr *)skb->data;
   1266
   1267	skb_reset_mac_header(skb);
   1268	skb_reset_mac_len(skb);
   1269
   1270	/* we set the ethernet destination and the source addresses to the
   1271	 * address of the VRF device.
   1272	 */
   1273	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
   1274	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
   1275	eth->h_proto = htons(proto);
   1276
   1277	/* the destination address of the Ethernet frame corresponds to the
   1278	 * address set on the VRF interface; therefore, the packet is intended
   1279	 * to be processed locally.
   1280	 */
   1281	skb->protocol = eth->h_proto;
   1282	skb->pkt_type = PACKET_HOST;
   1283
   1284	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
   1285
   1286	skb_pull_inline(skb, ETH_HLEN);
   1287
   1288	return 0;
   1289}
   1290
   1291/* prepare and add the mac header to the packet if it was not set previously.
   1292 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
   1293 * If the mac header was already set, the original mac header is left
   1294 * untouched and the function returns immediately.
   1295 */
   1296static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
   1297				       struct net_device *vrf_dev,
   1298				       u16 proto, struct net_device *orig_dev)
   1299{
   1300	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
   1301		return 0;
   1302
   1303	return vrf_prepare_mac_header(skb, vrf_dev, proto);
   1304}
   1305
   1306#if IS_ENABLED(CONFIG_IPV6)
   1307/* neighbor handling is done with actual device; do not want
   1308 * to flip skb->dev for those ndisc packets. This really fails
   1309 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
   1310 * a start.
   1311 */
   1312static bool ipv6_ndisc_frame(const struct sk_buff *skb)
   1313{
   1314	const struct ipv6hdr *iph = ipv6_hdr(skb);
   1315	bool rc = false;
   1316
   1317	if (iph->nexthdr == NEXTHDR_ICMP) {
   1318		const struct icmp6hdr *icmph;
   1319		struct icmp6hdr _icmph;
   1320
   1321		icmph = skb_header_pointer(skb, sizeof(*iph),
   1322					   sizeof(_icmph), &_icmph);
   1323		if (!icmph)
   1324			goto out;
   1325
   1326		switch (icmph->icmp6_type) {
   1327		case NDISC_ROUTER_SOLICITATION:
   1328		case NDISC_ROUTER_ADVERTISEMENT:
   1329		case NDISC_NEIGHBOUR_SOLICITATION:
   1330		case NDISC_NEIGHBOUR_ADVERTISEMENT:
   1331		case NDISC_REDIRECT:
   1332			rc = true;
   1333			break;
   1334		}
   1335	}
   1336
   1337out:
   1338	return rc;
   1339}
   1340
   1341static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
   1342					     const struct net_device *dev,
   1343					     struct flowi6 *fl6,
   1344					     int ifindex,
   1345					     const struct sk_buff *skb,
   1346					     int flags)
   1347{
   1348	struct net_vrf *vrf = netdev_priv(dev);
   1349
   1350	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
   1351}
   1352
   1353static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
   1354			      int ifindex)
   1355{
   1356	const struct ipv6hdr *iph = ipv6_hdr(skb);
   1357	struct flowi6 fl6 = {
   1358		.flowi6_iif     = ifindex,
   1359		.flowi6_mark    = skb->mark,
   1360		.flowi6_proto   = iph->nexthdr,
   1361		.daddr          = iph->daddr,
   1362		.saddr          = iph->saddr,
   1363		.flowlabel      = ip6_flowinfo(iph),
   1364	};
   1365	struct net *net = dev_net(vrf_dev);
   1366	struct rt6_info *rt6;
   1367
   1368	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
   1369				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
   1370	if (unlikely(!rt6))
   1371		return;
   1372
   1373	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
   1374		return;
   1375
   1376	skb_dst_set(skb, &rt6->dst);
   1377}
   1378
   1379static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
   1380				   struct sk_buff *skb)
   1381{
   1382	int orig_iif = skb->skb_iif;
   1383	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
   1384	bool is_ndisc = ipv6_ndisc_frame(skb);
   1385
   1386	/* loopback, multicast & non-ND link-local traffic; do not push through
   1387	 * packet taps again. Reset pkt_type for upper layers to process skb.
   1388	 * For strict packets with a source LLA, determine the dst using the
   1389	 * original ifindex.
   1390	 */
   1391	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
   1392		skb->dev = vrf_dev;
   1393		skb->skb_iif = vrf_dev->ifindex;
   1394		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
   1395
   1396		if (skb->pkt_type == PACKET_LOOPBACK)
   1397			skb->pkt_type = PACKET_HOST;
   1398		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
   1399			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
   1400
   1401		goto out;
   1402	}
   1403
   1404	/* if packet is NDISC then keep the ingress interface */
   1405	if (!is_ndisc) {
   1406		struct net_device *orig_dev = skb->dev;
   1407
   1408		vrf_rx_stats(vrf_dev, skb->len);
   1409		skb->dev = vrf_dev;
   1410		skb->skb_iif = vrf_dev->ifindex;
   1411
   1412		if (!list_empty(&vrf_dev->ptype_all)) {
   1413			int err;
   1414
   1415			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
   1416							  ETH_P_IPV6,
   1417							  orig_dev);
   1418			if (likely(!err)) {
   1419				skb_push(skb, skb->mac_len);
   1420				dev_queue_xmit_nit(skb, vrf_dev);
   1421				skb_pull(skb, skb->mac_len);
   1422			}
   1423		}
   1424
   1425		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
   1426	}
   1427
   1428	if (need_strict)
   1429		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
   1430
   1431	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
   1432out:
   1433	return skb;
   1434}
   1435
   1436#else
   1437static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
   1438				   struct sk_buff *skb)
   1439{
   1440	return skb;
   1441}
   1442#endif
   1443
   1444static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
   1445				  struct sk_buff *skb)
   1446{
   1447	struct net_device *orig_dev = skb->dev;
   1448
   1449	skb->dev = vrf_dev;
   1450	skb->skb_iif = vrf_dev->ifindex;
   1451	IPCB(skb)->flags |= IPSKB_L3SLAVE;
   1452
   1453	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
   1454		goto out;
   1455
   1456	/* loopback traffic; do not push through packet taps again.
   1457	 * Reset pkt_type for upper layers to process skb
   1458	 */
   1459	if (skb->pkt_type == PACKET_LOOPBACK) {
   1460		skb->pkt_type = PACKET_HOST;
   1461		goto out;
   1462	}
   1463
   1464	vrf_rx_stats(vrf_dev, skb->len);
   1465
   1466	if (!list_empty(&vrf_dev->ptype_all)) {
   1467		int err;
   1468
   1469		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
   1470						  orig_dev);
   1471		if (likely(!err)) {
   1472			skb_push(skb, skb->mac_len);
   1473			dev_queue_xmit_nit(skb, vrf_dev);
   1474			skb_pull(skb, skb->mac_len);
   1475		}
   1476	}
   1477
   1478	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
   1479out:
   1480	return skb;
   1481}
   1482
   1483/* called with rcu lock held */
   1484static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
   1485				  struct sk_buff *skb,
   1486				  u16 proto)
   1487{
   1488	switch (proto) {
   1489	case AF_INET:
   1490		return vrf_ip_rcv(vrf_dev, skb);
   1491	case AF_INET6:
   1492		return vrf_ip6_rcv(vrf_dev, skb);
   1493	}
   1494
   1495	return skb;
   1496}
   1497
   1498#if IS_ENABLED(CONFIG_IPV6)
   1499/* send to link-local or multicast address via interface enslaved to
   1500 * VRF device. Force lookup to VRF table without changing flow struct
   1501 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
   1502 * is taken on the dst by this function.
   1503 */
   1504static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
   1505					      struct flowi6 *fl6)
   1506{
   1507	struct net *net = dev_net(dev);
   1508	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
   1509	struct dst_entry *dst = NULL;
   1510	struct rt6_info *rt;
   1511
   1512	/* VRF device does not have a link-local address and
   1513	 * sending packets to link-local or mcast addresses over
   1514	 * a VRF device does not make sense
   1515	 */
   1516	if (fl6->flowi6_oif == dev->ifindex) {
   1517		dst = &net->ipv6.ip6_null_entry->dst;
   1518		return dst;
   1519	}
   1520
   1521	if (!ipv6_addr_any(&fl6->saddr))
   1522		flags |= RT6_LOOKUP_F_HAS_SADDR;
   1523
   1524	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
   1525	if (rt)
   1526		dst = &rt->dst;
   1527
   1528	return dst;
   1529}
   1530#endif
   1531
   1532static const struct l3mdev_ops vrf_l3mdev_ops = {
   1533	.l3mdev_fib_table	= vrf_fib_table,
   1534	.l3mdev_l3_rcv		= vrf_l3_rcv,
   1535	.l3mdev_l3_out		= vrf_l3_out,
   1536#if IS_ENABLED(CONFIG_IPV6)
   1537	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
   1538#endif
   1539};
   1540
   1541static void vrf_get_drvinfo(struct net_device *dev,
   1542			    struct ethtool_drvinfo *info)
   1543{
   1544	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
   1545	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
   1546}
   1547
   1548static const struct ethtool_ops vrf_ethtool_ops = {
   1549	.get_drvinfo	= vrf_get_drvinfo,
   1550};
   1551
   1552static inline size_t vrf_fib_rule_nl_size(void)
   1553{
   1554	size_t sz;
   1555
   1556	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
   1557	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
   1558	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
   1559	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
   1560
   1561	return sz;
   1562}
   1563
   1564static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
   1565{
   1566	struct fib_rule_hdr *frh;
   1567	struct nlmsghdr *nlh;
   1568	struct sk_buff *skb;
   1569	int err;
   1570
   1571	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
   1572	    !ipv6_mod_enabled())
   1573		return 0;
   1574
   1575	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
   1576	if (!skb)
   1577		return -ENOMEM;
   1578
   1579	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
   1580	if (!nlh)
   1581		goto nla_put_failure;
   1582
   1583	/* rule only needs to appear once */
   1584	nlh->nlmsg_flags |= NLM_F_EXCL;
   1585
   1586	frh = nlmsg_data(nlh);
   1587	memset(frh, 0, sizeof(*frh));
   1588	frh->family = family;
   1589	frh->action = FR_ACT_TO_TBL;
   1590
   1591	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
   1592		goto nla_put_failure;
   1593
   1594	if (nla_put_u8(skb, FRA_L3MDEV, 1))
   1595		goto nla_put_failure;
   1596
   1597	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
   1598		goto nla_put_failure;
   1599
   1600	nlmsg_end(skb, nlh);
   1601
   1602	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
   1603	skb->sk = dev_net(dev)->rtnl;
   1604	if (add_it) {
   1605		err = fib_nl_newrule(skb, nlh, NULL);
   1606		if (err == -EEXIST)
   1607			err = 0;
   1608	} else {
   1609		err = fib_nl_delrule(skb, nlh, NULL);
   1610		if (err == -ENOENT)
   1611			err = 0;
   1612	}
   1613	nlmsg_free(skb);
   1614
   1615	return err;
   1616
   1617nla_put_failure:
   1618	nlmsg_free(skb);
   1619
   1620	return -EMSGSIZE;
   1621}
   1622
   1623static int vrf_add_fib_rules(const struct net_device *dev)
   1624{
   1625	int err;
   1626
   1627	err = vrf_fib_rule(dev, AF_INET,  true);
   1628	if (err < 0)
   1629		goto out_err;
   1630
   1631	err = vrf_fib_rule(dev, AF_INET6, true);
   1632	if (err < 0)
   1633		goto ipv6_err;
   1634
   1635#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
   1636	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
   1637	if (err < 0)
   1638		goto ipmr_err;
   1639#endif
   1640
   1641#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
   1642	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
   1643	if (err < 0)
   1644		goto ip6mr_err;
   1645#endif
   1646
   1647	return 0;
   1648
   1649#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
   1650ip6mr_err:
   1651	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
   1652#endif
   1653
   1654#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
   1655ipmr_err:
   1656	vrf_fib_rule(dev, AF_INET6,  false);
   1657#endif
   1658
   1659ipv6_err:
   1660	vrf_fib_rule(dev, AF_INET,  false);
   1661
   1662out_err:
   1663	netdev_err(dev, "Failed to add FIB rules.\n");
   1664	return err;
   1665}
   1666
   1667static void vrf_setup(struct net_device *dev)
   1668{
   1669	ether_setup(dev);
   1670
   1671	/* Initialize the device structure. */
   1672	dev->netdev_ops = &vrf_netdev_ops;
   1673	dev->l3mdev_ops = &vrf_l3mdev_ops;
   1674	dev->ethtool_ops = &vrf_ethtool_ops;
   1675	dev->needs_free_netdev = true;
   1676
   1677	/* Fill in device structure with ethernet-generic values. */
   1678	eth_hw_addr_random(dev);
   1679
   1680	/* don't acquire vrf device's netif_tx_lock when transmitting */
   1681	dev->features |= NETIF_F_LLTX;
   1682
   1683	/* don't allow vrf devices to change network namespaces. */
   1684	dev->features |= NETIF_F_NETNS_LOCAL;
   1685
   1686	/* does not make sense for a VLAN to be added to a vrf device */
   1687	dev->features   |= NETIF_F_VLAN_CHALLENGED;
   1688
   1689	/* enable offload features */
   1690	dev->features   |= NETIF_F_GSO_SOFTWARE;
   1691	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
   1692	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
   1693
   1694	dev->hw_features = dev->features;
   1695	dev->hw_enc_features = dev->features;
   1696
   1697	/* default to no qdisc; user can add if desired */
   1698	dev->priv_flags |= IFF_NO_QUEUE;
   1699	dev->priv_flags |= IFF_NO_RX_HANDLER;
   1700	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
   1701
   1702	/* VRF devices do not care about MTU, but if the MTU is set
   1703	 * too low then the ipv4 and ipv6 protocols are disabled
   1704	 * which breaks networking.
   1705	 */
   1706	dev->min_mtu = IPV6_MIN_MTU;
   1707	dev->max_mtu = IP6_MAX_MTU;
   1708	dev->mtu = dev->max_mtu;
   1709}
   1710
   1711static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
   1712			struct netlink_ext_ack *extack)
   1713{
   1714	if (tb[IFLA_ADDRESS]) {
   1715		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
   1716			NL_SET_ERR_MSG(extack, "Invalid hardware address");
   1717			return -EINVAL;
   1718		}
   1719		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
   1720			NL_SET_ERR_MSG(extack, "Invalid hardware address");
   1721			return -EADDRNOTAVAIL;
   1722		}
   1723	}
   1724	return 0;
   1725}
   1726
   1727static void vrf_dellink(struct net_device *dev, struct list_head *head)
   1728{
   1729	struct net_device *port_dev;
   1730	struct list_head *iter;
   1731
   1732	netdev_for_each_lower_dev(dev, port_dev, iter)
   1733		vrf_del_slave(dev, port_dev);
   1734
   1735	vrf_map_unregister_dev(dev);
   1736
   1737	unregister_netdevice_queue(dev, head);
   1738}
   1739
   1740static int vrf_newlink(struct net *src_net, struct net_device *dev,
   1741		       struct nlattr *tb[], struct nlattr *data[],
   1742		       struct netlink_ext_ack *extack)
   1743{
   1744	struct net_vrf *vrf = netdev_priv(dev);
   1745	struct netns_vrf *nn_vrf;
   1746	bool *add_fib_rules;
   1747	struct net *net;
   1748	int err;
   1749
   1750	if (!data || !data[IFLA_VRF_TABLE]) {
   1751		NL_SET_ERR_MSG(extack, "VRF table id is missing");
   1752		return -EINVAL;
   1753	}
   1754
   1755	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
   1756	if (vrf->tb_id == RT_TABLE_UNSPEC) {
   1757		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
   1758				    "Invalid VRF table id");
   1759		return -EINVAL;
   1760	}
   1761
   1762	dev->priv_flags |= IFF_L3MDEV_MASTER;
   1763
   1764	err = register_netdevice(dev);
   1765	if (err)
   1766		goto out;
   1767
   1768	/* mapping between table_id and vrf;
   1769	 * note: such binding could not be done in the dev init function
   1770	 * because dev->ifindex id is not available yet.
   1771	 */
   1772	vrf->ifindex = dev->ifindex;
   1773
   1774	err = vrf_map_register_dev(dev, extack);
   1775	if (err) {
   1776		unregister_netdevice(dev);
   1777		goto out;
   1778	}
   1779
   1780	net = dev_net(dev);
   1781	nn_vrf = net_generic(net, vrf_net_id);
   1782
   1783	add_fib_rules = &nn_vrf->add_fib_rules;
   1784	if (*add_fib_rules) {
   1785		err = vrf_add_fib_rules(dev);
   1786		if (err) {
   1787			vrf_map_unregister_dev(dev);
   1788			unregister_netdevice(dev);
   1789			goto out;
   1790		}
   1791		*add_fib_rules = false;
   1792	}
   1793
   1794out:
   1795	return err;
   1796}
   1797
   1798static size_t vrf_nl_getsize(const struct net_device *dev)
   1799{
   1800	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
   1801}
   1802
   1803static int vrf_fillinfo(struct sk_buff *skb,
   1804			const struct net_device *dev)
   1805{
   1806	struct net_vrf *vrf = netdev_priv(dev);
   1807
   1808	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
   1809}
   1810
   1811static size_t vrf_get_slave_size(const struct net_device *bond_dev,
   1812				 const struct net_device *slave_dev)
   1813{
   1814	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
   1815}
   1816
   1817static int vrf_fill_slave_info(struct sk_buff *skb,
   1818			       const struct net_device *vrf_dev,
   1819			       const struct net_device *slave_dev)
   1820{
   1821	struct net_vrf *vrf = netdev_priv(vrf_dev);
   1822
   1823	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
   1824		return -EMSGSIZE;
   1825
   1826	return 0;
   1827}
   1828
   1829static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
   1830	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
   1831};
   1832
   1833static struct rtnl_link_ops vrf_link_ops __read_mostly = {
   1834	.kind		= DRV_NAME,
   1835	.priv_size	= sizeof(struct net_vrf),
   1836
   1837	.get_size	= vrf_nl_getsize,
   1838	.policy		= vrf_nl_policy,
   1839	.validate	= vrf_validate,
   1840	.fill_info	= vrf_fillinfo,
   1841
   1842	.get_slave_size  = vrf_get_slave_size,
   1843	.fill_slave_info = vrf_fill_slave_info,
   1844
   1845	.newlink	= vrf_newlink,
   1846	.dellink	= vrf_dellink,
   1847	.setup		= vrf_setup,
   1848	.maxtype	= IFLA_VRF_MAX,
   1849};
   1850
   1851static int vrf_device_event(struct notifier_block *unused,
   1852			    unsigned long event, void *ptr)
   1853{
   1854	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
   1855
   1856	/* only care about unregister events to drop slave references */
   1857	if (event == NETDEV_UNREGISTER) {
   1858		struct net_device *vrf_dev;
   1859
   1860		if (!netif_is_l3_slave(dev))
   1861			goto out;
   1862
   1863		vrf_dev = netdev_master_upper_dev_get(dev);
   1864		vrf_del_slave(vrf_dev, dev);
   1865	}
   1866out:
   1867	return NOTIFY_DONE;
   1868}
   1869
   1870static struct notifier_block vrf_notifier_block __read_mostly = {
   1871	.notifier_call = vrf_device_event,
   1872};
   1873
   1874static int vrf_map_init(struct vrf_map *vmap)
   1875{
   1876	spin_lock_init(&vmap->vmap_lock);
   1877	hash_init(vmap->ht);
   1878
   1879	vmap->strict_mode = false;
   1880
   1881	return 0;
   1882}
   1883
   1884#ifdef CONFIG_SYSCTL
   1885static bool vrf_strict_mode(struct vrf_map *vmap)
   1886{
   1887	bool strict_mode;
   1888
   1889	vrf_map_lock(vmap);
   1890	strict_mode = vmap->strict_mode;
   1891	vrf_map_unlock(vmap);
   1892
   1893	return strict_mode;
   1894}
   1895
   1896static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
   1897{
   1898	bool *cur_mode;
   1899	int res = 0;
   1900
   1901	vrf_map_lock(vmap);
   1902
   1903	cur_mode = &vmap->strict_mode;
   1904	if (*cur_mode == new_mode)
   1905		goto unlock;
   1906
   1907	if (*cur_mode) {
   1908		/* disable strict mode */
   1909		*cur_mode = false;
   1910	} else {
   1911		if (vmap->shared_tables) {
   1912			/* we cannot allow strict_mode because there are some
   1913			 * vrfs that share one or more tables.
   1914			 */
   1915			res = -EBUSY;
   1916			goto unlock;
   1917		}
   1918
   1919		/* no tables are shared among vrfs, so we can go back
   1920		 * to 1:1 association between a vrf with its table.
   1921		 */
   1922		*cur_mode = true;
   1923	}
   1924
   1925unlock:
   1926	vrf_map_unlock(vmap);
   1927
   1928	return res;
   1929}
   1930
   1931static int vrf_shared_table_handler(struct ctl_table *table, int write,
   1932				    void *buffer, size_t *lenp, loff_t *ppos)
   1933{
   1934	struct net *net = (struct net *)table->extra1;
   1935	struct vrf_map *vmap = netns_vrf_map(net);
   1936	int proc_strict_mode = 0;
   1937	struct ctl_table tmp = {
   1938		.procname	= table->procname,
   1939		.data		= &proc_strict_mode,
   1940		.maxlen		= sizeof(int),
   1941		.mode		= table->mode,
   1942		.extra1		= SYSCTL_ZERO,
   1943		.extra2		= SYSCTL_ONE,
   1944	};
   1945	int ret;
   1946
   1947	if (!write)
   1948		proc_strict_mode = vrf_strict_mode(vmap);
   1949
   1950	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
   1951
   1952	if (write && ret == 0)
   1953		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
   1954
   1955	return ret;
   1956}
   1957
   1958static const struct ctl_table vrf_table[] = {
   1959	{
   1960		.procname	= "strict_mode",
   1961		.data		= NULL,
   1962		.maxlen		= sizeof(int),
   1963		.mode		= 0644,
   1964		.proc_handler	= vrf_shared_table_handler,
   1965		/* set by the vrf_netns_init */
   1966		.extra1		= NULL,
   1967	},
   1968	{ },
   1969};
   1970
   1971static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
   1972{
   1973	struct ctl_table *table;
   1974
   1975	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
   1976	if (!table)
   1977		return -ENOMEM;
   1978
   1979	/* init the extra1 parameter with the reference to current netns */
   1980	table[0].extra1 = net;
   1981
   1982	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
   1983	if (!nn_vrf->ctl_hdr) {
   1984		kfree(table);
   1985		return -ENOMEM;
   1986	}
   1987
   1988	return 0;
   1989}
   1990
   1991static void vrf_netns_exit_sysctl(struct net *net)
   1992{
   1993	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
   1994	struct ctl_table *table;
   1995
   1996	table = nn_vrf->ctl_hdr->ctl_table_arg;
   1997	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
   1998	kfree(table);
   1999}
   2000#else
   2001static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
   2002{
   2003	return 0;
   2004}
   2005
   2006static void vrf_netns_exit_sysctl(struct net *net)
   2007{
   2008}
   2009#endif
   2010
   2011/* Initialize per network namespace state */
   2012static int __net_init vrf_netns_init(struct net *net)
   2013{
   2014	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
   2015
   2016	nn_vrf->add_fib_rules = true;
   2017	vrf_map_init(&nn_vrf->vmap);
   2018
   2019	return vrf_netns_init_sysctl(net, nn_vrf);
   2020}
   2021
   2022static void __net_exit vrf_netns_exit(struct net *net)
   2023{
   2024	vrf_netns_exit_sysctl(net);
   2025}
   2026
   2027static struct pernet_operations vrf_net_ops __net_initdata = {
   2028	.init = vrf_netns_init,
   2029	.exit = vrf_netns_exit,
   2030	.id   = &vrf_net_id,
   2031	.size = sizeof(struct netns_vrf),
   2032};
   2033
   2034static int __init vrf_init_module(void)
   2035{
   2036	int rc;
   2037
   2038	register_netdevice_notifier(&vrf_notifier_block);
   2039
   2040	rc = register_pernet_subsys(&vrf_net_ops);
   2041	if (rc < 0)
   2042		goto error;
   2043
   2044	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
   2045					  vrf_ifindex_lookup_by_table_id);
   2046	if (rc < 0)
   2047		goto unreg_pernet;
   2048
   2049	rc = rtnl_link_register(&vrf_link_ops);
   2050	if (rc < 0)
   2051		goto table_lookup_unreg;
   2052
   2053	return 0;
   2054
   2055table_lookup_unreg:
   2056	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
   2057				       vrf_ifindex_lookup_by_table_id);
   2058
   2059unreg_pernet:
   2060	unregister_pernet_subsys(&vrf_net_ops);
   2061
   2062error:
   2063	unregister_netdevice_notifier(&vrf_notifier_block);
   2064	return rc;
   2065}
   2066
   2067module_init(vrf_init_module);
   2068MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
   2069MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
   2070MODULE_LICENSE("GPL");
   2071MODULE_ALIAS_RTNL_LINK(DRV_NAME);
   2072MODULE_VERSION(DRV_VERSION);