cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

farsync.c (70655B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*      FarSync WAN driver for Linux (2.6.x kernel version)
      3 *
      4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
      5 *
      6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
      7 *      www.farsite.co.uk
      8 *
      9 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
     10 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
     11 */
     12
     13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     14
     15#include <linux/module.h>
     16#include <linux/kernel.h>
     17#include <linux/version.h>
     18#include <linux/pci.h>
     19#include <linux/sched.h>
     20#include <linux/slab.h>
     21#include <linux/ioport.h>
     22#include <linux/init.h>
     23#include <linux/interrupt.h>
     24#include <linux/delay.h>
     25#include <linux/if.h>
     26#include <linux/hdlc.h>
     27#include <asm/io.h>
     28#include <linux/uaccess.h>
     29
     30#include "farsync.h"
     31
     32/*      Module info
     33 */
     34MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
     35MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
     36MODULE_LICENSE("GPL");
     37
     38/*      Driver configuration and global parameters
     39 *      ==========================================
     40 */
     41
     42/*      Number of ports (per card) and cards supported
     43 */
     44#define FST_MAX_PORTS           4
     45#define FST_MAX_CARDS           32
     46
     47/*      Default parameters for the link
     48 */
     49#define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
     50					 * useful
     51					 */
     52#define FST_TXQ_DEPTH           16	/* This one is for the buffering
     53					 * of frames on the way down to the card
     54					 * so that we can keep the card busy
     55					 * and maximise throughput
     56					 */
     57#define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
     58					 * network layer
     59					 */
     60#define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
     61					 * control from network layer
     62					 */
     63#define FST_MAX_MTU             8000	/* Huge but possible */
     64#define FST_DEF_MTU             1500	/* Common sane value */
     65
     66#define FST_TX_TIMEOUT          (2 * HZ)
     67
     68#ifdef ARPHRD_RAWHDLC
     69#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
     70#else
     71#define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
     72#endif
     73
     74/* Modules parameters and associated variables
     75 */
     76static int fst_txq_low = FST_LOW_WATER_MARK;
     77static int fst_txq_high = FST_HIGH_WATER_MARK;
     78static int fst_max_reads = 7;
     79static int fst_excluded_cards;
     80static int fst_excluded_list[FST_MAX_CARDS];
     81
     82module_param(fst_txq_low, int, 0);
     83module_param(fst_txq_high, int, 0);
     84module_param(fst_max_reads, int, 0);
     85module_param(fst_excluded_cards, int, 0);
     86module_param_array(fst_excluded_list, int, NULL, 0);
     87
     88/*      Card shared memory layout
     89 *      =========================
     90 */
     91#pragma pack(1)
     92
     93/*      This information is derived in part from the FarSite FarSync Smc.h
     94 *      file. Unfortunately various name clashes and the non-portability of the
     95 *      bit field declarations in that file have meant that I have chosen to
     96 *      recreate the information here.
     97 *
     98 *      The SMC (Shared Memory Configuration) has a version number that is
     99 *      incremented every time there is a significant change. This number can
    100 *      be used to check that we have not got out of step with the firmware
    101 *      contained in the .CDE files.
    102 */
    103#define SMC_VERSION 24
    104
    105#define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
    106
    107#define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
    108				 * configuration structure
    109				 */
    110#define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
    111				 * buffers
    112				 */
    113
    114#define LEN_TX_BUFFER 8192	/* Size of packet buffers */
    115#define LEN_RX_BUFFER 8192
    116
    117#define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
    118#define LEN_SMALL_RX_BUFFER 256
    119
    120#define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
    121#define NUM_RX_BUFFER 8
    122
    123/* Interrupt retry time in milliseconds */
    124#define INT_RETRY_TIME 2
    125
    126/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
    127 *      of buffer descriptors. The structure is almost identical to that used
    128 *      in the LANCE Ethernet controllers. Details available as PDF from the
    129 *      AMD web site: https://www.amd.com/products/epd/processors/\
    130 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
    131 */
    132struct txdesc {			/* Transmit descriptor */
    133	volatile u16 ladr;	/* Low order address of packet. This is a
    134				 * linear address in the Am186 memory space
    135				 */
    136	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
    137				 * bits must be zero
    138				 */
    139	volatile u8 bits;	/* Status and config */
    140	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
    141				 * Transmit terminal count interrupt enable in
    142				 * top bit.
    143				 */
    144	u16 unused;		/* Not used in Tx */
    145};
    146
    147struct rxdesc {			/* Receive descriptor */
    148	volatile u16 ladr;	/* Low order address of packet */
    149	volatile u8 hadr;	/* High order address */
    150	volatile u8 bits;	/* Status and config */
    151	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
    152				 * Receive terminal count interrupt enable in
    153				 * top bit.
    154				 */
    155	volatile u16 mcnt;	/* Message byte count (15 bits) */
    156};
    157
    158/* Convert a length into the 15 bit 2's complement */
    159/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
    160/* Since we need to set the high bit to enable the completion interrupt this
    161 * can be made a lot simpler
    162 */
    163#define cnv_bcnt(len)   (-(len))
    164
    165/* Status and config bits for the above */
    166#define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
    167#define TX_STP          0x02	/* Tx: start of packet */
    168#define TX_ENP          0x01	/* Tx: end of packet */
    169#define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
    170#define RX_FRAM         0x20	/* Rx: framing error */
    171#define RX_OFLO         0x10	/* Rx: overflow error */
    172#define RX_CRC          0x08	/* Rx: CRC error */
    173#define RX_HBUF         0x04	/* Rx: buffer error */
    174#define RX_STP          0x02	/* Rx: start of packet */
    175#define RX_ENP          0x01	/* Rx: end of packet */
    176
    177/* Interrupts from the card are caused by various events which are presented
    178 * in a circular buffer as several events may be processed on one physical int
    179 */
    180#define MAX_CIRBUFF     32
    181
    182struct cirbuff {
    183	u8 rdindex;		/* read, then increment and wrap */
    184	u8 wrindex;		/* write, then increment and wrap */
    185	u8 evntbuff[MAX_CIRBUFF];
    186};
    187
    188/* Interrupt event codes.
    189 * Where appropriate the two low order bits indicate the port number
    190 */
    191#define CTLA_CHG        0x18	/* Control signal changed */
    192#define CTLB_CHG        0x19
    193#define CTLC_CHG        0x1A
    194#define CTLD_CHG        0x1B
    195
    196#define INIT_CPLT       0x20	/* Initialisation complete */
    197#define INIT_FAIL       0x21	/* Initialisation failed */
    198
    199#define ABTA_SENT       0x24	/* Abort sent */
    200#define ABTB_SENT       0x25
    201#define ABTC_SENT       0x26
    202#define ABTD_SENT       0x27
    203
    204#define TXA_UNDF        0x28	/* Transmission underflow */
    205#define TXB_UNDF        0x29
    206#define TXC_UNDF        0x2A
    207#define TXD_UNDF        0x2B
    208
    209#define F56_INT         0x2C
    210#define M32_INT         0x2D
    211
    212#define TE1_ALMA        0x30
    213
    214/* Port physical configuration. See farsync.h for field values */
    215struct port_cfg {
    216	u16 lineInterface;	/* Physical interface type */
    217	u8 x25op;		/* Unused at present */
    218	u8 internalClock;	/* 1 => internal clock, 0 => external */
    219	u8 transparentMode;	/* 1 => on, 0 => off */
    220	u8 invertClock;		/* 0 => normal, 1 => inverted */
    221	u8 padBytes[6];		/* Padding */
    222	u32 lineSpeed;		/* Speed in bps */
    223};
    224
    225/* TE1 port physical configuration */
    226struct su_config {
    227	u32 dataRate;
    228	u8 clocking;
    229	u8 framing;
    230	u8 structure;
    231	u8 interface;
    232	u8 coding;
    233	u8 lineBuildOut;
    234	u8 equalizer;
    235	u8 transparentMode;
    236	u8 loopMode;
    237	u8 range;
    238	u8 txBufferMode;
    239	u8 rxBufferMode;
    240	u8 startingSlot;
    241	u8 losThreshold;
    242	u8 enableIdleCode;
    243	u8 idleCode;
    244	u8 spare[44];
    245};
    246
    247/* TE1 Status */
    248struct su_status {
    249	u32 receiveBufferDelay;
    250	u32 framingErrorCount;
    251	u32 codeViolationCount;
    252	u32 crcErrorCount;
    253	u32 lineAttenuation;
    254	u8 portStarted;
    255	u8 lossOfSignal;
    256	u8 receiveRemoteAlarm;
    257	u8 alarmIndicationSignal;
    258	u8 spare[40];
    259};
    260
    261/* Finally sling all the above together into the shared memory structure.
    262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
    263 * evolving under NT for some time so I guess we're stuck with it.
    264 * The structure starts at offset SMC_BASE.
    265 * See farsync.h for some field values.
    266 */
    267struct fst_shared {
    268	/* DMA descriptor rings */
    269	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
    270	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
    271
    272	/* Obsolete small buffers */
    273	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
    274	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
    275
    276	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
    277				 * 0xFF => halted
    278				 */
    279
    280	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
    281				 * set to 0xEE by host to acknowledge interrupt
    282				 */
    283
    284	u16 smcVersion;		/* Must match SMC_VERSION */
    285
    286	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
    287				 * version, RR = revision and BB = build
    288				 */
    289
    290	u16 txa_done;		/* Obsolete completion flags */
    291	u16 rxa_done;
    292	u16 txb_done;
    293	u16 rxb_done;
    294	u16 txc_done;
    295	u16 rxc_done;
    296	u16 txd_done;
    297	u16 rxd_done;
    298
    299	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
    300
    301	struct cirbuff interruptEvent;	/* interrupt causes */
    302
    303	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
    304	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
    305
    306	struct port_cfg portConfig[FST_MAX_PORTS];
    307
    308	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
    309
    310	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
    311
    312	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
    313	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
    314
    315	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
    316	u16 cardMailbox[4];	/* Not used */
    317
    318	/* Number of times the card thinks the host has
    319	 * missed an interrupt by not acknowledging
    320	 * within 2mS (I guess NT has problems)
    321	 */
    322	u32 interruptRetryCount;
    323
    324	/* Driver private data used as an ID. We'll not
    325	 * use this as I'd rather keep such things
    326	 * in main memory rather than on the PCI bus
    327	 */
    328	u32 portHandle[FST_MAX_PORTS];
    329
    330	/* Count of Tx underflows for stats */
    331	u32 transmitBufferUnderflow[FST_MAX_PORTS];
    332
    333	/* Debounced V.24 control input status */
    334	u32 v24DebouncedSts[FST_MAX_PORTS];
    335
    336	/* Adapter debounce timers. Don't touch */
    337	u32 ctsTimer[FST_MAX_PORTS];
    338	u32 ctsTimerRun[FST_MAX_PORTS];
    339	u32 dcdTimer[FST_MAX_PORTS];
    340	u32 dcdTimerRun[FST_MAX_PORTS];
    341
    342	u32 numberOfPorts;	/* Number of ports detected at startup */
    343
    344	u16 _reserved[64];
    345
    346	u16 cardMode;		/* Bit-mask to enable features:
    347				 * Bit 0: 1 enables LED identify mode
    348				 */
    349
    350	u16 portScheduleOffset;
    351
    352	struct su_config suConfig;	/* TE1 Bits */
    353	struct su_status suStatus;
    354
    355	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
    356				 * the structure and marks the end of shared
    357				 * memory. Adapter code initializes it as
    358				 * END_SIG.
    359				 */
    360};
    361
    362/* endOfSmcSignature value */
    363#define END_SIG                 0x12345678
    364
    365/* Mailbox values. (portMailbox) */
    366#define NOP             0	/* No operation */
    367#define ACK             1	/* Positive acknowledgement to PC driver */
    368#define NAK             2	/* Negative acknowledgement to PC driver */
    369#define STARTPORT       3	/* Start an HDLC port */
    370#define STOPPORT        4	/* Stop an HDLC port */
    371#define ABORTTX         5	/* Abort the transmitter for a port */
    372#define SETV24O         6	/* Set V24 outputs */
    373
    374/* PLX Chip Register Offsets */
    375#define CNTRL_9052      0x50	/* Control Register */
    376#define CNTRL_9054      0x6c	/* Control Register */
    377
    378#define INTCSR_9052     0x4c	/* Interrupt control/status register */
    379#define INTCSR_9054     0x68	/* Interrupt control/status register */
    380
    381/* 9054 DMA Registers */
    382/* Note that we will be using DMA Channel 0 for copying rx data
    383 * and Channel 1 for copying tx data
    384 */
    385#define DMAMODE0        0x80
    386#define DMAPADR0        0x84
    387#define DMALADR0        0x88
    388#define DMASIZ0         0x8c
    389#define DMADPR0         0x90
    390#define DMAMODE1        0x94
    391#define DMAPADR1        0x98
    392#define DMALADR1        0x9c
    393#define DMASIZ1         0xa0
    394#define DMADPR1         0xa4
    395#define DMACSR0         0xa8
    396#define DMACSR1         0xa9
    397#define DMAARB          0xac
    398#define DMATHR          0xb0
    399#define DMADAC0         0xb4
    400#define DMADAC1         0xb8
    401#define DMAMARBR        0xac
    402
    403#define FST_MIN_DMA_LEN 64
    404#define FST_RX_DMA_INT  0x01
    405#define FST_TX_DMA_INT  0x02
    406#define FST_CARD_INT    0x04
    407
    408/* Larger buffers are positioned in memory at offset BFM_BASE */
    409struct buf_window {
    410	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
    411	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
    412};
    413
    414/* Calculate offset of a buffer object within the shared memory window */
    415#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
    416
    417#pragma pack()
    418
    419/*      Device driver private information
    420 *      =================================
    421 */
    422/*      Per port (line or channel) information
    423 */
    424struct fst_port_info {
    425	struct net_device *dev; /* Device struct - must be first */
    426	struct fst_card_info *card;	/* Card we're associated with */
    427	int index;		/* Port index on the card */
    428	int hwif;		/* Line hardware (lineInterface copy) */
    429	int run;		/* Port is running */
    430	int mode;		/* Normal or FarSync raw */
    431	int rxpos;		/* Next Rx buffer to use */
    432	int txpos;		/* Next Tx buffer to use */
    433	int txipos;		/* Next Tx buffer to check for free */
    434	int start;		/* Indication of start/stop to network */
    435	/* A sixteen entry transmit queue
    436	 */
    437	int txqs;		/* index to get next buffer to tx */
    438	int txqe;		/* index to queue next packet */
    439	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
    440	int rxqdepth;
    441};
    442
    443/*      Per card information
    444 */
    445struct fst_card_info {
    446	char __iomem *mem;	/* Card memory mapped to kernel space */
    447	char __iomem *ctlmem;	/* Control memory for PCI cards */
    448	unsigned int phys_mem;	/* Physical memory window address */
    449	unsigned int phys_ctlmem;	/* Physical control memory address */
    450	unsigned int irq;	/* Interrupt request line number */
    451	unsigned int nports;	/* Number of serial ports */
    452	unsigned int type;	/* Type index of card */
    453	unsigned int state;	/* State of card */
    454	spinlock_t card_lock;	/* Lock for SMP access */
    455	unsigned short pci_conf;	/* PCI card config in I/O space */
    456	/* Per port info */
    457	struct fst_port_info ports[FST_MAX_PORTS];
    458	struct pci_dev *device;	/* Information about the pci device */
    459	int card_no;		/* Inst of the card on the system */
    460	int family;		/* TxP or TxU */
    461	int dmarx_in_progress;
    462	int dmatx_in_progress;
    463	unsigned long int_count;
    464	unsigned long int_time_ave;
    465	void *rx_dma_handle_host;
    466	dma_addr_t rx_dma_handle_card;
    467	void *tx_dma_handle_host;
    468	dma_addr_t tx_dma_handle_card;
    469	struct sk_buff *dma_skb_rx;
    470	struct fst_port_info *dma_port_rx;
    471	struct fst_port_info *dma_port_tx;
    472	int dma_len_rx;
    473	int dma_len_tx;
    474	int dma_txpos;
    475	int dma_rxpos;
    476};
    477
    478/* Convert an HDLC device pointer into a port info pointer and similar */
    479#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
    480#define port_to_dev(P)  ((P)->dev)
    481
    482/*      Shared memory window access macros
    483 *
    484 *      We have a nice memory based structure above, which could be directly
    485 *      mapped on i386 but might not work on other architectures unless we use
    486 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
    487 *      physical offsets so we have to convert. The only saving grace is that
    488 *      this should all collapse back to a simple indirection eventually.
    489 */
    490#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
    491
    492#define FST_RDB(C, E)    (readb((C)->mem + WIN_OFFSET(E)))
    493#define FST_RDW(C, E)    (readw((C)->mem + WIN_OFFSET(E)))
    494#define FST_RDL(C, E)    (readl((C)->mem + WIN_OFFSET(E)))
    495
    496#define FST_WRB(C, E, B)  (writeb((B), (C)->mem + WIN_OFFSET(E)))
    497#define FST_WRW(C, E, W)  (writew((W), (C)->mem + WIN_OFFSET(E)))
    498#define FST_WRL(C, E, L)  (writel((L), (C)->mem + WIN_OFFSET(E)))
    499
    500/*      Debug support
    501 */
    502#if FST_DEBUG
    503
    504static int fst_debug_mask = { FST_DEBUG };
    505
    506/* Most common debug activity is to print something if the corresponding bit
    507 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
    508 * support variable numbers of macro parameters. The inverted if prevents us
    509 * eating someone else's else clause.
    510 */
    511#define dbg(F, fmt, args...)					\
    512do {								\
    513	if (fst_debug_mask & (F))				\
    514		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
    515} while (0)
    516#else
    517#define dbg(F, fmt, args...)					\
    518do {								\
    519	if (0)							\
    520		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
    521} while (0)
    522#endif
    523
    524/*      PCI ID lookup table
    525 */
    526static const struct pci_device_id fst_pci_dev_id[] = {
    527	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
    528	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
    529
    530	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
    531	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
    532
    533	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
    534	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
    535
    536	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
    537	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
    538
    539	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
    540	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
    541
    542	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
    543	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
    544
    545	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
    546	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
    547	{0,}			/* End */
    548};
    549
    550MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
    551
    552/*      Device Driver Work Queues
    553 *
    554 *      So that we don't spend too much time processing events in the
    555 *      Interrupt Service routine, we will declare a work queue per Card
    556 *      and make the ISR schedule a task in the queue for later execution.
    557 *      In the 2.4 Kernel we used to use the immediate queue for BH's
    558 *      Now that they are gone, tasklets seem to be much better than work
    559 *      queues.
    560 */
    561
    562static void do_bottom_half_tx(struct fst_card_info *card);
    563static void do_bottom_half_rx(struct fst_card_info *card);
    564static void fst_process_tx_work_q(struct tasklet_struct *unused);
    565static void fst_process_int_work_q(struct tasklet_struct *unused);
    566
    567static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q);
    568static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q);
    569
    570static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
    571static DEFINE_SPINLOCK(fst_work_q_lock);
    572static u64 fst_work_txq;
    573static u64 fst_work_intq;
    574
    575static void
    576fst_q_work_item(u64 *queue, int card_index)
    577{
    578	unsigned long flags;
    579	u64 mask;
    580
    581	/* Grab the queue exclusively
    582	 */
    583	spin_lock_irqsave(&fst_work_q_lock, flags);
    584
    585	/* Making an entry in the queue is simply a matter of setting
    586	 * a bit for the card indicating that there is work to do in the
    587	 * bottom half for the card.  Note the limitation of 64 cards.
    588	 * That ought to be enough
    589	 */
    590	mask = (u64)1 << card_index;
    591	*queue |= mask;
    592	spin_unlock_irqrestore(&fst_work_q_lock, flags);
    593}
    594
    595static void
    596fst_process_tx_work_q(struct tasklet_struct *unused)
    597{
    598	unsigned long flags;
    599	u64 work_txq;
    600	int i;
    601
    602	/* Grab the queue exclusively
    603	 */
    604	dbg(DBG_TX, "fst_process_tx_work_q\n");
    605	spin_lock_irqsave(&fst_work_q_lock, flags);
    606	work_txq = fst_work_txq;
    607	fst_work_txq = 0;
    608	spin_unlock_irqrestore(&fst_work_q_lock, flags);
    609
    610	/* Call the bottom half for each card with work waiting
    611	 */
    612	for (i = 0; i < FST_MAX_CARDS; i++) {
    613		if (work_txq & 0x01) {
    614			if (fst_card_array[i]) {
    615				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
    616				do_bottom_half_tx(fst_card_array[i]);
    617			}
    618		}
    619		work_txq = work_txq >> 1;
    620	}
    621}
    622
    623static void
    624fst_process_int_work_q(struct tasklet_struct *unused)
    625{
    626	unsigned long flags;
    627	u64 work_intq;
    628	int i;
    629
    630	/* Grab the queue exclusively
    631	 */
    632	dbg(DBG_INTR, "fst_process_int_work_q\n");
    633	spin_lock_irqsave(&fst_work_q_lock, flags);
    634	work_intq = fst_work_intq;
    635	fst_work_intq = 0;
    636	spin_unlock_irqrestore(&fst_work_q_lock, flags);
    637
    638	/* Call the bottom half for each card with work waiting
    639	 */
    640	for (i = 0; i < FST_MAX_CARDS; i++) {
    641		if (work_intq & 0x01) {
    642			if (fst_card_array[i]) {
    643				dbg(DBG_INTR,
    644				    "Calling rx & tx bh for card %d\n", i);
    645				do_bottom_half_rx(fst_card_array[i]);
    646				do_bottom_half_tx(fst_card_array[i]);
    647			}
    648		}
    649		work_intq = work_intq >> 1;
    650	}
    651}
    652
    653/*      Card control functions
    654 *      ======================
    655 */
    656/*      Place the processor in reset state
    657 *
    658 * Used to be a simple write to card control space but a glitch in the latest
    659 * AMD Am186CH processor means that we now have to do it by asserting and de-
    660 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
    661 * at offset 9052_CNTRL.  Note the updates for the TXU.
    662 */
    663static inline void
    664fst_cpureset(struct fst_card_info *card)
    665{
    666	unsigned char interrupt_line_register;
    667	unsigned int regval;
    668
    669	if (card->family == FST_FAMILY_TXU) {
    670		if (pci_read_config_byte
    671		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
    672			dbg(DBG_ASS,
    673			    "Error in reading interrupt line register\n");
    674		}
    675		/* Assert PLX software reset and Am186 hardware reset
    676		 * and then deassert the PLX software reset but 186 still in reset
    677		 */
    678		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
    679		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
    680		/* We are delaying here to allow the 9054 to reset itself
    681		 */
    682		usleep_range(10, 20);
    683		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
    684		/* We are delaying here to allow the 9054 to reload its eeprom
    685		 */
    686		usleep_range(10, 20);
    687		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
    688
    689		if (pci_write_config_byte
    690		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
    691			dbg(DBG_ASS,
    692			    "Error in writing interrupt line register\n");
    693		}
    694
    695	} else {
    696		regval = inl(card->pci_conf + CNTRL_9052);
    697
    698		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
    699		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
    700	}
    701}
    702
    703/*      Release the processor from reset
    704 */
    705static inline void
    706fst_cpurelease(struct fst_card_info *card)
    707{
    708	if (card->family == FST_FAMILY_TXU) {
    709		/* Force posted writes to complete
    710		 */
    711		(void)readb(card->mem);
    712
    713		/* Release LRESET DO = 1
    714		 * Then release Local Hold, DO = 1
    715		 */
    716		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
    717		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
    718	} else {
    719		(void)readb(card->ctlmem);
    720	}
    721}
    722
    723/*      Clear the cards interrupt flag
    724 */
    725static inline void
    726fst_clear_intr(struct fst_card_info *card)
    727{
    728	if (card->family == FST_FAMILY_TXU) {
    729		(void)readb(card->ctlmem);
    730	} else {
    731		/* Poke the appropriate PLX chip register (same as enabling interrupts)
    732		 */
    733		outw(0x0543, card->pci_conf + INTCSR_9052);
    734	}
    735}
    736
    737/*      Enable card interrupts
    738 */
    739static inline void
    740fst_enable_intr(struct fst_card_info *card)
    741{
    742	if (card->family == FST_FAMILY_TXU)
    743		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
    744	else
    745		outw(0x0543, card->pci_conf + INTCSR_9052);
    746}
    747
    748/*      Disable card interrupts
    749 */
    750static inline void
    751fst_disable_intr(struct fst_card_info *card)
    752{
    753	if (card->family == FST_FAMILY_TXU)
    754		outl(0x00000000, card->pci_conf + INTCSR_9054);
    755	else
    756		outw(0x0000, card->pci_conf + INTCSR_9052);
    757}
    758
    759/*      Process the result of trying to pass a received frame up the stack
    760 */
    761static void
    762fst_process_rx_status(int rx_status, char *name)
    763{
    764	switch (rx_status) {
    765	case NET_RX_SUCCESS:
    766		{
    767			/* Nothing to do here
    768			 */
    769			break;
    770		}
    771	case NET_RX_DROP:
    772		{
    773			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
    774			break;
    775		}
    776	}
    777}
    778
    779/*      Initilaise DMA for PLX 9054
    780 */
    781static inline void
    782fst_init_dma(struct fst_card_info *card)
    783{
    784	/* This is only required for the PLX 9054
    785	 */
    786	if (card->family == FST_FAMILY_TXU) {
    787		pci_set_master(card->device);
    788		outl(0x00020441, card->pci_conf + DMAMODE0);
    789		outl(0x00020441, card->pci_conf + DMAMODE1);
    790		outl(0x0, card->pci_conf + DMATHR);
    791	}
    792}
    793
    794/*      Tx dma complete interrupt
    795 */
    796static void
    797fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
    798		    int len, int txpos)
    799{
    800	struct net_device *dev = port_to_dev(port);
    801
    802	/* Everything is now set, just tell the card to go
    803	 */
    804	dbg(DBG_TX, "fst_tx_dma_complete\n");
    805	FST_WRB(card, txDescrRing[port->index][txpos].bits,
    806		DMA_OWN | TX_STP | TX_ENP);
    807	dev->stats.tx_packets++;
    808	dev->stats.tx_bytes += len;
    809	netif_trans_update(dev);
    810}
    811
    812/* Mark it for our own raw sockets interface
    813 */
    814static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
    815{
    816	skb->dev = dev;
    817	skb_reset_mac_header(skb);
    818	skb->pkt_type = PACKET_HOST;
    819	return htons(ETH_P_CUST);
    820}
    821
    822/*      Rx dma complete interrupt
    823 */
    824static void
    825fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
    826		    int len, struct sk_buff *skb, int rxp)
    827{
    828	struct net_device *dev = port_to_dev(port);
    829	int pi;
    830	int rx_status;
    831
    832	dbg(DBG_TX, "fst_rx_dma_complete\n");
    833	pi = port->index;
    834	skb_put_data(skb, card->rx_dma_handle_host, len);
    835
    836	/* Reset buffer descriptor */
    837	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
    838
    839	/* Update stats */
    840	dev->stats.rx_packets++;
    841	dev->stats.rx_bytes += len;
    842
    843	/* Push upstream */
    844	dbg(DBG_RX, "Pushing the frame up the stack\n");
    845	if (port->mode == FST_RAW)
    846		skb->protocol = farsync_type_trans(skb, dev);
    847	else
    848		skb->protocol = hdlc_type_trans(skb, dev);
    849	rx_status = netif_rx(skb);
    850	fst_process_rx_status(rx_status, port_to_dev(port)->name);
    851	if (rx_status == NET_RX_DROP)
    852		dev->stats.rx_dropped++;
    853}
    854
    855/*      Receive a frame through the DMA
    856 */
    857static inline void
    858fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
    859{
    860	/* This routine will setup the DMA and start it
    861	 */
    862
    863	dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
    864	if (card->dmarx_in_progress)
    865		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
    866
    867	outl(dma, card->pci_conf + DMAPADR0);	/* Copy to here */
    868	outl(mem, card->pci_conf + DMALADR0);	/* from here */
    869	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
    870	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
    871
    872	/* We use the dmarx_in_progress flag to flag the channel as busy
    873	 */
    874	card->dmarx_in_progress = 1;
    875	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
    876}
    877
    878/*      Send a frame through the DMA
    879 */
    880static inline void
    881fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
    882{
    883	/* This routine will setup the DMA and start it.
    884	 */
    885
    886	dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
    887	if (card->dmatx_in_progress)
    888		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
    889
    890	outl(dma, card->pci_conf + DMAPADR1);	/* Copy from here */
    891	outl(mem, card->pci_conf + DMALADR1);	/* to here */
    892	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
    893	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
    894
    895	/* We use the dmatx_in_progress to flag the channel as busy
    896	 */
    897	card->dmatx_in_progress = 1;
    898	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
    899}
    900
    901/*      Issue a Mailbox command for a port.
    902 *      Note we issue them on a fire and forget basis, not expecting to see an
    903 *      error and not waiting for completion.
    904 */
    905static void
    906fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
    907{
    908	struct fst_card_info *card;
    909	unsigned short mbval;
    910	unsigned long flags;
    911	int safety;
    912
    913	card = port->card;
    914	spin_lock_irqsave(&card->card_lock, flags);
    915	mbval = FST_RDW(card, portMailbox[port->index][0]);
    916
    917	safety = 0;
    918	/* Wait for any previous command to complete */
    919	while (mbval > NAK) {
    920		spin_unlock_irqrestore(&card->card_lock, flags);
    921		schedule_timeout_uninterruptible(1);
    922		spin_lock_irqsave(&card->card_lock, flags);
    923
    924		if (++safety > 2000) {
    925			pr_err("Mailbox safety timeout\n");
    926			break;
    927		}
    928
    929		mbval = FST_RDW(card, portMailbox[port->index][0]);
    930	}
    931	if (safety > 0)
    932		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
    933
    934	if (mbval == NAK)
    935		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
    936
    937	FST_WRW(card, portMailbox[port->index][0], cmd);
    938
    939	if (cmd == ABORTTX || cmd == STARTPORT) {
    940		port->txpos = 0;
    941		port->txipos = 0;
    942		port->start = 0;
    943	}
    944
    945	spin_unlock_irqrestore(&card->card_lock, flags);
    946}
    947
    948/*      Port output signals control
    949 */
    950static inline void
    951fst_op_raise(struct fst_port_info *port, unsigned int outputs)
    952{
    953	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
    954	FST_WRL(port->card, v24OpSts[port->index], outputs);
    955
    956	if (port->run)
    957		fst_issue_cmd(port, SETV24O);
    958}
    959
    960static inline void
    961fst_op_lower(struct fst_port_info *port, unsigned int outputs)
    962{
    963	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
    964	FST_WRL(port->card, v24OpSts[port->index], outputs);
    965
    966	if (port->run)
    967		fst_issue_cmd(port, SETV24O);
    968}
    969
    970/*      Setup port Rx buffers
    971 */
    972static void
    973fst_rx_config(struct fst_port_info *port)
    974{
    975	int i;
    976	int pi;
    977	unsigned int offset;
    978	unsigned long flags;
    979	struct fst_card_info *card;
    980
    981	pi = port->index;
    982	card = port->card;
    983	spin_lock_irqsave(&card->card_lock, flags);
    984	for (i = 0; i < NUM_RX_BUFFER; i++) {
    985		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
    986
    987		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset);
    988		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16));
    989		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
    990		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
    991		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
    992	}
    993	port->rxpos = 0;
    994	spin_unlock_irqrestore(&card->card_lock, flags);
    995}
    996
    997/*      Setup port Tx buffers
    998 */
    999static void
   1000fst_tx_config(struct fst_port_info *port)
   1001{
   1002	int i;
   1003	int pi;
   1004	unsigned int offset;
   1005	unsigned long flags;
   1006	struct fst_card_info *card;
   1007
   1008	pi = port->index;
   1009	card = port->card;
   1010	spin_lock_irqsave(&card->card_lock, flags);
   1011	for (i = 0; i < NUM_TX_BUFFER; i++) {
   1012		offset = BUF_OFFSET(txBuffer[pi][i][0]);
   1013
   1014		FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset);
   1015		FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16));
   1016		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
   1017		FST_WRB(card, txDescrRing[pi][i].bits, 0);
   1018	}
   1019	port->txpos = 0;
   1020	port->txipos = 0;
   1021	port->start = 0;
   1022	spin_unlock_irqrestore(&card->card_lock, flags);
   1023}
   1024
   1025/*      TE1 Alarm change interrupt event
   1026 */
   1027static void
   1028fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
   1029{
   1030	u8 los;
   1031	u8 rra;
   1032	u8 ais;
   1033
   1034	los = FST_RDB(card, suStatus.lossOfSignal);
   1035	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
   1036	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
   1037
   1038	if (los) {
   1039		/* Lost the link
   1040		 */
   1041		if (netif_carrier_ok(port_to_dev(port))) {
   1042			dbg(DBG_INTR, "Net carrier off\n");
   1043			netif_carrier_off(port_to_dev(port));
   1044		}
   1045	} else {
   1046		/* Link available
   1047		 */
   1048		if (!netif_carrier_ok(port_to_dev(port))) {
   1049			dbg(DBG_INTR, "Net carrier on\n");
   1050			netif_carrier_on(port_to_dev(port));
   1051		}
   1052	}
   1053
   1054	if (los)
   1055		dbg(DBG_INTR, "Assert LOS Alarm\n");
   1056	else
   1057		dbg(DBG_INTR, "De-assert LOS Alarm\n");
   1058	if (rra)
   1059		dbg(DBG_INTR, "Assert RRA Alarm\n");
   1060	else
   1061		dbg(DBG_INTR, "De-assert RRA Alarm\n");
   1062
   1063	if (ais)
   1064		dbg(DBG_INTR, "Assert AIS Alarm\n");
   1065	else
   1066		dbg(DBG_INTR, "De-assert AIS Alarm\n");
   1067}
   1068
   1069/*      Control signal change interrupt event
   1070 */
   1071static void
   1072fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
   1073{
   1074	int signals;
   1075
   1076	signals = FST_RDL(card, v24DebouncedSts[port->index]);
   1077
   1078	if (signals & ((port->hwif == X21 || port->hwif == X21D)
   1079		       ? IPSTS_INDICATE : IPSTS_DCD)) {
   1080		if (!netif_carrier_ok(port_to_dev(port))) {
   1081			dbg(DBG_INTR, "DCD active\n");
   1082			netif_carrier_on(port_to_dev(port));
   1083		}
   1084	} else {
   1085		if (netif_carrier_ok(port_to_dev(port))) {
   1086			dbg(DBG_INTR, "DCD lost\n");
   1087			netif_carrier_off(port_to_dev(port));
   1088		}
   1089	}
   1090}
   1091
   1092/*      Log Rx Errors
   1093 */
   1094static void
   1095fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
   1096		 unsigned char dmabits, int rxp, unsigned short len)
   1097{
   1098	struct net_device *dev = port_to_dev(port);
   1099
   1100	/* Increment the appropriate error counter
   1101	 */
   1102	dev->stats.rx_errors++;
   1103	if (dmabits & RX_OFLO) {
   1104		dev->stats.rx_fifo_errors++;
   1105		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
   1106		    card->card_no, port->index, rxp);
   1107	}
   1108	if (dmabits & RX_CRC) {
   1109		dev->stats.rx_crc_errors++;
   1110		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
   1111		    card->card_no, port->index);
   1112	}
   1113	if (dmabits & RX_FRAM) {
   1114		dev->stats.rx_frame_errors++;
   1115		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
   1116		    card->card_no, port->index);
   1117	}
   1118	if (dmabits == (RX_STP | RX_ENP)) {
   1119		dev->stats.rx_length_errors++;
   1120		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
   1121		    len, card->card_no, port->index);
   1122	}
   1123}
   1124
   1125/*      Rx Error Recovery
   1126 */
   1127static void
   1128fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
   1129		     unsigned char dmabits, int rxp, unsigned short len)
   1130{
   1131	int i;
   1132	int pi;
   1133
   1134	pi = port->index;
   1135	/* Discard buffer descriptors until we see the start of the
   1136	 * next frame.  Note that for long frames this could be in
   1137	 * a subsequent interrupt.
   1138	 */
   1139	i = 0;
   1140	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
   1141		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
   1142		rxp = (rxp + 1) % NUM_RX_BUFFER;
   1143		if (++i > NUM_RX_BUFFER) {
   1144			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
   1145			    " than we have\n");
   1146			break;
   1147		}
   1148		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
   1149		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
   1150	}
   1151	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
   1152
   1153	/* Discard the terminal buffer */
   1154	if (!(dmabits & DMA_OWN)) {
   1155		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
   1156		rxp = (rxp + 1) % NUM_RX_BUFFER;
   1157	}
   1158	port->rxpos = rxp;
   1159}
   1160
   1161/*      Rx complete interrupt
   1162 */
   1163static void
   1164fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
   1165{
   1166	unsigned char dmabits;
   1167	int pi;
   1168	int rxp;
   1169	int rx_status;
   1170	unsigned short len;
   1171	struct sk_buff *skb;
   1172	struct net_device *dev = port_to_dev(port);
   1173
   1174	/* Check we have a buffer to process */
   1175	pi = port->index;
   1176	rxp = port->rxpos;
   1177	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
   1178	if (dmabits & DMA_OWN) {
   1179		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
   1180		    pi, rxp);
   1181		return;
   1182	}
   1183	if (card->dmarx_in_progress)
   1184		return;
   1185
   1186	/* Get buffer length */
   1187	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
   1188	/* Discard the CRC */
   1189	len -= 2;
   1190	if (len == 0) {
   1191		/* This seems to happen on the TE1 interface sometimes
   1192		 * so throw the frame away and log the event.
   1193		 */
   1194		pr_err("Frame received with 0 length. Card %d Port %d\n",
   1195		       card->card_no, port->index);
   1196		/* Return descriptor to card */
   1197		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
   1198
   1199		rxp = (rxp + 1) % NUM_RX_BUFFER;
   1200		port->rxpos = rxp;
   1201		return;
   1202	}
   1203
   1204	/* Check buffer length and for other errors. We insist on one packet
   1205	 * in one buffer. This simplifies things greatly and since we've
   1206	 * allocated 8K it shouldn't be a real world limitation
   1207	 */
   1208	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
   1209	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
   1210		fst_log_rx_error(card, port, dmabits, rxp, len);
   1211		fst_recover_rx_error(card, port, dmabits, rxp, len);
   1212		return;
   1213	}
   1214
   1215	/* Allocate SKB */
   1216	skb = dev_alloc_skb(len);
   1217	if (!skb) {
   1218		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
   1219
   1220		dev->stats.rx_dropped++;
   1221
   1222		/* Return descriptor to card */
   1223		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
   1224
   1225		rxp = (rxp + 1) % NUM_RX_BUFFER;
   1226		port->rxpos = rxp;
   1227		return;
   1228	}
   1229
   1230	/* We know the length we need to receive, len.
   1231	 * It's not worth using the DMA for reads of less than
   1232	 * FST_MIN_DMA_LEN
   1233	 */
   1234
   1235	if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) {
   1236		memcpy_fromio(skb_put(skb, len),
   1237			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
   1238			      len);
   1239
   1240		/* Reset buffer descriptor */
   1241		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
   1242
   1243		/* Update stats */
   1244		dev->stats.rx_packets++;
   1245		dev->stats.rx_bytes += len;
   1246
   1247		/* Push upstream */
   1248		dbg(DBG_RX, "Pushing frame up the stack\n");
   1249		if (port->mode == FST_RAW)
   1250			skb->protocol = farsync_type_trans(skb, dev);
   1251		else
   1252			skb->protocol = hdlc_type_trans(skb, dev);
   1253		rx_status = netif_rx(skb);
   1254		fst_process_rx_status(rx_status, port_to_dev(port)->name);
   1255		if (rx_status == NET_RX_DROP)
   1256			dev->stats.rx_dropped++;
   1257	} else {
   1258		card->dma_skb_rx = skb;
   1259		card->dma_port_rx = port;
   1260		card->dma_len_rx = len;
   1261		card->dma_rxpos = rxp;
   1262		fst_rx_dma(card, card->rx_dma_handle_card,
   1263			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
   1264	}
   1265	if (rxp != port->rxpos) {
   1266		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
   1267		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
   1268	}
   1269	rxp = (rxp + 1) % NUM_RX_BUFFER;
   1270	port->rxpos = rxp;
   1271}
   1272
   1273/*      The bottom half to the ISR
   1274 *
   1275 */
   1276
   1277static void
   1278do_bottom_half_tx(struct fst_card_info *card)
   1279{
   1280	struct fst_port_info *port;
   1281	int pi;
   1282	int txq_length;
   1283	struct sk_buff *skb;
   1284	unsigned long flags;
   1285	struct net_device *dev;
   1286
   1287	/*  Find a free buffer for the transmit
   1288	 *  Step through each port on this card
   1289	 */
   1290
   1291	dbg(DBG_TX, "do_bottom_half_tx\n");
   1292	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
   1293		if (!port->run)
   1294			continue;
   1295
   1296		dev = port_to_dev(port);
   1297		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
   1298			 DMA_OWN) &&
   1299		       !(card->dmatx_in_progress)) {
   1300			/* There doesn't seem to be a txdone event per-se
   1301			 * We seem to have to deduce it, by checking the DMA_OWN
   1302			 * bit on the next buffer we think we can use
   1303			 */
   1304			spin_lock_irqsave(&card->card_lock, flags);
   1305			txq_length = port->txqe - port->txqs;
   1306			if (txq_length < 0) {
   1307				/* This is the case where one has wrapped and the
   1308				 * maths gives us a negative number
   1309				 */
   1310				txq_length = txq_length + FST_TXQ_DEPTH;
   1311			}
   1312			spin_unlock_irqrestore(&card->card_lock, flags);
   1313			if (txq_length > 0) {
   1314				/* There is something to send
   1315				 */
   1316				spin_lock_irqsave(&card->card_lock, flags);
   1317				skb = port->txq[port->txqs];
   1318				port->txqs++;
   1319				if (port->txqs == FST_TXQ_DEPTH)
   1320					port->txqs = 0;
   1321
   1322				spin_unlock_irqrestore(&card->card_lock, flags);
   1323				/* copy the data and set the required indicators on the
   1324				 * card.
   1325				 */
   1326				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
   1327					cnv_bcnt(skb->len));
   1328				if (skb->len < FST_MIN_DMA_LEN ||
   1329				    card->family == FST_FAMILY_TXP) {
   1330					/* Enqueue the packet with normal io */
   1331					memcpy_toio(card->mem +
   1332						    BUF_OFFSET(txBuffer[pi]
   1333							       [port->
   1334								txpos][0]),
   1335						    skb->data, skb->len);
   1336					FST_WRB(card,
   1337						txDescrRing[pi][port->txpos].
   1338						bits,
   1339						DMA_OWN | TX_STP | TX_ENP);
   1340					dev->stats.tx_packets++;
   1341					dev->stats.tx_bytes += skb->len;
   1342					netif_trans_update(dev);
   1343				} else {
   1344					/* Or do it through dma */
   1345					memcpy(card->tx_dma_handle_host,
   1346					       skb->data, skb->len);
   1347					card->dma_port_tx = port;
   1348					card->dma_len_tx = skb->len;
   1349					card->dma_txpos = port->txpos;
   1350					fst_tx_dma(card,
   1351						   card->tx_dma_handle_card,
   1352						   BUF_OFFSET(txBuffer[pi]
   1353							      [port->txpos][0]),
   1354						   skb->len);
   1355				}
   1356				if (++port->txpos >= NUM_TX_BUFFER)
   1357					port->txpos = 0;
   1358				/* If we have flow control on, can we now release it?
   1359				 */
   1360				if (port->start) {
   1361					if (txq_length < fst_txq_low) {
   1362						netif_wake_queue(port_to_dev
   1363								 (port));
   1364						port->start = 0;
   1365					}
   1366				}
   1367				dev_kfree_skb(skb);
   1368			} else {
   1369				/* Nothing to send so break out of the while loop
   1370				 */
   1371				break;
   1372			}
   1373		}
   1374	}
   1375}
   1376
   1377static void
   1378do_bottom_half_rx(struct fst_card_info *card)
   1379{
   1380	struct fst_port_info *port;
   1381	int pi;
   1382	int rx_count = 0;
   1383
   1384	/* Check for rx completions on all ports on this card */
   1385	dbg(DBG_RX, "do_bottom_half_rx\n");
   1386	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
   1387		if (!port->run)
   1388			continue;
   1389
   1390		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
   1391			 & DMA_OWN) && !(card->dmarx_in_progress)) {
   1392			if (rx_count > fst_max_reads) {
   1393				/* Don't spend forever in receive processing
   1394				 * Schedule another event
   1395				 */
   1396				fst_q_work_item(&fst_work_intq, card->card_no);
   1397				tasklet_schedule(&fst_int_task);
   1398				break;	/* Leave the loop */
   1399			}
   1400			fst_intr_rx(card, port);
   1401			rx_count++;
   1402		}
   1403	}
   1404}
   1405
   1406/*      The interrupt service routine
   1407 *      Dev_id is our fst_card_info pointer
   1408 */
   1409static irqreturn_t
   1410fst_intr(int dummy, void *dev_id)
   1411{
   1412	struct fst_card_info *card = dev_id;
   1413	struct fst_port_info *port;
   1414	int rdidx;		/* Event buffer indices */
   1415	int wridx;
   1416	int event;		/* Actual event for processing */
   1417	unsigned int dma_intcsr = 0;
   1418	unsigned int do_card_interrupt;
   1419	unsigned int int_retry_count;
   1420
   1421	/* Check to see if the interrupt was for this card
   1422	 * return if not
   1423	 * Note that the call to clear the interrupt is important
   1424	 */
   1425	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
   1426	if (card->state != FST_RUNNING) {
   1427		pr_err("Interrupt received for card %d in a non running state (%d)\n",
   1428		       card->card_no, card->state);
   1429
   1430		/* It is possible to really be running, i.e. we have re-loaded
   1431		 * a running card
   1432		 * Clear and reprime the interrupt source
   1433		 */
   1434		fst_clear_intr(card);
   1435		return IRQ_HANDLED;
   1436	}
   1437
   1438	/* Clear and reprime the interrupt source */
   1439	fst_clear_intr(card);
   1440
   1441	/* Is the interrupt for this card (handshake == 1)
   1442	 */
   1443	do_card_interrupt = 0;
   1444	if (FST_RDB(card, interruptHandshake) == 1) {
   1445		do_card_interrupt += FST_CARD_INT;
   1446		/* Set the software acknowledge */
   1447		FST_WRB(card, interruptHandshake, 0xEE);
   1448	}
   1449	if (card->family == FST_FAMILY_TXU) {
   1450		/* Is it a DMA Interrupt
   1451		 */
   1452		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
   1453		if (dma_intcsr & 0x00200000) {
   1454			/* DMA Channel 0 (Rx transfer complete)
   1455			 */
   1456			dbg(DBG_RX, "DMA Rx xfer complete\n");
   1457			outb(0x8, card->pci_conf + DMACSR0);
   1458			fst_rx_dma_complete(card, card->dma_port_rx,
   1459					    card->dma_len_rx, card->dma_skb_rx,
   1460					    card->dma_rxpos);
   1461			card->dmarx_in_progress = 0;
   1462			do_card_interrupt += FST_RX_DMA_INT;
   1463		}
   1464		if (dma_intcsr & 0x00400000) {
   1465			/* DMA Channel 1 (Tx transfer complete)
   1466			 */
   1467			dbg(DBG_TX, "DMA Tx xfer complete\n");
   1468			outb(0x8, card->pci_conf + DMACSR1);
   1469			fst_tx_dma_complete(card, card->dma_port_tx,
   1470					    card->dma_len_tx, card->dma_txpos);
   1471			card->dmatx_in_progress = 0;
   1472			do_card_interrupt += FST_TX_DMA_INT;
   1473		}
   1474	}
   1475
   1476	/* Have we been missing Interrupts
   1477	 */
   1478	int_retry_count = FST_RDL(card, interruptRetryCount);
   1479	if (int_retry_count) {
   1480		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
   1481		    card->card_no, int_retry_count);
   1482		FST_WRL(card, interruptRetryCount, 0);
   1483	}
   1484
   1485	if (!do_card_interrupt)
   1486		return IRQ_HANDLED;
   1487
   1488	/* Scehdule the bottom half of the ISR */
   1489	fst_q_work_item(&fst_work_intq, card->card_no);
   1490	tasklet_schedule(&fst_int_task);
   1491
   1492	/* Drain the event queue */
   1493	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
   1494	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
   1495	while (rdidx != wridx) {
   1496		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
   1497		port = &card->ports[event & 0x03];
   1498
   1499		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
   1500
   1501		switch (event) {
   1502		case TE1_ALMA:
   1503			dbg(DBG_INTR, "TE1 Alarm intr\n");
   1504			if (port->run)
   1505				fst_intr_te1_alarm(card, port);
   1506			break;
   1507
   1508		case CTLA_CHG:
   1509		case CTLB_CHG:
   1510		case CTLC_CHG:
   1511		case CTLD_CHG:
   1512			if (port->run)
   1513				fst_intr_ctlchg(card, port);
   1514			break;
   1515
   1516		case ABTA_SENT:
   1517		case ABTB_SENT:
   1518		case ABTC_SENT:
   1519		case ABTD_SENT:
   1520			dbg(DBG_TX, "Abort complete port %d\n", port->index);
   1521			break;
   1522
   1523		case TXA_UNDF:
   1524		case TXB_UNDF:
   1525		case TXC_UNDF:
   1526		case TXD_UNDF:
   1527			/* Difficult to see how we'd get this given that we
   1528			 * always load up the entire packet for DMA.
   1529			 */
   1530			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
   1531			port_to_dev(port)->stats.tx_errors++;
   1532			port_to_dev(port)->stats.tx_fifo_errors++;
   1533			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
   1534			    card->card_no, port->index);
   1535			break;
   1536
   1537		case INIT_CPLT:
   1538			dbg(DBG_INIT, "Card init OK intr\n");
   1539			break;
   1540
   1541		case INIT_FAIL:
   1542			dbg(DBG_INIT, "Card init FAILED intr\n");
   1543			card->state = FST_IFAILED;
   1544			break;
   1545
   1546		default:
   1547			pr_err("intr: unknown card event %d. ignored\n", event);
   1548			break;
   1549		}
   1550
   1551		/* Bump and wrap the index */
   1552		if (++rdidx >= MAX_CIRBUFF)
   1553			rdidx = 0;
   1554	}
   1555	FST_WRB(card, interruptEvent.rdindex, rdidx);
   1556	return IRQ_HANDLED;
   1557}
   1558
   1559/*      Check that the shared memory configuration is one that we can handle
   1560 *      and that some basic parameters are correct
   1561 */
   1562static void
   1563check_started_ok(struct fst_card_info *card)
   1564{
   1565	int i;
   1566
   1567	/* Check structure version and end marker */
   1568	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
   1569		pr_err("Bad shared memory version %d expected %d\n",
   1570		       FST_RDW(card, smcVersion), SMC_VERSION);
   1571		card->state = FST_BADVERSION;
   1572		return;
   1573	}
   1574	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
   1575		pr_err("Missing shared memory signature\n");
   1576		card->state = FST_BADVERSION;
   1577		return;
   1578	}
   1579	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
   1580	i = FST_RDB(card, taskStatus);
   1581	if (i == 0x01) {
   1582		card->state = FST_RUNNING;
   1583	} else if (i == 0xFF) {
   1584		pr_err("Firmware initialisation failed. Card halted\n");
   1585		card->state = FST_HALTED;
   1586		return;
   1587	} else if (i != 0x00) {
   1588		pr_err("Unknown firmware status 0x%x\n", i);
   1589		card->state = FST_HALTED;
   1590		return;
   1591	}
   1592
   1593	/* Finally check the number of ports reported by firmware against the
   1594	 * number we assumed at card detection. Should never happen with
   1595	 * existing firmware etc so we just report it for the moment.
   1596	 */
   1597	if (FST_RDL(card, numberOfPorts) != card->nports) {
   1598		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
   1599			card->card_no,
   1600			FST_RDL(card, numberOfPorts), card->nports);
   1601	}
   1602}
   1603
   1604static int
   1605set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
   1606		   struct fstioc_info *info)
   1607{
   1608	int err;
   1609	unsigned char my_framing;
   1610
   1611	/* Set things according to the user set valid flags
   1612	 * Several of the old options have been invalidated/replaced by the
   1613	 * generic hdlc package.
   1614	 */
   1615	err = 0;
   1616	if (info->valid & FSTVAL_PROTO) {
   1617		if (info->proto == FST_RAW)
   1618			port->mode = FST_RAW;
   1619		else
   1620			port->mode = FST_GEN_HDLC;
   1621	}
   1622
   1623	if (info->valid & FSTVAL_CABLE)
   1624		err = -EINVAL;
   1625
   1626	if (info->valid & FSTVAL_SPEED)
   1627		err = -EINVAL;
   1628
   1629	if (info->valid & FSTVAL_PHASE)
   1630		FST_WRB(card, portConfig[port->index].invertClock,
   1631			info->invertClock);
   1632	if (info->valid & FSTVAL_MODE)
   1633		FST_WRW(card, cardMode, info->cardMode);
   1634	if (info->valid & FSTVAL_TE1) {
   1635		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
   1636		FST_WRB(card, suConfig.clocking, info->clockSource);
   1637		my_framing = FRAMING_E1;
   1638		if (info->framing == E1)
   1639			my_framing = FRAMING_E1;
   1640		if (info->framing == T1)
   1641			my_framing = FRAMING_T1;
   1642		if (info->framing == J1)
   1643			my_framing = FRAMING_J1;
   1644		FST_WRB(card, suConfig.framing, my_framing);
   1645		FST_WRB(card, suConfig.structure, info->structure);
   1646		FST_WRB(card, suConfig.interface, info->interface);
   1647		FST_WRB(card, suConfig.coding, info->coding);
   1648		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
   1649		FST_WRB(card, suConfig.equalizer, info->equalizer);
   1650		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
   1651		FST_WRB(card, suConfig.loopMode, info->loopMode);
   1652		FST_WRB(card, suConfig.range, info->range);
   1653		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
   1654		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
   1655		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
   1656		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
   1657		if (info->idleCode)
   1658			FST_WRB(card, suConfig.enableIdleCode, 1);
   1659		else
   1660			FST_WRB(card, suConfig.enableIdleCode, 0);
   1661		FST_WRB(card, suConfig.idleCode, info->idleCode);
   1662#if FST_DEBUG
   1663		if (info->valid & FSTVAL_TE1) {
   1664			printk("Setting TE1 data\n");
   1665			printk("Line Speed = %d\n", info->lineSpeed);
   1666			printk("Start slot = %d\n", info->startingSlot);
   1667			printk("Clock source = %d\n", info->clockSource);
   1668			printk("Framing = %d\n", my_framing);
   1669			printk("Structure = %d\n", info->structure);
   1670			printk("interface = %d\n", info->interface);
   1671			printk("Coding = %d\n", info->coding);
   1672			printk("Line build out = %d\n", info->lineBuildOut);
   1673			printk("Equaliser = %d\n", info->equalizer);
   1674			printk("Transparent mode = %d\n",
   1675			       info->transparentMode);
   1676			printk("Loop mode = %d\n", info->loopMode);
   1677			printk("Range = %d\n", info->range);
   1678			printk("Tx Buffer mode = %d\n", info->txBufferMode);
   1679			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
   1680			printk("LOS Threshold = %d\n", info->losThreshold);
   1681			printk("Idle Code = %d\n", info->idleCode);
   1682		}
   1683#endif
   1684	}
   1685#if FST_DEBUG
   1686	if (info->valid & FSTVAL_DEBUG)
   1687		fst_debug_mask = info->debug;
   1688#endif
   1689
   1690	return err;
   1691}
   1692
   1693static void
   1694gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
   1695		 struct fstioc_info *info)
   1696{
   1697	int i;
   1698
   1699	memset(info, 0, sizeof(struct fstioc_info));
   1700
   1701	i = port->index;
   1702	info->kernelVersion = LINUX_VERSION_CODE;
   1703	info->nports = card->nports;
   1704	info->type = card->type;
   1705	info->state = card->state;
   1706	info->proto = FST_GEN_HDLC;
   1707	info->index = i;
   1708#if FST_DEBUG
   1709	info->debug = fst_debug_mask;
   1710#endif
   1711
   1712	/* Only mark information as valid if card is running.
   1713	 * Copy the data anyway in case it is useful for diagnostics
   1714	 */
   1715	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
   1716#if FST_DEBUG
   1717	    | FSTVAL_DEBUG
   1718#endif
   1719	    ;
   1720
   1721	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
   1722	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
   1723	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
   1724	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
   1725	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
   1726	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
   1727	info->clockStatus = FST_RDW(card, clockStatus[i]);
   1728	info->cableStatus = FST_RDW(card, cableStatus);
   1729	info->cardMode = FST_RDW(card, cardMode);
   1730	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
   1731
   1732	/* The T2U can report cable presence for both A or B
   1733	 * in bits 0 and 1 of cableStatus.  See which port we are and
   1734	 * do the mapping.
   1735	 */
   1736	if (card->family == FST_FAMILY_TXU) {
   1737		if (port->index == 0) {
   1738			/* Port A
   1739			 */
   1740			info->cableStatus = info->cableStatus & 1;
   1741		} else {
   1742			/* Port B
   1743			 */
   1744			info->cableStatus = info->cableStatus >> 1;
   1745			info->cableStatus = info->cableStatus & 1;
   1746		}
   1747	}
   1748	/* Some additional bits if we are TE1
   1749	 */
   1750	if (card->type == FST_TYPE_TE1) {
   1751		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
   1752		info->clockSource = FST_RDB(card, suConfig.clocking);
   1753		info->framing = FST_RDB(card, suConfig.framing);
   1754		info->structure = FST_RDB(card, suConfig.structure);
   1755		info->interface = FST_RDB(card, suConfig.interface);
   1756		info->coding = FST_RDB(card, suConfig.coding);
   1757		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
   1758		info->equalizer = FST_RDB(card, suConfig.equalizer);
   1759		info->loopMode = FST_RDB(card, suConfig.loopMode);
   1760		info->range = FST_RDB(card, suConfig.range);
   1761		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
   1762		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
   1763		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
   1764		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
   1765		if (FST_RDB(card, suConfig.enableIdleCode))
   1766			info->idleCode = FST_RDB(card, suConfig.idleCode);
   1767		else
   1768			info->idleCode = 0;
   1769		info->receiveBufferDelay =
   1770		    FST_RDL(card, suStatus.receiveBufferDelay);
   1771		info->framingErrorCount =
   1772		    FST_RDL(card, suStatus.framingErrorCount);
   1773		info->codeViolationCount =
   1774		    FST_RDL(card, suStatus.codeViolationCount);
   1775		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
   1776		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
   1777		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
   1778		info->receiveRemoteAlarm =
   1779		    FST_RDB(card, suStatus.receiveRemoteAlarm);
   1780		info->alarmIndicationSignal =
   1781		    FST_RDB(card, suStatus.alarmIndicationSignal);
   1782	}
   1783}
   1784
   1785static int
   1786fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
   1787	      struct if_settings *ifs)
   1788{
   1789	sync_serial_settings sync;
   1790	int i;
   1791
   1792	if (ifs->size != sizeof(sync))
   1793		return -ENOMEM;
   1794
   1795	if (copy_from_user(&sync, ifs->ifs_ifsu.sync, sizeof(sync)))
   1796		return -EFAULT;
   1797
   1798	if (sync.loopback)
   1799		return -EINVAL;
   1800
   1801	i = port->index;
   1802
   1803	switch (ifs->type) {
   1804	case IF_IFACE_V35:
   1805		FST_WRW(card, portConfig[i].lineInterface, V35);
   1806		port->hwif = V35;
   1807		break;
   1808
   1809	case IF_IFACE_V24:
   1810		FST_WRW(card, portConfig[i].lineInterface, V24);
   1811		port->hwif = V24;
   1812		break;
   1813
   1814	case IF_IFACE_X21:
   1815		FST_WRW(card, portConfig[i].lineInterface, X21);
   1816		port->hwif = X21;
   1817		break;
   1818
   1819	case IF_IFACE_X21D:
   1820		FST_WRW(card, portConfig[i].lineInterface, X21D);
   1821		port->hwif = X21D;
   1822		break;
   1823
   1824	case IF_IFACE_T1:
   1825		FST_WRW(card, portConfig[i].lineInterface, T1);
   1826		port->hwif = T1;
   1827		break;
   1828
   1829	case IF_IFACE_E1:
   1830		FST_WRW(card, portConfig[i].lineInterface, E1);
   1831		port->hwif = E1;
   1832		break;
   1833
   1834	case IF_IFACE_SYNC_SERIAL:
   1835		break;
   1836
   1837	default:
   1838		return -EINVAL;
   1839	}
   1840
   1841	switch (sync.clock_type) {
   1842	case CLOCK_EXT:
   1843		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
   1844		break;
   1845
   1846	case CLOCK_INT:
   1847		FST_WRB(card, portConfig[i].internalClock, INTCLK);
   1848		break;
   1849
   1850	default:
   1851		return -EINVAL;
   1852	}
   1853	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
   1854	return 0;
   1855}
   1856
   1857static int
   1858fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
   1859	      struct if_settings *ifs)
   1860{
   1861	sync_serial_settings sync;
   1862	int i;
   1863
   1864	/* First check what line type is set, we'll default to reporting X.21
   1865	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
   1866	 * changed
   1867	 */
   1868	switch (port->hwif) {
   1869	case E1:
   1870		ifs->type = IF_IFACE_E1;
   1871		break;
   1872	case T1:
   1873		ifs->type = IF_IFACE_T1;
   1874		break;
   1875	case V35:
   1876		ifs->type = IF_IFACE_V35;
   1877		break;
   1878	case V24:
   1879		ifs->type = IF_IFACE_V24;
   1880		break;
   1881	case X21D:
   1882		ifs->type = IF_IFACE_X21D;
   1883		break;
   1884	case X21:
   1885	default:
   1886		ifs->type = IF_IFACE_X21;
   1887		break;
   1888	}
   1889	if (!ifs->size)
   1890		return 0;	/* only type requested */
   1891
   1892	if (ifs->size < sizeof(sync))
   1893		return -ENOMEM;
   1894
   1895	i = port->index;
   1896	memset(&sync, 0, sizeof(sync));
   1897	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
   1898	/* Lucky card and linux use same encoding here */
   1899	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
   1900	    INTCLK ? CLOCK_INT : CLOCK_EXT;
   1901	sync.loopback = 0;
   1902
   1903	if (copy_to_user(ifs->ifs_ifsu.sync, &sync, sizeof(sync)))
   1904		return -EFAULT;
   1905
   1906	ifs->size = sizeof(sync);
   1907	return 0;
   1908}
   1909
   1910static int
   1911fst_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd)
   1912{
   1913	struct fst_card_info *card;
   1914	struct fst_port_info *port;
   1915	struct fstioc_write wrthdr;
   1916	struct fstioc_info info;
   1917	unsigned long flags;
   1918	void *buf;
   1919
   1920	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, data);
   1921
   1922	port = dev_to_port(dev);
   1923	card = port->card;
   1924
   1925	if (!capable(CAP_NET_ADMIN))
   1926		return -EPERM;
   1927
   1928	switch (cmd) {
   1929	case FSTCPURESET:
   1930		fst_cpureset(card);
   1931		card->state = FST_RESET;
   1932		return 0;
   1933
   1934	case FSTCPURELEASE:
   1935		fst_cpurelease(card);
   1936		card->state = FST_STARTING;
   1937		return 0;
   1938
   1939	case FSTWRITE:		/* Code write (download) */
   1940
   1941		/* First copy in the header with the length and offset of data
   1942		 * to write
   1943		 */
   1944		if (!data)
   1945			return -EINVAL;
   1946
   1947		if (copy_from_user(&wrthdr, data, sizeof(struct fstioc_write)))
   1948			return -EFAULT;
   1949
   1950		/* Sanity check the parameters. We don't support partial writes
   1951		 * when going over the top
   1952		 */
   1953		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
   1954		    wrthdr.size + wrthdr.offset > FST_MEMSIZE)
   1955			return -ENXIO;
   1956
   1957		/* Now copy the data to the card. */
   1958
   1959		buf = memdup_user(data + sizeof(struct fstioc_write),
   1960				  wrthdr.size);
   1961		if (IS_ERR(buf))
   1962			return PTR_ERR(buf);
   1963
   1964		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
   1965		kfree(buf);
   1966
   1967		/* Writes to the memory of a card in the reset state constitute
   1968		 * a download
   1969		 */
   1970		if (card->state == FST_RESET)
   1971			card->state = FST_DOWNLOAD;
   1972
   1973		return 0;
   1974
   1975	case FSTGETCONF:
   1976
   1977		/* If card has just been started check the shared memory config
   1978		 * version and marker
   1979		 */
   1980		if (card->state == FST_STARTING) {
   1981			check_started_ok(card);
   1982
   1983			/* If everything checked out enable card interrupts */
   1984			if (card->state == FST_RUNNING) {
   1985				spin_lock_irqsave(&card->card_lock, flags);
   1986				fst_enable_intr(card);
   1987				FST_WRB(card, interruptHandshake, 0xEE);
   1988				spin_unlock_irqrestore(&card->card_lock, flags);
   1989			}
   1990		}
   1991
   1992		if (!data)
   1993			return -EINVAL;
   1994
   1995		gather_conf_info(card, port, &info);
   1996
   1997		if (copy_to_user(data, &info, sizeof(info)))
   1998			return -EFAULT;
   1999
   2000		return 0;
   2001
   2002	case FSTSETCONF:
   2003		/* Most of the settings have been moved to the generic ioctls
   2004		 * this just covers debug and board ident now
   2005		 */
   2006
   2007		if (card->state != FST_RUNNING) {
   2008			pr_err("Attempt to configure card %d in non-running state (%d)\n",
   2009			       card->card_no, card->state);
   2010			return -EIO;
   2011		}
   2012		if (copy_from_user(&info, data, sizeof(info)))
   2013			return -EFAULT;
   2014
   2015		return set_conf_from_info(card, port, &info);
   2016	default:
   2017		return -EINVAL;
   2018	}
   2019}
   2020
   2021static int
   2022fst_ioctl(struct net_device *dev, struct if_settings *ifs)
   2023{
   2024	struct fst_card_info *card;
   2025	struct fst_port_info *port;
   2026
   2027	dbg(DBG_IOCTL, "SIOCDEVPRIVATE, %x\n", ifs->type);
   2028
   2029	port = dev_to_port(dev);
   2030	card = port->card;
   2031
   2032	if (!capable(CAP_NET_ADMIN))
   2033		return -EPERM;
   2034
   2035	switch (ifs->type) {
   2036	case IF_GET_IFACE:
   2037		return fst_get_iface(card, port, ifs);
   2038
   2039	case IF_IFACE_SYNC_SERIAL:
   2040	case IF_IFACE_V35:
   2041	case IF_IFACE_V24:
   2042	case IF_IFACE_X21:
   2043	case IF_IFACE_X21D:
   2044	case IF_IFACE_T1:
   2045	case IF_IFACE_E1:
   2046		return fst_set_iface(card, port, ifs);
   2047
   2048	case IF_PROTO_RAW:
   2049		port->mode = FST_RAW;
   2050		return 0;
   2051
   2052	case IF_GET_PROTO:
   2053		if (port->mode == FST_RAW) {
   2054			ifs->type = IF_PROTO_RAW;
   2055			return 0;
   2056		}
   2057		return hdlc_ioctl(dev, ifs);
   2058
   2059	default:
   2060		port->mode = FST_GEN_HDLC;
   2061		dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
   2062		    ifs->type);
   2063		return hdlc_ioctl(dev, ifs);
   2064	}
   2065}
   2066
   2067static void
   2068fst_openport(struct fst_port_info *port)
   2069{
   2070	int signals;
   2071
   2072	/* Only init things if card is actually running. This allows open to
   2073	 * succeed for downloads etc.
   2074	 */
   2075	if (port->card->state == FST_RUNNING) {
   2076		if (port->run) {
   2077			dbg(DBG_OPEN, "open: found port already running\n");
   2078
   2079			fst_issue_cmd(port, STOPPORT);
   2080			port->run = 0;
   2081		}
   2082
   2083		fst_rx_config(port);
   2084		fst_tx_config(port);
   2085		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
   2086
   2087		fst_issue_cmd(port, STARTPORT);
   2088		port->run = 1;
   2089
   2090		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
   2091		if (signals & ((port->hwif == X21 || port->hwif == X21D)
   2092			       ? IPSTS_INDICATE : IPSTS_DCD))
   2093			netif_carrier_on(port_to_dev(port));
   2094		else
   2095			netif_carrier_off(port_to_dev(port));
   2096
   2097		port->txqe = 0;
   2098		port->txqs = 0;
   2099	}
   2100}
   2101
   2102static void
   2103fst_closeport(struct fst_port_info *port)
   2104{
   2105	if (port->card->state == FST_RUNNING) {
   2106		if (port->run) {
   2107			port->run = 0;
   2108			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
   2109
   2110			fst_issue_cmd(port, STOPPORT);
   2111		} else {
   2112			dbg(DBG_OPEN, "close: port not running\n");
   2113		}
   2114	}
   2115}
   2116
   2117static int
   2118fst_open(struct net_device *dev)
   2119{
   2120	int err;
   2121	struct fst_port_info *port;
   2122
   2123	port = dev_to_port(dev);
   2124	if (!try_module_get(THIS_MODULE))
   2125		return -EBUSY;
   2126
   2127	if (port->mode != FST_RAW) {
   2128		err = hdlc_open(dev);
   2129		if (err) {
   2130			module_put(THIS_MODULE);
   2131			return err;
   2132		}
   2133	}
   2134
   2135	fst_openport(port);
   2136	netif_wake_queue(dev);
   2137	return 0;
   2138}
   2139
   2140static int
   2141fst_close(struct net_device *dev)
   2142{
   2143	struct fst_port_info *port;
   2144	struct fst_card_info *card;
   2145	unsigned char tx_dma_done;
   2146	unsigned char rx_dma_done;
   2147
   2148	port = dev_to_port(dev);
   2149	card = port->card;
   2150
   2151	tx_dma_done = inb(card->pci_conf + DMACSR1);
   2152	rx_dma_done = inb(card->pci_conf + DMACSR0);
   2153	dbg(DBG_OPEN,
   2154	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
   2155	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
   2156	    rx_dma_done);
   2157
   2158	netif_stop_queue(dev);
   2159	fst_closeport(dev_to_port(dev));
   2160	if (port->mode != FST_RAW)
   2161		hdlc_close(dev);
   2162
   2163	module_put(THIS_MODULE);
   2164	return 0;
   2165}
   2166
   2167static int
   2168fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
   2169{
   2170	/* Setting currently fixed in FarSync card so we check and forget
   2171	 */
   2172	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
   2173		return -EINVAL;
   2174	return 0;
   2175}
   2176
   2177static void
   2178fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
   2179{
   2180	struct fst_port_info *port;
   2181	struct fst_card_info *card;
   2182
   2183	port = dev_to_port(dev);
   2184	card = port->card;
   2185	dev->stats.tx_errors++;
   2186	dev->stats.tx_aborted_errors++;
   2187	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
   2188	    card->card_no, port->index);
   2189	fst_issue_cmd(port, ABORTTX);
   2190
   2191	netif_trans_update(dev);
   2192	netif_wake_queue(dev);
   2193	port->start = 0;
   2194}
   2195
   2196static netdev_tx_t
   2197fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
   2198{
   2199	struct fst_card_info *card;
   2200	struct fst_port_info *port;
   2201	unsigned long flags;
   2202	int txq_length;
   2203
   2204	port = dev_to_port(dev);
   2205	card = port->card;
   2206	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
   2207
   2208	/* Drop packet with error if we don't have carrier */
   2209	if (!netif_carrier_ok(dev)) {
   2210		dev_kfree_skb(skb);
   2211		dev->stats.tx_errors++;
   2212		dev->stats.tx_carrier_errors++;
   2213		dbg(DBG_ASS,
   2214		    "Tried to transmit but no carrier on card %d port %d\n",
   2215		    card->card_no, port->index);
   2216		return NETDEV_TX_OK;
   2217	}
   2218
   2219	/* Drop it if it's too big! MTU failure ? */
   2220	if (skb->len > LEN_TX_BUFFER) {
   2221		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
   2222		    LEN_TX_BUFFER);
   2223		dev_kfree_skb(skb);
   2224		dev->stats.tx_errors++;
   2225		return NETDEV_TX_OK;
   2226	}
   2227
   2228	/* We are always going to queue the packet
   2229	 * so that the bottom half is the only place we tx from
   2230	 * Check there is room in the port txq
   2231	 */
   2232	spin_lock_irqsave(&card->card_lock, flags);
   2233	txq_length = port->txqe - port->txqs;
   2234	if (txq_length < 0) {
   2235		/* This is the case where the next free has wrapped but the
   2236		 * last used hasn't
   2237		 */
   2238		txq_length = txq_length + FST_TXQ_DEPTH;
   2239	}
   2240	spin_unlock_irqrestore(&card->card_lock, flags);
   2241	if (txq_length > fst_txq_high) {
   2242		/* We have got enough buffers in the pipeline.  Ask the network
   2243		 * layer to stop sending frames down
   2244		 */
   2245		netif_stop_queue(dev);
   2246		port->start = 1;	/* I'm using this to signal stop sent up */
   2247	}
   2248
   2249	if (txq_length == FST_TXQ_DEPTH - 1) {
   2250		/* This shouldn't have happened but such is life
   2251		 */
   2252		dev_kfree_skb(skb);
   2253		dev->stats.tx_errors++;
   2254		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
   2255		    card->card_no, port->index);
   2256		return NETDEV_TX_OK;
   2257	}
   2258
   2259	/* queue the buffer
   2260	 */
   2261	spin_lock_irqsave(&card->card_lock, flags);
   2262	port->txq[port->txqe] = skb;
   2263	port->txqe++;
   2264	if (port->txqe == FST_TXQ_DEPTH)
   2265		port->txqe = 0;
   2266	spin_unlock_irqrestore(&card->card_lock, flags);
   2267
   2268	/* Scehdule the bottom half which now does transmit processing */
   2269	fst_q_work_item(&fst_work_txq, card->card_no);
   2270	tasklet_schedule(&fst_tx_task);
   2271
   2272	return NETDEV_TX_OK;
   2273}
   2274
   2275/*      Card setup having checked hardware resources.
   2276 *      Should be pretty bizarre if we get an error here (kernel memory
   2277 *      exhaustion is one possibility). If we do see a problem we report it
   2278 *      via a printk and leave the corresponding interface and all that follow
   2279 *      disabled.
   2280 */
   2281static char *type_strings[] = {
   2282	"no hardware",		/* Should never be seen */
   2283	"FarSync T2P",
   2284	"FarSync T4P",
   2285	"FarSync T1U",
   2286	"FarSync T2U",
   2287	"FarSync T4U",
   2288	"FarSync TE1"
   2289};
   2290
   2291static int
   2292fst_init_card(struct fst_card_info *card)
   2293{
   2294	int i;
   2295	int err;
   2296
   2297	/* We're working on a number of ports based on the card ID. If the
   2298	 * firmware detects something different later (should never happen)
   2299	 * we'll have to revise it in some way then.
   2300	 */
   2301	for (i = 0; i < card->nports; i++) {
   2302		err = register_hdlc_device(card->ports[i].dev);
   2303		if (err < 0) {
   2304			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
   2305			       i, -err);
   2306			while (i--)
   2307				unregister_hdlc_device(card->ports[i].dev);
   2308			return err;
   2309		}
   2310	}
   2311
   2312	pr_info("%s-%s: %s IRQ%d, %d ports\n",
   2313		port_to_dev(&card->ports[0])->name,
   2314		port_to_dev(&card->ports[card->nports - 1])->name,
   2315		type_strings[card->type], card->irq, card->nports);
   2316	return 0;
   2317}
   2318
   2319static const struct net_device_ops fst_ops = {
   2320	.ndo_open       = fst_open,
   2321	.ndo_stop       = fst_close,
   2322	.ndo_start_xmit = hdlc_start_xmit,
   2323	.ndo_siocwandev	= fst_ioctl,
   2324	.ndo_siocdevprivate = fst_siocdevprivate,
   2325	.ndo_tx_timeout = fst_tx_timeout,
   2326};
   2327
   2328/*      Initialise card when detected.
   2329 *      Returns 0 to indicate success, or errno otherwise.
   2330 */
   2331static int
   2332fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
   2333{
   2334	static int no_of_cards_added;
   2335	struct fst_card_info *card;
   2336	int err = 0;
   2337	int i;
   2338
   2339	printk_once(KERN_INFO
   2340		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
   2341			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
   2342#if FST_DEBUG
   2343	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
   2344#endif
   2345	/* We are going to be clever and allow certain cards not to be
   2346	 * configured.  An exclude list can be provided in /etc/modules.conf
   2347	 */
   2348	if (fst_excluded_cards != 0) {
   2349		/* There are cards to exclude
   2350		 *
   2351		 */
   2352		for (i = 0; i < fst_excluded_cards; i++) {
   2353			if (pdev->devfn >> 3 == fst_excluded_list[i]) {
   2354				pr_info("FarSync PCI device %d not assigned\n",
   2355					(pdev->devfn) >> 3);
   2356				return -EBUSY;
   2357			}
   2358		}
   2359	}
   2360
   2361	/* Allocate driver private data */
   2362	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
   2363	if (!card)
   2364		return -ENOMEM;
   2365
   2366	/* Try to enable the device */
   2367	err = pci_enable_device(pdev);
   2368	if (err) {
   2369		pr_err("Failed to enable card. Err %d\n", -err);
   2370		goto enable_fail;
   2371	}
   2372
   2373	err = pci_request_regions(pdev, "FarSync");
   2374	if (err) {
   2375		pr_err("Failed to allocate regions. Err %d\n", -err);
   2376		goto regions_fail;
   2377	}
   2378
   2379	/* Get virtual addresses of memory regions */
   2380	card->pci_conf = pci_resource_start(pdev, 1);
   2381	card->phys_mem = pci_resource_start(pdev, 2);
   2382	card->phys_ctlmem = pci_resource_start(pdev, 3);
   2383	card->mem = ioremap(card->phys_mem, FST_MEMSIZE);
   2384	if (!card->mem) {
   2385		pr_err("Physical memory remap failed\n");
   2386		err = -ENODEV;
   2387		goto ioremap_physmem_fail;
   2388	}
   2389	card->ctlmem = ioremap(card->phys_ctlmem, 0x10);
   2390	if (!card->ctlmem) {
   2391		pr_err("Control memory remap failed\n");
   2392		err = -ENODEV;
   2393		goto ioremap_ctlmem_fail;
   2394	}
   2395	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
   2396
   2397	/* Register the interrupt handler */
   2398	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
   2399		pr_err("Unable to register interrupt %d\n", card->irq);
   2400		err = -ENODEV;
   2401		goto irq_fail;
   2402	}
   2403
   2404	/* Record info we need */
   2405	card->irq = pdev->irq;
   2406	card->type = ent->driver_data;
   2407	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
   2408			(ent->driver_data == FST_TYPE_T4P))
   2409	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
   2410	if (ent->driver_data == FST_TYPE_T1U ||
   2411	    ent->driver_data == FST_TYPE_TE1)
   2412		card->nports = 1;
   2413	else
   2414		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
   2415				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
   2416
   2417	card->state = FST_UNINIT;
   2418	spin_lock_init(&card->card_lock);
   2419
   2420	for (i = 0; i < card->nports; i++) {
   2421		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
   2422		hdlc_device *hdlc;
   2423
   2424		if (!dev) {
   2425			while (i--)
   2426				free_netdev(card->ports[i].dev);
   2427			pr_err("FarSync: out of memory\n");
   2428			err = -ENOMEM;
   2429			goto hdlcdev_fail;
   2430		}
   2431		card->ports[i].dev    = dev;
   2432		card->ports[i].card   = card;
   2433		card->ports[i].index  = i;
   2434		card->ports[i].run    = 0;
   2435
   2436		hdlc = dev_to_hdlc(dev);
   2437
   2438		/* Fill in the net device info */
   2439		/* Since this is a PCI setup this is purely
   2440		 * informational. Give them the buffer addresses
   2441		 * and basic card I/O.
   2442		 */
   2443		dev->mem_start   = card->phys_mem
   2444				+ BUF_OFFSET(txBuffer[i][0][0]);
   2445		dev->mem_end     = card->phys_mem
   2446				+ BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
   2447		dev->base_addr   = card->pci_conf;
   2448		dev->irq         = card->irq;
   2449
   2450		dev->netdev_ops = &fst_ops;
   2451		dev->tx_queue_len = FST_TX_QUEUE_LEN;
   2452		dev->watchdog_timeo = FST_TX_TIMEOUT;
   2453		hdlc->attach = fst_attach;
   2454		hdlc->xmit   = fst_start_xmit;
   2455	}
   2456
   2457	card->device = pdev;
   2458
   2459	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
   2460	    card->nports, card->irq);
   2461	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
   2462	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
   2463
   2464	/* Reset the card's processor */
   2465	fst_cpureset(card);
   2466	card->state = FST_RESET;
   2467
   2468	/* Initialise DMA (if required) */
   2469	fst_init_dma(card);
   2470
   2471	/* Record driver data for later use */
   2472	pci_set_drvdata(pdev, card);
   2473
   2474	/* Remainder of card setup */
   2475	if (no_of_cards_added >= FST_MAX_CARDS) {
   2476		pr_err("FarSync: too many cards\n");
   2477		err = -ENOMEM;
   2478		goto card_array_fail;
   2479	}
   2480	fst_card_array[no_of_cards_added] = card;
   2481	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
   2482	err = fst_init_card(card);
   2483	if (err)
   2484		goto init_card_fail;
   2485	if (card->family == FST_FAMILY_TXU) {
   2486		/* Allocate a dma buffer for transmit and receives
   2487		 */
   2488		card->rx_dma_handle_host =
   2489		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
   2490				       &card->rx_dma_handle_card, GFP_KERNEL);
   2491		if (!card->rx_dma_handle_host) {
   2492			pr_err("Could not allocate rx dma buffer\n");
   2493			err = -ENOMEM;
   2494			goto rx_dma_fail;
   2495		}
   2496		card->tx_dma_handle_host =
   2497		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
   2498				       &card->tx_dma_handle_card, GFP_KERNEL);
   2499		if (!card->tx_dma_handle_host) {
   2500			pr_err("Could not allocate tx dma buffer\n");
   2501			err = -ENOMEM;
   2502			goto tx_dma_fail;
   2503		}
   2504	}
   2505	return 0;		/* Success */
   2506
   2507tx_dma_fail:
   2508	dma_free_coherent(&card->device->dev, FST_MAX_MTU,
   2509			  card->rx_dma_handle_host, card->rx_dma_handle_card);
   2510rx_dma_fail:
   2511	fst_disable_intr(card);
   2512	for (i = 0 ; i < card->nports ; i++)
   2513		unregister_hdlc_device(card->ports[i].dev);
   2514init_card_fail:
   2515	fst_card_array[card->card_no] = NULL;
   2516card_array_fail:
   2517	for (i = 0 ; i < card->nports ; i++)
   2518		free_netdev(card->ports[i].dev);
   2519hdlcdev_fail:
   2520	free_irq(card->irq, card);
   2521irq_fail:
   2522	iounmap(card->ctlmem);
   2523ioremap_ctlmem_fail:
   2524	iounmap(card->mem);
   2525ioremap_physmem_fail:
   2526	pci_release_regions(pdev);
   2527regions_fail:
   2528	pci_disable_device(pdev);
   2529enable_fail:
   2530	kfree(card);
   2531	return err;
   2532}
   2533
   2534/*      Cleanup and close down a card
   2535 */
   2536static void
   2537fst_remove_one(struct pci_dev *pdev)
   2538{
   2539	struct fst_card_info *card;
   2540	int i;
   2541
   2542	card = pci_get_drvdata(pdev);
   2543
   2544	for (i = 0; i < card->nports; i++) {
   2545		struct net_device *dev = port_to_dev(&card->ports[i]);
   2546
   2547		unregister_hdlc_device(dev);
   2548	}
   2549
   2550	fst_disable_intr(card);
   2551	free_irq(card->irq, card);
   2552
   2553	iounmap(card->ctlmem);
   2554	iounmap(card->mem);
   2555	pci_release_regions(pdev);
   2556	if (card->family == FST_FAMILY_TXU) {
   2557		/* Free dma buffers
   2558		 */
   2559		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
   2560				  card->rx_dma_handle_host,
   2561				  card->rx_dma_handle_card);
   2562		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
   2563				  card->tx_dma_handle_host,
   2564				  card->tx_dma_handle_card);
   2565	}
   2566	fst_card_array[card->card_no] = NULL;
   2567}
   2568
   2569static struct pci_driver fst_driver = {
   2570	.name		= FST_NAME,
   2571	.id_table	= fst_pci_dev_id,
   2572	.probe		= fst_add_one,
   2573	.remove		= fst_remove_one,
   2574};
   2575
   2576static int __init
   2577fst_init(void)
   2578{
   2579	int i;
   2580
   2581	for (i = 0; i < FST_MAX_CARDS; i++)
   2582		fst_card_array[i] = NULL;
   2583	return pci_register_driver(&fst_driver);
   2584}
   2585
   2586static void __exit
   2587fst_cleanup_module(void)
   2588{
   2589	pr_info("FarSync WAN driver unloading\n");
   2590	pci_unregister_driver(&fst_driver);
   2591}
   2592
   2593module_init(fst_init);
   2594module_exit(fst_cleanup_module);