cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ixp4xx_hss.c (41459B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
      4 *
      5 * Copyright (C) 2007-2008 Krzysztof HaƂasa <khc@pm.waw.pl>
      6 */
      7
      8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      9
     10#include <linux/module.h>
     11#include <linux/bitops.h>
     12#include <linux/cdev.h>
     13#include <linux/dma-mapping.h>
     14#include <linux/dmapool.h>
     15#include <linux/fs.h>
     16#include <linux/hdlc.h>
     17#include <linux/io.h>
     18#include <linux/kernel.h>
     19#include <linux/mfd/syscon.h>
     20#include <linux/platform_device.h>
     21#include <linux/poll.h>
     22#include <linux/regmap.h>
     23#include <linux/slab.h>
     24#include <linux/gpio/consumer.h>
     25#include <linux/of.h>
     26#include <linux/soc/ixp4xx/npe.h>
     27#include <linux/soc/ixp4xx/qmgr.h>
     28#include <linux/soc/ixp4xx/cpu.h>
     29
     30/* This is what all IXP4xx platforms we know uses, if more frequencies
     31 * are needed, we need to migrate to the clock framework.
     32 */
     33#define IXP4XX_TIMER_FREQ	66666000
     34
     35#define DEBUG_DESC		0
     36#define DEBUG_RX		0
     37#define DEBUG_TX		0
     38#define DEBUG_PKT_BYTES		0
     39#define DEBUG_CLOSE		0
     40
     41#define DRV_NAME		"ixp4xx_hss"
     42
     43#define PKT_EXTRA_FLAGS		0 /* orig 1 */
     44#define PKT_NUM_PIPES		1 /* 1, 2 or 4 */
     45#define PKT_PIPE_FIFO_SIZEW	4 /* total 4 dwords per HSS */
     46
     47#define RX_DESCS		16 /* also length of all RX queues */
     48#define TX_DESCS		16 /* also length of all TX queues */
     49
     50#define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
     51#define RX_SIZE			(HDLC_MAX_MRU + 4) /* NPE needs more space */
     52#define MAX_CLOSE_WAIT		1000 /* microseconds */
     53#define HSS_COUNT		2
     54#define FRAME_SIZE		256 /* doesn't matter at this point */
     55#define FRAME_OFFSET		0
     56#define MAX_CHANNELS		(FRAME_SIZE / 8)
     57
     58#define NAPI_WEIGHT		16
     59
     60/* Queue IDs */
     61#define HSS0_PKT_RX_QUEUE	13	/* orig size = 32 dwords */
     62#define HSS0_PKT_TX0_QUEUE	14	/* orig size = 16 dwords */
     63#define HSS0_PKT_TX1_QUEUE	15
     64#define HSS0_PKT_TX2_QUEUE	16
     65#define HSS0_PKT_TX3_QUEUE	17
     66#define HSS0_PKT_RXFREE0_QUEUE	18	/* orig size = 16 dwords */
     67#define HSS0_PKT_RXFREE1_QUEUE	19
     68#define HSS0_PKT_RXFREE2_QUEUE	20
     69#define HSS0_PKT_RXFREE3_QUEUE	21
     70#define HSS0_PKT_TXDONE_QUEUE	22	/* orig size = 64 dwords */
     71
     72#define HSS1_PKT_RX_QUEUE	0
     73#define HSS1_PKT_TX0_QUEUE	5
     74#define HSS1_PKT_TX1_QUEUE	6
     75#define HSS1_PKT_TX2_QUEUE	7
     76#define HSS1_PKT_TX3_QUEUE	8
     77#define HSS1_PKT_RXFREE0_QUEUE	1
     78#define HSS1_PKT_RXFREE1_QUEUE	2
     79#define HSS1_PKT_RXFREE2_QUEUE	3
     80#define HSS1_PKT_RXFREE3_QUEUE	4
     81#define HSS1_PKT_TXDONE_QUEUE	9
     82
     83#define NPE_PKT_MODE_HDLC		0
     84#define NPE_PKT_MODE_RAW		1
     85#define NPE_PKT_MODE_56KMODE		2
     86#define NPE_PKT_MODE_56KENDIAN_MSB	4
     87
     88/* PKT_PIPE_HDLC_CFG_WRITE flags */
     89#define PKT_HDLC_IDLE_ONES		0x1 /* default = flags */
     90#define PKT_HDLC_CRC_32			0x2 /* default = CRC-16 */
     91#define PKT_HDLC_MSB_ENDIAN		0x4 /* default = LE */
     92
     93/* hss_config, PCRs */
     94/* Frame sync sampling, default = active low */
     95#define PCR_FRM_SYNC_ACTIVE_HIGH	0x40000000
     96#define PCR_FRM_SYNC_FALLINGEDGE	0x80000000
     97#define PCR_FRM_SYNC_RISINGEDGE		0xC0000000
     98
     99/* Frame sync pin: input (default) or output generated off a given clk edge */
    100#define PCR_FRM_SYNC_OUTPUT_FALLING	0x20000000
    101#define PCR_FRM_SYNC_OUTPUT_RISING	0x30000000
    102
    103/* Frame and data clock sampling on edge, default = falling */
    104#define PCR_FCLK_EDGE_RISING		0x08000000
    105#define PCR_DCLK_EDGE_RISING		0x04000000
    106
    107/* Clock direction, default = input */
    108#define PCR_SYNC_CLK_DIR_OUTPUT		0x02000000
    109
    110/* Generate/Receive frame pulses, default = enabled */
    111#define PCR_FRM_PULSE_DISABLED		0x01000000
    112
    113 /* Data rate is full (default) or half the configured clk speed */
    114#define PCR_HALF_CLK_RATE		0x00200000
    115
    116/* Invert data between NPE and HSS FIFOs? (default = no) */
    117#define PCR_DATA_POLARITY_INVERT	0x00100000
    118
    119/* TX/RX endianness, default = LSB */
    120#define PCR_MSB_ENDIAN			0x00080000
    121
    122/* Normal (default) / open drain mode (TX only) */
    123#define PCR_TX_PINS_OPEN_DRAIN		0x00040000
    124
    125/* No framing bit transmitted and expected on RX? (default = framing bit) */
    126#define PCR_SOF_NO_FBIT			0x00020000
    127
    128/* Drive data pins? */
    129#define PCR_TX_DATA_ENABLE		0x00010000
    130
    131/* Voice 56k type: drive the data pins low (default), high, high Z */
    132#define PCR_TX_V56K_HIGH		0x00002000
    133#define PCR_TX_V56K_HIGH_IMP		0x00004000
    134
    135/* Unassigned type: drive the data pins low (default), high, high Z */
    136#define PCR_TX_UNASS_HIGH		0x00000800
    137#define PCR_TX_UNASS_HIGH_IMP		0x00001000
    138
    139/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
    140#define PCR_TX_FB_HIGH_IMP		0x00000400
    141
    142/* 56k data endiannes - which bit unused: high (default) or low */
    143#define PCR_TX_56KE_BIT_0_UNUSED	0x00000200
    144
    145/* 56k data transmission type: 32/8 bit data (default) or 56K data */
    146#define PCR_TX_56KS_56K_DATA		0x00000100
    147
    148/* hss_config, cCR */
    149/* Number of packetized clients, default = 1 */
    150#define CCR_NPE_HFIFO_2_HDLC		0x04000000
    151#define CCR_NPE_HFIFO_3_OR_4HDLC	0x08000000
    152
    153/* default = no loopback */
    154#define CCR_LOOPBACK			0x02000000
    155
    156/* HSS number, default = 0 (first) */
    157#define CCR_SECOND_HSS			0x01000000
    158
    159/* hss_config, clkCR: main:10, num:10, denom:12 */
    160#define CLK42X_SPEED_EXP	((0x3FF << 22) | (2 << 12) |   15) /*65 KHz*/
    161
    162#define CLK42X_SPEED_512KHZ	((130 << 22) | (2 << 12) |   15)
    163#define CLK42X_SPEED_1536KHZ	((43 << 22) | (18 << 12) |   47)
    164#define CLK42X_SPEED_1544KHZ	((43 << 22) | (33 << 12) |  192)
    165#define CLK42X_SPEED_2048KHZ	((32 << 22) | (34 << 12) |   63)
    166#define CLK42X_SPEED_4096KHZ	((16 << 22) | (34 << 12) |  127)
    167#define CLK42X_SPEED_8192KHZ	((8 << 22) | (34 << 12) |  255)
    168
    169#define CLK46X_SPEED_512KHZ	((130 << 22) | (24 << 12) |  127)
    170#define CLK46X_SPEED_1536KHZ	((43 << 22) | (152 << 12) |  383)
    171#define CLK46X_SPEED_1544KHZ	((43 << 22) | (66 << 12) |  385)
    172#define CLK46X_SPEED_2048KHZ	((32 << 22) | (280 << 12) |  511)
    173#define CLK46X_SPEED_4096KHZ	((16 << 22) | (280 << 12) | 1023)
    174#define CLK46X_SPEED_8192KHZ	((8 << 22) | (280 << 12) | 2047)
    175
    176/* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
    177 *     A (10 bits), B (10 bits) and C (12 bits).
    178 * IXP42x HSS clock generator operation (verified with an oscilloscope):
    179 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
    180 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
    181 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
    182 * (A + 1) bits wide.
    183 *
    184 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
    185 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
    186 * minimum freq = 66.666 MHz / (A + 1)
    187 * maximum freq = 66.666 MHz / A
    188 *
    189 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
    190 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
    191 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
    192 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
    193 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
    194 * The sequence consists of 4 complete clock periods, thus the average
    195 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
    196 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
    197 */
    198
    199/* hss_config, LUT entries */
    200#define TDMMAP_UNASSIGNED	0
    201#define TDMMAP_HDLC		1	/* HDLC - packetized */
    202#define TDMMAP_VOICE56K		2	/* Voice56K - 7-bit channelized */
    203#define TDMMAP_VOICE64K		3	/* Voice64K - 8-bit channelized */
    204
    205/* offsets into HSS config */
    206#define HSS_CONFIG_TX_PCR	0x00 /* port configuration registers */
    207#define HSS_CONFIG_RX_PCR	0x04
    208#define HSS_CONFIG_CORE_CR	0x08 /* loopback control, HSS# */
    209#define HSS_CONFIG_CLOCK_CR	0x0C /* clock generator control */
    210#define HSS_CONFIG_TX_FCR	0x10 /* frame configuration registers */
    211#define HSS_CONFIG_RX_FCR	0x14
    212#define HSS_CONFIG_TX_LUT	0x18 /* channel look-up tables */
    213#define HSS_CONFIG_RX_LUT	0x38
    214
    215/* NPE command codes */
    216/* writes the ConfigWord value to the location specified by offset */
    217#define PORT_CONFIG_WRITE		0x40
    218
    219/* triggers the NPE to load the contents of the configuration table */
    220#define PORT_CONFIG_LOAD		0x41
    221
    222/* triggers the NPE to return an HssErrorReadResponse message */
    223#define PORT_ERROR_READ			0x42
    224
    225/* triggers the NPE to reset internal status and enable the HssPacketized
    226 * operation for the flow specified by pPipe
    227 */
    228#define PKT_PIPE_FLOW_ENABLE		0x50
    229#define PKT_PIPE_FLOW_DISABLE		0x51
    230#define PKT_NUM_PIPES_WRITE		0x52
    231#define PKT_PIPE_FIFO_SIZEW_WRITE	0x53
    232#define PKT_PIPE_HDLC_CFG_WRITE		0x54
    233#define PKT_PIPE_IDLE_PATTERN_WRITE	0x55
    234#define PKT_PIPE_RX_SIZE_WRITE		0x56
    235#define PKT_PIPE_MODE_WRITE		0x57
    236
    237/* HDLC packet status values - desc->status */
    238#define ERR_SHUTDOWN		1 /* stop or shutdown occurrence */
    239#define ERR_HDLC_ALIGN		2 /* HDLC alignment error */
    240#define ERR_HDLC_FCS		3 /* HDLC Frame Check Sum error */
    241#define ERR_RXFREE_Q_EMPTY	4 /* RX-free queue became empty while receiving
    242				   * this packet (if buf_len < pkt_len)
    243				   */
    244#define ERR_HDLC_TOO_LONG	5 /* HDLC frame size too long */
    245#define ERR_HDLC_ABORT		6 /* abort sequence received */
    246#define ERR_DISCONNECTING	7 /* disconnect is in progress */
    247
    248#ifdef __ARMEB__
    249typedef struct sk_buff buffer_t;
    250#define free_buffer dev_kfree_skb
    251#define free_buffer_irq dev_consume_skb_irq
    252#else
    253typedef void buffer_t;
    254#define free_buffer kfree
    255#define free_buffer_irq kfree
    256#endif
    257
    258struct port {
    259	struct device *dev;
    260	struct npe *npe;
    261	unsigned int txreadyq;
    262	unsigned int rxtrigq;
    263	unsigned int rxfreeq;
    264	unsigned int rxq;
    265	unsigned int txq;
    266	unsigned int txdoneq;
    267	struct gpio_desc *cts;
    268	struct gpio_desc *rts;
    269	struct gpio_desc *dcd;
    270	struct gpio_desc *dtr;
    271	struct gpio_desc *clk_internal;
    272	struct net_device *netdev;
    273	struct napi_struct napi;
    274	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
    275	struct desc *desc_tab;	/* coherent */
    276	dma_addr_t desc_tab_phys;
    277	unsigned int id;
    278	unsigned int clock_type, clock_rate, loopback;
    279	unsigned int initialized, carrier;
    280	u8 hdlc_cfg;
    281	u32 clock_reg;
    282};
    283
    284/* NPE message structure */
    285struct msg {
    286#ifdef __ARMEB__
    287	u8 cmd, unused, hss_port, index;
    288	union {
    289		struct { u8 data8a, data8b, data8c, data8d; };
    290		struct { u16 data16a, data16b; };
    291		struct { u32 data32; };
    292	};
    293#else
    294	u8 index, hss_port, unused, cmd;
    295	union {
    296		struct { u8 data8d, data8c, data8b, data8a; };
    297		struct { u16 data16b, data16a; };
    298		struct { u32 data32; };
    299	};
    300#endif
    301};
    302
    303/* HDLC packet descriptor */
    304struct desc {
    305	u32 next;		/* pointer to next buffer, unused */
    306
    307#ifdef __ARMEB__
    308	u16 buf_len;		/* buffer length */
    309	u16 pkt_len;		/* packet length */
    310	u32 data;		/* pointer to data buffer in RAM */
    311	u8 status;
    312	u8 error_count;
    313	u16 __reserved;
    314#else
    315	u16 pkt_len;		/* packet length */
    316	u16 buf_len;		/* buffer length */
    317	u32 data;		/* pointer to data buffer in RAM */
    318	u16 __reserved;
    319	u8 error_count;
    320	u8 status;
    321#endif
    322	u32 __reserved1[4];
    323};
    324
    325#define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
    326				 (n) * sizeof(struct desc))
    327#define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
    328
    329#define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
    330				 ((n) + RX_DESCS) * sizeof(struct desc))
    331#define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
    332
    333/*****************************************************************************
    334 * global variables
    335 ****************************************************************************/
    336
    337static int ports_open;
    338static struct dma_pool *dma_pool;
    339static DEFINE_SPINLOCK(npe_lock);
    340
    341/*****************************************************************************
    342 * utility functions
    343 ****************************************************************************/
    344
    345static inline struct port *dev_to_port(struct net_device *dev)
    346{
    347	return dev_to_hdlc(dev)->priv;
    348}
    349
    350#ifndef __ARMEB__
    351static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
    352{
    353	int i;
    354
    355	for (i = 0; i < cnt; i++)
    356		dest[i] = swab32(src[i]);
    357}
    358#endif
    359
    360/*****************************************************************************
    361 * HSS access
    362 ****************************************************************************/
    363
    364static void hss_npe_send(struct port *port, struct msg *msg, const char *what)
    365{
    366	u32 *val = (u32 *)msg;
    367
    368	if (npe_send_message(port->npe, msg, what)) {
    369		pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
    370			port->id, val[0], val[1], npe_name(port->npe));
    371		BUG();
    372	}
    373}
    374
    375static void hss_config_set_lut(struct port *port)
    376{
    377	struct msg msg;
    378	int ch;
    379
    380	memset(&msg, 0, sizeof(msg));
    381	msg.cmd = PORT_CONFIG_WRITE;
    382	msg.hss_port = port->id;
    383
    384	for (ch = 0; ch < MAX_CHANNELS; ch++) {
    385		msg.data32 >>= 2;
    386		msg.data32 |= TDMMAP_HDLC << 30;
    387
    388		if (ch % 16 == 15) {
    389			msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
    390			hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
    391
    392			msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
    393			hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
    394		}
    395	}
    396}
    397
    398static void hss_config(struct port *port)
    399{
    400	struct msg msg;
    401
    402	memset(&msg, 0, sizeof(msg));
    403	msg.cmd = PORT_CONFIG_WRITE;
    404	msg.hss_port = port->id;
    405	msg.index = HSS_CONFIG_TX_PCR;
    406	msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
    407		PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
    408	if (port->clock_type == CLOCK_INT)
    409		msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
    410	hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
    411
    412	msg.index = HSS_CONFIG_RX_PCR;
    413	msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
    414	hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
    415
    416	memset(&msg, 0, sizeof(msg));
    417	msg.cmd = PORT_CONFIG_WRITE;
    418	msg.hss_port = port->id;
    419	msg.index = HSS_CONFIG_CORE_CR;
    420	msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
    421		(port->id ? CCR_SECOND_HSS : 0);
    422	hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
    423
    424	memset(&msg, 0, sizeof(msg));
    425	msg.cmd = PORT_CONFIG_WRITE;
    426	msg.hss_port = port->id;
    427	msg.index = HSS_CONFIG_CLOCK_CR;
    428	msg.data32 = port->clock_reg;
    429	hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
    430
    431	memset(&msg, 0, sizeof(msg));
    432	msg.cmd = PORT_CONFIG_WRITE;
    433	msg.hss_port = port->id;
    434	msg.index = HSS_CONFIG_TX_FCR;
    435	msg.data16a = FRAME_OFFSET;
    436	msg.data16b = FRAME_SIZE - 1;
    437	hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
    438
    439	memset(&msg, 0, sizeof(msg));
    440	msg.cmd = PORT_CONFIG_WRITE;
    441	msg.hss_port = port->id;
    442	msg.index = HSS_CONFIG_RX_FCR;
    443	msg.data16a = FRAME_OFFSET;
    444	msg.data16b = FRAME_SIZE - 1;
    445	hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
    446
    447	hss_config_set_lut(port);
    448
    449	memset(&msg, 0, sizeof(msg));
    450	msg.cmd = PORT_CONFIG_LOAD;
    451	msg.hss_port = port->id;
    452	hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
    453
    454	if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
    455	    /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
    456	    msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
    457		pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
    458		BUG();
    459	}
    460
    461	/* HDLC may stop working without this - check FIXME */
    462	npe_recv_message(port->npe, &msg, "FLUSH_IT");
    463}
    464
    465static void hss_set_hdlc_cfg(struct port *port)
    466{
    467	struct msg msg;
    468
    469	memset(&msg, 0, sizeof(msg));
    470	msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
    471	msg.hss_port = port->id;
    472	msg.data8a = port->hdlc_cfg; /* rx_cfg */
    473	msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
    474	hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
    475}
    476
    477static u32 hss_get_status(struct port *port)
    478{
    479	struct msg msg;
    480
    481	memset(&msg, 0, sizeof(msg));
    482	msg.cmd = PORT_ERROR_READ;
    483	msg.hss_port = port->id;
    484	hss_npe_send(port, &msg, "PORT_ERROR_READ");
    485	if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
    486		pr_crit("HSS-%i: unable to read HSS status\n", port->id);
    487		BUG();
    488	}
    489
    490	return msg.data32;
    491}
    492
    493static void hss_start_hdlc(struct port *port)
    494{
    495	struct msg msg;
    496
    497	memset(&msg, 0, sizeof(msg));
    498	msg.cmd = PKT_PIPE_FLOW_ENABLE;
    499	msg.hss_port = port->id;
    500	msg.data32 = 0;
    501	hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
    502}
    503
    504static void hss_stop_hdlc(struct port *port)
    505{
    506	struct msg msg;
    507
    508	memset(&msg, 0, sizeof(msg));
    509	msg.cmd = PKT_PIPE_FLOW_DISABLE;
    510	msg.hss_port = port->id;
    511	hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
    512	hss_get_status(port); /* make sure it's halted */
    513}
    514
    515static int hss_load_firmware(struct port *port)
    516{
    517	struct msg msg;
    518	int err;
    519
    520	if (port->initialized)
    521		return 0;
    522
    523	if (!npe_running(port->npe)) {
    524		err = npe_load_firmware(port->npe, npe_name(port->npe),
    525					port->dev);
    526		if (err)
    527			return err;
    528	}
    529
    530	/* HDLC mode configuration */
    531	memset(&msg, 0, sizeof(msg));
    532	msg.cmd = PKT_NUM_PIPES_WRITE;
    533	msg.hss_port = port->id;
    534	msg.data8a = PKT_NUM_PIPES;
    535	hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
    536
    537	msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
    538	msg.data8a = PKT_PIPE_FIFO_SIZEW;
    539	hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
    540
    541	msg.cmd = PKT_PIPE_MODE_WRITE;
    542	msg.data8a = NPE_PKT_MODE_HDLC;
    543	/* msg.data8b = inv_mask */
    544	/* msg.data8c = or_mask */
    545	hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
    546
    547	msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
    548	msg.data16a = HDLC_MAX_MRU; /* including CRC */
    549	hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
    550
    551	msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
    552	msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
    553	hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
    554
    555	port->initialized = 1;
    556	return 0;
    557}
    558
    559/*****************************************************************************
    560 * packetized (HDLC) operation
    561 ****************************************************************************/
    562
    563static inline void debug_pkt(struct net_device *dev, const char *func,
    564			     u8 *data, int len)
    565{
    566#if DEBUG_PKT_BYTES
    567	int i;
    568
    569	printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
    570	for (i = 0; i < len; i++) {
    571		if (i >= DEBUG_PKT_BYTES)
    572			break;
    573		printk("%s%02X", !(i % 4) ? " " : "", data[i]);
    574	}
    575	printk("\n");
    576#endif
    577}
    578
    579static inline void debug_desc(u32 phys, struct desc *desc)
    580{
    581#if DEBUG_DESC
    582	printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
    583	       phys, desc->next, desc->buf_len, desc->pkt_len,
    584	       desc->data, desc->status, desc->error_count);
    585#endif
    586}
    587
    588static inline int queue_get_desc(unsigned int queue, struct port *port,
    589				 int is_tx)
    590{
    591	u32 phys, tab_phys, n_desc;
    592	struct desc *tab;
    593
    594	phys = qmgr_get_entry(queue);
    595	if (!phys)
    596		return -1;
    597
    598	BUG_ON(phys & 0x1F);
    599	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
    600	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
    601	n_desc = (phys - tab_phys) / sizeof(struct desc);
    602	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
    603	debug_desc(phys, &tab[n_desc]);
    604	BUG_ON(tab[n_desc].next);
    605	return n_desc;
    606}
    607
    608static inline void queue_put_desc(unsigned int queue, u32 phys,
    609				  struct desc *desc)
    610{
    611	debug_desc(phys, desc);
    612	BUG_ON(phys & 0x1F);
    613	qmgr_put_entry(queue, phys);
    614	/* Don't check for queue overflow here, we've allocated sufficient
    615	 * length and queues >= 32 don't support this check anyway.
    616	 */
    617}
    618
    619static inline void dma_unmap_tx(struct port *port, struct desc *desc)
    620{
    621#ifdef __ARMEB__
    622	dma_unmap_single(&port->netdev->dev, desc->data,
    623			 desc->buf_len, DMA_TO_DEVICE);
    624#else
    625	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
    626			 ALIGN((desc->data & 3) + desc->buf_len, 4),
    627			 DMA_TO_DEVICE);
    628#endif
    629}
    630
    631static void hss_hdlc_set_carrier(void *pdev, int carrier)
    632{
    633	struct net_device *netdev = pdev;
    634	struct port *port = dev_to_port(netdev);
    635	unsigned long flags;
    636
    637	spin_lock_irqsave(&npe_lock, flags);
    638	port->carrier = carrier;
    639	if (!port->loopback) {
    640		if (carrier)
    641			netif_carrier_on(netdev);
    642		else
    643			netif_carrier_off(netdev);
    644	}
    645	spin_unlock_irqrestore(&npe_lock, flags);
    646}
    647
    648static void hss_hdlc_rx_irq(void *pdev)
    649{
    650	struct net_device *dev = pdev;
    651	struct port *port = dev_to_port(dev);
    652
    653#if DEBUG_RX
    654	printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
    655#endif
    656	qmgr_disable_irq(port->rxq);
    657	napi_schedule(&port->napi);
    658}
    659
    660static int hss_hdlc_poll(struct napi_struct *napi, int budget)
    661{
    662	struct port *port = container_of(napi, struct port, napi);
    663	struct net_device *dev = port->netdev;
    664	unsigned int rxq = port->rxq;
    665	unsigned int rxfreeq = port->rxfreeq;
    666	int received = 0;
    667
    668#if DEBUG_RX
    669	printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
    670#endif
    671
    672	while (received < budget) {
    673		struct sk_buff *skb;
    674		struct desc *desc;
    675		int n;
    676#ifdef __ARMEB__
    677		struct sk_buff *temp;
    678		u32 phys;
    679#endif
    680
    681		n = queue_get_desc(rxq, port, 0);
    682		if (n < 0) {
    683#if DEBUG_RX
    684			printk(KERN_DEBUG "%s: hss_hdlc_poll"
    685			       " napi_complete\n", dev->name);
    686#endif
    687			napi_complete(napi);
    688			qmgr_enable_irq(rxq);
    689			if (!qmgr_stat_empty(rxq) &&
    690			    napi_reschedule(napi)) {
    691#if DEBUG_RX
    692				printk(KERN_DEBUG "%s: hss_hdlc_poll"
    693				       " napi_reschedule succeeded\n",
    694				       dev->name);
    695#endif
    696				qmgr_disable_irq(rxq);
    697				continue;
    698			}
    699#if DEBUG_RX
    700			printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
    701			       dev->name);
    702#endif
    703			return received; /* all work done */
    704		}
    705
    706		desc = rx_desc_ptr(port, n);
    707#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
    708		if (desc->error_count)
    709			printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
    710			       " errors %u\n", dev->name, desc->status,
    711			       desc->error_count);
    712#endif
    713		skb = NULL;
    714		switch (desc->status) {
    715		case 0:
    716#ifdef __ARMEB__
    717			skb = netdev_alloc_skb(dev, RX_SIZE);
    718			if (skb) {
    719				phys = dma_map_single(&dev->dev, skb->data,
    720						      RX_SIZE,
    721						      DMA_FROM_DEVICE);
    722				if (dma_mapping_error(&dev->dev, phys)) {
    723					dev_kfree_skb(skb);
    724					skb = NULL;
    725				}
    726			}
    727#else
    728			skb = netdev_alloc_skb(dev, desc->pkt_len);
    729#endif
    730			if (!skb)
    731				dev->stats.rx_dropped++;
    732			break;
    733		case ERR_HDLC_ALIGN:
    734		case ERR_HDLC_ABORT:
    735			dev->stats.rx_frame_errors++;
    736			dev->stats.rx_errors++;
    737			break;
    738		case ERR_HDLC_FCS:
    739			dev->stats.rx_crc_errors++;
    740			dev->stats.rx_errors++;
    741			break;
    742		case ERR_HDLC_TOO_LONG:
    743			dev->stats.rx_length_errors++;
    744			dev->stats.rx_errors++;
    745			break;
    746		default:	/* FIXME - remove printk */
    747			netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
    748				   desc->status, desc->error_count);
    749			dev->stats.rx_errors++;
    750		}
    751
    752		if (!skb) {
    753			/* put the desc back on RX-ready queue */
    754			desc->buf_len = RX_SIZE;
    755			desc->pkt_len = desc->status = 0;
    756			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
    757			continue;
    758		}
    759
    760		/* process received frame */
    761#ifdef __ARMEB__
    762		temp = skb;
    763		skb = port->rx_buff_tab[n];
    764		dma_unmap_single(&dev->dev, desc->data,
    765				 RX_SIZE, DMA_FROM_DEVICE);
    766#else
    767		dma_sync_single_for_cpu(&dev->dev, desc->data,
    768					RX_SIZE, DMA_FROM_DEVICE);
    769		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
    770			      ALIGN(desc->pkt_len, 4) / 4);
    771#endif
    772		skb_put(skb, desc->pkt_len);
    773
    774		debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
    775
    776		skb->protocol = hdlc_type_trans(skb, dev);
    777		dev->stats.rx_packets++;
    778		dev->stats.rx_bytes += skb->len;
    779		netif_receive_skb(skb);
    780
    781		/* put the new buffer on RX-free queue */
    782#ifdef __ARMEB__
    783		port->rx_buff_tab[n] = temp;
    784		desc->data = phys;
    785#endif
    786		desc->buf_len = RX_SIZE;
    787		desc->pkt_len = 0;
    788		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
    789		received++;
    790	}
    791#if DEBUG_RX
    792	printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
    793#endif
    794	return received;	/* not all work done */
    795}
    796
    797static void hss_hdlc_txdone_irq(void *pdev)
    798{
    799	struct net_device *dev = pdev;
    800	struct port *port = dev_to_port(dev);
    801	int n_desc;
    802
    803#if DEBUG_TX
    804	printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
    805#endif
    806	while ((n_desc = queue_get_desc(port->txdoneq,
    807					port, 1)) >= 0) {
    808		struct desc *desc;
    809		int start;
    810
    811		desc = tx_desc_ptr(port, n_desc);
    812
    813		dev->stats.tx_packets++;
    814		dev->stats.tx_bytes += desc->pkt_len;
    815
    816		dma_unmap_tx(port, desc);
    817#if DEBUG_TX
    818		printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
    819		       dev->name, port->tx_buff_tab[n_desc]);
    820#endif
    821		free_buffer_irq(port->tx_buff_tab[n_desc]);
    822		port->tx_buff_tab[n_desc] = NULL;
    823
    824		start = qmgr_stat_below_low_watermark(port->txreadyq);
    825		queue_put_desc(port->txreadyq,
    826			       tx_desc_phys(port, n_desc), desc);
    827		if (start) { /* TX-ready queue was empty */
    828#if DEBUG_TX
    829			printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
    830			       " ready\n", dev->name);
    831#endif
    832			netif_wake_queue(dev);
    833		}
    834	}
    835}
    836
    837static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
    838{
    839	struct port *port = dev_to_port(dev);
    840	unsigned int txreadyq = port->txreadyq;
    841	int len, offset, bytes, n;
    842	void *mem;
    843	u32 phys;
    844	struct desc *desc;
    845
    846#if DEBUG_TX
    847	printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
    848#endif
    849
    850	if (unlikely(skb->len > HDLC_MAX_MRU)) {
    851		dev_kfree_skb(skb);
    852		dev->stats.tx_errors++;
    853		return NETDEV_TX_OK;
    854	}
    855
    856	debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
    857
    858	len = skb->len;
    859#ifdef __ARMEB__
    860	offset = 0; /* no need to keep alignment */
    861	bytes = len;
    862	mem = skb->data;
    863#else
    864	offset = (int)skb->data & 3; /* keep 32-bit alignment */
    865	bytes = ALIGN(offset + len, 4);
    866	mem = kmalloc(bytes, GFP_ATOMIC);
    867	if (!mem) {
    868		dev_kfree_skb(skb);
    869		dev->stats.tx_dropped++;
    870		return NETDEV_TX_OK;
    871	}
    872	memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
    873	dev_kfree_skb(skb);
    874#endif
    875
    876	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
    877	if (dma_mapping_error(&dev->dev, phys)) {
    878#ifdef __ARMEB__
    879		dev_kfree_skb(skb);
    880#else
    881		kfree(mem);
    882#endif
    883		dev->stats.tx_dropped++;
    884		return NETDEV_TX_OK;
    885	}
    886
    887	n = queue_get_desc(txreadyq, port, 1);
    888	BUG_ON(n < 0);
    889	desc = tx_desc_ptr(port, n);
    890
    891#ifdef __ARMEB__
    892	port->tx_buff_tab[n] = skb;
    893#else
    894	port->tx_buff_tab[n] = mem;
    895#endif
    896	desc->data = phys + offset;
    897	desc->buf_len = desc->pkt_len = len;
    898
    899	wmb();
    900	queue_put_desc(port->txq, tx_desc_phys(port, n), desc);
    901
    902	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
    903#if DEBUG_TX
    904		printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
    905#endif
    906		netif_stop_queue(dev);
    907		/* we could miss TX ready interrupt */
    908		if (!qmgr_stat_below_low_watermark(txreadyq)) {
    909#if DEBUG_TX
    910			printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
    911			       dev->name);
    912#endif
    913			netif_wake_queue(dev);
    914		}
    915	}
    916
    917#if DEBUG_TX
    918	printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
    919#endif
    920	return NETDEV_TX_OK;
    921}
    922
    923static int request_hdlc_queues(struct port *port)
    924{
    925	int err;
    926
    927	err = qmgr_request_queue(port->rxfreeq, RX_DESCS, 0, 0,
    928				 "%s:RX-free", port->netdev->name);
    929	if (err)
    930		return err;
    931
    932	err = qmgr_request_queue(port->rxq, RX_DESCS, 0, 0,
    933				 "%s:RX", port->netdev->name);
    934	if (err)
    935		goto rel_rxfree;
    936
    937	err = qmgr_request_queue(port->txq, TX_DESCS, 0, 0,
    938				 "%s:TX", port->netdev->name);
    939	if (err)
    940		goto rel_rx;
    941
    942	err = qmgr_request_queue(port->txreadyq, TX_DESCS, 0, 0,
    943				 "%s:TX-ready", port->netdev->name);
    944	if (err)
    945		goto rel_tx;
    946
    947	err = qmgr_request_queue(port->txdoneq, TX_DESCS, 0, 0,
    948				 "%s:TX-done", port->netdev->name);
    949	if (err)
    950		goto rel_txready;
    951	return 0;
    952
    953rel_txready:
    954	qmgr_release_queue(port->txreadyq);
    955rel_tx:
    956	qmgr_release_queue(port->txq);
    957rel_rx:
    958	qmgr_release_queue(port->rxq);
    959rel_rxfree:
    960	qmgr_release_queue(port->rxfreeq);
    961	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
    962	       port->netdev->name);
    963	return err;
    964}
    965
    966static void release_hdlc_queues(struct port *port)
    967{
    968	qmgr_release_queue(port->rxfreeq);
    969	qmgr_release_queue(port->rxq);
    970	qmgr_release_queue(port->txdoneq);
    971	qmgr_release_queue(port->txq);
    972	qmgr_release_queue(port->txreadyq);
    973}
    974
    975static int init_hdlc_queues(struct port *port)
    976{
    977	int i;
    978
    979	if (!ports_open) {
    980		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
    981					   POOL_ALLOC_SIZE, 32, 0);
    982		if (!dma_pool)
    983			return -ENOMEM;
    984	}
    985
    986	port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL,
    987					&port->desc_tab_phys);
    988	if (!port->desc_tab)
    989		return -ENOMEM;
    990	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
    991	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
    992
    993	/* Setup RX buffers */
    994	for (i = 0; i < RX_DESCS; i++) {
    995		struct desc *desc = rx_desc_ptr(port, i);
    996		buffer_t *buff;
    997		void *data;
    998#ifdef __ARMEB__
    999		buff = netdev_alloc_skb(port->netdev, RX_SIZE);
   1000		if (!buff)
   1001			return -ENOMEM;
   1002		data = buff->data;
   1003#else
   1004		buff = kmalloc(RX_SIZE, GFP_KERNEL);
   1005		if (!buff)
   1006			return -ENOMEM;
   1007		data = buff;
   1008#endif
   1009		desc->buf_len = RX_SIZE;
   1010		desc->data = dma_map_single(&port->netdev->dev, data,
   1011					    RX_SIZE, DMA_FROM_DEVICE);
   1012		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
   1013			free_buffer(buff);
   1014			return -EIO;
   1015		}
   1016		port->rx_buff_tab[i] = buff;
   1017	}
   1018
   1019	return 0;
   1020}
   1021
   1022static void destroy_hdlc_queues(struct port *port)
   1023{
   1024	int i;
   1025
   1026	if (port->desc_tab) {
   1027		for (i = 0; i < RX_DESCS; i++) {
   1028			struct desc *desc = rx_desc_ptr(port, i);
   1029			buffer_t *buff = port->rx_buff_tab[i];
   1030
   1031			if (buff) {
   1032				dma_unmap_single(&port->netdev->dev,
   1033						 desc->data, RX_SIZE,
   1034						 DMA_FROM_DEVICE);
   1035				free_buffer(buff);
   1036			}
   1037		}
   1038		for (i = 0; i < TX_DESCS; i++) {
   1039			struct desc *desc = tx_desc_ptr(port, i);
   1040			buffer_t *buff = port->tx_buff_tab[i];
   1041
   1042			if (buff) {
   1043				dma_unmap_tx(port, desc);
   1044				free_buffer(buff);
   1045			}
   1046		}
   1047		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
   1048		port->desc_tab = NULL;
   1049	}
   1050
   1051	if (!ports_open && dma_pool) {
   1052		dma_pool_destroy(dma_pool);
   1053		dma_pool = NULL;
   1054	}
   1055}
   1056
   1057static irqreturn_t hss_hdlc_dcd_irq(int irq, void *data)
   1058{
   1059	struct net_device *dev = data;
   1060	struct port *port = dev_to_port(dev);
   1061	int val;
   1062
   1063	val = gpiod_get_value(port->dcd);
   1064	hss_hdlc_set_carrier(dev, val);
   1065
   1066	return IRQ_HANDLED;
   1067}
   1068
   1069static int hss_hdlc_open(struct net_device *dev)
   1070{
   1071	struct port *port = dev_to_port(dev);
   1072	unsigned long flags;
   1073	int i, err = 0;
   1074	int val;
   1075
   1076	err = hdlc_open(dev);
   1077	if (err)
   1078		return err;
   1079
   1080	err = hss_load_firmware(port);
   1081	if (err)
   1082		goto err_hdlc_close;
   1083
   1084	err = request_hdlc_queues(port);
   1085	if (err)
   1086		goto err_hdlc_close;
   1087
   1088	err = init_hdlc_queues(port);
   1089	if (err)
   1090		goto err_destroy_queues;
   1091
   1092	spin_lock_irqsave(&npe_lock, flags);
   1093
   1094	/* Set the carrier, the GPIO is flagged active low so this will return
   1095	 * 1 if DCD is asserted.
   1096	 */
   1097	val = gpiod_get_value(port->dcd);
   1098	hss_hdlc_set_carrier(dev, val);
   1099
   1100	/* Set up an IRQ for DCD */
   1101	err = request_irq(gpiod_to_irq(port->dcd), hss_hdlc_dcd_irq, 0, "IXP4xx HSS", dev);
   1102	if (err) {
   1103		dev_err(&dev->dev, "ixp4xx_hss: failed to request DCD IRQ (%i)\n", err);
   1104		goto err_unlock;
   1105	}
   1106
   1107	/* GPIOs are flagged active low so this asserts DTR and RTS */
   1108	gpiod_set_value(port->dtr, 1);
   1109	gpiod_set_value(port->rts, 1);
   1110
   1111	spin_unlock_irqrestore(&npe_lock, flags);
   1112
   1113	/* Populate queues with buffers, no failure after this point */
   1114	for (i = 0; i < TX_DESCS; i++)
   1115		queue_put_desc(port->txreadyq,
   1116			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
   1117
   1118	for (i = 0; i < RX_DESCS; i++)
   1119		queue_put_desc(port->rxfreeq,
   1120			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
   1121
   1122	napi_enable(&port->napi);
   1123	netif_start_queue(dev);
   1124
   1125	qmgr_set_irq(port->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
   1126		     hss_hdlc_rx_irq, dev);
   1127
   1128	qmgr_set_irq(port->txdoneq, QUEUE_IRQ_SRC_NOT_EMPTY,
   1129		     hss_hdlc_txdone_irq, dev);
   1130	qmgr_enable_irq(port->txdoneq);
   1131
   1132	ports_open++;
   1133
   1134	hss_set_hdlc_cfg(port);
   1135	hss_config(port);
   1136
   1137	hss_start_hdlc(port);
   1138
   1139	/* we may already have RX data, enables IRQ */
   1140	napi_schedule(&port->napi);
   1141	return 0;
   1142
   1143err_unlock:
   1144	spin_unlock_irqrestore(&npe_lock, flags);
   1145err_destroy_queues:
   1146	destroy_hdlc_queues(port);
   1147	release_hdlc_queues(port);
   1148err_hdlc_close:
   1149	hdlc_close(dev);
   1150	return err;
   1151}
   1152
   1153static int hss_hdlc_close(struct net_device *dev)
   1154{
   1155	struct port *port = dev_to_port(dev);
   1156	unsigned long flags;
   1157	int i, buffs = RX_DESCS; /* allocated RX buffers */
   1158
   1159	spin_lock_irqsave(&npe_lock, flags);
   1160	ports_open--;
   1161	qmgr_disable_irq(port->rxq);
   1162	netif_stop_queue(dev);
   1163	napi_disable(&port->napi);
   1164
   1165	hss_stop_hdlc(port);
   1166
   1167	while (queue_get_desc(port->rxfreeq, port, 0) >= 0)
   1168		buffs--;
   1169	while (queue_get_desc(port->rxq, port, 0) >= 0)
   1170		buffs--;
   1171
   1172	if (buffs)
   1173		netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
   1174			    buffs);
   1175
   1176	buffs = TX_DESCS;
   1177	while (queue_get_desc(port->txq, port, 1) >= 0)
   1178		buffs--; /* cancel TX */
   1179
   1180	i = 0;
   1181	do {
   1182		while (queue_get_desc(port->txreadyq, port, 1) >= 0)
   1183			buffs--;
   1184		if (!buffs)
   1185			break;
   1186	} while (++i < MAX_CLOSE_WAIT);
   1187
   1188	if (buffs)
   1189		netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
   1190			    buffs);
   1191#if DEBUG_CLOSE
   1192	if (!buffs)
   1193		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
   1194#endif
   1195	qmgr_disable_irq(port->txdoneq);
   1196
   1197	free_irq(gpiod_to_irq(port->dcd), dev);
   1198	/* GPIOs are flagged active low so this de-asserts DTR and RTS */
   1199	gpiod_set_value(port->dtr, 0);
   1200	gpiod_set_value(port->rts, 0);
   1201	spin_unlock_irqrestore(&npe_lock, flags);
   1202
   1203	destroy_hdlc_queues(port);
   1204	release_hdlc_queues(port);
   1205	hdlc_close(dev);
   1206	return 0;
   1207}
   1208
   1209static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
   1210			   unsigned short parity)
   1211{
   1212	struct port *port = dev_to_port(dev);
   1213
   1214	if (encoding != ENCODING_NRZ)
   1215		return -EINVAL;
   1216
   1217	switch (parity) {
   1218	case PARITY_CRC16_PR1_CCITT:
   1219		port->hdlc_cfg = 0;
   1220		return 0;
   1221
   1222	case PARITY_CRC32_PR1_CCITT:
   1223		port->hdlc_cfg = PKT_HDLC_CRC_32;
   1224		return 0;
   1225
   1226	default:
   1227		return -EINVAL;
   1228	}
   1229}
   1230
   1231static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
   1232		       u32 *best, u32 *best_diff, u32 *reg)
   1233{
   1234	/* a is 10-bit, b is 10-bit, c is 12-bit */
   1235	u64 new_rate;
   1236	u32 new_diff;
   1237
   1238	new_rate = timer_freq * (u64)(c + 1);
   1239	do_div(new_rate, a * (c + 1) + b + 1);
   1240	new_diff = abs((u32)new_rate - rate);
   1241
   1242	if (new_diff < *best_diff) {
   1243		*best = new_rate;
   1244		*best_diff = new_diff;
   1245		*reg = (a << 22) | (b << 12) | c;
   1246	}
   1247	return new_diff;
   1248}
   1249
   1250static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
   1251{
   1252	u32 a, b, diff = 0xFFFFFFFF;
   1253
   1254	a = timer_freq / rate;
   1255
   1256	if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
   1257		check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
   1258		return;
   1259	}
   1260	if (a == 0) { /* > 66.666 MHz */
   1261		a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
   1262		rate = timer_freq;
   1263	}
   1264
   1265	if (rate * a == timer_freq) { /* don't divide by 0 later */
   1266		check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
   1267		return;
   1268	}
   1269
   1270	for (b = 0; b < 0x400; b++) {
   1271		u64 c = (b + 1) * (u64)rate;
   1272
   1273		do_div(c, timer_freq - rate * a);
   1274		c--;
   1275		if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
   1276			if (b == 0 && /* also try a bit higher rate */
   1277			    !check_clock(timer_freq, rate, a - 1, 1, 1, best,
   1278					 &diff, reg))
   1279				return;
   1280			check_clock(timer_freq, rate, a, b, 0xFFF, best,
   1281				    &diff, reg);
   1282			return;
   1283		}
   1284		if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
   1285			return;
   1286		if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
   1287				 reg))
   1288			return;
   1289	}
   1290}
   1291
   1292static int hss_hdlc_set_clock(struct port *port, unsigned int clock_type)
   1293{
   1294	switch (clock_type) {
   1295	case CLOCK_DEFAULT:
   1296	case CLOCK_EXT:
   1297		gpiod_set_value(port->clk_internal, 0);
   1298		return CLOCK_EXT;
   1299	case CLOCK_INT:
   1300		gpiod_set_value(port->clk_internal, 1);
   1301		return CLOCK_INT;
   1302	default:
   1303		return -EINVAL;
   1304	}
   1305}
   1306
   1307static int hss_hdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
   1308{
   1309	const size_t size = sizeof(sync_serial_settings);
   1310	sync_serial_settings new_line;
   1311	sync_serial_settings __user *line = ifs->ifs_ifsu.sync;
   1312	struct port *port = dev_to_port(dev);
   1313	unsigned long flags;
   1314	int clk;
   1315
   1316	switch (ifs->type) {
   1317	case IF_GET_IFACE:
   1318		ifs->type = IF_IFACE_V35;
   1319		if (ifs->size < size) {
   1320			ifs->size = size; /* data size wanted */
   1321			return -ENOBUFS;
   1322		}
   1323		memset(&new_line, 0, sizeof(new_line));
   1324		new_line.clock_type = port->clock_type;
   1325		new_line.clock_rate = port->clock_rate;
   1326		new_line.loopback = port->loopback;
   1327		if (copy_to_user(line, &new_line, size))
   1328			return -EFAULT;
   1329		return 0;
   1330
   1331	case IF_IFACE_SYNC_SERIAL:
   1332	case IF_IFACE_V35:
   1333		if (!capable(CAP_NET_ADMIN))
   1334			return -EPERM;
   1335		if (copy_from_user(&new_line, line, size))
   1336			return -EFAULT;
   1337
   1338		clk = new_line.clock_type;
   1339		hss_hdlc_set_clock(port, clk);
   1340
   1341		if (clk != CLOCK_EXT && clk != CLOCK_INT)
   1342			return -EINVAL;	/* No such clock setting */
   1343
   1344		if (new_line.loopback != 0 && new_line.loopback != 1)
   1345			return -EINVAL;
   1346
   1347		port->clock_type = clk; /* Update settings */
   1348		if (clk == CLOCK_INT) {
   1349			find_best_clock(IXP4XX_TIMER_FREQ,
   1350					new_line.clock_rate,
   1351					&port->clock_rate, &port->clock_reg);
   1352		} else {
   1353			port->clock_rate = 0;
   1354			port->clock_reg = CLK42X_SPEED_2048KHZ;
   1355		}
   1356		port->loopback = new_line.loopback;
   1357
   1358		spin_lock_irqsave(&npe_lock, flags);
   1359
   1360		if (dev->flags & IFF_UP)
   1361			hss_config(port);
   1362
   1363		if (port->loopback || port->carrier)
   1364			netif_carrier_on(port->netdev);
   1365		else
   1366			netif_carrier_off(port->netdev);
   1367		spin_unlock_irqrestore(&npe_lock, flags);
   1368
   1369		return 0;
   1370
   1371	default:
   1372		return hdlc_ioctl(dev, ifs);
   1373	}
   1374}
   1375
   1376/*****************************************************************************
   1377 * initialization
   1378 ****************************************************************************/
   1379
   1380static const struct net_device_ops hss_hdlc_ops = {
   1381	.ndo_open       = hss_hdlc_open,
   1382	.ndo_stop       = hss_hdlc_close,
   1383	.ndo_start_xmit = hdlc_start_xmit,
   1384	.ndo_siocwandev = hss_hdlc_ioctl,
   1385};
   1386
   1387static int ixp4xx_hss_probe(struct platform_device *pdev)
   1388{
   1389	struct of_phandle_args queue_spec;
   1390	struct of_phandle_args npe_spec;
   1391	struct device *dev = &pdev->dev;
   1392	struct net_device *ndev;
   1393	struct device_node *np;
   1394	struct regmap *rmap;
   1395	struct port *port;
   1396	hdlc_device *hdlc;
   1397	int err;
   1398	u32 val;
   1399
   1400	/*
   1401	 * Go into the syscon and check if we have the HSS and HDLC
   1402	 * features available, else this will not work.
   1403	 */
   1404	rmap = syscon_regmap_lookup_by_compatible("syscon");
   1405	if (IS_ERR(rmap))
   1406		return dev_err_probe(dev, PTR_ERR(rmap),
   1407				     "failed to look up syscon\n");
   1408
   1409	val = cpu_ixp4xx_features(rmap);
   1410
   1411	if ((val & (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
   1412	    (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) {
   1413		dev_err(dev, "HDLC and HSS feature unavailable in platform\n");
   1414		return -ENODEV;
   1415	}
   1416
   1417	np = dev->of_node;
   1418
   1419	port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
   1420	if (!port)
   1421		return -ENOMEM;
   1422
   1423	err = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
   1424					       &npe_spec);
   1425	if (err)
   1426		return dev_err_probe(dev, err, "no NPE engine specified\n");
   1427	/* NPE ID 0x00, 0x10, 0x20... */
   1428	port->npe = npe_request(npe_spec.args[0] << 4);
   1429	if (!port->npe) {
   1430		dev_err(dev, "unable to obtain NPE instance\n");
   1431		return -ENODEV;
   1432	}
   1433
   1434	/* Get the TX ready queue as resource from queue manager */
   1435	err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-txready", 1, 0,
   1436					       &queue_spec);
   1437	if (err)
   1438		return dev_err_probe(dev, err, "no txready queue phandle\n");
   1439	port->txreadyq = queue_spec.args[0];
   1440	/* Get the RX trig queue as resource from queue manager */
   1441	err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-rxtrig", 1, 0,
   1442					       &queue_spec);
   1443	if (err)
   1444		return dev_err_probe(dev, err, "no rxtrig queue phandle\n");
   1445	port->rxtrigq = queue_spec.args[0];
   1446	/* Get the RX queue as resource from queue manager */
   1447	err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rx", 1, 0,
   1448					       &queue_spec);
   1449	if (err)
   1450		return dev_err_probe(dev, err, "no RX queue phandle\n");
   1451	port->rxq = queue_spec.args[0];
   1452	/* Get the TX queue as resource from queue manager */
   1453	err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-tx", 1, 0,
   1454					       &queue_spec);
   1455	if (err)
   1456		return dev_err_probe(dev, err, "no RX queue phandle\n");
   1457	port->txq = queue_spec.args[0];
   1458	/* Get the RX free queue as resource from queue manager */
   1459	err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rxfree", 1, 0,
   1460					       &queue_spec);
   1461	if (err)
   1462		return dev_err_probe(dev, err, "no RX free queue phandle\n");
   1463	port->rxfreeq = queue_spec.args[0];
   1464	/* Get the TX done queue as resource from queue manager */
   1465	err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-txdone", 1, 0,
   1466					       &queue_spec);
   1467	if (err)
   1468		return dev_err_probe(dev, err, "no TX done queue phandle\n");
   1469	port->txdoneq = queue_spec.args[0];
   1470
   1471	/* Obtain all the line control GPIOs */
   1472	port->cts = devm_gpiod_get(dev, "cts", GPIOD_OUT_LOW);
   1473	if (IS_ERR(port->cts))
   1474		return dev_err_probe(dev, PTR_ERR(port->cts), "unable to get CTS GPIO\n");
   1475	port->rts = devm_gpiod_get(dev, "rts", GPIOD_OUT_LOW);
   1476	if (IS_ERR(port->rts))
   1477		return dev_err_probe(dev, PTR_ERR(port->rts), "unable to get RTS GPIO\n");
   1478	port->dcd = devm_gpiod_get(dev, "dcd", GPIOD_IN);
   1479	if (IS_ERR(port->dcd))
   1480		return dev_err_probe(dev, PTR_ERR(port->dcd), "unable to get DCD GPIO\n");
   1481	port->dtr = devm_gpiod_get(dev, "dtr", GPIOD_OUT_LOW);
   1482	if (IS_ERR(port->dtr))
   1483		return dev_err_probe(dev, PTR_ERR(port->dtr), "unable to get DTR GPIO\n");
   1484	port->clk_internal = devm_gpiod_get(dev, "clk-internal", GPIOD_OUT_LOW);
   1485	if (IS_ERR(port->clk_internal))
   1486		return dev_err_probe(dev, PTR_ERR(port->clk_internal),
   1487				     "unable to get CLK internal GPIO\n");
   1488
   1489	ndev = alloc_hdlcdev(port);
   1490	port->netdev = alloc_hdlcdev(port);
   1491	if (!port->netdev) {
   1492		err = -ENOMEM;
   1493		goto err_plat;
   1494	}
   1495
   1496	SET_NETDEV_DEV(ndev, &pdev->dev);
   1497	hdlc = dev_to_hdlc(ndev);
   1498	hdlc->attach = hss_hdlc_attach;
   1499	hdlc->xmit = hss_hdlc_xmit;
   1500	ndev->netdev_ops = &hss_hdlc_ops;
   1501	ndev->tx_queue_len = 100;
   1502	port->clock_type = CLOCK_EXT;
   1503	port->clock_rate = 0;
   1504	port->clock_reg = CLK42X_SPEED_2048KHZ;
   1505	port->id = pdev->id;
   1506	port->dev = &pdev->dev;
   1507	netif_napi_add_weight(ndev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
   1508
   1509	err = register_hdlc_device(ndev);
   1510	if (err)
   1511		goto err_free_netdev;
   1512
   1513	platform_set_drvdata(pdev, port);
   1514
   1515	netdev_info(ndev, "initialized\n");
   1516	return 0;
   1517
   1518err_free_netdev:
   1519	free_netdev(ndev);
   1520err_plat:
   1521	npe_release(port->npe);
   1522	return err;
   1523}
   1524
   1525static int ixp4xx_hss_remove(struct platform_device *pdev)
   1526{
   1527	struct port *port = platform_get_drvdata(pdev);
   1528
   1529	unregister_hdlc_device(port->netdev);
   1530	free_netdev(port->netdev);
   1531	npe_release(port->npe);
   1532	return 0;
   1533}
   1534
   1535static struct platform_driver ixp4xx_hss_driver = {
   1536	.driver.name	= DRV_NAME,
   1537	.probe		= ixp4xx_hss_probe,
   1538	.remove		= ixp4xx_hss_remove,
   1539};
   1540module_platform_driver(ixp4xx_hss_driver);
   1541
   1542MODULE_AUTHOR("Krzysztof Halasa");
   1543MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
   1544MODULE_LICENSE("GPL v2");
   1545MODULE_ALIAS("platform:ixp4xx_hss");