cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

base.c (87016B)


      1/*-
      2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
      4 * Copyright (c) 2006 Devicescape Software, Inc.
      5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
      6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
      7 *
      8 * All rights reserved.
      9 *
     10 * Redistribution and use in source and binary forms, with or without
     11 * modification, are permitted provided that the following conditions
     12 * are met:
     13 * 1. Redistributions of source code must retain the above copyright
     14 *    notice, this list of conditions and the following disclaimer,
     15 *    without modification.
     16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     18 *    redistribution must be conditioned upon including a substantially
     19 *    similar Disclaimer requirement for further binary redistribution.
     20 * 3. Neither the names of the above-listed copyright holders nor the names
     21 *    of any contributors may be used to endorse or promote products derived
     22 *    from this software without specific prior written permission.
     23 *
     24 * Alternatively, this software may be distributed under the terms of the
     25 * GNU General Public License ("GPL") version 2 as published by the Free
     26 * Software Foundation.
     27 *
     28 * NO WARRANTY
     29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     39 * THE POSSIBILITY OF SUCH DAMAGES.
     40 *
     41 */
     42
     43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     44
     45#include <linux/module.h>
     46#include <linux/delay.h>
     47#include <linux/dma-mapping.h>
     48#include <linux/hardirq.h>
     49#include <linux/if.h>
     50#include <linux/io.h>
     51#include <linux/netdevice.h>
     52#include <linux/cache.h>
     53#include <linux/ethtool.h>
     54#include <linux/uaccess.h>
     55#include <linux/slab.h>
     56#include <linux/etherdevice.h>
     57#include <linux/nl80211.h>
     58
     59#include <net/cfg80211.h>
     60#include <net/ieee80211_radiotap.h>
     61
     62#include <asm/unaligned.h>
     63
     64#include <net/mac80211.h>
     65#include "base.h"
     66#include "reg.h"
     67#include "debug.h"
     68#include "ani.h"
     69#include "ath5k.h"
     70#include "../regd.h"
     71
     72#define CREATE_TRACE_POINTS
     73#include "trace.h"
     74
     75bool ath5k_modparam_nohwcrypt;
     76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
     77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
     78
     79static bool modparam_fastchanswitch;
     80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
     81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
     82
     83static bool ath5k_modparam_no_hw_rfkill_switch;
     84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
     85		   bool, 0444);
     86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
     87
     88
     89/* Module info */
     90MODULE_AUTHOR("Jiri Slaby");
     91MODULE_AUTHOR("Nick Kossifidis");
     92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
     93MODULE_LICENSE("Dual BSD/GPL");
     94
     95static int ath5k_init(struct ieee80211_hw *hw);
     96static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
     97								bool skip_pcu);
     98
     99/* Known SREVs */
    100static const struct ath5k_srev_name srev_names[] = {
    101#ifdef CONFIG_ATH5K_AHB
    102	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
    103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
    104	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
    105	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
    106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
    107	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
    108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
    109#else
    110	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
    111	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
    112	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
    113	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
    114	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
    115	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
    116	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
    117	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
    118	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
    119	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
    120	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
    121	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
    122	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
    123	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
    124	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
    125	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
    126	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
    127	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
    128#endif
    129	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
    130	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
    131	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
    132	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
    133	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
    134	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
    135	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
    136	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
    137	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
    138	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
    139	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
    140	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
    141	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
    142	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
    143	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
    144#ifdef CONFIG_ATH5K_AHB
    145	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
    146	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
    147#endif
    148	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
    149};
    150
    151static const struct ieee80211_rate ath5k_rates[] = {
    152	{ .bitrate = 10,
    153	  .hw_value = ATH5K_RATE_CODE_1M, },
    154	{ .bitrate = 20,
    155	  .hw_value = ATH5K_RATE_CODE_2M,
    156	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
    157	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
    158	{ .bitrate = 55,
    159	  .hw_value = ATH5K_RATE_CODE_5_5M,
    160	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
    161	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
    162	{ .bitrate = 110,
    163	  .hw_value = ATH5K_RATE_CODE_11M,
    164	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
    165	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
    166	{ .bitrate = 60,
    167	  .hw_value = ATH5K_RATE_CODE_6M,
    168	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    169		   IEEE80211_RATE_SUPPORTS_10MHZ },
    170	{ .bitrate = 90,
    171	  .hw_value = ATH5K_RATE_CODE_9M,
    172	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    173		   IEEE80211_RATE_SUPPORTS_10MHZ },
    174	{ .bitrate = 120,
    175	  .hw_value = ATH5K_RATE_CODE_12M,
    176	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    177		   IEEE80211_RATE_SUPPORTS_10MHZ },
    178	{ .bitrate = 180,
    179	  .hw_value = ATH5K_RATE_CODE_18M,
    180	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    181		   IEEE80211_RATE_SUPPORTS_10MHZ },
    182	{ .bitrate = 240,
    183	  .hw_value = ATH5K_RATE_CODE_24M,
    184	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    185		   IEEE80211_RATE_SUPPORTS_10MHZ },
    186	{ .bitrate = 360,
    187	  .hw_value = ATH5K_RATE_CODE_36M,
    188	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    189		   IEEE80211_RATE_SUPPORTS_10MHZ },
    190	{ .bitrate = 480,
    191	  .hw_value = ATH5K_RATE_CODE_48M,
    192	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    193		   IEEE80211_RATE_SUPPORTS_10MHZ },
    194	{ .bitrate = 540,
    195	  .hw_value = ATH5K_RATE_CODE_54M,
    196	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
    197		   IEEE80211_RATE_SUPPORTS_10MHZ },
    198};
    199
    200static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
    201{
    202	u64 tsf = ath5k_hw_get_tsf64(ah);
    203
    204	if ((tsf & 0x7fff) < rstamp)
    205		tsf -= 0x8000;
    206
    207	return (tsf & ~0x7fff) | rstamp;
    208}
    209
    210const char *
    211ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
    212{
    213	const char *name = "xxxxx";
    214	unsigned int i;
    215
    216	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
    217		if (srev_names[i].sr_type != type)
    218			continue;
    219
    220		if ((val & 0xf0) == srev_names[i].sr_val)
    221			name = srev_names[i].sr_name;
    222
    223		if ((val & 0xff) == srev_names[i].sr_val) {
    224			name = srev_names[i].sr_name;
    225			break;
    226		}
    227	}
    228
    229	return name;
    230}
    231static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
    232{
    233	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
    234	return ath5k_hw_reg_read(ah, reg_offset);
    235}
    236
    237static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
    238{
    239	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
    240	ath5k_hw_reg_write(ah, val, reg_offset);
    241}
    242
    243static const struct ath_ops ath5k_common_ops = {
    244	.read = ath5k_ioread32,
    245	.write = ath5k_iowrite32,
    246};
    247
    248/***********************\
    249* Driver Initialization *
    250\***********************/
    251
    252static void ath5k_reg_notifier(struct wiphy *wiphy,
    253			       struct regulatory_request *request)
    254{
    255	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
    256	struct ath5k_hw *ah = hw->priv;
    257	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
    258
    259	ath_reg_notifier_apply(wiphy, request, regulatory);
    260}
    261
    262/********************\
    263* Channel/mode setup *
    264\********************/
    265
    266/*
    267 * Returns true for the channel numbers used.
    268 */
    269#ifdef CONFIG_ATH5K_TEST_CHANNELS
    270static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
    271{
    272	return true;
    273}
    274
    275#else
    276static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
    277{
    278	if (band == NL80211_BAND_2GHZ && chan <= 14)
    279		return true;
    280
    281	return	/* UNII 1,2 */
    282		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
    283		/* midband */
    284		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
    285		/* UNII-3 */
    286		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
    287		/* 802.11j 5.030-5.080 GHz (20MHz) */
    288		(chan == 8 || chan == 12 || chan == 16) ||
    289		/* 802.11j 4.9GHz (20MHz) */
    290		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
    291}
    292#endif
    293
    294static unsigned int
    295ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
    296		unsigned int mode, unsigned int max)
    297{
    298	unsigned int count, size, freq, ch;
    299	enum nl80211_band band;
    300
    301	switch (mode) {
    302	case AR5K_MODE_11A:
    303		/* 1..220, but 2GHz frequencies are filtered by check_channel */
    304		size = 220;
    305		band = NL80211_BAND_5GHZ;
    306		break;
    307	case AR5K_MODE_11B:
    308	case AR5K_MODE_11G:
    309		size = 26;
    310		band = NL80211_BAND_2GHZ;
    311		break;
    312	default:
    313		ATH5K_WARN(ah, "bad mode, not copying channels\n");
    314		return 0;
    315	}
    316
    317	count = 0;
    318	for (ch = 1; ch <= size && count < max; ch++) {
    319		freq = ieee80211_channel_to_frequency(ch, band);
    320
    321		if (freq == 0) /* mapping failed - not a standard channel */
    322			continue;
    323
    324		/* Write channel info, needed for ath5k_channel_ok() */
    325		channels[count].center_freq = freq;
    326		channels[count].band = band;
    327		channels[count].hw_value = mode;
    328
    329		/* Check if channel is supported by the chipset */
    330		if (!ath5k_channel_ok(ah, &channels[count]))
    331			continue;
    332
    333		if (!ath5k_is_standard_channel(ch, band))
    334			continue;
    335
    336		count++;
    337	}
    338
    339	return count;
    340}
    341
    342static void
    343ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
    344{
    345	u8 i;
    346
    347	for (i = 0; i < AR5K_MAX_RATES; i++)
    348		ah->rate_idx[b->band][i] = -1;
    349
    350	for (i = 0; i < b->n_bitrates; i++) {
    351		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
    352		if (b->bitrates[i].hw_value_short)
    353			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
    354	}
    355}
    356
    357static int
    358ath5k_setup_bands(struct ieee80211_hw *hw)
    359{
    360	struct ath5k_hw *ah = hw->priv;
    361	struct ieee80211_supported_band *sband;
    362	int max_c, count_c = 0;
    363	int i;
    364
    365	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
    366	max_c = ARRAY_SIZE(ah->channels);
    367
    368	/* 2GHz band */
    369	sband = &ah->sbands[NL80211_BAND_2GHZ];
    370	sband->band = NL80211_BAND_2GHZ;
    371	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
    372
    373	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
    374		/* G mode */
    375		memcpy(sband->bitrates, &ath5k_rates[0],
    376		       sizeof(struct ieee80211_rate) * 12);
    377		sband->n_bitrates = 12;
    378
    379		sband->channels = ah->channels;
    380		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
    381					AR5K_MODE_11G, max_c);
    382
    383		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
    384		count_c = sband->n_channels;
    385		max_c -= count_c;
    386	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
    387		/* B mode */
    388		memcpy(sband->bitrates, &ath5k_rates[0],
    389		       sizeof(struct ieee80211_rate) * 4);
    390		sband->n_bitrates = 4;
    391
    392		/* 5211 only supports B rates and uses 4bit rate codes
    393		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
    394		 * fix them up here:
    395		 */
    396		if (ah->ah_version == AR5K_AR5211) {
    397			for (i = 0; i < 4; i++) {
    398				sband->bitrates[i].hw_value =
    399					sband->bitrates[i].hw_value & 0xF;
    400				sband->bitrates[i].hw_value_short =
    401					sband->bitrates[i].hw_value_short & 0xF;
    402			}
    403		}
    404
    405		sband->channels = ah->channels;
    406		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
    407					AR5K_MODE_11B, max_c);
    408
    409		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
    410		count_c = sband->n_channels;
    411		max_c -= count_c;
    412	}
    413	ath5k_setup_rate_idx(ah, sband);
    414
    415	/* 5GHz band, A mode */
    416	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
    417		sband = &ah->sbands[NL80211_BAND_5GHZ];
    418		sband->band = NL80211_BAND_5GHZ;
    419		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
    420
    421		memcpy(sband->bitrates, &ath5k_rates[4],
    422		       sizeof(struct ieee80211_rate) * 8);
    423		sband->n_bitrates = 8;
    424
    425		sband->channels = &ah->channels[count_c];
    426		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
    427					AR5K_MODE_11A, max_c);
    428
    429		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
    430	}
    431	ath5k_setup_rate_idx(ah, sband);
    432
    433	ath5k_debug_dump_bands(ah);
    434
    435	return 0;
    436}
    437
    438/*
    439 * Set/change channels. We always reset the chip.
    440 * To accomplish this we must first cleanup any pending DMA,
    441 * then restart stuff after a la  ath5k_init.
    442 *
    443 * Called with ah->lock.
    444 */
    445int
    446ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
    447{
    448	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
    449		  "channel set, resetting (%u -> %u MHz)\n",
    450		  ah->curchan->center_freq, chandef->chan->center_freq);
    451
    452	switch (chandef->width) {
    453	case NL80211_CHAN_WIDTH_20:
    454	case NL80211_CHAN_WIDTH_20_NOHT:
    455		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
    456		break;
    457	case NL80211_CHAN_WIDTH_5:
    458		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
    459		break;
    460	case NL80211_CHAN_WIDTH_10:
    461		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
    462		break;
    463	default:
    464		WARN_ON(1);
    465		return -EINVAL;
    466	}
    467
    468	/*
    469	 * To switch channels clear any pending DMA operations;
    470	 * wait long enough for the RX fifo to drain, reset the
    471	 * hardware at the new frequency, and then re-enable
    472	 * the relevant bits of the h/w.
    473	 */
    474	return ath5k_reset(ah, chandef->chan, true);
    475}
    476
    477void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
    478{
    479	struct ath5k_vif_iter_data *iter_data = data;
    480	int i;
    481	struct ath5k_vif *avf = (void *)vif->drv_priv;
    482
    483	if (iter_data->hw_macaddr)
    484		for (i = 0; i < ETH_ALEN; i++)
    485			iter_data->mask[i] &=
    486				~(iter_data->hw_macaddr[i] ^ mac[i]);
    487
    488	if (!iter_data->found_active) {
    489		iter_data->found_active = true;
    490		memcpy(iter_data->active_mac, mac, ETH_ALEN);
    491	}
    492
    493	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
    494		if (ether_addr_equal(iter_data->hw_macaddr, mac))
    495			iter_data->need_set_hw_addr = false;
    496
    497	if (!iter_data->any_assoc) {
    498		if (avf->assoc)
    499			iter_data->any_assoc = true;
    500	}
    501
    502	/* Calculate combined mode - when APs are active, operate in AP mode.
    503	 * Otherwise use the mode of the new interface. This can currently
    504	 * only deal with combinations of APs and STAs. Only one ad-hoc
    505	 * interfaces is allowed.
    506	 */
    507	if (avf->opmode == NL80211_IFTYPE_AP)
    508		iter_data->opmode = NL80211_IFTYPE_AP;
    509	else {
    510		if (avf->opmode == NL80211_IFTYPE_STATION)
    511			iter_data->n_stas++;
    512		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
    513			iter_data->opmode = avf->opmode;
    514	}
    515}
    516
    517void
    518ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
    519				   struct ieee80211_vif *vif)
    520{
    521	struct ath_common *common = ath5k_hw_common(ah);
    522	struct ath5k_vif_iter_data iter_data;
    523	u32 rfilt;
    524
    525	/*
    526	 * Use the hardware MAC address as reference, the hardware uses it
    527	 * together with the BSSID mask when matching addresses.
    528	 */
    529	iter_data.hw_macaddr = common->macaddr;
    530	eth_broadcast_addr(iter_data.mask);
    531	iter_data.found_active = false;
    532	iter_data.need_set_hw_addr = true;
    533	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
    534	iter_data.n_stas = 0;
    535
    536	if (vif)
    537		ath5k_vif_iter(&iter_data, vif->addr, vif);
    538
    539	/* Get list of all active MAC addresses */
    540	ieee80211_iterate_active_interfaces_atomic(
    541		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
    542		ath5k_vif_iter, &iter_data);
    543	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
    544
    545	ah->opmode = iter_data.opmode;
    546	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
    547		/* Nothing active, default to station mode */
    548		ah->opmode = NL80211_IFTYPE_STATION;
    549
    550	ath5k_hw_set_opmode(ah, ah->opmode);
    551	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
    552		  ah->opmode, ath_opmode_to_string(ah->opmode));
    553
    554	if (iter_data.need_set_hw_addr && iter_data.found_active)
    555		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
    556
    557	if (ath5k_hw_hasbssidmask(ah))
    558		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
    559
    560	/* Set up RX Filter */
    561	if (iter_data.n_stas > 1) {
    562		/* If you have multiple STA interfaces connected to
    563		 * different APs, ARPs are not received (most of the time?)
    564		 * Enabling PROMISC appears to fix that problem.
    565		 */
    566		ah->filter_flags |= AR5K_RX_FILTER_PROM;
    567	}
    568
    569	rfilt = ah->filter_flags;
    570	ath5k_hw_set_rx_filter(ah, rfilt);
    571	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
    572}
    573
    574static inline int
    575ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
    576{
    577	int rix;
    578
    579	/* return base rate on errors */
    580	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
    581			"hw_rix out of bounds: %x\n", hw_rix))
    582		return 0;
    583
    584	rix = ah->rate_idx[ah->curchan->band][hw_rix];
    585	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
    586		rix = 0;
    587
    588	return rix;
    589}
    590
    591/***************\
    592* Buffers setup *
    593\***************/
    594
    595static
    596struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
    597{
    598	struct ath_common *common = ath5k_hw_common(ah);
    599	struct sk_buff *skb;
    600
    601	/*
    602	 * Allocate buffer with headroom_needed space for the
    603	 * fake physical layer header at the start.
    604	 */
    605	skb = ath_rxbuf_alloc(common,
    606			      common->rx_bufsize,
    607			      GFP_ATOMIC);
    608
    609	if (!skb) {
    610		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
    611				common->rx_bufsize);
    612		return NULL;
    613	}
    614
    615	*skb_addr = dma_map_single(ah->dev,
    616				   skb->data, common->rx_bufsize,
    617				   DMA_FROM_DEVICE);
    618
    619	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
    620		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
    621		dev_kfree_skb(skb);
    622		return NULL;
    623	}
    624	return skb;
    625}
    626
    627static int
    628ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
    629{
    630	struct sk_buff *skb = bf->skb;
    631	struct ath5k_desc *ds;
    632	int ret;
    633
    634	if (!skb) {
    635		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
    636		if (!skb)
    637			return -ENOMEM;
    638		bf->skb = skb;
    639	}
    640
    641	/*
    642	 * Setup descriptors.  For receive we always terminate
    643	 * the descriptor list with a self-linked entry so we'll
    644	 * not get overrun under high load (as can happen with a
    645	 * 5212 when ANI processing enables PHY error frames).
    646	 *
    647	 * To ensure the last descriptor is self-linked we create
    648	 * each descriptor as self-linked and add it to the end.  As
    649	 * each additional descriptor is added the previous self-linked
    650	 * entry is "fixed" naturally.  This should be safe even
    651	 * if DMA is happening.  When processing RX interrupts we
    652	 * never remove/process the last, self-linked, entry on the
    653	 * descriptor list.  This ensures the hardware always has
    654	 * someplace to write a new frame.
    655	 */
    656	ds = bf->desc;
    657	ds->ds_link = bf->daddr;	/* link to self */
    658	ds->ds_data = bf->skbaddr;
    659	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
    660	if (ret) {
    661		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
    662		return ret;
    663	}
    664
    665	if (ah->rxlink != NULL)
    666		*ah->rxlink = bf->daddr;
    667	ah->rxlink = &ds->ds_link;
    668	return 0;
    669}
    670
    671static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
    672{
    673	struct ieee80211_hdr *hdr;
    674	enum ath5k_pkt_type htype;
    675	__le16 fc;
    676
    677	hdr = (struct ieee80211_hdr *)skb->data;
    678	fc = hdr->frame_control;
    679
    680	if (ieee80211_is_beacon(fc))
    681		htype = AR5K_PKT_TYPE_BEACON;
    682	else if (ieee80211_is_probe_resp(fc))
    683		htype = AR5K_PKT_TYPE_PROBE_RESP;
    684	else if (ieee80211_is_atim(fc))
    685		htype = AR5K_PKT_TYPE_ATIM;
    686	else if (ieee80211_is_pspoll(fc))
    687		htype = AR5K_PKT_TYPE_PSPOLL;
    688	else
    689		htype = AR5K_PKT_TYPE_NORMAL;
    690
    691	return htype;
    692}
    693
    694static struct ieee80211_rate *
    695ath5k_get_rate(const struct ieee80211_hw *hw,
    696	       const struct ieee80211_tx_info *info,
    697	       struct ath5k_buf *bf, int idx)
    698{
    699	/*
    700	* convert a ieee80211_tx_rate RC-table entry to
    701	* the respective ieee80211_rate struct
    702	*/
    703	if (bf->rates[idx].idx < 0) {
    704		return NULL;
    705	}
    706
    707	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
    708}
    709
    710static u16
    711ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
    712			const struct ieee80211_tx_info *info,
    713			struct ath5k_buf *bf, int idx)
    714{
    715	struct ieee80211_rate *rate;
    716	u16 hw_rate;
    717	u8 rc_flags;
    718
    719	rate = ath5k_get_rate(hw, info, bf, idx);
    720	if (!rate)
    721		return 0;
    722
    723	rc_flags = bf->rates[idx].flags;
    724	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
    725		   rate->hw_value_short : rate->hw_value;
    726
    727	return hw_rate;
    728}
    729
    730static bool ath5k_merge_ratetbl(struct ieee80211_sta *sta,
    731				struct ath5k_buf *bf,
    732				struct ieee80211_tx_info *tx_info)
    733{
    734	struct ieee80211_sta_rates *ratetbl;
    735	u8 i;
    736
    737	if (!sta)
    738		return false;
    739
    740	ratetbl = rcu_dereference(sta->rates);
    741	if (!ratetbl)
    742		return false;
    743
    744	if (tx_info->control.rates[0].idx < 0 ||
    745	    tx_info->control.rates[0].count == 0)
    746	{
    747		i = 0;
    748	} else {
    749		bf->rates[0] = tx_info->control.rates[0];
    750		i = 1;
    751	}
    752
    753	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
    754		bf->rates[i].idx = ratetbl->rate[i].idx;
    755		bf->rates[i].flags = ratetbl->rate[i].flags;
    756		if (tx_info->control.use_rts)
    757			bf->rates[i].count = ratetbl->rate[i].count_rts;
    758		else if (tx_info->control.use_cts_prot)
    759			bf->rates[i].count = ratetbl->rate[i].count_cts;
    760		else
    761			bf->rates[i].count = ratetbl->rate[i].count;
    762	}
    763
    764	return true;
    765}
    766
    767static int
    768ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
    769		  struct ath5k_txq *txq, int padsize,
    770		  struct ieee80211_tx_control *control)
    771{
    772	struct ath5k_desc *ds = bf->desc;
    773	struct sk_buff *skb = bf->skb;
    774	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
    775	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
    776	struct ieee80211_rate *rate;
    777	struct ieee80211_sta *sta;
    778	unsigned int mrr_rate[3], mrr_tries[3];
    779	int i, ret;
    780	u16 hw_rate;
    781	u16 cts_rate = 0;
    782	u16 duration = 0;
    783	u8 rc_flags;
    784
    785	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
    786
    787	/* XXX endianness */
    788	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
    789			DMA_TO_DEVICE);
    790
    791	if (dma_mapping_error(ah->dev, bf->skbaddr))
    792		return -ENOSPC;
    793
    794	if (control)
    795		sta = control->sta;
    796	else
    797		sta = NULL;
    798
    799	if (!ath5k_merge_ratetbl(sta, bf, info)) {
    800		ieee80211_get_tx_rates(info->control.vif,
    801				       sta, skb, bf->rates,
    802				       ARRAY_SIZE(bf->rates));
    803	}
    804
    805	rate = ath5k_get_rate(ah->hw, info, bf, 0);
    806
    807	if (!rate) {
    808		ret = -EINVAL;
    809		goto err_unmap;
    810	}
    811
    812	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
    813		flags |= AR5K_TXDESC_NOACK;
    814
    815	rc_flags = bf->rates[0].flags;
    816
    817	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
    818
    819	pktlen = skb->len;
    820
    821	/* FIXME: If we are in g mode and rate is a CCK rate
    822	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
    823	 * from tx power (value is in dB units already) */
    824	if (info->control.hw_key) {
    825		keyidx = info->control.hw_key->hw_key_idx;
    826		pktlen += info->control.hw_key->icv_len;
    827	}
    828	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
    829		flags |= AR5K_TXDESC_RTSENA;
    830		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
    831		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
    832			info->control.vif, pktlen, info));
    833	}
    834	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
    835		flags |= AR5K_TXDESC_CTSENA;
    836		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
    837		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
    838			info->control.vif, pktlen, info));
    839	}
    840
    841	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
    842		ieee80211_get_hdrlen_from_skb(skb), padsize,
    843		get_hw_packet_type(skb),
    844		(ah->ah_txpower.txp_requested * 2),
    845		hw_rate,
    846		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
    847		cts_rate, duration);
    848	if (ret)
    849		goto err_unmap;
    850
    851	/* Set up MRR descriptor */
    852	if (ah->ah_capabilities.cap_has_mrr_support) {
    853		memset(mrr_rate, 0, sizeof(mrr_rate));
    854		memset(mrr_tries, 0, sizeof(mrr_tries));
    855
    856		for (i = 0; i < 3; i++) {
    857
    858			rate = ath5k_get_rate(ah->hw, info, bf, i);
    859			if (!rate)
    860				break;
    861
    862			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
    863			mrr_tries[i] = bf->rates[i].count;
    864		}
    865
    866		ath5k_hw_setup_mrr_tx_desc(ah, ds,
    867			mrr_rate[0], mrr_tries[0],
    868			mrr_rate[1], mrr_tries[1],
    869			mrr_rate[2], mrr_tries[2]);
    870	}
    871
    872	ds->ds_link = 0;
    873	ds->ds_data = bf->skbaddr;
    874
    875	spin_lock_bh(&txq->lock);
    876	list_add_tail(&bf->list, &txq->q);
    877	txq->txq_len++;
    878	if (txq->link == NULL) /* is this first packet? */
    879		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
    880	else /* no, so only link it */
    881		*txq->link = bf->daddr;
    882
    883	txq->link = &ds->ds_link;
    884	ath5k_hw_start_tx_dma(ah, txq->qnum);
    885	spin_unlock_bh(&txq->lock);
    886
    887	return 0;
    888err_unmap:
    889	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
    890	return ret;
    891}
    892
    893/*******************\
    894* Descriptors setup *
    895\*******************/
    896
    897static int
    898ath5k_desc_alloc(struct ath5k_hw *ah)
    899{
    900	struct ath5k_desc *ds;
    901	struct ath5k_buf *bf;
    902	dma_addr_t da;
    903	unsigned int i;
    904	int ret;
    905
    906	/* allocate descriptors */
    907	ah->desc_len = sizeof(struct ath5k_desc) *
    908			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
    909
    910	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
    911				&ah->desc_daddr, GFP_KERNEL);
    912	if (ah->desc == NULL) {
    913		ATH5K_ERR(ah, "can't allocate descriptors\n");
    914		ret = -ENOMEM;
    915		goto err;
    916	}
    917	ds = ah->desc;
    918	da = ah->desc_daddr;
    919	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
    920		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
    921
    922	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
    923			sizeof(struct ath5k_buf), GFP_KERNEL);
    924	if (bf == NULL) {
    925		ATH5K_ERR(ah, "can't allocate bufptr\n");
    926		ret = -ENOMEM;
    927		goto err_free;
    928	}
    929	ah->bufptr = bf;
    930
    931	INIT_LIST_HEAD(&ah->rxbuf);
    932	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
    933		bf->desc = ds;
    934		bf->daddr = da;
    935		list_add_tail(&bf->list, &ah->rxbuf);
    936	}
    937
    938	INIT_LIST_HEAD(&ah->txbuf);
    939	ah->txbuf_len = ATH_TXBUF;
    940	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
    941		bf->desc = ds;
    942		bf->daddr = da;
    943		list_add_tail(&bf->list, &ah->txbuf);
    944	}
    945
    946	/* beacon buffers */
    947	INIT_LIST_HEAD(&ah->bcbuf);
    948	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
    949		bf->desc = ds;
    950		bf->daddr = da;
    951		list_add_tail(&bf->list, &ah->bcbuf);
    952	}
    953
    954	return 0;
    955err_free:
    956	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
    957err:
    958	ah->desc = NULL;
    959	return ret;
    960}
    961
    962void
    963ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
    964{
    965	BUG_ON(!bf);
    966	if (!bf->skb)
    967		return;
    968	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
    969			DMA_TO_DEVICE);
    970	ieee80211_free_txskb(ah->hw, bf->skb);
    971	bf->skb = NULL;
    972	bf->skbaddr = 0;
    973	bf->desc->ds_data = 0;
    974}
    975
    976void
    977ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
    978{
    979	struct ath_common *common = ath5k_hw_common(ah);
    980
    981	BUG_ON(!bf);
    982	if (!bf->skb)
    983		return;
    984	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
    985			DMA_FROM_DEVICE);
    986	dev_kfree_skb_any(bf->skb);
    987	bf->skb = NULL;
    988	bf->skbaddr = 0;
    989	bf->desc->ds_data = 0;
    990}
    991
    992static void
    993ath5k_desc_free(struct ath5k_hw *ah)
    994{
    995	struct ath5k_buf *bf;
    996
    997	list_for_each_entry(bf, &ah->txbuf, list)
    998		ath5k_txbuf_free_skb(ah, bf);
    999	list_for_each_entry(bf, &ah->rxbuf, list)
   1000		ath5k_rxbuf_free_skb(ah, bf);
   1001	list_for_each_entry(bf, &ah->bcbuf, list)
   1002		ath5k_txbuf_free_skb(ah, bf);
   1003
   1004	/* Free memory associated with all descriptors */
   1005	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
   1006	ah->desc = NULL;
   1007	ah->desc_daddr = 0;
   1008
   1009	kfree(ah->bufptr);
   1010	ah->bufptr = NULL;
   1011}
   1012
   1013
   1014/**************\
   1015* Queues setup *
   1016\**************/
   1017
   1018static struct ath5k_txq *
   1019ath5k_txq_setup(struct ath5k_hw *ah,
   1020		int qtype, int subtype)
   1021{
   1022	struct ath5k_txq *txq;
   1023	struct ath5k_txq_info qi = {
   1024		.tqi_subtype = subtype,
   1025		/* XXX: default values not correct for B and XR channels,
   1026		 * but who cares? */
   1027		.tqi_aifs = AR5K_TUNE_AIFS,
   1028		.tqi_cw_min = AR5K_TUNE_CWMIN,
   1029		.tqi_cw_max = AR5K_TUNE_CWMAX
   1030	};
   1031	int qnum;
   1032
   1033	/*
   1034	 * Enable interrupts only for EOL and DESC conditions.
   1035	 * We mark tx descriptors to receive a DESC interrupt
   1036	 * when a tx queue gets deep; otherwise we wait for the
   1037	 * EOL to reap descriptors.  Note that this is done to
   1038	 * reduce interrupt load and this only defers reaping
   1039	 * descriptors, never transmitting frames.  Aside from
   1040	 * reducing interrupts this also permits more concurrency.
   1041	 * The only potential downside is if the tx queue backs
   1042	 * up in which case the top half of the kernel may backup
   1043	 * due to a lack of tx descriptors.
   1044	 */
   1045	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
   1046				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
   1047	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
   1048	if (qnum < 0) {
   1049		/*
   1050		 * NB: don't print a message, this happens
   1051		 * normally on parts with too few tx queues
   1052		 */
   1053		return ERR_PTR(qnum);
   1054	}
   1055	txq = &ah->txqs[qnum];
   1056	if (!txq->setup) {
   1057		txq->qnum = qnum;
   1058		txq->link = NULL;
   1059		INIT_LIST_HEAD(&txq->q);
   1060		spin_lock_init(&txq->lock);
   1061		txq->setup = true;
   1062		txq->txq_len = 0;
   1063		txq->txq_max = ATH5K_TXQ_LEN_MAX;
   1064		txq->txq_poll_mark = false;
   1065		txq->txq_stuck = 0;
   1066	}
   1067	return &ah->txqs[qnum];
   1068}
   1069
   1070static int
   1071ath5k_beaconq_setup(struct ath5k_hw *ah)
   1072{
   1073	struct ath5k_txq_info qi = {
   1074		/* XXX: default values not correct for B and XR channels,
   1075		 * but who cares? */
   1076		.tqi_aifs = AR5K_TUNE_AIFS,
   1077		.tqi_cw_min = AR5K_TUNE_CWMIN,
   1078		.tqi_cw_max = AR5K_TUNE_CWMAX,
   1079		/* NB: for dynamic turbo, don't enable any other interrupts */
   1080		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
   1081	};
   1082
   1083	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
   1084}
   1085
   1086static int
   1087ath5k_beaconq_config(struct ath5k_hw *ah)
   1088{
   1089	struct ath5k_txq_info qi;
   1090	int ret;
   1091
   1092	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
   1093	if (ret)
   1094		goto err;
   1095
   1096	if (ah->opmode == NL80211_IFTYPE_AP ||
   1097	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
   1098		/*
   1099		 * Always burst out beacon and CAB traffic
   1100		 * (aifs = cwmin = cwmax = 0)
   1101		 */
   1102		qi.tqi_aifs = 0;
   1103		qi.tqi_cw_min = 0;
   1104		qi.tqi_cw_max = 0;
   1105	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
   1106		/*
   1107		 * Adhoc mode; backoff between 0 and (2 * cw_min).
   1108		 */
   1109		qi.tqi_aifs = 0;
   1110		qi.tqi_cw_min = 0;
   1111		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
   1112	}
   1113
   1114	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
   1115		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
   1116		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
   1117
   1118	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
   1119	if (ret) {
   1120		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
   1121			"hardware queue!\n", __func__);
   1122		goto err;
   1123	}
   1124	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
   1125	if (ret)
   1126		goto err;
   1127
   1128	/* reconfigure cabq with ready time to 80% of beacon_interval */
   1129	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
   1130	if (ret)
   1131		goto err;
   1132
   1133	qi.tqi_ready_time = (ah->bintval * 80) / 100;
   1134	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
   1135	if (ret)
   1136		goto err;
   1137
   1138	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
   1139err:
   1140	return ret;
   1141}
   1142
   1143/**
   1144 * ath5k_drain_tx_buffs - Empty tx buffers
   1145 *
   1146 * @ah: The &struct ath5k_hw
   1147 *
   1148 * Empty tx buffers from all queues in preparation
   1149 * of a reset or during shutdown.
   1150 *
   1151 * NB:	this assumes output has been stopped and
   1152 *	we do not need to block ath5k_tx_tasklet
   1153 */
   1154static void
   1155ath5k_drain_tx_buffs(struct ath5k_hw *ah)
   1156{
   1157	struct ath5k_txq *txq;
   1158	struct ath5k_buf *bf, *bf0;
   1159	int i;
   1160
   1161	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
   1162		if (ah->txqs[i].setup) {
   1163			txq = &ah->txqs[i];
   1164			spin_lock_bh(&txq->lock);
   1165			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
   1166				ath5k_debug_printtxbuf(ah, bf);
   1167
   1168				ath5k_txbuf_free_skb(ah, bf);
   1169
   1170				spin_lock(&ah->txbuflock);
   1171				list_move_tail(&bf->list, &ah->txbuf);
   1172				ah->txbuf_len++;
   1173				txq->txq_len--;
   1174				spin_unlock(&ah->txbuflock);
   1175			}
   1176			txq->link = NULL;
   1177			txq->txq_poll_mark = false;
   1178			spin_unlock_bh(&txq->lock);
   1179		}
   1180	}
   1181}
   1182
   1183static void
   1184ath5k_txq_release(struct ath5k_hw *ah)
   1185{
   1186	struct ath5k_txq *txq = ah->txqs;
   1187	unsigned int i;
   1188
   1189	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
   1190		if (txq->setup) {
   1191			ath5k_hw_release_tx_queue(ah, txq->qnum);
   1192			txq->setup = false;
   1193		}
   1194}
   1195
   1196
   1197/*************\
   1198* RX Handling *
   1199\*************/
   1200
   1201/*
   1202 * Enable the receive h/w following a reset.
   1203 */
   1204static int
   1205ath5k_rx_start(struct ath5k_hw *ah)
   1206{
   1207	struct ath_common *common = ath5k_hw_common(ah);
   1208	struct ath5k_buf *bf;
   1209	int ret;
   1210
   1211	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
   1212
   1213	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
   1214		  common->cachelsz, common->rx_bufsize);
   1215
   1216	spin_lock_bh(&ah->rxbuflock);
   1217	ah->rxlink = NULL;
   1218	list_for_each_entry(bf, &ah->rxbuf, list) {
   1219		ret = ath5k_rxbuf_setup(ah, bf);
   1220		if (ret != 0) {
   1221			spin_unlock_bh(&ah->rxbuflock);
   1222			goto err;
   1223		}
   1224	}
   1225	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
   1226	ath5k_hw_set_rxdp(ah, bf->daddr);
   1227	spin_unlock_bh(&ah->rxbuflock);
   1228
   1229	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
   1230	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
   1231	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
   1232
   1233	return 0;
   1234err:
   1235	return ret;
   1236}
   1237
   1238/*
   1239 * Disable the receive logic on PCU (DRU)
   1240 * In preparation for a shutdown.
   1241 *
   1242 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
   1243 * does.
   1244 */
   1245static void
   1246ath5k_rx_stop(struct ath5k_hw *ah)
   1247{
   1248
   1249	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
   1250	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
   1251
   1252	ath5k_debug_printrxbuffs(ah);
   1253}
   1254
   1255static unsigned int
   1256ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
   1257		   struct ath5k_rx_status *rs)
   1258{
   1259	struct ath_common *common = ath5k_hw_common(ah);
   1260	struct ieee80211_hdr *hdr = (void *)skb->data;
   1261	unsigned int keyix, hlen;
   1262
   1263	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
   1264			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
   1265		return RX_FLAG_DECRYPTED;
   1266
   1267	/* Apparently when a default key is used to decrypt the packet
   1268	   the hw does not set the index used to decrypt.  In such cases
   1269	   get the index from the packet. */
   1270	hlen = ieee80211_hdrlen(hdr->frame_control);
   1271	if (ieee80211_has_protected(hdr->frame_control) &&
   1272	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
   1273	    skb->len >= hlen + 4) {
   1274		keyix = skb->data[hlen + 3] >> 6;
   1275
   1276		if (test_bit(keyix, common->keymap))
   1277			return RX_FLAG_DECRYPTED;
   1278	}
   1279
   1280	return 0;
   1281}
   1282
   1283
   1284static void
   1285ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
   1286		     struct ieee80211_rx_status *rxs)
   1287{
   1288	u64 tsf, bc_tstamp;
   1289	u32 hw_tu;
   1290	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
   1291
   1292	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
   1293		/*
   1294		 * Received an IBSS beacon with the same BSSID. Hardware *must*
   1295		 * have updated the local TSF. We have to work around various
   1296		 * hardware bugs, though...
   1297		 */
   1298		tsf = ath5k_hw_get_tsf64(ah);
   1299		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
   1300		hw_tu = TSF_TO_TU(tsf);
   1301
   1302		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   1303			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
   1304			(unsigned long long)bc_tstamp,
   1305			(unsigned long long)rxs->mactime,
   1306			(unsigned long long)(rxs->mactime - bc_tstamp),
   1307			(unsigned long long)tsf);
   1308
   1309		/*
   1310		 * Sometimes the HW will give us a wrong tstamp in the rx
   1311		 * status, causing the timestamp extension to go wrong.
   1312		 * (This seems to happen especially with beacon frames bigger
   1313		 * than 78 byte (incl. FCS))
   1314		 * But we know that the receive timestamp must be later than the
   1315		 * timestamp of the beacon since HW must have synced to that.
   1316		 *
   1317		 * NOTE: here we assume mactime to be after the frame was
   1318		 * received, not like mac80211 which defines it at the start.
   1319		 */
   1320		if (bc_tstamp > rxs->mactime) {
   1321			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   1322				"fixing mactime from %llx to %llx\n",
   1323				(unsigned long long)rxs->mactime,
   1324				(unsigned long long)tsf);
   1325			rxs->mactime = tsf;
   1326		}
   1327
   1328		/*
   1329		 * Local TSF might have moved higher than our beacon timers,
   1330		 * in that case we have to update them to continue sending
   1331		 * beacons. This also takes care of synchronizing beacon sending
   1332		 * times with other stations.
   1333		 */
   1334		if (hw_tu >= ah->nexttbtt)
   1335			ath5k_beacon_update_timers(ah, bc_tstamp);
   1336
   1337		/* Check if the beacon timers are still correct, because a TSF
   1338		 * update might have created a window between them - for a
   1339		 * longer description see the comment of this function: */
   1340		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
   1341			ath5k_beacon_update_timers(ah, bc_tstamp);
   1342			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   1343				"fixed beacon timers after beacon receive\n");
   1344		}
   1345	}
   1346}
   1347
   1348/*
   1349 * Compute padding position. skb must contain an IEEE 802.11 frame
   1350 */
   1351static int ath5k_common_padpos(struct sk_buff *skb)
   1352{
   1353	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
   1354	__le16 frame_control = hdr->frame_control;
   1355	int padpos = 24;
   1356
   1357	if (ieee80211_has_a4(frame_control))
   1358		padpos += ETH_ALEN;
   1359
   1360	if (ieee80211_is_data_qos(frame_control))
   1361		padpos += IEEE80211_QOS_CTL_LEN;
   1362
   1363	return padpos;
   1364}
   1365
   1366/*
   1367 * This function expects an 802.11 frame and returns the number of
   1368 * bytes added, or -1 if we don't have enough header room.
   1369 */
   1370static int ath5k_add_padding(struct sk_buff *skb)
   1371{
   1372	int padpos = ath5k_common_padpos(skb);
   1373	int padsize = padpos & 3;
   1374
   1375	if (padsize && skb->len > padpos) {
   1376
   1377		if (skb_headroom(skb) < padsize)
   1378			return -1;
   1379
   1380		skb_push(skb, padsize);
   1381		memmove(skb->data, skb->data + padsize, padpos);
   1382		return padsize;
   1383	}
   1384
   1385	return 0;
   1386}
   1387
   1388/*
   1389 * The MAC header is padded to have 32-bit boundary if the
   1390 * packet payload is non-zero. The general calculation for
   1391 * padsize would take into account odd header lengths:
   1392 * padsize = 4 - (hdrlen & 3); however, since only
   1393 * even-length headers are used, padding can only be 0 or 2
   1394 * bytes and we can optimize this a bit.  We must not try to
   1395 * remove padding from short control frames that do not have a
   1396 * payload.
   1397 *
   1398 * This function expects an 802.11 frame and returns the number of
   1399 * bytes removed.
   1400 */
   1401static int ath5k_remove_padding(struct sk_buff *skb)
   1402{
   1403	int padpos = ath5k_common_padpos(skb);
   1404	int padsize = padpos & 3;
   1405
   1406	if (padsize && skb->len >= padpos + padsize) {
   1407		memmove(skb->data + padsize, skb->data, padpos);
   1408		skb_pull(skb, padsize);
   1409		return padsize;
   1410	}
   1411
   1412	return 0;
   1413}
   1414
   1415static void
   1416ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
   1417		    struct ath5k_rx_status *rs)
   1418{
   1419	struct ieee80211_rx_status *rxs;
   1420	struct ath_common *common = ath5k_hw_common(ah);
   1421
   1422	ath5k_remove_padding(skb);
   1423
   1424	rxs = IEEE80211_SKB_RXCB(skb);
   1425
   1426	rxs->flag = 0;
   1427	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
   1428		rxs->flag |= RX_FLAG_MMIC_ERROR;
   1429	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
   1430		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
   1431
   1432
   1433	/*
   1434	 * always extend the mac timestamp, since this information is
   1435	 * also needed for proper IBSS merging.
   1436	 *
   1437	 * XXX: it might be too late to do it here, since rs_tstamp is
   1438	 * 15bit only. that means TSF extension has to be done within
   1439	 * 32768usec (about 32ms). it might be necessary to move this to
   1440	 * the interrupt handler, like it is done in madwifi.
   1441	 */
   1442	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
   1443	rxs->flag |= RX_FLAG_MACTIME_END;
   1444
   1445	rxs->freq = ah->curchan->center_freq;
   1446	rxs->band = ah->curchan->band;
   1447
   1448	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
   1449
   1450	rxs->antenna = rs->rs_antenna;
   1451
   1452	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
   1453		ah->stats.antenna_rx[rs->rs_antenna]++;
   1454	else
   1455		ah->stats.antenna_rx[0]++; /* invalid */
   1456
   1457	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
   1458	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
   1459	switch (ah->ah_bwmode) {
   1460	case AR5K_BWMODE_5MHZ:
   1461		rxs->bw = RATE_INFO_BW_5;
   1462		break;
   1463	case AR5K_BWMODE_10MHZ:
   1464		rxs->bw = RATE_INFO_BW_10;
   1465		break;
   1466	default:
   1467		break;
   1468	}
   1469
   1470	if (rs->rs_rate ==
   1471	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
   1472		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
   1473
   1474	trace_ath5k_rx(ah, skb);
   1475
   1476	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
   1477		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
   1478
   1479		/* check beacons in IBSS mode */
   1480		if (ah->opmode == NL80211_IFTYPE_ADHOC)
   1481			ath5k_check_ibss_tsf(ah, skb, rxs);
   1482	}
   1483
   1484	ieee80211_rx(ah->hw, skb);
   1485}
   1486
   1487/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
   1488 *
   1489 * Check if we want to further process this frame or not. Also update
   1490 * statistics. Return true if we want this frame, false if not.
   1491 */
   1492static bool
   1493ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
   1494{
   1495	ah->stats.rx_all_count++;
   1496	ah->stats.rx_bytes_count += rs->rs_datalen;
   1497
   1498	if (unlikely(rs->rs_status)) {
   1499		unsigned int filters;
   1500
   1501		if (rs->rs_status & AR5K_RXERR_CRC)
   1502			ah->stats.rxerr_crc++;
   1503		if (rs->rs_status & AR5K_RXERR_FIFO)
   1504			ah->stats.rxerr_fifo++;
   1505		if (rs->rs_status & AR5K_RXERR_PHY) {
   1506			ah->stats.rxerr_phy++;
   1507			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
   1508				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
   1509
   1510			/*
   1511			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
   1512			 * These restarts happen when the radio resynchronizes to a stronger frame
   1513			 * while receiving a weaker frame. Here we receive the prefix of the weak
   1514			 * frame. Since these are incomplete packets, mark their CRC as invalid.
   1515			 */
   1516			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
   1517			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
   1518				rs->rs_status |= AR5K_RXERR_CRC;
   1519				rs->rs_status &= ~AR5K_RXERR_PHY;
   1520			} else {
   1521				return false;
   1522			}
   1523		}
   1524		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
   1525			/*
   1526			 * Decrypt error.  If the error occurred
   1527			 * because there was no hardware key, then
   1528			 * let the frame through so the upper layers
   1529			 * can process it.  This is necessary for 5210
   1530			 * parts which have no way to setup a ``clear''
   1531			 * key cache entry.
   1532			 *
   1533			 * XXX do key cache faulting
   1534			 */
   1535			ah->stats.rxerr_decrypt++;
   1536			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
   1537			    !(rs->rs_status & AR5K_RXERR_CRC))
   1538				return true;
   1539		}
   1540		if (rs->rs_status & AR5K_RXERR_MIC) {
   1541			ah->stats.rxerr_mic++;
   1542			return true;
   1543		}
   1544
   1545		/*
   1546		 * Reject any frames with non-crypto errors, and take into account the
   1547		 * current FIF_* filters.
   1548		 */
   1549		filters = AR5K_RXERR_DECRYPT;
   1550		if (ah->fif_filter_flags & FIF_FCSFAIL)
   1551			filters |= AR5K_RXERR_CRC;
   1552
   1553		if (rs->rs_status & ~filters)
   1554			return false;
   1555	}
   1556
   1557	if (unlikely(rs->rs_more)) {
   1558		ah->stats.rxerr_jumbo++;
   1559		return false;
   1560	}
   1561	return true;
   1562}
   1563
   1564static void
   1565ath5k_set_current_imask(struct ath5k_hw *ah)
   1566{
   1567	enum ath5k_int imask;
   1568	unsigned long flags;
   1569
   1570	if (test_bit(ATH_STAT_RESET, ah->status))
   1571		return;
   1572
   1573	spin_lock_irqsave(&ah->irqlock, flags);
   1574	imask = ah->imask;
   1575	if (ah->rx_pending)
   1576		imask &= ~AR5K_INT_RX_ALL;
   1577	if (ah->tx_pending)
   1578		imask &= ~AR5K_INT_TX_ALL;
   1579	ath5k_hw_set_imr(ah, imask);
   1580	spin_unlock_irqrestore(&ah->irqlock, flags);
   1581}
   1582
   1583static void
   1584ath5k_tasklet_rx(struct tasklet_struct *t)
   1585{
   1586	struct ath5k_rx_status rs = {};
   1587	struct sk_buff *skb, *next_skb;
   1588	dma_addr_t next_skb_addr;
   1589	struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
   1590	struct ath_common *common = ath5k_hw_common(ah);
   1591	struct ath5k_buf *bf;
   1592	struct ath5k_desc *ds;
   1593	int ret;
   1594
   1595	spin_lock(&ah->rxbuflock);
   1596	if (list_empty(&ah->rxbuf)) {
   1597		ATH5K_WARN(ah, "empty rx buf pool\n");
   1598		goto unlock;
   1599	}
   1600	do {
   1601		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
   1602		BUG_ON(bf->skb == NULL);
   1603		skb = bf->skb;
   1604		ds = bf->desc;
   1605
   1606		/* bail if HW is still using self-linked descriptor */
   1607		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
   1608			break;
   1609
   1610		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
   1611		if (unlikely(ret == -EINPROGRESS))
   1612			break;
   1613		else if (unlikely(ret)) {
   1614			ATH5K_ERR(ah, "error in processing rx descriptor\n");
   1615			ah->stats.rxerr_proc++;
   1616			break;
   1617		}
   1618
   1619		if (ath5k_receive_frame_ok(ah, &rs)) {
   1620			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
   1621
   1622			/*
   1623			 * If we can't replace bf->skb with a new skb under
   1624			 * memory pressure, just skip this packet
   1625			 */
   1626			if (!next_skb)
   1627				goto next;
   1628
   1629			dma_unmap_single(ah->dev, bf->skbaddr,
   1630					 common->rx_bufsize,
   1631					 DMA_FROM_DEVICE);
   1632
   1633			skb_put(skb, rs.rs_datalen);
   1634
   1635			ath5k_receive_frame(ah, skb, &rs);
   1636
   1637			bf->skb = next_skb;
   1638			bf->skbaddr = next_skb_addr;
   1639		}
   1640next:
   1641		list_move_tail(&bf->list, &ah->rxbuf);
   1642	} while (ath5k_rxbuf_setup(ah, bf) == 0);
   1643unlock:
   1644	spin_unlock(&ah->rxbuflock);
   1645	ah->rx_pending = false;
   1646	ath5k_set_current_imask(ah);
   1647}
   1648
   1649
   1650/*************\
   1651* TX Handling *
   1652\*************/
   1653
   1654void
   1655ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
   1656	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
   1657{
   1658	struct ath5k_hw *ah = hw->priv;
   1659	struct ath5k_buf *bf;
   1660	unsigned long flags;
   1661	int padsize;
   1662
   1663	trace_ath5k_tx(ah, skb, txq);
   1664
   1665	/*
   1666	 * The hardware expects the header padded to 4 byte boundaries.
   1667	 * If this is not the case, we add the padding after the header.
   1668	 */
   1669	padsize = ath5k_add_padding(skb);
   1670	if (padsize < 0) {
   1671		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
   1672			  " headroom to pad");
   1673		goto drop_packet;
   1674	}
   1675
   1676	if (txq->txq_len >= txq->txq_max &&
   1677	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
   1678		ieee80211_stop_queue(hw, txq->qnum);
   1679
   1680	spin_lock_irqsave(&ah->txbuflock, flags);
   1681	if (list_empty(&ah->txbuf)) {
   1682		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
   1683		spin_unlock_irqrestore(&ah->txbuflock, flags);
   1684		ieee80211_stop_queues(hw);
   1685		goto drop_packet;
   1686	}
   1687	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
   1688	list_del(&bf->list);
   1689	ah->txbuf_len--;
   1690	if (list_empty(&ah->txbuf))
   1691		ieee80211_stop_queues(hw);
   1692	spin_unlock_irqrestore(&ah->txbuflock, flags);
   1693
   1694	bf->skb = skb;
   1695
   1696	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
   1697		bf->skb = NULL;
   1698		spin_lock_irqsave(&ah->txbuflock, flags);
   1699		list_add_tail(&bf->list, &ah->txbuf);
   1700		ah->txbuf_len++;
   1701		spin_unlock_irqrestore(&ah->txbuflock, flags);
   1702		goto drop_packet;
   1703	}
   1704	return;
   1705
   1706drop_packet:
   1707	ieee80211_free_txskb(hw, skb);
   1708}
   1709
   1710static void
   1711ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
   1712			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
   1713			 struct ath5k_buf *bf)
   1714{
   1715	struct ieee80211_tx_info *info;
   1716	u8 tries[3];
   1717	int i;
   1718	int size = 0;
   1719
   1720	ah->stats.tx_all_count++;
   1721	ah->stats.tx_bytes_count += skb->len;
   1722	info = IEEE80211_SKB_CB(skb);
   1723
   1724	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
   1725	memcpy(info->status.rates, bf->rates, size);
   1726
   1727	tries[0] = info->status.rates[0].count;
   1728	tries[1] = info->status.rates[1].count;
   1729	tries[2] = info->status.rates[2].count;
   1730
   1731	ieee80211_tx_info_clear_status(info);
   1732
   1733	for (i = 0; i < ts->ts_final_idx; i++) {
   1734		struct ieee80211_tx_rate *r =
   1735			&info->status.rates[i];
   1736
   1737		r->count = tries[i];
   1738	}
   1739
   1740	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
   1741	info->status.rates[ts->ts_final_idx + 1].idx = -1;
   1742
   1743	if (unlikely(ts->ts_status)) {
   1744		ah->stats.ack_fail++;
   1745		if (ts->ts_status & AR5K_TXERR_FILT) {
   1746			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
   1747			ah->stats.txerr_filt++;
   1748		}
   1749		if (ts->ts_status & AR5K_TXERR_XRETRY)
   1750			ah->stats.txerr_retry++;
   1751		if (ts->ts_status & AR5K_TXERR_FIFO)
   1752			ah->stats.txerr_fifo++;
   1753	} else {
   1754		info->flags |= IEEE80211_TX_STAT_ACK;
   1755		info->status.ack_signal = ts->ts_rssi;
   1756
   1757		/* count the successful attempt as well */
   1758		info->status.rates[ts->ts_final_idx].count++;
   1759	}
   1760
   1761	/*
   1762	* Remove MAC header padding before giving the frame
   1763	* back to mac80211.
   1764	*/
   1765	ath5k_remove_padding(skb);
   1766
   1767	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
   1768		ah->stats.antenna_tx[ts->ts_antenna]++;
   1769	else
   1770		ah->stats.antenna_tx[0]++; /* invalid */
   1771
   1772	trace_ath5k_tx_complete(ah, skb, txq, ts);
   1773	ieee80211_tx_status(ah->hw, skb);
   1774}
   1775
   1776static void
   1777ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
   1778{
   1779	struct ath5k_tx_status ts = {};
   1780	struct ath5k_buf *bf, *bf0;
   1781	struct ath5k_desc *ds;
   1782	struct sk_buff *skb;
   1783	int ret;
   1784
   1785	spin_lock(&txq->lock);
   1786	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
   1787
   1788		txq->txq_poll_mark = false;
   1789
   1790		/* skb might already have been processed last time. */
   1791		if (bf->skb != NULL) {
   1792			ds = bf->desc;
   1793
   1794			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
   1795			if (unlikely(ret == -EINPROGRESS))
   1796				break;
   1797			else if (unlikely(ret)) {
   1798				ATH5K_ERR(ah,
   1799					"error %d while processing "
   1800					"queue %u\n", ret, txq->qnum);
   1801				break;
   1802			}
   1803
   1804			skb = bf->skb;
   1805			bf->skb = NULL;
   1806
   1807			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
   1808					DMA_TO_DEVICE);
   1809			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
   1810		}
   1811
   1812		/*
   1813		 * It's possible that the hardware can say the buffer is
   1814		 * completed when it hasn't yet loaded the ds_link from
   1815		 * host memory and moved on.
   1816		 * Always keep the last descriptor to avoid HW races...
   1817		 */
   1818		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
   1819			spin_lock(&ah->txbuflock);
   1820			list_move_tail(&bf->list, &ah->txbuf);
   1821			ah->txbuf_len++;
   1822			txq->txq_len--;
   1823			spin_unlock(&ah->txbuflock);
   1824		}
   1825	}
   1826	spin_unlock(&txq->lock);
   1827	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
   1828		ieee80211_wake_queue(ah->hw, txq->qnum);
   1829}
   1830
   1831static void
   1832ath5k_tasklet_tx(struct tasklet_struct *t)
   1833{
   1834	int i;
   1835	struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
   1836
   1837	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
   1838		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
   1839			ath5k_tx_processq(ah, &ah->txqs[i]);
   1840
   1841	ah->tx_pending = false;
   1842	ath5k_set_current_imask(ah);
   1843}
   1844
   1845
   1846/*****************\
   1847* Beacon handling *
   1848\*****************/
   1849
   1850/*
   1851 * Setup the beacon frame for transmit.
   1852 */
   1853static int
   1854ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
   1855{
   1856	struct sk_buff *skb = bf->skb;
   1857	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
   1858	struct ath5k_desc *ds;
   1859	int ret = 0;
   1860	u8 antenna;
   1861	u32 flags;
   1862	const int padsize = 0;
   1863
   1864	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
   1865			DMA_TO_DEVICE);
   1866	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
   1867			"skbaddr %llx\n", skb, skb->data, skb->len,
   1868			(unsigned long long)bf->skbaddr);
   1869
   1870	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
   1871		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
   1872		dev_kfree_skb_any(skb);
   1873		bf->skb = NULL;
   1874		return -EIO;
   1875	}
   1876
   1877	ds = bf->desc;
   1878	antenna = ah->ah_tx_ant;
   1879
   1880	flags = AR5K_TXDESC_NOACK;
   1881	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
   1882		ds->ds_link = bf->daddr;	/* self-linked */
   1883		flags |= AR5K_TXDESC_VEOL;
   1884	} else
   1885		ds->ds_link = 0;
   1886
   1887	/*
   1888	 * If we use multiple antennas on AP and use
   1889	 * the Sectored AP scenario, switch antenna every
   1890	 * 4 beacons to make sure everybody hears our AP.
   1891	 * When a client tries to associate, hw will keep
   1892	 * track of the tx antenna to be used for this client
   1893	 * automatically, based on ACKed packets.
   1894	 *
   1895	 * Note: AP still listens and transmits RTS on the
   1896	 * default antenna which is supposed to be an omni.
   1897	 *
   1898	 * Note2: On sectored scenarios it's possible to have
   1899	 * multiple antennas (1 omni -- the default -- and 14
   1900	 * sectors), so if we choose to actually support this
   1901	 * mode, we need to allow the user to set how many antennas
   1902	 * we have and tweak the code below to send beacons
   1903	 * on all of them.
   1904	 */
   1905	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
   1906		antenna = ah->bsent & 4 ? 2 : 1;
   1907
   1908
   1909	/* FIXME: If we are in g mode and rate is a CCK rate
   1910	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
   1911	 * from tx power (value is in dB units already) */
   1912	ds->ds_data = bf->skbaddr;
   1913	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
   1914			ieee80211_get_hdrlen_from_skb(skb), padsize,
   1915			AR5K_PKT_TYPE_BEACON,
   1916			(ah->ah_txpower.txp_requested * 2),
   1917			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
   1918			1, AR5K_TXKEYIX_INVALID,
   1919			antenna, flags, 0, 0);
   1920	if (ret)
   1921		goto err_unmap;
   1922
   1923	return 0;
   1924err_unmap:
   1925	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
   1926	return ret;
   1927}
   1928
   1929/*
   1930 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
   1931 * this is called only once at config_bss time, for AP we do it every
   1932 * SWBA interrupt so that the TIM will reflect buffered frames.
   1933 *
   1934 * Called with the beacon lock.
   1935 */
   1936int
   1937ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
   1938{
   1939	int ret;
   1940	struct ath5k_hw *ah = hw->priv;
   1941	struct ath5k_vif *avf;
   1942	struct sk_buff *skb;
   1943
   1944	if (WARN_ON(!vif)) {
   1945		ret = -EINVAL;
   1946		goto out;
   1947	}
   1948
   1949	skb = ieee80211_beacon_get(hw, vif);
   1950
   1951	if (!skb) {
   1952		ret = -ENOMEM;
   1953		goto out;
   1954	}
   1955
   1956	avf = (void *)vif->drv_priv;
   1957	ath5k_txbuf_free_skb(ah, avf->bbuf);
   1958	avf->bbuf->skb = skb;
   1959	ret = ath5k_beacon_setup(ah, avf->bbuf);
   1960out:
   1961	return ret;
   1962}
   1963
   1964/*
   1965 * Transmit a beacon frame at SWBA.  Dynamic updates to the
   1966 * frame contents are done as needed and the slot time is
   1967 * also adjusted based on current state.
   1968 *
   1969 * This is called from software irq context (beacontq tasklets)
   1970 * or user context from ath5k_beacon_config.
   1971 */
   1972static void
   1973ath5k_beacon_send(struct ath5k_hw *ah)
   1974{
   1975	struct ieee80211_vif *vif;
   1976	struct ath5k_vif *avf;
   1977	struct ath5k_buf *bf;
   1978	struct sk_buff *skb;
   1979	int err;
   1980
   1981	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
   1982
   1983	/*
   1984	 * Check if the previous beacon has gone out.  If
   1985	 * not, don't don't try to post another: skip this
   1986	 * period and wait for the next.  Missed beacons
   1987	 * indicate a problem and should not occur.  If we
   1988	 * miss too many consecutive beacons reset the device.
   1989	 */
   1990	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
   1991		ah->bmisscount++;
   1992		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
   1993			"missed %u consecutive beacons\n", ah->bmisscount);
   1994		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
   1995			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
   1996				"stuck beacon time (%u missed)\n",
   1997				ah->bmisscount);
   1998			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   1999				  "stuck beacon, resetting\n");
   2000			ieee80211_queue_work(ah->hw, &ah->reset_work);
   2001		}
   2002		return;
   2003	}
   2004	if (unlikely(ah->bmisscount != 0)) {
   2005		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
   2006			"resume beacon xmit after %u misses\n",
   2007			ah->bmisscount);
   2008		ah->bmisscount = 0;
   2009	}
   2010
   2011	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
   2012			ah->num_mesh_vifs > 1) ||
   2013			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
   2014		u64 tsf = ath5k_hw_get_tsf64(ah);
   2015		u32 tsftu = TSF_TO_TU(tsf);
   2016		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
   2017		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
   2018		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
   2019			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
   2020			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
   2021	} else /* only one interface */
   2022		vif = ah->bslot[0];
   2023
   2024	if (!vif)
   2025		return;
   2026
   2027	avf = (void *)vif->drv_priv;
   2028	bf = avf->bbuf;
   2029
   2030	/*
   2031	 * Stop any current dma and put the new frame on the queue.
   2032	 * This should never fail since we check above that no frames
   2033	 * are still pending on the queue.
   2034	 */
   2035	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
   2036		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
   2037		/* NB: hw still stops DMA, so proceed */
   2038	}
   2039
   2040	/* refresh the beacon for AP or MESH mode */
   2041	if (ah->opmode == NL80211_IFTYPE_AP ||
   2042	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
   2043		err = ath5k_beacon_update(ah->hw, vif);
   2044		if (err)
   2045			return;
   2046	}
   2047
   2048	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
   2049		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
   2050		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
   2051		return;
   2052	}
   2053
   2054	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
   2055
   2056	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
   2057	ath5k_hw_start_tx_dma(ah, ah->bhalq);
   2058	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
   2059		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
   2060
   2061	skb = ieee80211_get_buffered_bc(ah->hw, vif);
   2062	while (skb) {
   2063		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
   2064
   2065		if (ah->cabq->txq_len >= ah->cabq->txq_max)
   2066			break;
   2067
   2068		skb = ieee80211_get_buffered_bc(ah->hw, vif);
   2069	}
   2070
   2071	ah->bsent++;
   2072}
   2073
   2074/**
   2075 * ath5k_beacon_update_timers - update beacon timers
   2076 *
   2077 * @ah: struct ath5k_hw pointer we are operating on
   2078 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
   2079 *          beacon timer update based on the current HW TSF.
   2080 *
   2081 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
   2082 * of a received beacon or the current local hardware TSF and write it to the
   2083 * beacon timer registers.
   2084 *
   2085 * This is called in a variety of situations, e.g. when a beacon is received,
   2086 * when a TSF update has been detected, but also when an new IBSS is created or
   2087 * when we otherwise know we have to update the timers, but we keep it in this
   2088 * function to have it all together in one place.
   2089 */
   2090void
   2091ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
   2092{
   2093	u32 nexttbtt, intval, hw_tu, bc_tu;
   2094	u64 hw_tsf;
   2095
   2096	intval = ah->bintval & AR5K_BEACON_PERIOD;
   2097	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
   2098		+ ah->num_mesh_vifs > 1) {
   2099		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
   2100		if (intval < 15)
   2101			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
   2102				   intval);
   2103	}
   2104	if (WARN_ON(!intval))
   2105		return;
   2106
   2107	/* beacon TSF converted to TU */
   2108	bc_tu = TSF_TO_TU(bc_tsf);
   2109
   2110	/* current TSF converted to TU */
   2111	hw_tsf = ath5k_hw_get_tsf64(ah);
   2112	hw_tu = TSF_TO_TU(hw_tsf);
   2113
   2114#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
   2115	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
   2116	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
   2117	 * configuration we need to make sure it is bigger than that. */
   2118
   2119	if (bc_tsf == -1) {
   2120		/*
   2121		 * no beacons received, called internally.
   2122		 * just need to refresh timers based on HW TSF.
   2123		 */
   2124		nexttbtt = roundup(hw_tu + FUDGE, intval);
   2125	} else if (bc_tsf == 0) {
   2126		/*
   2127		 * no beacon received, probably called by ath5k_reset_tsf().
   2128		 * reset TSF to start with 0.
   2129		 */
   2130		nexttbtt = intval;
   2131		intval |= AR5K_BEACON_RESET_TSF;
   2132	} else if (bc_tsf > hw_tsf) {
   2133		/*
   2134		 * beacon received, SW merge happened but HW TSF not yet updated.
   2135		 * not possible to reconfigure timers yet, but next time we
   2136		 * receive a beacon with the same BSSID, the hardware will
   2137		 * automatically update the TSF and then we need to reconfigure
   2138		 * the timers.
   2139		 */
   2140		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   2141			"need to wait for HW TSF sync\n");
   2142		return;
   2143	} else {
   2144		/*
   2145		 * most important case for beacon synchronization between STA.
   2146		 *
   2147		 * beacon received and HW TSF has been already updated by HW.
   2148		 * update next TBTT based on the TSF of the beacon, but make
   2149		 * sure it is ahead of our local TSF timer.
   2150		 */
   2151		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
   2152	}
   2153#undef FUDGE
   2154
   2155	ah->nexttbtt = nexttbtt;
   2156
   2157	intval |= AR5K_BEACON_ENA;
   2158	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
   2159
   2160	/*
   2161	 * debugging output last in order to preserve the time critical aspect
   2162	 * of this function
   2163	 */
   2164	if (bc_tsf == -1)
   2165		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   2166			"reconfigured timers based on HW TSF\n");
   2167	else if (bc_tsf == 0)
   2168		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   2169			"reset HW TSF and timers\n");
   2170	else
   2171		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   2172			"updated timers based on beacon TSF\n");
   2173
   2174	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
   2175			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
   2176			  (unsigned long long) bc_tsf,
   2177			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
   2178	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
   2179		intval & AR5K_BEACON_PERIOD,
   2180		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
   2181		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
   2182}
   2183
   2184/**
   2185 * ath5k_beacon_config - Configure the beacon queues and interrupts
   2186 *
   2187 * @ah: struct ath5k_hw pointer we are operating on
   2188 *
   2189 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
   2190 * interrupts to detect TSF updates only.
   2191 */
   2192void
   2193ath5k_beacon_config(struct ath5k_hw *ah)
   2194{
   2195	spin_lock_bh(&ah->block);
   2196	ah->bmisscount = 0;
   2197	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
   2198
   2199	if (ah->enable_beacon) {
   2200		/*
   2201		 * In IBSS mode we use a self-linked tx descriptor and let the
   2202		 * hardware send the beacons automatically. We have to load it
   2203		 * only once here.
   2204		 * We use the SWBA interrupt only to keep track of the beacon
   2205		 * timers in order to detect automatic TSF updates.
   2206		 */
   2207		ath5k_beaconq_config(ah);
   2208
   2209		ah->imask |= AR5K_INT_SWBA;
   2210
   2211		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
   2212			if (ath5k_hw_hasveol(ah))
   2213				ath5k_beacon_send(ah);
   2214		} else
   2215			ath5k_beacon_update_timers(ah, -1);
   2216	} else {
   2217		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
   2218	}
   2219
   2220	ath5k_hw_set_imr(ah, ah->imask);
   2221	spin_unlock_bh(&ah->block);
   2222}
   2223
   2224static void ath5k_tasklet_beacon(struct tasklet_struct *t)
   2225{
   2226	struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
   2227
   2228	/*
   2229	 * Software beacon alert--time to send a beacon.
   2230	 *
   2231	 * In IBSS mode we use this interrupt just to
   2232	 * keep track of the next TBTT (target beacon
   2233	 * transmission time) in order to detect whether
   2234	 * automatic TSF updates happened.
   2235	 */
   2236	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
   2237		/* XXX: only if VEOL supported */
   2238		u64 tsf = ath5k_hw_get_tsf64(ah);
   2239		ah->nexttbtt += ah->bintval;
   2240		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
   2241				"SWBA nexttbtt: %x hw_tu: %x "
   2242				"TSF: %llx\n",
   2243				ah->nexttbtt,
   2244				TSF_TO_TU(tsf),
   2245				(unsigned long long) tsf);
   2246	} else {
   2247		spin_lock(&ah->block);
   2248		ath5k_beacon_send(ah);
   2249		spin_unlock(&ah->block);
   2250	}
   2251}
   2252
   2253
   2254/********************\
   2255* Interrupt handling *
   2256\********************/
   2257
   2258static void
   2259ath5k_intr_calibration_poll(struct ath5k_hw *ah)
   2260{
   2261	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
   2262	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
   2263	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
   2264
   2265		/* Run ANI only when calibration is not active */
   2266
   2267		ah->ah_cal_next_ani = jiffies +
   2268			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
   2269		tasklet_schedule(&ah->ani_tasklet);
   2270
   2271	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
   2272		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
   2273		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
   2274
   2275		/* Run calibration only when another calibration
   2276		 * is not running.
   2277		 *
   2278		 * Note: This is for both full/short calibration,
   2279		 * if it's time for a full one, ath5k_calibrate_work will deal
   2280		 * with it. */
   2281
   2282		ah->ah_cal_next_short = jiffies +
   2283			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
   2284		ieee80211_queue_work(ah->hw, &ah->calib_work);
   2285	}
   2286	/* we could use SWI to generate enough interrupts to meet our
   2287	 * calibration interval requirements, if necessary:
   2288	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
   2289}
   2290
   2291static void
   2292ath5k_schedule_rx(struct ath5k_hw *ah)
   2293{
   2294	ah->rx_pending = true;
   2295	tasklet_schedule(&ah->rxtq);
   2296}
   2297
   2298static void
   2299ath5k_schedule_tx(struct ath5k_hw *ah)
   2300{
   2301	ah->tx_pending = true;
   2302	tasklet_schedule(&ah->txtq);
   2303}
   2304
   2305static irqreturn_t
   2306ath5k_intr(int irq, void *dev_id)
   2307{
   2308	struct ath5k_hw *ah = dev_id;
   2309	enum ath5k_int status;
   2310	unsigned int counter = 1000;
   2311
   2312
   2313	/*
   2314	 * If hw is not ready (or detached) and we get an
   2315	 * interrupt, or if we have no interrupts pending
   2316	 * (that means it's not for us) skip it.
   2317	 *
   2318	 * NOTE: Group 0/1 PCI interface registers are not
   2319	 * supported on WiSOCs, so we can't check for pending
   2320	 * interrupts (ISR belongs to another register group
   2321	 * so we are ok).
   2322	 */
   2323	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
   2324			((ath5k_get_bus_type(ah) != ATH_AHB) &&
   2325			!ath5k_hw_is_intr_pending(ah))))
   2326		return IRQ_NONE;
   2327
   2328	/** Main loop **/
   2329	do {
   2330		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
   2331
   2332		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
   2333				status, ah->imask);
   2334
   2335		/*
   2336		 * Fatal hw error -> Log and reset
   2337		 *
   2338		 * Fatal errors are unrecoverable so we have to
   2339		 * reset the card. These errors include bus and
   2340		 * dma errors.
   2341		 */
   2342		if (unlikely(status & AR5K_INT_FATAL)) {
   2343
   2344			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   2345				  "fatal int, resetting\n");
   2346			ieee80211_queue_work(ah->hw, &ah->reset_work);
   2347
   2348		/*
   2349		 * RX Overrun -> Count and reset if needed
   2350		 *
   2351		 * Receive buffers are full. Either the bus is busy or
   2352		 * the CPU is not fast enough to process all received
   2353		 * frames.
   2354		 */
   2355		} else if (unlikely(status & AR5K_INT_RXORN)) {
   2356
   2357			/*
   2358			 * Older chipsets need a reset to come out of this
   2359			 * condition, but we treat it as RX for newer chips.
   2360			 * We don't know exactly which versions need a reset
   2361			 * this guess is copied from the HAL.
   2362			 */
   2363			ah->stats.rxorn_intr++;
   2364
   2365			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
   2366				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   2367					  "rx overrun, resetting\n");
   2368				ieee80211_queue_work(ah->hw, &ah->reset_work);
   2369			} else
   2370				ath5k_schedule_rx(ah);
   2371
   2372		} else {
   2373
   2374			/* Software Beacon Alert -> Schedule beacon tasklet */
   2375			if (status & AR5K_INT_SWBA)
   2376				tasklet_hi_schedule(&ah->beacontq);
   2377
   2378			/*
   2379			 * No more RX descriptors -> Just count
   2380			 *
   2381			 * NB: the hardware should re-read the link when
   2382			 *     RXE bit is written, but it doesn't work at
   2383			 *     least on older hardware revs.
   2384			 */
   2385			if (status & AR5K_INT_RXEOL)
   2386				ah->stats.rxeol_intr++;
   2387
   2388
   2389			/* TX Underrun -> Bump tx trigger level */
   2390			if (status & AR5K_INT_TXURN)
   2391				ath5k_hw_update_tx_triglevel(ah, true);
   2392
   2393			/* RX -> Schedule rx tasklet */
   2394			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
   2395				ath5k_schedule_rx(ah);
   2396
   2397			/* TX -> Schedule tx tasklet */
   2398			if (status & (AR5K_INT_TXOK
   2399					| AR5K_INT_TXDESC
   2400					| AR5K_INT_TXERR
   2401					| AR5K_INT_TXEOL))
   2402				ath5k_schedule_tx(ah);
   2403
   2404			/* Missed beacon -> TODO
   2405			if (status & AR5K_INT_BMISS)
   2406			*/
   2407
   2408			/* MIB event -> Update counters and notify ANI */
   2409			if (status & AR5K_INT_MIB) {
   2410				ah->stats.mib_intr++;
   2411				ath5k_hw_update_mib_counters(ah);
   2412				ath5k_ani_mib_intr(ah);
   2413			}
   2414
   2415			/* GPIO -> Notify RFKill layer */
   2416			if (status & AR5K_INT_GPIO)
   2417				tasklet_schedule(&ah->rf_kill.toggleq);
   2418
   2419		}
   2420
   2421		if (ath5k_get_bus_type(ah) == ATH_AHB)
   2422			break;
   2423
   2424	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
   2425
   2426	/*
   2427	 * Until we handle rx/tx interrupts mask them on IMR
   2428	 *
   2429	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
   2430	 * and unset after we 've handled the interrupts.
   2431	 */
   2432	if (ah->rx_pending || ah->tx_pending)
   2433		ath5k_set_current_imask(ah);
   2434
   2435	if (unlikely(!counter))
   2436		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
   2437
   2438	/* Fire up calibration poll */
   2439	ath5k_intr_calibration_poll(ah);
   2440
   2441	return IRQ_HANDLED;
   2442}
   2443
   2444/*
   2445 * Periodically recalibrate the PHY to account
   2446 * for temperature/environment changes.
   2447 */
   2448static void
   2449ath5k_calibrate_work(struct work_struct *work)
   2450{
   2451	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
   2452		calib_work);
   2453
   2454	/* Should we run a full calibration ? */
   2455	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
   2456
   2457		ah->ah_cal_next_full = jiffies +
   2458			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
   2459		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
   2460
   2461		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
   2462				"running full calibration\n");
   2463
   2464		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
   2465			/*
   2466			 * Rfgain is out of bounds, reset the chip
   2467			 * to load new gain values.
   2468			 */
   2469			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   2470					"got new rfgain, resetting\n");
   2471			ieee80211_queue_work(ah->hw, &ah->reset_work);
   2472		}
   2473	} else
   2474		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
   2475
   2476
   2477	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
   2478		ieee80211_frequency_to_channel(ah->curchan->center_freq),
   2479		ah->curchan->hw_value);
   2480
   2481	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
   2482		ATH5K_ERR(ah, "calibration of channel %u failed\n",
   2483			ieee80211_frequency_to_channel(
   2484				ah->curchan->center_freq));
   2485
   2486	/* Clear calibration flags */
   2487	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
   2488		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
   2489	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
   2490		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
   2491}
   2492
   2493
   2494static void
   2495ath5k_tasklet_ani(struct tasklet_struct *t)
   2496{
   2497	struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
   2498
   2499	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
   2500	ath5k_ani_calibration(ah);
   2501	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
   2502}
   2503
   2504
   2505static void
   2506ath5k_tx_complete_poll_work(struct work_struct *work)
   2507{
   2508	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
   2509			tx_complete_work.work);
   2510	struct ath5k_txq *txq;
   2511	int i;
   2512	bool needreset = false;
   2513
   2514	if (!test_bit(ATH_STAT_STARTED, ah->status))
   2515		return;
   2516
   2517	mutex_lock(&ah->lock);
   2518
   2519	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
   2520		if (ah->txqs[i].setup) {
   2521			txq = &ah->txqs[i];
   2522			spin_lock_bh(&txq->lock);
   2523			if (txq->txq_len > 1) {
   2524				if (txq->txq_poll_mark) {
   2525					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
   2526						  "TX queue stuck %d\n",
   2527						  txq->qnum);
   2528					needreset = true;
   2529					txq->txq_stuck++;
   2530					spin_unlock_bh(&txq->lock);
   2531					break;
   2532				} else {
   2533					txq->txq_poll_mark = true;
   2534				}
   2535			}
   2536			spin_unlock_bh(&txq->lock);
   2537		}
   2538	}
   2539
   2540	if (needreset) {
   2541		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   2542			  "TX queues stuck, resetting\n");
   2543		ath5k_reset(ah, NULL, true);
   2544	}
   2545
   2546	mutex_unlock(&ah->lock);
   2547
   2548	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
   2549		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
   2550}
   2551
   2552
   2553/*************************\
   2554* Initialization routines *
   2555\*************************/
   2556
   2557static const struct ieee80211_iface_limit if_limits[] = {
   2558	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
   2559	{ .max = 4,	.types =
   2560#ifdef CONFIG_MAC80211_MESH
   2561				 BIT(NL80211_IFTYPE_MESH_POINT) |
   2562#endif
   2563				 BIT(NL80211_IFTYPE_AP) },
   2564};
   2565
   2566static const struct ieee80211_iface_combination if_comb = {
   2567	.limits = if_limits,
   2568	.n_limits = ARRAY_SIZE(if_limits),
   2569	.max_interfaces = 2048,
   2570	.num_different_channels = 1,
   2571};
   2572
   2573int
   2574ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
   2575{
   2576	struct ieee80211_hw *hw = ah->hw;
   2577	struct ath_common *common;
   2578	int ret;
   2579	int csz;
   2580
   2581	/* Initialize driver private data */
   2582	SET_IEEE80211_DEV(hw, ah->dev);
   2583	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
   2584	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
   2585	ieee80211_hw_set(hw, MFP_CAPABLE);
   2586	ieee80211_hw_set(hw, SIGNAL_DBM);
   2587	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
   2588	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
   2589
   2590	hw->wiphy->interface_modes =
   2591		BIT(NL80211_IFTYPE_AP) |
   2592		BIT(NL80211_IFTYPE_STATION) |
   2593		BIT(NL80211_IFTYPE_ADHOC) |
   2594		BIT(NL80211_IFTYPE_MESH_POINT);
   2595
   2596	hw->wiphy->iface_combinations = &if_comb;
   2597	hw->wiphy->n_iface_combinations = 1;
   2598
   2599	/* SW support for IBSS_RSN is provided by mac80211 */
   2600	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
   2601
   2602	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
   2603
   2604	/* both antennas can be configured as RX or TX */
   2605	hw->wiphy->available_antennas_tx = 0x3;
   2606	hw->wiphy->available_antennas_rx = 0x3;
   2607
   2608	hw->extra_tx_headroom = 2;
   2609
   2610	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
   2611
   2612	/*
   2613	 * Mark the device as detached to avoid processing
   2614	 * interrupts until setup is complete.
   2615	 */
   2616	__set_bit(ATH_STAT_INVALID, ah->status);
   2617
   2618	ah->opmode = NL80211_IFTYPE_STATION;
   2619	ah->bintval = 1000;
   2620	mutex_init(&ah->lock);
   2621	spin_lock_init(&ah->rxbuflock);
   2622	spin_lock_init(&ah->txbuflock);
   2623	spin_lock_init(&ah->block);
   2624	spin_lock_init(&ah->irqlock);
   2625
   2626	/* Setup interrupt handler */
   2627	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
   2628	if (ret) {
   2629		ATH5K_ERR(ah, "request_irq failed\n");
   2630		goto err;
   2631	}
   2632
   2633	common = ath5k_hw_common(ah);
   2634	common->ops = &ath5k_common_ops;
   2635	common->bus_ops = bus_ops;
   2636	common->ah = ah;
   2637	common->hw = hw;
   2638	common->priv = ah;
   2639	common->clockrate = 40;
   2640
   2641	/*
   2642	 * Cache line size is used to size and align various
   2643	 * structures used to communicate with the hardware.
   2644	 */
   2645	ath5k_read_cachesize(common, &csz);
   2646	common->cachelsz = csz << 2; /* convert to bytes */
   2647
   2648	spin_lock_init(&common->cc_lock);
   2649
   2650	/* Initialize device */
   2651	ret = ath5k_hw_init(ah);
   2652	if (ret)
   2653		goto err_irq;
   2654
   2655	/* Set up multi-rate retry capabilities */
   2656	if (ah->ah_capabilities.cap_has_mrr_support) {
   2657		hw->max_rates = 4;
   2658		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
   2659					 AR5K_INIT_RETRY_LONG);
   2660	}
   2661
   2662	hw->vif_data_size = sizeof(struct ath5k_vif);
   2663
   2664	/* Finish private driver data initialization */
   2665	ret = ath5k_init(hw);
   2666	if (ret)
   2667		goto err_ah;
   2668
   2669	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
   2670			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
   2671					ah->ah_mac_srev,
   2672					ah->ah_phy_revision);
   2673
   2674	if (!ah->ah_single_chip) {
   2675		/* Single chip radio (!RF5111) */
   2676		if (ah->ah_radio_5ghz_revision &&
   2677			!ah->ah_radio_2ghz_revision) {
   2678			/* No 5GHz support -> report 2GHz radio */
   2679			if (!test_bit(AR5K_MODE_11A,
   2680				ah->ah_capabilities.cap_mode)) {
   2681				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
   2682					ath5k_chip_name(AR5K_VERSION_RAD,
   2683						ah->ah_radio_5ghz_revision),
   2684						ah->ah_radio_5ghz_revision);
   2685			/* No 2GHz support (5110 and some
   2686			 * 5GHz only cards) -> report 5GHz radio */
   2687			} else if (!test_bit(AR5K_MODE_11B,
   2688				ah->ah_capabilities.cap_mode)) {
   2689				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
   2690					ath5k_chip_name(AR5K_VERSION_RAD,
   2691						ah->ah_radio_5ghz_revision),
   2692						ah->ah_radio_5ghz_revision);
   2693			/* Multiband radio */
   2694			} else {
   2695				ATH5K_INFO(ah, "RF%s multiband radio found"
   2696					" (0x%x)\n",
   2697					ath5k_chip_name(AR5K_VERSION_RAD,
   2698						ah->ah_radio_5ghz_revision),
   2699						ah->ah_radio_5ghz_revision);
   2700			}
   2701		}
   2702		/* Multi chip radio (RF5111 - RF2111) ->
   2703		 * report both 2GHz/5GHz radios */
   2704		else if (ah->ah_radio_5ghz_revision &&
   2705				ah->ah_radio_2ghz_revision) {
   2706			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
   2707				ath5k_chip_name(AR5K_VERSION_RAD,
   2708					ah->ah_radio_5ghz_revision),
   2709					ah->ah_radio_5ghz_revision);
   2710			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
   2711				ath5k_chip_name(AR5K_VERSION_RAD,
   2712					ah->ah_radio_2ghz_revision),
   2713					ah->ah_radio_2ghz_revision);
   2714		}
   2715	}
   2716
   2717	ath5k_debug_init_device(ah);
   2718
   2719	/* ready to process interrupts */
   2720	__clear_bit(ATH_STAT_INVALID, ah->status);
   2721
   2722	return 0;
   2723err_ah:
   2724	ath5k_hw_deinit(ah);
   2725err_irq:
   2726	free_irq(ah->irq, ah);
   2727err:
   2728	return ret;
   2729}
   2730
   2731static int
   2732ath5k_stop_locked(struct ath5k_hw *ah)
   2733{
   2734
   2735	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
   2736			test_bit(ATH_STAT_INVALID, ah->status));
   2737
   2738	/*
   2739	 * Shutdown the hardware and driver:
   2740	 *    stop output from above
   2741	 *    disable interrupts
   2742	 *    turn off timers
   2743	 *    turn off the radio
   2744	 *    clear transmit machinery
   2745	 *    clear receive machinery
   2746	 *    drain and release tx queues
   2747	 *    reclaim beacon resources
   2748	 *    power down hardware
   2749	 *
   2750	 * Note that some of this work is not possible if the
   2751	 * hardware is gone (invalid).
   2752	 */
   2753	ieee80211_stop_queues(ah->hw);
   2754
   2755	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
   2756		ath5k_led_off(ah);
   2757		ath5k_hw_set_imr(ah, 0);
   2758		synchronize_irq(ah->irq);
   2759		ath5k_rx_stop(ah);
   2760		ath5k_hw_dma_stop(ah);
   2761		ath5k_drain_tx_buffs(ah);
   2762		ath5k_hw_phy_disable(ah);
   2763	}
   2764
   2765	return 0;
   2766}
   2767
   2768int ath5k_start(struct ieee80211_hw *hw)
   2769{
   2770	struct ath5k_hw *ah = hw->priv;
   2771	struct ath_common *common = ath5k_hw_common(ah);
   2772	int ret, i;
   2773
   2774	mutex_lock(&ah->lock);
   2775
   2776	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
   2777
   2778	/*
   2779	 * Stop anything previously setup.  This is safe
   2780	 * no matter this is the first time through or not.
   2781	 */
   2782	ath5k_stop_locked(ah);
   2783
   2784	/*
   2785	 * The basic interface to setting the hardware in a good
   2786	 * state is ``reset''.  On return the hardware is known to
   2787	 * be powered up and with interrupts disabled.  This must
   2788	 * be followed by initialization of the appropriate bits
   2789	 * and then setup of the interrupt mask.
   2790	 */
   2791	ah->curchan = ah->hw->conf.chandef.chan;
   2792	ah->imask = AR5K_INT_RXOK
   2793		| AR5K_INT_RXERR
   2794		| AR5K_INT_RXEOL
   2795		| AR5K_INT_RXORN
   2796		| AR5K_INT_TXDESC
   2797		| AR5K_INT_TXEOL
   2798		| AR5K_INT_FATAL
   2799		| AR5K_INT_GLOBAL
   2800		| AR5K_INT_MIB;
   2801
   2802	ret = ath5k_reset(ah, NULL, false);
   2803	if (ret)
   2804		goto done;
   2805
   2806	if (!ath5k_modparam_no_hw_rfkill_switch)
   2807		ath5k_rfkill_hw_start(ah);
   2808
   2809	/*
   2810	 * Reset the key cache since some parts do not reset the
   2811	 * contents on initial power up or resume from suspend.
   2812	 */
   2813	for (i = 0; i < common->keymax; i++)
   2814		ath_hw_keyreset(common, (u16) i);
   2815
   2816	/* Use higher rates for acks instead of base
   2817	 * rate */
   2818	ah->ah_ack_bitrate_high = true;
   2819
   2820	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
   2821		ah->bslot[i] = NULL;
   2822
   2823	ret = 0;
   2824done:
   2825	mutex_unlock(&ah->lock);
   2826
   2827	set_bit(ATH_STAT_STARTED, ah->status);
   2828	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
   2829			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
   2830
   2831	return ret;
   2832}
   2833
   2834static void ath5k_stop_tasklets(struct ath5k_hw *ah)
   2835{
   2836	ah->rx_pending = false;
   2837	ah->tx_pending = false;
   2838	tasklet_kill(&ah->rxtq);
   2839	tasklet_kill(&ah->txtq);
   2840	tasklet_kill(&ah->beacontq);
   2841	tasklet_kill(&ah->ani_tasklet);
   2842}
   2843
   2844/*
   2845 * Stop the device, grabbing the top-level lock to protect
   2846 * against concurrent entry through ath5k_init (which can happen
   2847 * if another thread does a system call and the thread doing the
   2848 * stop is preempted).
   2849 */
   2850void ath5k_stop(struct ieee80211_hw *hw)
   2851{
   2852	struct ath5k_hw *ah = hw->priv;
   2853	int ret;
   2854
   2855	mutex_lock(&ah->lock);
   2856	ret = ath5k_stop_locked(ah);
   2857	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
   2858		/*
   2859		 * Don't set the card in full sleep mode!
   2860		 *
   2861		 * a) When the device is in this state it must be carefully
   2862		 * woken up or references to registers in the PCI clock
   2863		 * domain may freeze the bus (and system).  This varies
   2864		 * by chip and is mostly an issue with newer parts
   2865		 * (madwifi sources mentioned srev >= 0x78) that go to
   2866		 * sleep more quickly.
   2867		 *
   2868		 * b) On older chips full sleep results a weird behaviour
   2869		 * during wakeup. I tested various cards with srev < 0x78
   2870		 * and they don't wake up after module reload, a second
   2871		 * module reload is needed to bring the card up again.
   2872		 *
   2873		 * Until we figure out what's going on don't enable
   2874		 * full chip reset on any chip (this is what Legacy HAL
   2875		 * and Sam's HAL do anyway). Instead Perform a full reset
   2876		 * on the device (same as initial state after attach) and
   2877		 * leave it idle (keep MAC/BB on warm reset) */
   2878		ret = ath5k_hw_on_hold(ah);
   2879
   2880		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   2881				"putting device to sleep\n");
   2882	}
   2883
   2884	mutex_unlock(&ah->lock);
   2885
   2886	ath5k_stop_tasklets(ah);
   2887
   2888	clear_bit(ATH_STAT_STARTED, ah->status);
   2889	cancel_delayed_work_sync(&ah->tx_complete_work);
   2890
   2891	if (!ath5k_modparam_no_hw_rfkill_switch)
   2892		ath5k_rfkill_hw_stop(ah);
   2893}
   2894
   2895/*
   2896 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
   2897 * and change to the given channel.
   2898 *
   2899 * This should be called with ah->lock.
   2900 */
   2901static int
   2902ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
   2903							bool skip_pcu)
   2904{
   2905	struct ath_common *common = ath5k_hw_common(ah);
   2906	int ret, ani_mode;
   2907	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
   2908
   2909	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
   2910
   2911	__set_bit(ATH_STAT_RESET, ah->status);
   2912
   2913	ath5k_hw_set_imr(ah, 0);
   2914	synchronize_irq(ah->irq);
   2915	ath5k_stop_tasklets(ah);
   2916
   2917	/* Save ani mode and disable ANI during
   2918	 * reset. If we don't we might get false
   2919	 * PHY error interrupts. */
   2920	ani_mode = ah->ani_state.ani_mode;
   2921	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
   2922
   2923	/* We are going to empty hw queues
   2924	 * so we should also free any remaining
   2925	 * tx buffers */
   2926	ath5k_drain_tx_buffs(ah);
   2927
   2928	/* Stop PCU */
   2929	ath5k_hw_stop_rx_pcu(ah);
   2930
   2931	/* Stop DMA
   2932	 *
   2933	 * Note: If DMA didn't stop continue
   2934	 * since only a reset will fix it.
   2935	 */
   2936	ret = ath5k_hw_dma_stop(ah);
   2937
   2938	/* RF Bus grant won't work if we have pending
   2939	 * frames
   2940	 */
   2941	if (ret && fast) {
   2942		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
   2943			  "DMA didn't stop, falling back to normal reset\n");
   2944		fast = false;
   2945	}
   2946
   2947	if (chan)
   2948		ah->curchan = chan;
   2949
   2950	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
   2951	if (ret) {
   2952		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
   2953		goto err;
   2954	}
   2955
   2956	ret = ath5k_rx_start(ah);
   2957	if (ret) {
   2958		ATH5K_ERR(ah, "can't start recv logic\n");
   2959		goto err;
   2960	}
   2961
   2962	ath5k_ani_init(ah, ani_mode);
   2963
   2964	/*
   2965	 * Set calibration intervals
   2966	 *
   2967	 * Note: We don't need to run calibration imediately
   2968	 * since some initial calibration is done on reset
   2969	 * even for fast channel switching. Also on scanning
   2970	 * this will get set again and again and it won't get
   2971	 * executed unless we connect somewhere and spend some
   2972	 * time on the channel (that's what calibration needs
   2973	 * anyway to be accurate).
   2974	 */
   2975	ah->ah_cal_next_full = jiffies +
   2976		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
   2977	ah->ah_cal_next_ani = jiffies +
   2978		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
   2979	ah->ah_cal_next_short = jiffies +
   2980		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
   2981
   2982	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
   2983
   2984	/* clear survey data and cycle counters */
   2985	memset(&ah->survey, 0, sizeof(ah->survey));
   2986	spin_lock_bh(&common->cc_lock);
   2987	ath_hw_cycle_counters_update(common);
   2988	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
   2989	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
   2990	spin_unlock_bh(&common->cc_lock);
   2991
   2992	/*
   2993	 * Change channels and update the h/w rate map if we're switching;
   2994	 * e.g. 11a to 11b/g.
   2995	 *
   2996	 * We may be doing a reset in response to an ioctl that changes the
   2997	 * channel so update any state that might change as a result.
   2998	 *
   2999	 * XXX needed?
   3000	 */
   3001/*	ath5k_chan_change(ah, c); */
   3002
   3003	__clear_bit(ATH_STAT_RESET, ah->status);
   3004
   3005	ath5k_beacon_config(ah);
   3006	/* intrs are enabled by ath5k_beacon_config */
   3007
   3008	ieee80211_wake_queues(ah->hw);
   3009
   3010	return 0;
   3011err:
   3012	return ret;
   3013}
   3014
   3015static void ath5k_reset_work(struct work_struct *work)
   3016{
   3017	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
   3018		reset_work);
   3019
   3020	mutex_lock(&ah->lock);
   3021	ath5k_reset(ah, NULL, true);
   3022	mutex_unlock(&ah->lock);
   3023}
   3024
   3025static int
   3026ath5k_init(struct ieee80211_hw *hw)
   3027{
   3028
   3029	struct ath5k_hw *ah = hw->priv;
   3030	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
   3031	struct ath5k_txq *txq;
   3032	u8 mac[ETH_ALEN] = {};
   3033	int ret;
   3034
   3035
   3036	/*
   3037	 * Collect the channel list.  The 802.11 layer
   3038	 * is responsible for filtering this list based
   3039	 * on settings like the phy mode and regulatory
   3040	 * domain restrictions.
   3041	 */
   3042	ret = ath5k_setup_bands(hw);
   3043	if (ret) {
   3044		ATH5K_ERR(ah, "can't get channels\n");
   3045		goto err;
   3046	}
   3047
   3048	/*
   3049	 * Allocate tx+rx descriptors and populate the lists.
   3050	 */
   3051	ret = ath5k_desc_alloc(ah);
   3052	if (ret) {
   3053		ATH5K_ERR(ah, "can't allocate descriptors\n");
   3054		goto err;
   3055	}
   3056
   3057	/*
   3058	 * Allocate hardware transmit queues: one queue for
   3059	 * beacon frames and one data queue for each QoS
   3060	 * priority.  Note that hw functions handle resetting
   3061	 * these queues at the needed time.
   3062	 */
   3063	ret = ath5k_beaconq_setup(ah);
   3064	if (ret < 0) {
   3065		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
   3066		goto err_desc;
   3067	}
   3068	ah->bhalq = ret;
   3069	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
   3070	if (IS_ERR(ah->cabq)) {
   3071		ATH5K_ERR(ah, "can't setup cab queue\n");
   3072		ret = PTR_ERR(ah->cabq);
   3073		goto err_bhal;
   3074	}
   3075
   3076	/* 5211 and 5212 usually support 10 queues but we better rely on the
   3077	 * capability information */
   3078	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
   3079		/* This order matches mac80211's queue priority, so we can
   3080		* directly use the mac80211 queue number without any mapping */
   3081		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
   3082		if (IS_ERR(txq)) {
   3083			ATH5K_ERR(ah, "can't setup xmit queue\n");
   3084			ret = PTR_ERR(txq);
   3085			goto err_queues;
   3086		}
   3087		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
   3088		if (IS_ERR(txq)) {
   3089			ATH5K_ERR(ah, "can't setup xmit queue\n");
   3090			ret = PTR_ERR(txq);
   3091			goto err_queues;
   3092		}
   3093		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
   3094		if (IS_ERR(txq)) {
   3095			ATH5K_ERR(ah, "can't setup xmit queue\n");
   3096			ret = PTR_ERR(txq);
   3097			goto err_queues;
   3098		}
   3099		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
   3100		if (IS_ERR(txq)) {
   3101			ATH5K_ERR(ah, "can't setup xmit queue\n");
   3102			ret = PTR_ERR(txq);
   3103			goto err_queues;
   3104		}
   3105		hw->queues = 4;
   3106	} else {
   3107		/* older hardware (5210) can only support one data queue */
   3108		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
   3109		if (IS_ERR(txq)) {
   3110			ATH5K_ERR(ah, "can't setup xmit queue\n");
   3111			ret = PTR_ERR(txq);
   3112			goto err_queues;
   3113		}
   3114		hw->queues = 1;
   3115	}
   3116
   3117	tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
   3118	tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
   3119	tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
   3120	tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
   3121
   3122	INIT_WORK(&ah->reset_work, ath5k_reset_work);
   3123	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
   3124	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
   3125
   3126	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
   3127	if (ret) {
   3128		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
   3129		goto err_queues;
   3130	}
   3131
   3132	SET_IEEE80211_PERM_ADDR(hw, mac);
   3133	/* All MAC address bits matter for ACKs */
   3134	ath5k_update_bssid_mask_and_opmode(ah, NULL);
   3135
   3136	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
   3137	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
   3138	if (ret) {
   3139		ATH5K_ERR(ah, "can't initialize regulatory system\n");
   3140		goto err_queues;
   3141	}
   3142
   3143	ret = ieee80211_register_hw(hw);
   3144	if (ret) {
   3145		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
   3146		goto err_queues;
   3147	}
   3148
   3149	if (!ath_is_world_regd(regulatory))
   3150		regulatory_hint(hw->wiphy, regulatory->alpha2);
   3151
   3152	ath5k_init_leds(ah);
   3153
   3154	ath5k_sysfs_register(ah);
   3155
   3156	return 0;
   3157err_queues:
   3158	ath5k_txq_release(ah);
   3159err_bhal:
   3160	ath5k_hw_release_tx_queue(ah, ah->bhalq);
   3161err_desc:
   3162	ath5k_desc_free(ah);
   3163err:
   3164	return ret;
   3165}
   3166
   3167void
   3168ath5k_deinit_ah(struct ath5k_hw *ah)
   3169{
   3170	struct ieee80211_hw *hw = ah->hw;
   3171
   3172	/*
   3173	 * NB: the order of these is important:
   3174	 * o call the 802.11 layer before detaching ath5k_hw to
   3175	 *   ensure callbacks into the driver to delete global
   3176	 *   key cache entries can be handled
   3177	 * o reclaim the tx queue data structures after calling
   3178	 *   the 802.11 layer as we'll get called back to reclaim
   3179	 *   node state and potentially want to use them
   3180	 * o to cleanup the tx queues the hal is called, so detach
   3181	 *   it last
   3182	 * XXX: ??? detach ath5k_hw ???
   3183	 * Other than that, it's straightforward...
   3184	 */
   3185	ieee80211_unregister_hw(hw);
   3186	ath5k_desc_free(ah);
   3187	ath5k_txq_release(ah);
   3188	ath5k_hw_release_tx_queue(ah, ah->bhalq);
   3189	ath5k_unregister_leds(ah);
   3190
   3191	ath5k_sysfs_unregister(ah);
   3192	/*
   3193	 * NB: can't reclaim these until after ieee80211_ifdetach
   3194	 * returns because we'll get called back to reclaim node
   3195	 * state and potentially want to use them.
   3196	 */
   3197	ath5k_hw_deinit(ah);
   3198	free_irq(ah->irq, ah);
   3199}
   3200
   3201bool
   3202ath5k_any_vif_assoc(struct ath5k_hw *ah)
   3203{
   3204	struct ath5k_vif_iter_data iter_data;
   3205	iter_data.hw_macaddr = NULL;
   3206	iter_data.any_assoc = false;
   3207	iter_data.need_set_hw_addr = false;
   3208	iter_data.found_active = true;
   3209
   3210	ieee80211_iterate_active_interfaces_atomic(
   3211		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
   3212		ath5k_vif_iter, &iter_data);
   3213	return iter_data.any_assoc;
   3214}
   3215
   3216void
   3217ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
   3218{
   3219	struct ath5k_hw *ah = hw->priv;
   3220	u32 rfilt;
   3221	rfilt = ath5k_hw_get_rx_filter(ah);
   3222	if (enable)
   3223		rfilt |= AR5K_RX_FILTER_BEACON;
   3224	else
   3225		rfilt &= ~AR5K_RX_FILTER_BEACON;
   3226	ath5k_hw_set_rx_filter(ah, rfilt);
   3227	ah->filter_flags = rfilt;
   3228}
   3229
   3230void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
   3231		   const char *fmt, ...)
   3232{
   3233	struct va_format vaf;
   3234	va_list args;
   3235
   3236	va_start(args, fmt);
   3237
   3238	vaf.fmt = fmt;
   3239	vaf.va = &args;
   3240
   3241	if (ah && ah->hw)
   3242		printk("%s" pr_fmt("%s: %pV"),
   3243		       level, wiphy_name(ah->hw->wiphy), &vaf);
   3244	else
   3245		printk("%s" pr_fmt("%pV"), level, &vaf);
   3246
   3247	va_end(args);
   3248}