phy.c (110491B)
1/* 2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 */ 20 21/***********************\ 22* PHY related functions * 23\***********************/ 24 25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27#include <linux/delay.h> 28#include <linux/slab.h> 29#include <asm/unaligned.h> 30 31#include "ath5k.h" 32#include "reg.h" 33#include "rfbuffer.h" 34#include "rfgain.h" 35#include "../regd.h" 36 37 38/** 39 * DOC: PHY related functions 40 * 41 * Here we handle the low-level functions related to baseband 42 * and analog frontend (RF) parts. This is by far the most complex 43 * part of the hw code so make sure you know what you are doing. 44 * 45 * Here is a list of what this is all about: 46 * 47 * - Channel setting/switching 48 * 49 * - Automatic Gain Control (AGC) calibration 50 * 51 * - Noise Floor calibration 52 * 53 * - I/Q imbalance calibration (QAM correction) 54 * 55 * - Calibration due to thermal changes (gain_F) 56 * 57 * - Spur noise mitigation 58 * 59 * - RF/PHY initialization for the various operating modes and bwmodes 60 * 61 * - Antenna control 62 * 63 * - TX power control per channel/rate/packet type 64 * 65 * Also have in mind we never got documentation for most of these 66 * functions, what we have comes mostly from Atheros's code, reverse 67 * engineering and patent docs/presentations etc. 68 */ 69 70 71/******************\ 72* Helper functions * 73\******************/ 74 75/** 76 * ath5k_hw_radio_revision() - Get the PHY Chip revision 77 * @ah: The &struct ath5k_hw 78 * @band: One of enum nl80211_band 79 * 80 * Returns the revision number of a 2GHz, 5GHz or single chip 81 * radio. 82 */ 83u16 84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band) 85{ 86 unsigned int i; 87 u32 srev; 88 u16 ret; 89 90 /* 91 * Set the radio chip access register 92 */ 93 switch (band) { 94 case NL80211_BAND_2GHZ: 95 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); 96 break; 97 case NL80211_BAND_5GHZ: 98 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 99 break; 100 default: 101 return 0; 102 } 103 104 usleep_range(2000, 2500); 105 106 /* ...wait until PHY is ready and read the selected radio revision */ 107 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); 108 109 for (i = 0; i < 8; i++) 110 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); 111 112 if (ah->ah_version == AR5K_AR5210) { 113 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf; 114 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; 115 } else { 116 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; 117 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | 118 ((srev & 0x0f) << 4), 8); 119 } 120 121 /* Reset to the 5GHz mode */ 122 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 123 124 return ret; 125} 126 127/** 128 * ath5k_channel_ok() - Check if a channel is supported by the hw 129 * @ah: The &struct ath5k_hw 130 * @channel: The &struct ieee80211_channel 131 * 132 * Note: We don't do any regulatory domain checks here, it's just 133 * a sanity check. 134 */ 135bool 136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) 137{ 138 u16 freq = channel->center_freq; 139 140 /* Check if the channel is in our supported range */ 141 if (channel->band == NL80211_BAND_2GHZ) { 142 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && 143 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) 144 return true; 145 } else if (channel->band == NL80211_BAND_5GHZ) 146 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && 147 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) 148 return true; 149 150 return false; 151} 152 153/** 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise 155 * @ah: The &struct ath5k_hw 156 * @channel: The &struct ieee80211_channel 157 */ 158bool 159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, 160 struct ieee80211_channel *channel) 161{ 162 u8 refclk_freq; 163 164 if ((ah->ah_radio == AR5K_RF5112) || 165 (ah->ah_radio == AR5K_RF5413) || 166 (ah->ah_radio == AR5K_RF2413) || 167 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 168 refclk_freq = 40; 169 else 170 refclk_freq = 32; 171 172 if ((channel->center_freq % refclk_freq != 0) && 173 ((channel->center_freq % refclk_freq < 10) || 174 (channel->center_freq % refclk_freq > 22))) 175 return true; 176 else 177 return false; 178} 179 180/** 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer 182 * @ah: The &struct ath5k_hw 183 * @rf_regs: The struct ath5k_rf_reg 184 * @val: New value 185 * @reg_id: RF register ID 186 * @set: Indicate we need to swap data 187 * 188 * This is an internal function used to modify RF Banks before 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more 190 * infos. 191 */ 192static unsigned int 193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, 194 u32 val, u8 reg_id, bool set) 195{ 196 const struct ath5k_rf_reg *rfreg = NULL; 197 u8 offset, bank, num_bits, col, position; 198 u16 entry; 199 u32 mask, data, last_bit, bits_shifted, first_bit; 200 u32 *rfb; 201 s32 bits_left; 202 int i; 203 204 data = 0; 205 rfb = ah->ah_rf_banks; 206 207 for (i = 0; i < ah->ah_rf_regs_count; i++) { 208 if (rf_regs[i].index == reg_id) { 209 rfreg = &rf_regs[i]; 210 break; 211 } 212 } 213 214 if (rfb == NULL || rfreg == NULL) { 215 ATH5K_PRINTF("Rf register not found!\n"); 216 /* should not happen */ 217 return 0; 218 } 219 220 bank = rfreg->bank; 221 num_bits = rfreg->field.len; 222 first_bit = rfreg->field.pos; 223 col = rfreg->field.col; 224 225 /* first_bit is an offset from bank's 226 * start. Since we have all banks on 227 * the same array, we use this offset 228 * to mark each bank's start */ 229 offset = ah->ah_offset[bank]; 230 231 /* Boundary check */ 232 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { 233 ATH5K_PRINTF("invalid values at offset %u\n", offset); 234 return 0; 235 } 236 237 entry = ((first_bit - 1) / 8) + offset; 238 position = (first_bit - 1) % 8; 239 240 if (set) 241 data = ath5k_hw_bitswap(val, num_bits); 242 243 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; 244 position = 0, entry++) { 245 246 last_bit = (position + bits_left > 8) ? 8 : 247 position + bits_left; 248 249 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << 250 (col * 8); 251 252 if (set) { 253 rfb[entry] &= ~mask; 254 rfb[entry] |= ((data << position) << (col * 8)) & mask; 255 data >>= (8 - position); 256 } else { 257 data |= (((rfb[entry] & mask) >> (col * 8)) >> position) 258 << bits_shifted; 259 bits_shifted += last_bit - position; 260 } 261 262 bits_left -= 8 - position; 263 } 264 265 data = set ? 1 : ath5k_hw_bitswap(data, num_bits); 266 267 return data; 268} 269 270/** 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 272 * @ah: the &struct ath5k_hw 273 * @channel: the currently set channel upon reset 274 * 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. 277 * 278 * Since delta slope is floating point we split it on its exponent and 279 * mantissa and provide these values on hw. 280 * 281 * For more infos i think this patent is related 282 * "http://www.freepatentsonline.com/7184495.html" 283 */ 284static inline int 285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 286 struct ieee80211_channel *channel) 287{ 288 /* Get exponent and mantissa and set it */ 289 u32 coef_scaled, coef_exp, coef_man, 290 ds_coef_exp, ds_coef_man, clock; 291 292 BUG_ON(!(ah->ah_version == AR5K_AR5212) || 293 (channel->hw_value == AR5K_MODE_11B)); 294 295 /* Get coefficient 296 * ALGO: coef = (5 * clock / carrier_freq) / 2 297 * we scale coef by shifting clock value by 24 for 298 * better precision since we use integers */ 299 switch (ah->ah_bwmode) { 300 case AR5K_BWMODE_40MHZ: 301 clock = 40 * 2; 302 break; 303 case AR5K_BWMODE_10MHZ: 304 clock = 40 / 2; 305 break; 306 case AR5K_BWMODE_5MHZ: 307 clock = 40 / 4; 308 break; 309 default: 310 clock = 40; 311 break; 312 } 313 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; 314 315 /* Get exponent 316 * ALGO: coef_exp = 14 - highest set bit position */ 317 coef_exp = ilog2(coef_scaled); 318 319 /* Doesn't make sense if it's zero*/ 320 if (!coef_scaled || !coef_exp) 321 return -EINVAL; 322 323 /* Note: we've shifted coef_scaled by 24 */ 324 coef_exp = 14 - (coef_exp - 24); 325 326 327 /* Get mantissa (significant digits) 328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ 329 coef_man = coef_scaled + 330 (1 << (24 - coef_exp - 1)); 331 332 /* Calculate delta slope coefficient exponent 333 * and mantissa (remove scaling) and set them on hw */ 334 ds_coef_man = coef_man >> (24 - coef_exp); 335 ds_coef_exp = coef_exp - 16; 336 337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 338 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 339 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 340 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 341 342 return 0; 343} 344 345/** 346 * ath5k_hw_phy_disable() - Disable PHY 347 * @ah: The &struct ath5k_hw 348 */ 349int ath5k_hw_phy_disable(struct ath5k_hw *ah) 350{ 351 /*Just a try M.F.*/ 352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 353 354 return 0; 355} 356 357/** 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle 359 * @ah: The &struct ath5k_hw 360 * @channel: The &struct ieee80211_channel 361 */ 362static void 363ath5k_hw_wait_for_synth(struct ath5k_hw *ah, 364 struct ieee80211_channel *channel) 365{ 366 /* 367 * On 5211+ read activation -> rx delay 368 * and use it (100ns steps). 369 */ 370 if (ah->ah_version != AR5K_AR5210) { 371 u32 delay; 372 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & 373 AR5K_PHY_RX_DELAY_M; 374 delay = (channel->hw_value == AR5K_MODE_11B) ? 375 ((delay << 2) / 22) : (delay / 10); 376 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) 377 delay = delay << 1; 378 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) 379 delay = delay << 2; 380 /* XXX: /2 on turbo ? Let's be safe 381 * for now */ 382 usleep_range(100 + delay, 100 + (2 * delay)); 383 } else { 384 usleep_range(1000, 1500); 385 } 386} 387 388 389/**********************\ 390* RF Gain optimization * 391\**********************/ 392 393/** 394 * DOC: RF Gain optimization 395 * 396 * This code is used to optimize RF gain on different environments 397 * (temperature mostly) based on feedback from a power detector. 398 * 399 * It's only used on RF5111 and RF5112, later RF chips seem to have 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and 401 * no gain optimization ladder-. 402 * 403 * For more infos check out this patent doc 404 * "http://www.freepatentsonline.com/7400691.html" 405 * 406 * This paper describes power drops as seen on the receiver due to 407 * probe packets 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues 409 * %20of%20Power%20Control.pdf" 410 * 411 * And this is the MadWiFi bug entry related to the above 412 * "http://madwifi-project.org/ticket/1659" 413 * with various measurements and diagrams 414 */ 415 416/** 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach 418 * @ah: The &struct ath5k_hw 419 */ 420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) 421{ 422 /* Initialize the gain optimization values */ 423 switch (ah->ah_radio) { 424 case AR5K_RF5111: 425 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; 426 ah->ah_gain.g_low = 20; 427 ah->ah_gain.g_high = 35; 428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 429 break; 430 case AR5K_RF5112: 431 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; 432 ah->ah_gain.g_low = 20; 433 ah->ah_gain.g_high = 85; 434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 435 break; 436 default: 437 return -EINVAL; 438 } 439 440 return 0; 441} 442 443/** 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet 445 * @ah: The &struct ath5k_hw 446 * 447 * Schedules a gain probe check on the next transmitted packet. 448 * That means our next packet is going to be sent with lower 449 * tx power and a Peak to Average Power Detector (PAPD) will try 450 * to measure the gain. 451 * 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc) 453 * just after we enable the probe so that we don't mess with 454 * standard traffic. 455 */ 456static void 457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) 458{ 459 460 /* Skip if gain calibration is inactive or 461 * we already handle a probe request */ 462 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 463 return; 464 465 /* Send the packet with 2dB below max power as 466 * patent doc suggest */ 467 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, 468 AR5K_PHY_PAPD_PROBE_TXPOWER) | 469 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 470 471 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; 472 473} 474 475/** 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction 477 * @ah: The &struct ath5k_hw 478 * 479 * Calculate Gain_F measurement correction 480 * based on the current step for RF5112 rev. 2 481 */ 482static u32 483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) 484{ 485 u32 mix, step; 486 const struct ath5k_gain_opt *go; 487 const struct ath5k_gain_opt_step *g_step; 488 const struct ath5k_rf_reg *rf_regs; 489 490 /* Only RF5112 Rev. 2 supports it */ 491 if ((ah->ah_radio != AR5K_RF5112) || 492 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) 493 return 0; 494 495 go = &rfgain_opt_5112; 496 rf_regs = rf_regs_5112a; 497 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 498 499 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 500 501 if (ah->ah_rf_banks == NULL) 502 return 0; 503 504 ah->ah_gain.g_f_corr = 0; 505 506 /* No VGA (Variable Gain Amplifier) override, skip */ 507 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) 508 return 0; 509 510 /* Mix gain stepping */ 511 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); 512 513 /* Mix gain override */ 514 mix = g_step->gos_param[0]; 515 516 switch (mix) { 517 case 3: 518 ah->ah_gain.g_f_corr = step * 2; 519 break; 520 case 2: 521 ah->ah_gain.g_f_corr = (step - 5) * 2; 522 break; 523 case 1: 524 ah->ah_gain.g_f_corr = step; 525 break; 526 default: 527 ah->ah_gain.g_f_corr = 0; 528 break; 529 } 530 531 return ah->ah_gain.g_f_corr; 532} 533 534/** 535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector 536 * @ah: The &struct ath5k_hw 537 * 538 * Check if current gain_F measurement is in the range of our 539 * power detector windows. If we get a measurement outside range 540 * we know it's not accurate (detectors can't measure anything outside 541 * their detection window) so we must ignore it. 542 * 543 * Returns true if readback was O.K. or false on failure 544 */ 545static bool 546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) 547{ 548 const struct ath5k_rf_reg *rf_regs; 549 u32 step, mix_ovr, level[4]; 550 551 if (ah->ah_rf_banks == NULL) 552 return false; 553 554 if (ah->ah_radio == AR5K_RF5111) { 555 556 rf_regs = rf_regs_5111; 557 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 558 559 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, 560 false); 561 562 level[0] = 0; 563 level[1] = (step == 63) ? 50 : step + 4; 564 level[2] = (step != 63) ? 64 : level[0]; 565 level[3] = level[2] + 50; 566 567 ah->ah_gain.g_high = level[3] - 568 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); 569 ah->ah_gain.g_low = level[0] + 570 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); 571 } else { 572 573 rf_regs = rf_regs_5112; 574 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 575 576 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 577 false); 578 579 level[0] = level[2] = 0; 580 581 if (mix_ovr == 1) { 582 level[1] = level[3] = 83; 583 } else { 584 level[1] = level[3] = 107; 585 ah->ah_gain.g_high = 55; 586 } 587 } 588 589 return (ah->ah_gain.g_current >= level[0] && 590 ah->ah_gain.g_current <= level[1]) || 591 (ah->ah_gain.g_current >= level[2] && 592 ah->ah_gain.g_current <= level[3]); 593} 594 595/** 596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment 597 * @ah: The &struct ath5k_hw 598 * 599 * Choose the right target gain based on current gain 600 * and RF gain optimization ladder 601 */ 602static s8 603ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) 604{ 605 const struct ath5k_gain_opt *go; 606 const struct ath5k_gain_opt_step *g_step; 607 int ret = 0; 608 609 switch (ah->ah_radio) { 610 case AR5K_RF5111: 611 go = &rfgain_opt_5111; 612 break; 613 case AR5K_RF5112: 614 go = &rfgain_opt_5112; 615 break; 616 default: 617 return 0; 618 } 619 620 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 621 622 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { 623 624 /* Reached maximum */ 625 if (ah->ah_gain.g_step_idx == 0) 626 return -1; 627 628 for (ah->ah_gain.g_target = ah->ah_gain.g_current; 629 ah->ah_gain.g_target >= ah->ah_gain.g_high && 630 ah->ah_gain.g_step_idx > 0; 631 g_step = &go->go_step[ah->ah_gain.g_step_idx]) 632 ah->ah_gain.g_target -= 2 * 633 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - 634 g_step->gos_gain); 635 636 ret = 1; 637 goto done; 638 } 639 640 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { 641 642 /* Reached minimum */ 643 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) 644 return -2; 645 646 for (ah->ah_gain.g_target = ah->ah_gain.g_current; 647 ah->ah_gain.g_target <= ah->ah_gain.g_low && 648 ah->ah_gain.g_step_idx < go->go_steps_count - 1; 649 g_step = &go->go_step[ah->ah_gain.g_step_idx]) 650 ah->ah_gain.g_target -= 2 * 651 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - 652 g_step->gos_gain); 653 654 ret = 2; 655 goto done; 656 } 657 658done: 659 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 660 "ret %d, gain step %u, current gain %u, target gain %u\n", 661 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, 662 ah->ah_gain.g_target); 663 664 return ret; 665} 666 667/** 668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration 669 * @ah: The &struct ath5k_hw 670 * 671 * Main callback for thermal RF gain calibration engine 672 * Check for a new gain reading and schedule an adjustment 673 * if needed. 674 * 675 * Returns one of enum ath5k_rfgain codes 676 */ 677enum ath5k_rfgain 678ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) 679{ 680 u32 data, type; 681 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 682 683 if (ah->ah_rf_banks == NULL || 684 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) 685 return AR5K_RFGAIN_INACTIVE; 686 687 /* No check requested, either engine is inactive 688 * or an adjustment is already requested */ 689 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) 690 goto done; 691 692 /* Read the PAPD (Peak to Average Power Detector) 693 * register */ 694 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); 695 696 /* No probe is scheduled, read gain_F measurement */ 697 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { 698 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; 699 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); 700 701 /* If tx packet is CCK correct the gain_F measurement 702 * by cck ofdm gain delta */ 703 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { 704 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) 705 ah->ah_gain.g_current += 706 ee->ee_cck_ofdm_gain_delta; 707 else 708 ah->ah_gain.g_current += 709 AR5K_GAIN_CCK_PROBE_CORR; 710 } 711 712 /* Further correct gain_F measurement for 713 * RF5112A radios */ 714 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 715 ath5k_hw_rf_gainf_corr(ah); 716 ah->ah_gain.g_current = 717 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? 718 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : 719 0; 720 } 721 722 /* Check if measurement is ok and if we need 723 * to adjust gain, schedule a gain adjustment, 724 * else switch back to the active state */ 725 if (ath5k_hw_rf_check_gainf_readback(ah) && 726 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && 727 ath5k_hw_rf_gainf_adjust(ah)) { 728 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; 729 } else { 730 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 731 } 732 } 733 734done: 735 return ah->ah_gain.g_state; 736} 737 738/** 739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw 740 * @ah: The &struct ath5k_hw 741 * @band: One of enum nl80211_band 742 * 743 * Write initial RF gain table to set the RF sensitivity. 744 * 745 * NOTE: This one works on all RF chips and has nothing to do 746 * with Gain_F calibration 747 */ 748static int 749ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band) 750{ 751 const struct ath5k_ini_rfgain *ath5k_rfg; 752 unsigned int i, size, index; 753 754 switch (ah->ah_radio) { 755 case AR5K_RF5111: 756 ath5k_rfg = rfgain_5111; 757 size = ARRAY_SIZE(rfgain_5111); 758 break; 759 case AR5K_RF5112: 760 ath5k_rfg = rfgain_5112; 761 size = ARRAY_SIZE(rfgain_5112); 762 break; 763 case AR5K_RF2413: 764 ath5k_rfg = rfgain_2413; 765 size = ARRAY_SIZE(rfgain_2413); 766 break; 767 case AR5K_RF2316: 768 ath5k_rfg = rfgain_2316; 769 size = ARRAY_SIZE(rfgain_2316); 770 break; 771 case AR5K_RF5413: 772 ath5k_rfg = rfgain_5413; 773 size = ARRAY_SIZE(rfgain_5413); 774 break; 775 case AR5K_RF2317: 776 case AR5K_RF2425: 777 ath5k_rfg = rfgain_2425; 778 size = ARRAY_SIZE(rfgain_2425); 779 break; 780 default: 781 return -EINVAL; 782 } 783 784 index = (band == NL80211_BAND_2GHZ) ? 1 : 0; 785 786 for (i = 0; i < size; i++) { 787 AR5K_REG_WAIT(i); 788 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], 789 (u32)ath5k_rfg[i].rfg_register); 790 } 791 792 return 0; 793} 794 795 796/********************\ 797* RF Registers setup * 798\********************/ 799 800/** 801 * ath5k_hw_rfregs_init() - Initialize RF register settings 802 * @ah: The &struct ath5k_hw 803 * @channel: The &struct ieee80211_channel 804 * @mode: One of enum ath5k_driver_mode 805 * 806 * Setup RF registers by writing RF buffer on hw. For 807 * more infos on this, check out rfbuffer.h 808 */ 809static int 810ath5k_hw_rfregs_init(struct ath5k_hw *ah, 811 struct ieee80211_channel *channel, 812 unsigned int mode) 813{ 814 const struct ath5k_rf_reg *rf_regs; 815 const struct ath5k_ini_rfbuffer *ini_rfb; 816 const struct ath5k_gain_opt *go = NULL; 817 const struct ath5k_gain_opt_step *g_step; 818 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 819 u8 ee_mode = 0; 820 u32 *rfb; 821 int i, obdb = -1, bank = -1; 822 823 switch (ah->ah_radio) { 824 case AR5K_RF5111: 825 rf_regs = rf_regs_5111; 826 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 827 ini_rfb = rfb_5111; 828 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); 829 go = &rfgain_opt_5111; 830 break; 831 case AR5K_RF5112: 832 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 833 rf_regs = rf_regs_5112a; 834 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 835 ini_rfb = rfb_5112a; 836 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); 837 } else { 838 rf_regs = rf_regs_5112; 839 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 840 ini_rfb = rfb_5112; 841 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); 842 } 843 go = &rfgain_opt_5112; 844 break; 845 case AR5K_RF2413: 846 rf_regs = rf_regs_2413; 847 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); 848 ini_rfb = rfb_2413; 849 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); 850 break; 851 case AR5K_RF2316: 852 rf_regs = rf_regs_2316; 853 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); 854 ini_rfb = rfb_2316; 855 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); 856 break; 857 case AR5K_RF5413: 858 rf_regs = rf_regs_5413; 859 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); 860 ini_rfb = rfb_5413; 861 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); 862 break; 863 case AR5K_RF2317: 864 rf_regs = rf_regs_2425; 865 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 866 ini_rfb = rfb_2317; 867 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); 868 break; 869 case AR5K_RF2425: 870 rf_regs = rf_regs_2425; 871 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 872 if (ah->ah_mac_srev < AR5K_SREV_AR2417) { 873 ini_rfb = rfb_2425; 874 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); 875 } else { 876 ini_rfb = rfb_2417; 877 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); 878 } 879 break; 880 default: 881 return -EINVAL; 882 } 883 884 /* If it's the first time we set RF buffer, allocate 885 * ah->ah_rf_banks based on ah->ah_rf_banks_size 886 * we set above */ 887 if (ah->ah_rf_banks == NULL) { 888 ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size, 889 sizeof(u32), 890 GFP_KERNEL); 891 if (ah->ah_rf_banks == NULL) { 892 ATH5K_ERR(ah, "out of memory\n"); 893 return -ENOMEM; 894 } 895 } 896 897 /* Copy values to modify them */ 898 rfb = ah->ah_rf_banks; 899 900 for (i = 0; i < ah->ah_rf_banks_size; i++) { 901 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { 902 ATH5K_ERR(ah, "invalid bank\n"); 903 return -EINVAL; 904 } 905 906 /* Bank changed, write down the offset */ 907 if (bank != ini_rfb[i].rfb_bank) { 908 bank = ini_rfb[i].rfb_bank; 909 ah->ah_offset[bank] = i; 910 } 911 912 rfb[i] = ini_rfb[i].rfb_mode_data[mode]; 913 } 914 915 /* Set Output and Driver bias current (OB/DB) */ 916 if (channel->band == NL80211_BAND_2GHZ) { 917 918 if (channel->hw_value == AR5K_MODE_11B) 919 ee_mode = AR5K_EEPROM_MODE_11B; 920 else 921 ee_mode = AR5K_EEPROM_MODE_11G; 922 923 /* For RF511X/RF211X combination we 924 * use b_OB and b_DB parameters stored 925 * in eeprom on ee->ee_ob[ee_mode][0] 926 * 927 * For all other chips we use OB/DB for 2GHz 928 * stored in the b/g modal section just like 929 * 802.11a on ee->ee_ob[ee_mode][1] */ 930 if ((ah->ah_radio == AR5K_RF5111) || 931 (ah->ah_radio == AR5K_RF5112)) 932 obdb = 0; 933 else 934 obdb = 1; 935 936 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 937 AR5K_RF_OB_2GHZ, true); 938 939 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 940 AR5K_RF_DB_2GHZ, true); 941 942 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ 943 } else if ((channel->band == NL80211_BAND_5GHZ) || 944 (ah->ah_radio == AR5K_RF5111)) { 945 946 /* For 11a, Turbo and XR we need to choose 947 * OB/DB based on frequency range */ 948 ee_mode = AR5K_EEPROM_MODE_11A; 949 obdb = channel->center_freq >= 5725 ? 3 : 950 (channel->center_freq >= 5500 ? 2 : 951 (channel->center_freq >= 5260 ? 1 : 952 (channel->center_freq > 4000 ? 0 : -1))); 953 954 if (obdb < 0) 955 return -EINVAL; 956 957 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 958 AR5K_RF_OB_5GHZ, true); 959 960 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 961 AR5K_RF_DB_5GHZ, true); 962 } 963 964 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 965 966 /* Set turbo mode (N/A on RF5413) */ 967 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && 968 (ah->ah_radio != AR5K_RF5413)) 969 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); 970 971 /* Bank Modifications (chip-specific) */ 972 if (ah->ah_radio == AR5K_RF5111) { 973 974 /* Set gain_F settings according to current step */ 975 if (channel->hw_value != AR5K_MODE_11B) { 976 977 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, 978 AR5K_PHY_FRAME_CTL_TX_CLIP, 979 g_step->gos_param[0]); 980 981 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 982 AR5K_RF_PWD_90, true); 983 984 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 985 AR5K_RF_PWD_84, true); 986 987 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 988 AR5K_RF_RFGAIN_SEL, true); 989 990 /* We programmed gain_F parameters, switch back 991 * to active state */ 992 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 993 994 } 995 996 /* Bank 6/7 setup */ 997 998 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], 999 AR5K_RF_PWD_XPD, true); 1000 1001 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], 1002 AR5K_RF_XPD_GAIN, true); 1003 1004 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 1005 AR5K_RF_GAIN_I, true); 1006 1007 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 1008 AR5K_RF_PLO_SEL, true); 1009 1010 /* Tweak power detectors for half/quarter rate support */ 1011 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 1012 ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 1013 u8 wait_i; 1014 1015 ath5k_hw_rfb_op(ah, rf_regs, 0x1f, 1016 AR5K_RF_WAIT_S, true); 1017 1018 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 1019 0x1f : 0x10; 1020 1021 ath5k_hw_rfb_op(ah, rf_regs, wait_i, 1022 AR5K_RF_WAIT_I, true); 1023 ath5k_hw_rfb_op(ah, rf_regs, 3, 1024 AR5K_RF_MAX_TIME, true); 1025 1026 } 1027 } 1028 1029 if (ah->ah_radio == AR5K_RF5112) { 1030 1031 /* Set gain_F settings according to current step */ 1032 if (channel->hw_value != AR5K_MODE_11B) { 1033 1034 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], 1035 AR5K_RF_MIXGAIN_OVR, true); 1036 1037 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 1038 AR5K_RF_PWD_138, true); 1039 1040 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 1041 AR5K_RF_PWD_137, true); 1042 1043 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 1044 AR5K_RF_PWD_136, true); 1045 1046 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], 1047 AR5K_RF_PWD_132, true); 1048 1049 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], 1050 AR5K_RF_PWD_131, true); 1051 1052 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], 1053 AR5K_RF_PWD_130, true); 1054 1055 /* We programmed gain_F parameters, switch back 1056 * to active state */ 1057 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 1058 } 1059 1060 /* Bank 6/7 setup */ 1061 1062 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 1063 AR5K_RF_XPD_SEL, true); 1064 1065 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { 1066 /* Rev. 1 supports only one xpd */ 1067 ath5k_hw_rfb_op(ah, rf_regs, 1068 ee->ee_x_gain[ee_mode], 1069 AR5K_RF_XPD_GAIN, true); 1070 1071 } else { 1072 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 1073 if (ee->ee_pd_gains[ee_mode] > 1) { 1074 ath5k_hw_rfb_op(ah, rf_regs, 1075 pdg_curve_to_idx[0], 1076 AR5K_RF_PD_GAIN_LO, true); 1077 ath5k_hw_rfb_op(ah, rf_regs, 1078 pdg_curve_to_idx[1], 1079 AR5K_RF_PD_GAIN_HI, true); 1080 } else { 1081 ath5k_hw_rfb_op(ah, rf_regs, 1082 pdg_curve_to_idx[0], 1083 AR5K_RF_PD_GAIN_LO, true); 1084 ath5k_hw_rfb_op(ah, rf_regs, 1085 pdg_curve_to_idx[0], 1086 AR5K_RF_PD_GAIN_HI, true); 1087 } 1088 1089 /* Lower synth voltage on Rev 2 */ 1090 if (ah->ah_radio == AR5K_RF5112 && 1091 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { 1092 ath5k_hw_rfb_op(ah, rf_regs, 2, 1093 AR5K_RF_HIGH_VC_CP, true); 1094 1095 ath5k_hw_rfb_op(ah, rf_regs, 2, 1096 AR5K_RF_MID_VC_CP, true); 1097 1098 ath5k_hw_rfb_op(ah, rf_regs, 2, 1099 AR5K_RF_LOW_VC_CP, true); 1100 1101 ath5k_hw_rfb_op(ah, rf_regs, 2, 1102 AR5K_RF_PUSH_UP, true); 1103 } 1104 1105 /* Decrease power consumption on 5213+ BaseBand */ 1106 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 1107 ath5k_hw_rfb_op(ah, rf_regs, 1, 1108 AR5K_RF_PAD2GND, true); 1109 1110 ath5k_hw_rfb_op(ah, rf_regs, 1, 1111 AR5K_RF_XB2_LVL, true); 1112 1113 ath5k_hw_rfb_op(ah, rf_regs, 1, 1114 AR5K_RF_XB5_LVL, true); 1115 1116 ath5k_hw_rfb_op(ah, rf_regs, 1, 1117 AR5K_RF_PWD_167, true); 1118 1119 ath5k_hw_rfb_op(ah, rf_regs, 1, 1120 AR5K_RF_PWD_166, true); 1121 } 1122 } 1123 1124 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 1125 AR5K_RF_GAIN_I, true); 1126 1127 /* Tweak power detector for half/quarter rates */ 1128 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 1129 ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 1130 u8 pd_delay; 1131 1132 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 1133 0xf : 0x8; 1134 1135 ath5k_hw_rfb_op(ah, rf_regs, pd_delay, 1136 AR5K_RF_PD_PERIOD_A, true); 1137 ath5k_hw_rfb_op(ah, rf_regs, 0xf, 1138 AR5K_RF_PD_DELAY_A, true); 1139 1140 } 1141 } 1142 1143 if (ah->ah_radio == AR5K_RF5413 && 1144 channel->band == NL80211_BAND_2GHZ) { 1145 1146 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, 1147 true); 1148 1149 /* Set optimum value for early revisions (on pci-e chips) */ 1150 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && 1151 ah->ah_mac_srev < AR5K_SREV_AR5413) 1152 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), 1153 AR5K_RF_PWD_ICLOBUF_2G, true); 1154 1155 } 1156 1157 /* Write RF banks on hw */ 1158 for (i = 0; i < ah->ah_rf_banks_size; i++) { 1159 AR5K_REG_WAIT(i); 1160 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); 1161 } 1162 1163 return 0; 1164} 1165 1166 1167/**************************\ 1168 PHY/RF channel functions 1169\**************************/ 1170 1171/** 1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 1173 * @channel: The &struct ieee80211_channel 1174 * 1175 * Map channel frequency to IEEE channel number and convert it 1176 * to an internal channel value used by the RF5110 chipset. 1177 */ 1178static u32 1179ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) 1180{ 1181 u32 athchan; 1182 1183 athchan = (ath5k_hw_bitswap( 1184 (ieee80211_frequency_to_channel( 1185 channel->center_freq) - 24) / 2, 5) 1186 << 1) | (1 << 6) | 0x1; 1187 return athchan; 1188} 1189 1190/** 1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 1192 * @ah: The &struct ath5k_hw 1193 * @channel: The &struct ieee80211_channel 1194 */ 1195static int 1196ath5k_hw_rf5110_channel(struct ath5k_hw *ah, 1197 struct ieee80211_channel *channel) 1198{ 1199 u32 data; 1200 1201 /* 1202 * Set the channel and wait 1203 */ 1204 data = ath5k_hw_rf5110_chan2athchan(channel); 1205 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); 1206 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); 1207 usleep_range(1000, 1500); 1208 1209 return 0; 1210} 1211 1212/** 1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 1214 * @ieee: IEEE channel number 1215 * @athchan: The &struct ath5k_athchan_2ghz 1216 * 1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups 1218 * we need to add some offsets and extra flags to the data values we pass 1219 * on to the PHY. So for every 2GHz channel this function gets called 1220 * to do the conversion. 1221 */ 1222static int 1223ath5k_hw_rf5111_chan2athchan(unsigned int ieee, 1224 struct ath5k_athchan_2ghz *athchan) 1225{ 1226 int channel; 1227 1228 /* Cast this value to catch negative channel numbers (>= -19) */ 1229 channel = (int)ieee; 1230 1231 /* 1232 * Map 2GHz IEEE channel to 5GHz Atheros channel 1233 */ 1234 if (channel <= 13) { 1235 athchan->a2_athchan = 115 + channel; 1236 athchan->a2_flags = 0x46; 1237 } else if (channel == 14) { 1238 athchan->a2_athchan = 124; 1239 athchan->a2_flags = 0x44; 1240 } else if (channel >= 15 && channel <= 26) { 1241 athchan->a2_athchan = ((channel - 14) * 4) + 132; 1242 athchan->a2_flags = 0x46; 1243 } else 1244 return -EINVAL; 1245 1246 return 0; 1247} 1248 1249/** 1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 1251 * @ah: The &struct ath5k_hw 1252 * @channel: The &struct ieee80211_channel 1253 */ 1254static int 1255ath5k_hw_rf5111_channel(struct ath5k_hw *ah, 1256 struct ieee80211_channel *channel) 1257{ 1258 struct ath5k_athchan_2ghz ath5k_channel_2ghz; 1259 unsigned int ath5k_channel = 1260 ieee80211_frequency_to_channel(channel->center_freq); 1261 u32 data0, data1, clock; 1262 int ret; 1263 1264 /* 1265 * Set the channel on the RF5111 radio 1266 */ 1267 data0 = data1 = 0; 1268 1269 if (channel->band == NL80211_BAND_2GHZ) { 1270 /* Map 2GHz channel to 5GHz Atheros channel ID */ 1271 ret = ath5k_hw_rf5111_chan2athchan( 1272 ieee80211_frequency_to_channel(channel->center_freq), 1273 &ath5k_channel_2ghz); 1274 if (ret) 1275 return ret; 1276 1277 ath5k_channel = ath5k_channel_2ghz.a2_athchan; 1278 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) 1279 << 5) | (1 << 4); 1280 } 1281 1282 if (ath5k_channel < 145 || !(ath5k_channel & 1)) { 1283 clock = 1; 1284 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | 1285 (clock << 1) | (1 << 10) | 1; 1286 } else { 1287 clock = 0; 1288 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) 1289 << 2) | (clock << 1) | (1 << 10) | 1; 1290 } 1291 1292 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), 1293 AR5K_RF_BUFFER); 1294 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), 1295 AR5K_RF_BUFFER_CONTROL_3); 1296 1297 return 0; 1298} 1299 1300/** 1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer 1302 * @ah: The &struct ath5k_hw 1303 * @channel: The &struct ieee80211_channel 1304 * 1305 * On RF5112/2112 and newer we don't need to do any conversion. 1306 * We pass the frequency value after a few modifications to the 1307 * chip directly. 1308 * 1309 * NOTE: Make sure channel frequency given is within our range or else 1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one. 1311 */ 1312static int 1313ath5k_hw_rf5112_channel(struct ath5k_hw *ah, 1314 struct ieee80211_channel *channel) 1315{ 1316 u32 data, data0, data1, data2; 1317 u16 c; 1318 1319 data = data0 = data1 = data2 = 0; 1320 c = channel->center_freq; 1321 1322 /* My guess based on code: 1323 * 2GHz RF has 2 synth modes, one with a Local Oscillator 1324 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz 1325 * (3040/2). data0 is used to set the PLL divider and data1 1326 * selects synth mode. */ 1327 if (c < 4800) { 1328 /* Channel 14 and all frequencies with 2Hz spacing 1329 * below/above (non-standard channels) */ 1330 if (!((c - 2224) % 5)) { 1331 /* Same as (c - 2224) / 5 */ 1332 data0 = ((2 * (c - 704)) - 3040) / 10; 1333 data1 = 1; 1334 /* Channel 1 and all frequencies with 5Hz spacing 1335 * below/above (standard channels without channel 14) */ 1336 } else if (!((c - 2192) % 5)) { 1337 /* Same as (c - 2192) / 5 */ 1338 data0 = ((2 * (c - 672)) - 3040) / 10; 1339 data1 = 0; 1340 } else 1341 return -EINVAL; 1342 1343 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); 1344 /* This is more complex, we have a single synthesizer with 1345 * 4 reference clock settings (?) based on frequency spacing 1346 * and set using data2. LO is at 4800Hz and data0 is again used 1347 * to set some divider. 1348 * 1349 * NOTE: There is an old atheros presentation at Stanford 1350 * that mentions a method called dual direct conversion 1351 * with 1GHz sliding IF for RF5110. Maybe that's what we 1352 * have here, or an updated version. */ 1353 } else if ((c % 5) != 2 || c > 5435) { 1354 if (!(c % 20) && c >= 5120) { 1355 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1356 data2 = ath5k_hw_bitswap(3, 2); 1357 } else if (!(c % 10)) { 1358 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1359 data2 = ath5k_hw_bitswap(2, 2); 1360 } else if (!(c % 5)) { 1361 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 1362 data2 = ath5k_hw_bitswap(1, 2); 1363 } else 1364 return -EINVAL; 1365 } else { 1366 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 1367 data2 = ath5k_hw_bitswap(0, 2); 1368 } 1369 1370 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; 1371 1372 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1373 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1374 1375 return 0; 1376} 1377 1378/** 1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 1380 * @ah: The &struct ath5k_hw 1381 * @channel: The &struct ieee80211_channel 1382 * 1383 * AR2425/2417 have a different 2GHz RF so code changes 1384 * a little bit from RF5112. 1385 */ 1386static int 1387ath5k_hw_rf2425_channel(struct ath5k_hw *ah, 1388 struct ieee80211_channel *channel) 1389{ 1390 u32 data, data0, data2; 1391 u16 c; 1392 1393 data = data0 = data2 = 0; 1394 c = channel->center_freq; 1395 1396 if (c < 4800) { 1397 data0 = ath5k_hw_bitswap((c - 2272), 8); 1398 data2 = 0; 1399 /* ? 5GHz ? */ 1400 } else if ((c % 5) != 2 || c > 5435) { 1401 if (!(c % 20) && c < 5120) 1402 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1403 else if (!(c % 10)) 1404 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1405 else if (!(c % 5)) 1406 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 1407 else 1408 return -EINVAL; 1409 data2 = ath5k_hw_bitswap(1, 2); 1410 } else { 1411 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 1412 data2 = ath5k_hw_bitswap(0, 2); 1413 } 1414 1415 data = (data0 << 4) | data2 << 2 | 0x1001; 1416 1417 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1418 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1419 1420 return 0; 1421} 1422 1423/** 1424 * ath5k_hw_channel() - Set a channel on the radio chip 1425 * @ah: The &struct ath5k_hw 1426 * @channel: The &struct ieee80211_channel 1427 * 1428 * This is the main function called to set a channel on the 1429 * radio chip based on the radio chip version. 1430 */ 1431static int 1432ath5k_hw_channel(struct ath5k_hw *ah, 1433 struct ieee80211_channel *channel) 1434{ 1435 int ret; 1436 /* 1437 * Check bounds supported by the PHY (we don't care about regulatory 1438 * restrictions at this point). 1439 */ 1440 if (!ath5k_channel_ok(ah, channel)) { 1441 ATH5K_ERR(ah, 1442 "channel frequency (%u MHz) out of supported " 1443 "band range\n", 1444 channel->center_freq); 1445 return -EINVAL; 1446 } 1447 1448 /* 1449 * Set the channel and wait 1450 */ 1451 switch (ah->ah_radio) { 1452 case AR5K_RF5110: 1453 ret = ath5k_hw_rf5110_channel(ah, channel); 1454 break; 1455 case AR5K_RF5111: 1456 ret = ath5k_hw_rf5111_channel(ah, channel); 1457 break; 1458 case AR5K_RF2317: 1459 case AR5K_RF2425: 1460 ret = ath5k_hw_rf2425_channel(ah, channel); 1461 break; 1462 default: 1463 ret = ath5k_hw_rf5112_channel(ah, channel); 1464 break; 1465 } 1466 1467 if (ret) 1468 return ret; 1469 1470 /* Set JAPAN setting for channel 14 */ 1471 if (channel->center_freq == 2484) { 1472 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 1473 AR5K_PHY_CCKTXCTL_JAPAN); 1474 } else { 1475 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 1476 AR5K_PHY_CCKTXCTL_WORLD); 1477 } 1478 1479 ah->ah_current_channel = channel; 1480 1481 return 0; 1482} 1483 1484 1485/*****************\ 1486 PHY calibration 1487\*****************/ 1488 1489/** 1490 * DOC: PHY Calibration routines 1491 * 1492 * Noise floor calibration: When we tell the hardware to 1493 * perform a noise floor calibration by setting the 1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically 1495 * sample-and-hold the minimum noise level seen at the antennas. 1496 * This value is then stored in a ring buffer of recently measured 1497 * noise floor values so we have a moving window of the last few 1498 * samples. The median of the values in the history is then loaded 1499 * into the hardware for its own use for RSSI and CCA measurements. 1500 * This type of calibration doesn't interfere with traffic. 1501 * 1502 * AGC calibration: When we tell the hardware to perform 1503 * an AGC (Automatic Gain Control) calibration by setting the 1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does 1505 * a calibration on the DC offsets of ADCs. During this period 1506 * rx/tx gets disabled so we have to deal with it on the driver 1507 * part. 1508 * 1509 * I/Q calibration: When we tell the hardware to perform 1510 * an I/Q calibration, it tries to correct I/Q imbalance and 1511 * fix QAM constellation by sampling data from rxed frames. 1512 * It doesn't interfere with traffic. 1513 * 1514 * For more infos on AGC and I/Q calibration check out patent doc 1515 * #03/094463. 1516 */ 1517 1518/** 1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw 1520 * @ah: The &struct ath5k_hw 1521 */ 1522static s32 1523ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) 1524{ 1525 s32 val; 1526 1527 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); 1528 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); 1529} 1530 1531/** 1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer 1533 * @ah: The &struct ath5k_hw 1534 */ 1535void 1536ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) 1537{ 1538 int i; 1539 1540 ah->ah_nfcal_hist.index = 0; 1541 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) 1542 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1543} 1544 1545/** 1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer 1547 * @ah: The &struct ath5k_hw 1548 * @noise_floor: The NF we got from hw 1549 */ 1550static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) 1551{ 1552 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; 1553 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); 1554 hist->nfval[hist->index] = noise_floor; 1555} 1556 1557/** 1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer 1559 * @ah: The &struct ath5k_hw 1560 */ 1561static s16 1562ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) 1563{ 1564 s16 sort[ATH5K_NF_CAL_HIST_MAX]; 1565 s16 tmp; 1566 int i, j; 1567 1568 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); 1569 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { 1570 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { 1571 if (sort[j] > sort[j - 1]) { 1572 tmp = sort[j]; 1573 sort[j] = sort[j - 1]; 1574 sort[j - 1] = tmp; 1575 } 1576 } 1577 } 1578 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { 1579 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1580 "cal %d:%d\n", i, sort[i]); 1581 } 1582 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; 1583} 1584 1585/** 1586 * ath5k_hw_update_noise_floor() - Update NF on hardware 1587 * @ah: The &struct ath5k_hw 1588 * 1589 * This is the main function we call to perform a NF calibration, 1590 * it reads NF from hardware, calculates the median and updates 1591 * NF on hw. 1592 */ 1593void 1594ath5k_hw_update_noise_floor(struct ath5k_hw *ah) 1595{ 1596 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1597 u32 val; 1598 s16 nf, threshold; 1599 u8 ee_mode; 1600 1601 /* keep last value if calibration hasn't completed */ 1602 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { 1603 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1604 "NF did not complete in calibration window\n"); 1605 1606 return; 1607 } 1608 1609 ah->ah_cal_mask |= AR5K_CALIBRATION_NF; 1610 1611 ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel); 1612 1613 /* completed NF calibration, test threshold */ 1614 nf = ath5k_hw_read_measured_noise_floor(ah); 1615 threshold = ee->ee_noise_floor_thr[ee_mode]; 1616 1617 if (nf > threshold) { 1618 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1619 "noise floor failure detected; " 1620 "read %d, threshold %d\n", 1621 nf, threshold); 1622 1623 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1624 } 1625 1626 ath5k_hw_update_nfcal_hist(ah, nf); 1627 nf = ath5k_hw_get_median_noise_floor(ah); 1628 1629 /* load noise floor (in .5 dBm) so the hardware will use it */ 1630 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; 1631 val |= (nf * 2) & AR5K_PHY_NF_M; 1632 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 1633 1634 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 1635 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); 1636 1637 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 1638 0, false); 1639 1640 /* 1641 * Load a high max CCA Power value (-50 dBm in .5 dBm units) 1642 * so that we're not capped by the median we just loaded. 1643 * This will be used as the initial value for the next noise 1644 * floor calibration. 1645 */ 1646 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); 1647 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 1648 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 1649 AR5K_PHY_AGCCTL_NF_EN | 1650 AR5K_PHY_AGCCTL_NF_NOUPDATE | 1651 AR5K_PHY_AGCCTL_NF); 1652 1653 ah->ah_noise_floor = nf; 1654 1655 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; 1656 1657 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1658 "noise floor calibrated: %d\n", nf); 1659} 1660 1661/** 1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 1663 * @ah: The &struct ath5k_hw 1664 * @channel: The &struct ieee80211_channel 1665 * 1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 1667 */ 1668static int 1669ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, 1670 struct ieee80211_channel *channel) 1671{ 1672 u32 phy_sig, phy_agc, phy_sat, beacon; 1673 int ret; 1674 1675 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) 1676 return 0; 1677 1678 /* 1679 * Disable beacons and RX/TX queues, wait 1680 */ 1681 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, 1682 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1683 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); 1684 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); 1685 1686 usleep_range(2000, 2500); 1687 1688 /* 1689 * Set the channel (with AGC turned off) 1690 */ 1691 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1692 udelay(10); 1693 ret = ath5k_hw_channel(ah, channel); 1694 1695 /* 1696 * Activate PHY and wait 1697 */ 1698 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 1699 usleep_range(1000, 1500); 1700 1701 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1702 1703 if (ret) 1704 return ret; 1705 1706 /* 1707 * Calibrate the radio chip 1708 */ 1709 1710 /* Remember normal state */ 1711 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); 1712 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); 1713 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); 1714 1715 /* Update radio registers */ 1716 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | 1717 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); 1718 1719 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | 1720 AR5K_PHY_AGCCOARSE_LO)) | 1721 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | 1722 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); 1723 1724 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | 1725 AR5K_PHY_ADCSAT_THR)) | 1726 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | 1727 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); 1728 1729 udelay(20); 1730 1731 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1732 udelay(10); 1733 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); 1734 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1735 1736 usleep_range(1000, 1500); 1737 1738 /* 1739 * Enable calibration and wait until completion 1740 */ 1741 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); 1742 1743 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 1744 AR5K_PHY_AGCCTL_CAL, 0, false); 1745 1746 /* Reset to normal state */ 1747 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); 1748 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); 1749 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); 1750 1751 if (ret) { 1752 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", 1753 channel->center_freq); 1754 return ret; 1755 } 1756 1757 /* 1758 * Re-enable RX/TX and beacons 1759 */ 1760 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, 1761 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1762 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); 1763 1764 return 0; 1765} 1766 1767/** 1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer 1769 * @ah: The &struct ath5k_hw 1770 */ 1771static int 1772ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) 1773{ 1774 u32 i_pwr, q_pwr; 1775 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; 1776 int i; 1777 1778 /* Skip if I/Q calibration is not needed or if it's still running */ 1779 if (!ah->ah_iq_cal_needed) 1780 return -EINVAL; 1781 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) { 1782 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1783 "I/Q calibration still running"); 1784 return -EBUSY; 1785 } 1786 1787 /* Calibration has finished, get the results and re-run */ 1788 1789 /* Work around for empty results which can apparently happen on 5212: 1790 * Read registers up to 10 times until we get both i_pr and q_pwr */ 1791 for (i = 0; i <= 10; i++) { 1792 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); 1793 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); 1794 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); 1795 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1796 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); 1797 if (i_pwr && q_pwr) 1798 break; 1799 } 1800 1801 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; 1802 1803 if (ah->ah_version == AR5K_AR5211) 1804 q_coffd = q_pwr >> 6; 1805 else 1806 q_coffd = q_pwr >> 7; 1807 1808 /* In case i_coffd became zero, cancel calibration 1809 * not only it's too small, it'll also result a divide 1810 * by zero later on. */ 1811 if (i_coffd == 0 || q_coffd < 2) 1812 return -ECANCELED; 1813 1814 /* Protect against loss of sign bits */ 1815 1816 i_coff = (-iq_corr) / i_coffd; 1817 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ 1818 1819 if (ah->ah_version == AR5K_AR5211) 1820 q_coff = (i_pwr / q_coffd) - 64; 1821 else 1822 q_coff = (i_pwr / q_coffd) - 128; 1823 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ 1824 1825 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1826 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", 1827 i_coff, q_coff, i_coffd, q_coffd); 1828 1829 /* Commit new I/Q values (set enable bit last to match HAL sources) */ 1830 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); 1831 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); 1832 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); 1833 1834 /* Re-enable calibration -if we don't we'll commit 1835 * the same values again and again */ 1836 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 1837 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 1838 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); 1839 1840 return 0; 1841} 1842 1843/** 1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration 1845 * @ah: The &struct ath5k_hw 1846 * @channel: The &struct ieee80211_channel 1847 * 1848 * The main function we call from above to perform 1849 * a short or full PHY calibration based on RF chip 1850 * and current channel 1851 */ 1852int 1853ath5k_hw_phy_calibrate(struct ath5k_hw *ah, 1854 struct ieee80211_channel *channel) 1855{ 1856 int ret; 1857 1858 if (ah->ah_radio == AR5K_RF5110) 1859 return ath5k_hw_rf5110_calibrate(ah, channel); 1860 1861 ret = ath5k_hw_rf511x_iq_calibrate(ah); 1862 if (ret) { 1863 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1864 "No I/Q correction performed (%uMHz)\n", 1865 channel->center_freq); 1866 1867 /* Happens all the time if there is not much 1868 * traffic, consider it normal behaviour. */ 1869 ret = 0; 1870 } 1871 1872 /* On full calibration request a PAPD probe for 1873 * gainf calibration if needed */ 1874 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 1875 (ah->ah_radio == AR5K_RF5111 || 1876 ah->ah_radio == AR5K_RF5112) && 1877 channel->hw_value != AR5K_MODE_11B) 1878 ath5k_hw_request_rfgain_probe(ah); 1879 1880 /* Update noise floor */ 1881 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF)) 1882 ath5k_hw_update_noise_floor(ah); 1883 1884 return ret; 1885} 1886 1887 1888/***************************\ 1889* Spur mitigation functions * 1890\***************************/ 1891 1892/** 1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter 1894 * @ah: The &struct ath5k_hw 1895 * @channel: The &struct ieee80211_channel 1896 * 1897 * This function gets called during PHY initialization to 1898 * configure the spur filter for the given channel. Spur is noise 1899 * generated due to "reflection" effects, for more information on this 1900 * method check out patent US7643810 1901 */ 1902static void 1903ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, 1904 struct ieee80211_channel *channel) 1905{ 1906 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1907 u32 mag_mask[4] = {0, 0, 0, 0}; 1908 u32 pilot_mask[2] = {0, 0}; 1909 /* Note: fbin values are scaled up by 2 */ 1910 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; 1911 s32 spur_delta_phase, spur_freq_sigma_delta; 1912 s32 spur_offset, num_symbols_x16; 1913 u8 num_symbol_offsets, i, freq_band; 1914 1915 /* Convert current frequency to fbin value (the same way channels 1916 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale 1917 * up by 2 so we can compare it later */ 1918 if (channel->band == NL80211_BAND_2GHZ) { 1919 chan_fbin = (channel->center_freq - 2300) * 10; 1920 freq_band = AR5K_EEPROM_BAND_2GHZ; 1921 } else { 1922 chan_fbin = (channel->center_freq - 4900) * 10; 1923 freq_band = AR5K_EEPROM_BAND_5GHZ; 1924 } 1925 1926 /* Check if any spur_chan_fbin from EEPROM is 1927 * within our current channel's spur detection range */ 1928 spur_chan_fbin = AR5K_EEPROM_NO_SPUR; 1929 spur_detection_window = AR5K_SPUR_CHAN_WIDTH; 1930 /* XXX: Half/Quarter channels ?*/ 1931 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 1932 spur_detection_window *= 2; 1933 1934 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { 1935 spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; 1936 1937 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag 1938 * so it's zero if we got nothing from EEPROM */ 1939 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { 1940 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 1941 break; 1942 } 1943 1944 if ((chan_fbin - spur_detection_window <= 1945 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && 1946 (chan_fbin + spur_detection_window >= 1947 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { 1948 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 1949 break; 1950 } 1951 } 1952 1953 /* We need to enable spur filter for this channel */ 1954 if (spur_chan_fbin) { 1955 spur_offset = spur_chan_fbin - chan_fbin; 1956 /* 1957 * Calculate deltas: 1958 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 1959 * spur_delta_phase -> spur_offset / chip_freq << 11 1960 * Note: Both values have 100Hz resolution 1961 */ 1962 switch (ah->ah_bwmode) { 1963 case AR5K_BWMODE_40MHZ: 1964 /* Both sample_freq and chip_freq are 80MHz */ 1965 spur_delta_phase = (spur_offset << 16) / 25; 1966 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1967 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; 1968 break; 1969 case AR5K_BWMODE_10MHZ: 1970 /* Both sample_freq and chip_freq are 20MHz (?) */ 1971 spur_delta_phase = (spur_offset << 18) / 25; 1972 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1973 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; 1974 break; 1975 case AR5K_BWMODE_5MHZ: 1976 /* Both sample_freq and chip_freq are 10MHz (?) */ 1977 spur_delta_phase = (spur_offset << 19) / 25; 1978 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1979 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; 1980 break; 1981 default: 1982 if (channel->band == NL80211_BAND_5GHZ) { 1983 /* Both sample_freq and chip_freq are 40MHz */ 1984 spur_delta_phase = (spur_offset << 17) / 25; 1985 spur_freq_sigma_delta = 1986 (spur_delta_phase >> 10); 1987 symbol_width = 1988 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 1989 } else { 1990 /* sample_freq -> 40MHz chip_freq -> 44MHz 1991 * (for b compatibility) */ 1992 spur_delta_phase = (spur_offset << 17) / 25; 1993 spur_freq_sigma_delta = 1994 (spur_offset << 8) / 55; 1995 symbol_width = 1996 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 1997 } 1998 break; 1999 } 2000 2001 /* Calculate pilot and magnitude masks */ 2002 2003 /* Scale up spur_offset by 1000 to switch to 100HZ resolution 2004 * and divide by symbol_width to find how many symbols we have 2005 * Note: number of symbols is scaled up by 16 */ 2006 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; 2007 2008 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ 2009 if (!(num_symbols_x16 & 0xF)) 2010 /* _X_ */ 2011 num_symbol_offsets = 3; 2012 else 2013 /* _xx_ */ 2014 num_symbol_offsets = 4; 2015 2016 for (i = 0; i < num_symbol_offsets; i++) { 2017 2018 /* Calculate pilot mask */ 2019 s32 curr_sym_off = 2020 (num_symbols_x16 / 16) + i + 25; 2021 2022 /* Pilot magnitude mask seems to be a way to 2023 * declare the boundaries for our detection 2024 * window or something, it's 2 for the middle 2025 * value(s) where the symbol is expected to be 2026 * and 1 on the boundary values */ 2027 u8 plt_mag_map = 2028 (i == 0 || i == (num_symbol_offsets - 1)) 2029 ? 1 : 2; 2030 2031 if (curr_sym_off >= 0 && curr_sym_off <= 32) { 2032 if (curr_sym_off <= 25) 2033 pilot_mask[0] |= 1 << curr_sym_off; 2034 else if (curr_sym_off >= 27) 2035 pilot_mask[0] |= 1 << (curr_sym_off - 1); 2036 } else if (curr_sym_off >= 33 && curr_sym_off <= 52) 2037 pilot_mask[1] |= 1 << (curr_sym_off - 33); 2038 2039 /* Calculate magnitude mask (for viterbi decoder) */ 2040 if (curr_sym_off >= -1 && curr_sym_off <= 14) 2041 mag_mask[0] |= 2042 plt_mag_map << (curr_sym_off + 1) * 2; 2043 else if (curr_sym_off >= 15 && curr_sym_off <= 30) 2044 mag_mask[1] |= 2045 plt_mag_map << (curr_sym_off - 15) * 2; 2046 else if (curr_sym_off >= 31 && curr_sym_off <= 46) 2047 mag_mask[2] |= 2048 plt_mag_map << (curr_sym_off - 31) * 2; 2049 else if (curr_sym_off >= 47 && curr_sym_off <= 53) 2050 mag_mask[3] |= 2051 plt_mag_map << (curr_sym_off - 47) * 2; 2052 2053 } 2054 2055 /* Write settings on hw to enable spur filter */ 2056 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2057 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); 2058 /* XXX: Self correlator also ? */ 2059 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 2060 AR5K_PHY_IQ_PILOT_MASK_EN | 2061 AR5K_PHY_IQ_CHAN_MASK_EN | 2062 AR5K_PHY_IQ_SPUR_FILT_EN); 2063 2064 /* Set delta phase and freq sigma delta */ 2065 ath5k_hw_reg_write(ah, 2066 AR5K_REG_SM(spur_delta_phase, 2067 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | 2068 AR5K_REG_SM(spur_freq_sigma_delta, 2069 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | 2070 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, 2071 AR5K_PHY_TIMING_11); 2072 2073 /* Write pilot masks */ 2074 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); 2075 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 2076 AR5K_PHY_TIMING_8_PILOT_MASK_2, 2077 pilot_mask[1]); 2078 2079 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); 2080 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 2081 AR5K_PHY_TIMING_10_PILOT_MASK_2, 2082 pilot_mask[1]); 2083 2084 /* Write magnitude masks */ 2085 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); 2086 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); 2087 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); 2088 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2089 AR5K_PHY_BIN_MASK_CTL_MASK_4, 2090 mag_mask[3]); 2091 2092 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); 2093 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); 2094 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); 2095 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 2096 AR5K_PHY_BIN_MASK2_4_MASK_4, 2097 mag_mask[3]); 2098 2099 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & 2100 AR5K_PHY_IQ_SPUR_FILT_EN) { 2101 /* Clean up spur mitigation settings and disable filter */ 2102 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2103 AR5K_PHY_BIN_MASK_CTL_RATE, 0); 2104 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, 2105 AR5K_PHY_IQ_PILOT_MASK_EN | 2106 AR5K_PHY_IQ_CHAN_MASK_EN | 2107 AR5K_PHY_IQ_SPUR_FILT_EN); 2108 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); 2109 2110 /* Clear pilot masks */ 2111 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); 2112 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 2113 AR5K_PHY_TIMING_8_PILOT_MASK_2, 2114 0); 2115 2116 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); 2117 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 2118 AR5K_PHY_TIMING_10_PILOT_MASK_2, 2119 0); 2120 2121 /* Clear magnitude masks */ 2122 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); 2123 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); 2124 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); 2125 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2126 AR5K_PHY_BIN_MASK_CTL_MASK_4, 2127 0); 2128 2129 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); 2130 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); 2131 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); 2132 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 2133 AR5K_PHY_BIN_MASK2_4_MASK_4, 2134 0); 2135 } 2136} 2137 2138 2139/*****************\ 2140* Antenna control * 2141\*****************/ 2142 2143/** 2144 * DOC: Antenna control 2145 * 2146 * Hw supports up to 14 antennas ! I haven't found any card that implements 2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) 2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). 2150 * 2151 * We can have a single antenna for RX and multiple antennas for TX. 2152 * RX antenna is our "default" antenna (usually antenna 1) set on 2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor 2154 * (0 for automatic selection, 1 - 14 antenna number). 2155 * 2156 * We can let hw do all the work doing fast antenna diversity for both 2157 * tx and rx or we can do things manually. Here are the options we have 2158 * (all are bits of STA_ID1 register): 2159 * 2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX 2161 * control descriptor, use the default antenna to transmit or else use the last 2162 * antenna on which we received an ACK. 2163 * 2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to 2165 * the antenna on which we got the ACK for that frame. 2166 * 2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the 2168 * one on the TX descriptor. 2169 * 2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames 2171 * (ACKs etc), or else use current antenna (the one we just used for TX). 2172 * 2173 * Using the above we support the following scenarios: 2174 * 2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically 2176 * 2177 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present 2178 * 2179 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present 2180 * 2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap 2182 * 2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc 2184 * 2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc 2186 * 2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- 2188 * 2189 * Also note that when setting antenna to F on tx descriptor card inverts 2190 * current tx antenna. 2191 */ 2192 2193/** 2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer 2195 * @ah: The &struct ath5k_hw 2196 * @ant: Antenna number 2197 */ 2198static void 2199ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) 2200{ 2201 if (ah->ah_version != AR5K_AR5210) 2202 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); 2203} 2204 2205/** 2206 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity 2207 * @ah: The &struct ath5k_hw 2208 * @ee_mode: One of enum ath5k_driver_mode 2209 * @enable: True to enable, false to disable 2210 */ 2211static void 2212ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) 2213{ 2214 switch (ee_mode) { 2215 case AR5K_EEPROM_MODE_11G: 2216 /* XXX: This is set to 2217 * disabled on initvals !!! */ 2218 case AR5K_EEPROM_MODE_11A: 2219 if (enable) 2220 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, 2221 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2222 else 2223 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 2224 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2225 break; 2226 case AR5K_EEPROM_MODE_11B: 2227 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 2228 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2229 break; 2230 default: 2231 return; 2232 } 2233 2234 if (enable) { 2235 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2236 AR5K_PHY_RESTART_DIV_GC, 4); 2237 2238 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2239 AR5K_PHY_FAST_ANT_DIV_EN); 2240 } else { 2241 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2242 AR5K_PHY_RESTART_DIV_GC, 0); 2243 2244 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2245 AR5K_PHY_FAST_ANT_DIV_EN); 2246 } 2247} 2248 2249/** 2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table 2251 * @ah: The &struct ath5k_hw 2252 * @ee_mode: One of enum ath5k_driver_mode 2253 * 2254 * Switch table comes from EEPROM and includes information on controlling 2255 * the 2 antenna RX attenuators 2256 */ 2257void 2258ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) 2259{ 2260 u8 ant0, ant1; 2261 2262 /* 2263 * In case a fixed antenna was set as default 2264 * use the same switch table twice. 2265 */ 2266 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) 2267 ant0 = ant1 = AR5K_ANT_SWTABLE_A; 2268 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) 2269 ant0 = ant1 = AR5K_ANT_SWTABLE_B; 2270 else { 2271 ant0 = AR5K_ANT_SWTABLE_A; 2272 ant1 = AR5K_ANT_SWTABLE_B; 2273 } 2274 2275 /* Set antenna idle switch table */ 2276 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, 2277 AR5K_PHY_ANT_CTL_SWTABLE_IDLE, 2278 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | 2279 AR5K_PHY_ANT_CTL_TXRX_EN)); 2280 2281 /* Set antenna switch tables */ 2282 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], 2283 AR5K_PHY_ANT_SWITCH_TABLE_0); 2284 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], 2285 AR5K_PHY_ANT_SWITCH_TABLE_1); 2286} 2287 2288/** 2289 * ath5k_hw_set_antenna_mode() - Set antenna operating mode 2290 * @ah: The &struct ath5k_hw 2291 * @ant_mode: One of enum ath5k_ant_mode 2292 */ 2293void 2294ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) 2295{ 2296 struct ieee80211_channel *channel = ah->ah_current_channel; 2297 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; 2298 bool use_def_for_sg; 2299 int ee_mode; 2300 u8 def_ant, tx_ant; 2301 u32 sta_id1 = 0; 2302 2303 /* if channel is not initialized yet we can't set the antennas 2304 * so just store the mode. it will be set on the next reset */ 2305 if (channel == NULL) { 2306 ah->ah_ant_mode = ant_mode; 2307 return; 2308 } 2309 2310 def_ant = ah->ah_def_ant; 2311 2312 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 2313 2314 switch (ant_mode) { 2315 case AR5K_ANTMODE_DEFAULT: 2316 tx_ant = 0; 2317 use_def_for_tx = false; 2318 update_def_on_tx = false; 2319 use_def_for_rts = false; 2320 use_def_for_sg = false; 2321 fast_div = true; 2322 break; 2323 case AR5K_ANTMODE_FIXED_A: 2324 def_ant = 1; 2325 tx_ant = 1; 2326 use_def_for_tx = true; 2327 update_def_on_tx = false; 2328 use_def_for_rts = true; 2329 use_def_for_sg = true; 2330 fast_div = false; 2331 break; 2332 case AR5K_ANTMODE_FIXED_B: 2333 def_ant = 2; 2334 tx_ant = 2; 2335 use_def_for_tx = true; 2336 update_def_on_tx = false; 2337 use_def_for_rts = true; 2338 use_def_for_sg = true; 2339 fast_div = false; 2340 break; 2341 case AR5K_ANTMODE_SINGLE_AP: 2342 def_ant = 1; /* updated on tx */ 2343 tx_ant = 0; 2344 use_def_for_tx = true; 2345 update_def_on_tx = true; 2346 use_def_for_rts = true; 2347 use_def_for_sg = true; 2348 fast_div = true; 2349 break; 2350 case AR5K_ANTMODE_SECTOR_AP: 2351 tx_ant = 1; /* variable */ 2352 use_def_for_tx = false; 2353 update_def_on_tx = false; 2354 use_def_for_rts = true; 2355 use_def_for_sg = false; 2356 fast_div = false; 2357 break; 2358 case AR5K_ANTMODE_SECTOR_STA: 2359 tx_ant = 1; /* variable */ 2360 use_def_for_tx = true; 2361 update_def_on_tx = false; 2362 use_def_for_rts = true; 2363 use_def_for_sg = false; 2364 fast_div = true; 2365 break; 2366 case AR5K_ANTMODE_DEBUG: 2367 def_ant = 1; 2368 tx_ant = 2; 2369 use_def_for_tx = false; 2370 update_def_on_tx = false; 2371 use_def_for_rts = false; 2372 use_def_for_sg = false; 2373 fast_div = false; 2374 break; 2375 default: 2376 return; 2377 } 2378 2379 ah->ah_tx_ant = tx_ant; 2380 ah->ah_ant_mode = ant_mode; 2381 ah->ah_def_ant = def_ant; 2382 2383 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; 2384 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; 2385 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; 2386 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; 2387 2388 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); 2389 2390 if (sta_id1) 2391 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); 2392 2393 ath5k_hw_set_antenna_switch(ah, ee_mode); 2394 /* Note: set diversity before default antenna 2395 * because it won't work correctly */ 2396 ath5k_hw_set_fast_div(ah, ee_mode, fast_div); 2397 ath5k_hw_set_def_antenna(ah, def_ant); 2398} 2399 2400 2401/****************\ 2402* TX power setup * 2403\****************/ 2404 2405/* 2406 * Helper functions 2407 */ 2408 2409/** 2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points 2411 * @target: X value of the middle point 2412 * @x_left: X value of the left point 2413 * @x_right: X value of the right point 2414 * @y_left: Y value of the left point 2415 * @y_right: Y value of the right point 2416 */ 2417static s16 2418ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, 2419 s16 y_left, s16 y_right) 2420{ 2421 s16 ratio, result; 2422 2423 /* Avoid divide by zero and skip interpolation 2424 * if we have the same point */ 2425 if ((x_left == x_right) || (y_left == y_right)) 2426 return y_left; 2427 2428 /* 2429 * Since we use ints and not fps, we need to scale up in 2430 * order to get a sane ratio value (or else we 'll eg. get 2431 * always 1 instead of 1.25, 1.75 etc). We scale up by 100 2432 * to have some accuracy both for 0.5 and 0.25 steps. 2433 */ 2434 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); 2435 2436 /* Now scale down to be in range */ 2437 result = y_left + (ratio * (target - x_left) / 100); 2438 2439 return result; 2440} 2441 2442/** 2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the 2444 * linear PCDAC curve 2445 * @stepL: Left array with y values (pcdac steps) 2446 * @stepR: Right array with y values (pcdac steps) 2447 * @pwrL: Left array with x values (power steps) 2448 * @pwrR: Right array with x values (power steps) 2449 * 2450 * Since we have the top of the curve and we draw the line below 2451 * until we reach 1 (1 pcdac step) we need to know which point 2452 * (x value) that is so that we don't go below x axis and have negative 2453 * pcdac values when creating the curve, or fill the table with zeros. 2454 */ 2455static s16 2456ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, 2457 const s16 *pwrL, const s16 *pwrR) 2458{ 2459 s8 tmp; 2460 s16 min_pwrL, min_pwrR; 2461 s16 pwr_i; 2462 2463 /* Some vendors write the same pcdac value twice !!! */ 2464 if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) 2465 return max(pwrL[0], pwrR[0]); 2466 2467 if (pwrL[0] == pwrL[1]) 2468 min_pwrL = pwrL[0]; 2469 else { 2470 pwr_i = pwrL[0]; 2471 do { 2472 pwr_i--; 2473 tmp = (s8) ath5k_get_interpolated_value(pwr_i, 2474 pwrL[0], pwrL[1], 2475 stepL[0], stepL[1]); 2476 } while (tmp > 1); 2477 2478 min_pwrL = pwr_i; 2479 } 2480 2481 if (pwrR[0] == pwrR[1]) 2482 min_pwrR = pwrR[0]; 2483 else { 2484 pwr_i = pwrR[0]; 2485 do { 2486 pwr_i--; 2487 tmp = (s8) ath5k_get_interpolated_value(pwr_i, 2488 pwrR[0], pwrR[1], 2489 stepR[0], stepR[1]); 2490 } while (tmp > 1); 2491 2492 min_pwrR = pwr_i; 2493 } 2494 2495 /* Keep the right boundary so that it works for both curves */ 2496 return max(min_pwrL, min_pwrR); 2497} 2498 2499/** 2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve 2501 * @pmin: Minimum power value (xmin) 2502 * @pmax: Maximum power value (xmax) 2503 * @pwr: Array of power steps (x values) 2504 * @vpd: Array of matching PCDAC/PDADC steps (y values) 2505 * @num_points: Number of provided points 2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) 2507 * @type: One of enum ath5k_powertable_type (eeprom.h) 2508 * 2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a 2510 * Power to PCDAC curve. 2511 * 2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC 2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max 2514 * PCDAC/PDADC step for each curve is 64 but we can write more than 2515 * one curves on hw so we can go up to 128 (which is the max step we 2516 * can write on the final table). 2517 * 2518 * We write y values (PCDAC/PDADC steps) on hw. 2519 */ 2520static void 2521ath5k_create_power_curve(s16 pmin, s16 pmax, 2522 const s16 *pwr, const u8 *vpd, 2523 u8 num_points, 2524 u8 *vpd_table, u8 type) 2525{ 2526 u8 idx[2] = { 0, 1 }; 2527 s16 pwr_i = 2 * pmin; 2528 int i; 2529 2530 if (num_points < 2) 2531 return; 2532 2533 /* We want the whole line, so adjust boundaries 2534 * to cover the entire power range. Note that 2535 * power values are already 0.25dB so no need 2536 * to multiply pwr_i by 2 */ 2537 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { 2538 pwr_i = pmin; 2539 pmin = 0; 2540 pmax = 63; 2541 } 2542 2543 /* Find surrounding turning points (TPs) 2544 * and interpolate between them */ 2545 for (i = 0; (i <= (u16) (pmax - pmin)) && 2546 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 2547 2548 /* We passed the right TP, move to the next set of TPs 2549 * if we pass the last TP, extrapolate above using the last 2550 * two TPs for ratio */ 2551 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { 2552 idx[0]++; 2553 idx[1]++; 2554 } 2555 2556 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, 2557 pwr[idx[0]], pwr[idx[1]], 2558 vpd[idx[0]], vpd[idx[1]]); 2559 2560 /* Increase by 0.5dB 2561 * (0.25 dB units) */ 2562 pwr_i += 2; 2563 } 2564} 2565 2566/** 2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers 2568 * for a given channel. 2569 * @ah: The &struct ath5k_hw 2570 * @channel: The &struct ieee80211_channel 2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier 2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier 2573 * 2574 * Get the surrounding per-channel power calibration piers 2575 * for a given frequency so that we can interpolate between 2576 * them and come up with an appropriate dataset for our current 2577 * channel. 2578 */ 2579static void 2580ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, 2581 struct ieee80211_channel *channel, 2582 struct ath5k_chan_pcal_info **pcinfo_l, 2583 struct ath5k_chan_pcal_info **pcinfo_r) 2584{ 2585 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2586 struct ath5k_chan_pcal_info *pcinfo; 2587 u8 idx_l, idx_r; 2588 u8 mode, max, i; 2589 u32 target = channel->center_freq; 2590 2591 idx_l = 0; 2592 idx_r = 0; 2593 2594 switch (channel->hw_value) { 2595 case AR5K_EEPROM_MODE_11A: 2596 pcinfo = ee->ee_pwr_cal_a; 2597 mode = AR5K_EEPROM_MODE_11A; 2598 break; 2599 case AR5K_EEPROM_MODE_11B: 2600 pcinfo = ee->ee_pwr_cal_b; 2601 mode = AR5K_EEPROM_MODE_11B; 2602 break; 2603 case AR5K_EEPROM_MODE_11G: 2604 default: 2605 pcinfo = ee->ee_pwr_cal_g; 2606 mode = AR5K_EEPROM_MODE_11G; 2607 break; 2608 } 2609 max = ee->ee_n_piers[mode] - 1; 2610 2611 /* Frequency is below our calibrated 2612 * range. Use the lowest power curve 2613 * we have */ 2614 if (target < pcinfo[0].freq) { 2615 idx_l = idx_r = 0; 2616 goto done; 2617 } 2618 2619 /* Frequency is above our calibrated 2620 * range. Use the highest power curve 2621 * we have */ 2622 if (target > pcinfo[max].freq) { 2623 idx_l = idx_r = max; 2624 goto done; 2625 } 2626 2627 /* Frequency is inside our calibrated 2628 * channel range. Pick the surrounding 2629 * calibration piers so that we can 2630 * interpolate */ 2631 for (i = 0; i <= max; i++) { 2632 2633 /* Frequency matches one of our calibration 2634 * piers, no need to interpolate, just use 2635 * that calibration pier */ 2636 if (pcinfo[i].freq == target) { 2637 idx_l = idx_r = i; 2638 goto done; 2639 } 2640 2641 /* We found a calibration pier that's above 2642 * frequency, use this pier and the previous 2643 * one to interpolate */ 2644 if (target < pcinfo[i].freq) { 2645 idx_r = i; 2646 idx_l = idx_r - 1; 2647 goto done; 2648 } 2649 } 2650 2651done: 2652 *pcinfo_l = &pcinfo[idx_l]; 2653 *pcinfo_r = &pcinfo[idx_r]; 2654} 2655 2656/** 2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power 2658 * calibration data 2659 * @ah: The &struct ath5k_hw *ah, 2660 * @channel: The &struct ieee80211_channel 2661 * @rates: The &struct ath5k_rate_pcal_info to fill 2662 * 2663 * Get the surrounding per-rate power calibration data 2664 * for a given frequency and interpolate between power 2665 * values to set max target power supported by hw for 2666 * each rate on this frequency. 2667 */ 2668static void 2669ath5k_get_rate_pcal_data(struct ath5k_hw *ah, 2670 struct ieee80211_channel *channel, 2671 struct ath5k_rate_pcal_info *rates) 2672{ 2673 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2674 struct ath5k_rate_pcal_info *rpinfo; 2675 u8 idx_l, idx_r; 2676 u8 mode, max, i; 2677 u32 target = channel->center_freq; 2678 2679 idx_l = 0; 2680 idx_r = 0; 2681 2682 switch (channel->hw_value) { 2683 case AR5K_MODE_11A: 2684 rpinfo = ee->ee_rate_tpwr_a; 2685 mode = AR5K_EEPROM_MODE_11A; 2686 break; 2687 case AR5K_MODE_11B: 2688 rpinfo = ee->ee_rate_tpwr_b; 2689 mode = AR5K_EEPROM_MODE_11B; 2690 break; 2691 case AR5K_MODE_11G: 2692 default: 2693 rpinfo = ee->ee_rate_tpwr_g; 2694 mode = AR5K_EEPROM_MODE_11G; 2695 break; 2696 } 2697 max = ee->ee_rate_target_pwr_num[mode] - 1; 2698 2699 /* Get the surrounding calibration 2700 * piers - same as above */ 2701 if (target < rpinfo[0].freq) { 2702 idx_l = idx_r = 0; 2703 goto done; 2704 } 2705 2706 if (target > rpinfo[max].freq) { 2707 idx_l = idx_r = max; 2708 goto done; 2709 } 2710 2711 for (i = 0; i <= max; i++) { 2712 2713 if (rpinfo[i].freq == target) { 2714 idx_l = idx_r = i; 2715 goto done; 2716 } 2717 2718 if (target < rpinfo[i].freq) { 2719 idx_r = i; 2720 idx_l = idx_r - 1; 2721 goto done; 2722 } 2723 } 2724 2725done: 2726 /* Now interpolate power value, based on the frequency */ 2727 rates->freq = target; 2728 2729 rates->target_power_6to24 = 2730 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2731 rpinfo[idx_r].freq, 2732 rpinfo[idx_l].target_power_6to24, 2733 rpinfo[idx_r].target_power_6to24); 2734 2735 rates->target_power_36 = 2736 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2737 rpinfo[idx_r].freq, 2738 rpinfo[idx_l].target_power_36, 2739 rpinfo[idx_r].target_power_36); 2740 2741 rates->target_power_48 = 2742 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2743 rpinfo[idx_r].freq, 2744 rpinfo[idx_l].target_power_48, 2745 rpinfo[idx_r].target_power_48); 2746 2747 rates->target_power_54 = 2748 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2749 rpinfo[idx_r].freq, 2750 rpinfo[idx_l].target_power_54, 2751 rpinfo[idx_r].target_power_54); 2752} 2753 2754/** 2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency 2756 * @ah: the &struct ath5k_hw 2757 * @channel: The &struct ieee80211_channel 2758 * 2759 * Get the max edge power for this channel if 2760 * we have such data from EEPROM's Conformance Test 2761 * Limits (CTL), and limit max power if needed. 2762 */ 2763static void 2764ath5k_get_max_ctl_power(struct ath5k_hw *ah, 2765 struct ieee80211_channel *channel) 2766{ 2767 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 2768 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2769 struct ath5k_edge_power *rep = ee->ee_ctl_pwr; 2770 u8 *ctl_val = ee->ee_ctl; 2771 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; 2772 s16 edge_pwr = 0; 2773 u8 rep_idx; 2774 u8 i, ctl_mode; 2775 u8 ctl_idx = 0xFF; 2776 u32 target = channel->center_freq; 2777 2778 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); 2779 2780 switch (channel->hw_value) { 2781 case AR5K_MODE_11A: 2782 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 2783 ctl_mode |= AR5K_CTL_TURBO; 2784 else 2785 ctl_mode |= AR5K_CTL_11A; 2786 break; 2787 case AR5K_MODE_11G: 2788 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 2789 ctl_mode |= AR5K_CTL_TURBOG; 2790 else 2791 ctl_mode |= AR5K_CTL_11G; 2792 break; 2793 case AR5K_MODE_11B: 2794 ctl_mode |= AR5K_CTL_11B; 2795 break; 2796 default: 2797 return; 2798 } 2799 2800 for (i = 0; i < ee->ee_ctls; i++) { 2801 if (ctl_val[i] == ctl_mode) { 2802 ctl_idx = i; 2803 break; 2804 } 2805 } 2806 2807 /* If we have a CTL dataset available grab it and find the 2808 * edge power for our frequency */ 2809 if (ctl_idx == 0xFF) 2810 return; 2811 2812 /* Edge powers are sorted by frequency from lower 2813 * to higher. Each CTL corresponds to 8 edge power 2814 * measurements. */ 2815 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; 2816 2817 /* Don't do boundaries check because we 2818 * might have more that one bands defined 2819 * for this mode */ 2820 2821 /* Get the edge power that's closer to our 2822 * frequency */ 2823 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { 2824 rep_idx += i; 2825 if (target <= rep[rep_idx].freq) 2826 edge_pwr = (s16) rep[rep_idx].edge; 2827 } 2828 2829 if (edge_pwr) 2830 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); 2831} 2832 2833 2834/* 2835 * Power to PCDAC table functions 2836 */ 2837 2838/** 2839 * DOC: Power to PCDAC table functions 2840 * 2841 * For RF5111 we have an XPD -eXternal Power Detector- curve 2842 * for each calibrated channel. Each curve has 0,5dB Power steps 2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an 2844 * exponential function. To recreate the curve we read 11 points 2845 * from eeprom (eeprom.c) and interpolate here. 2846 * 2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves 2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only 2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB 2850 * power steps on x axis and PCDAC steps on y axis and looks like a 2851 * linear function. To recreate the curve and pass the power values 2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power) 2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) 2854 * and interpolate here. 2855 * 2856 * For a given channel we get the calibrated points (piers) for it or 2857 * -if we don't have calibration data for this specific channel- from the 2858 * available surrounding channels we have calibration data for, after we do a 2859 * linear interpolation between them. Then since we have our calibrated points 2860 * for this channel, we do again a linear interpolation between them to get the 2861 * whole curve. 2862 * 2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw 2864 */ 2865 2866/** 2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 2868 * @ah: The &struct ath5k_hw 2869 * @table_min: Minimum power (x min) 2870 * @table_max: Maximum power (x max) 2871 * 2872 * No further processing is needed for RF5111, the only thing we have to 2873 * do is fill the values below and above calibration range since eeprom data 2874 * may not cover the entire PCDAC table. 2875 */ 2876static void 2877ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, 2878 s16 *table_max) 2879{ 2880 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2881 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; 2882 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; 2883 s16 min_pwr, max_pwr; 2884 2885 /* Get table boundaries */ 2886 min_pwr = table_min[0]; 2887 pcdac_0 = pcdac_tmp[0]; 2888 2889 max_pwr = table_max[0]; 2890 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; 2891 2892 /* Extrapolate below minimum using pcdac_0 */ 2893 pcdac_i = 0; 2894 for (i = 0; i < min_pwr; i++) 2895 pcdac_out[pcdac_i++] = pcdac_0; 2896 2897 /* Copy values from pcdac_tmp */ 2898 pwr_idx = min_pwr; 2899 for (i = 0; pwr_idx <= max_pwr && 2900 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { 2901 pcdac_out[pcdac_i++] = pcdac_tmp[i]; 2902 pwr_idx++; 2903 } 2904 2905 /* Extrapolate above maximum */ 2906 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) 2907 pcdac_out[pcdac_i++] = pcdac_n; 2908 2909} 2910 2911/** 2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves 2913 * @ah: The &struct ath5k_hw 2914 * @table_min: Minimum power (x min) 2915 * @table_max: Maximum power (x max) 2916 * @pdcurves: Number of pd curves 2917 * 2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 2919 * RFX112 can have up to 2 curves (one for low txpower range and one for 2920 * higher txpower range). We need to put them both on pcdac_out and place 2921 * them in the correct location. In case we only have one curve available 2922 * just fit it on pcdac_out (it's supposed to cover the entire range of 2923 * available pwr levels since it's always the higher power curve). Extrapolate 2924 * below and above final table if needed. 2925 */ 2926static void 2927ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, 2928 s16 *table_max, u8 pdcurves) 2929{ 2930 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2931 u8 *pcdac_low_pwr; 2932 u8 *pcdac_high_pwr; 2933 u8 *pcdac_tmp; 2934 u8 pwr; 2935 s16 max_pwr_idx; 2936 s16 min_pwr_idx; 2937 s16 mid_pwr_idx = 0; 2938 /* Edge flag turns on the 7nth bit on the PCDAC 2939 * to declare the higher power curve (force values 2940 * to be greater than 64). If we only have one curve 2941 * we don't need to set this, if we have 2 curves and 2942 * fill the table backwards this can also be used to 2943 * switch from higher power curve to lower power curve */ 2944 u8 edge_flag; 2945 int i; 2946 2947 /* When we have only one curve available 2948 * that's the higher power curve. If we have 2949 * two curves the first is the high power curve 2950 * and the next is the low power curve. */ 2951 if (pdcurves > 1) { 2952 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; 2953 pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 2954 mid_pwr_idx = table_max[1] - table_min[1] - 1; 2955 max_pwr_idx = (table_max[0] - table_min[0]) / 2; 2956 2957 /* If table size goes beyond 31.5dB, keep the 2958 * upper 31.5dB range when setting tx power. 2959 * Note: 126 = 31.5 dB in quarter dB steps */ 2960 if (table_max[0] - table_min[1] > 126) 2961 min_pwr_idx = table_max[0] - 126; 2962 else 2963 min_pwr_idx = table_min[1]; 2964 2965 /* Since we fill table backwards 2966 * start from high power curve */ 2967 pcdac_tmp = pcdac_high_pwr; 2968 2969 edge_flag = 0x40; 2970 } else { 2971 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ 2972 pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 2973 min_pwr_idx = table_min[0]; 2974 max_pwr_idx = (table_max[0] - table_min[0]) / 2; 2975 pcdac_tmp = pcdac_high_pwr; 2976 edge_flag = 0; 2977 } 2978 2979 /* This is used when setting tx power*/ 2980 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; 2981 2982 /* Fill Power to PCDAC table backwards */ 2983 pwr = max_pwr_idx; 2984 for (i = 63; i >= 0; i--) { 2985 /* Entering lower power range, reset 2986 * edge flag and set pcdac_tmp to lower 2987 * power curve.*/ 2988 if (edge_flag == 0x40 && 2989 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { 2990 edge_flag = 0x00; 2991 pcdac_tmp = pcdac_low_pwr; 2992 pwr = mid_pwr_idx / 2; 2993 } 2994 2995 /* Don't go below 1, extrapolate below if we have 2996 * already switched to the lower power curve -or 2997 * we only have one curve and edge_flag is zero 2998 * anyway */ 2999 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { 3000 while (i >= 0) { 3001 pcdac_out[i] = pcdac_out[i + 1]; 3002 i--; 3003 } 3004 break; 3005 } 3006 3007 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; 3008 3009 /* Extrapolate above if pcdac is greater than 3010 * 126 -this can happen because we OR pcdac_out 3011 * value with edge_flag on high power curve */ 3012 if (pcdac_out[i] > 126) 3013 pcdac_out[i] = 126; 3014 3015 /* Decrease by a 0.5dB step */ 3016 pwr--; 3017 } 3018} 3019 3020/** 3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw 3022 * @ah: The &struct ath5k_hw 3023 */ 3024static void 3025ath5k_write_pcdac_table(struct ath5k_hw *ah) 3026{ 3027 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 3028 int i; 3029 3030 /* 3031 * Write TX power values 3032 */ 3033 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 3034 ath5k_hw_reg_write(ah, 3035 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | 3036 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), 3037 AR5K_PHY_PCDAC_TXPOWER(i)); 3038 } 3039} 3040 3041 3042/* 3043 * Power to PDADC table functions 3044 */ 3045 3046/** 3047 * DOC: Power to PDADC table functions 3048 * 3049 * For RF2413 and later we have a Power to PDADC table (Power Detector) 3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each 3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and 3052 * PDADC steps on y axis and looks like an exponential function like the 3053 * RF5111 curve. 3054 * 3055 * To recreate the curves we read the points from eeprom (eeprom.c) 3056 * and interpolate here. Note that in most cases only 2 (higher and lower) 3057 * curves are used (like RF5112) but vendors have the opportunity to include 3058 * all 4 curves on eeprom. The final curve (higher power) has an extra 3059 * point for better accuracy like RF5112. 3060 * 3061 * The process is similar to what we do above for RF5111/5112 3062 */ 3063 3064/** 3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves 3066 * @ah: The &struct ath5k_hw 3067 * @pwr_min: Minimum power (x min) 3068 * @pwr_max: Maximum power (x max) 3069 * @pdcurves: Number of available curves 3070 * 3071 * Combine the various pd curves and create the final Power to PDADC table 3072 * We can have up to 4 pd curves, we need to do a similar process 3073 * as we do for RF5112. This time we don't have an edge_flag but we 3074 * set the gain boundaries on a separate register. 3075 */ 3076static void 3077ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, 3078 s16 *pwr_min, s16 *pwr_max, u8 pdcurves) 3079{ 3080 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; 3081 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3082 u8 *pdadc_tmp; 3083 s16 pdadc_0; 3084 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; 3085 u8 pd_gain_overlap; 3086 3087 /* Note: Register value is initialized on initvals 3088 * there is no feedback from hw. 3089 * XXX: What about pd_gain_overlap from EEPROM ? */ 3090 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & 3091 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; 3092 3093 /* Create final PDADC table */ 3094 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { 3095 pdadc_tmp = ah->ah_txpower.tmpL[pdg]; 3096 3097 if (pdg == pdcurves - 1) 3098 /* 2 dB boundary stretch for last 3099 * (higher power) curve */ 3100 gain_boundaries[pdg] = pwr_max[pdg] + 4; 3101 else 3102 /* Set gain boundary in the middle 3103 * between this curve and the next one */ 3104 gain_boundaries[pdg] = 3105 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; 3106 3107 /* Sanity check in case our 2 db stretch got out of 3108 * range. */ 3109 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) 3110 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; 3111 3112 /* For the first curve (lower power) 3113 * start from 0 dB */ 3114 if (pdg == 0) 3115 pdadc_0 = 0; 3116 else 3117 /* For the other curves use the gain overlap */ 3118 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - 3119 pd_gain_overlap; 3120 3121 /* Force each power step to be at least 0.5 dB */ 3122 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) 3123 pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; 3124 else 3125 pwr_step = 1; 3126 3127 /* If pdadc_0 is negative, we need to extrapolate 3128 * below this pdgain by a number of pwr_steps */ 3129 while ((pdadc_0 < 0) && (pdadc_i < 128)) { 3130 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; 3131 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; 3132 pdadc_0++; 3133 } 3134 3135 /* Set last pwr level, using gain boundaries */ 3136 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; 3137 /* Limit it to be inside pwr range */ 3138 table_size = pwr_max[pdg] - pwr_min[pdg]; 3139 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; 3140 3141 /* Fill pdadc_out table */ 3142 while (pdadc_0 < max_idx && pdadc_i < 128) 3143 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; 3144 3145 /* Need to extrapolate above this pdgain? */ 3146 if (pdadc_n <= max_idx) 3147 continue; 3148 3149 /* Force each power step to be at least 0.5 dB */ 3150 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) 3151 pwr_step = pdadc_tmp[table_size - 1] - 3152 pdadc_tmp[table_size - 2]; 3153 else 3154 pwr_step = 1; 3155 3156 /* Extrapolate above */ 3157 while ((pdadc_0 < (s16) pdadc_n) && 3158 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { 3159 s16 tmp = pdadc_tmp[table_size - 1] + 3160 (pdadc_0 - max_idx) * pwr_step; 3161 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; 3162 pdadc_0++; 3163 } 3164 } 3165 3166 while (pdg < AR5K_EEPROM_N_PD_GAINS) { 3167 gain_boundaries[pdg] = gain_boundaries[pdg - 1]; 3168 pdg++; 3169 } 3170 3171 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { 3172 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; 3173 pdadc_i++; 3174 } 3175 3176 /* Set gain boundaries */ 3177 ath5k_hw_reg_write(ah, 3178 AR5K_REG_SM(pd_gain_overlap, 3179 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | 3180 AR5K_REG_SM(gain_boundaries[0], 3181 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | 3182 AR5K_REG_SM(gain_boundaries[1], 3183 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | 3184 AR5K_REG_SM(gain_boundaries[2], 3185 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | 3186 AR5K_REG_SM(gain_boundaries[3], 3187 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), 3188 AR5K_PHY_TPC_RG5); 3189 3190 /* Used for setting rate power table */ 3191 ah->ah_txpower.txp_min_idx = pwr_min[0]; 3192 3193} 3194 3195/** 3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw 3197 * @ah: The &struct ath5k_hw 3198 * @ee_mode: One of enum ath5k_driver_mode 3199 */ 3200static void 3201ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) 3202{ 3203 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3204 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3205 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3206 u8 pdcurves = ee->ee_pd_gains[ee_mode]; 3207 u32 reg; 3208 u8 i; 3209 3210 /* Select the right pdgain curves */ 3211 3212 /* Clear current settings */ 3213 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); 3214 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | 3215 AR5K_PHY_TPC_RG1_PDGAIN_2 | 3216 AR5K_PHY_TPC_RG1_PDGAIN_3 | 3217 AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 3218 3219 /* 3220 * Use pd_gains curve from eeprom 3221 * 3222 * This overrides the default setting from initvals 3223 * in case some vendors (e.g. Zcomax) don't use the default 3224 * curves. If we don't honor their settings we 'll get a 3225 * 5dB (1 * gain overlap ?) drop. 3226 */ 3227 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 3228 3229 switch (pdcurves) { 3230 case 3: 3231 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); 3232 fallthrough; 3233 case 2: 3234 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); 3235 fallthrough; 3236 case 1: 3237 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); 3238 break; 3239 } 3240 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); 3241 3242 /* 3243 * Write TX power values 3244 */ 3245 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 3246 u32 val = get_unaligned_le32(&pdadc_out[4 * i]); 3247 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); 3248 } 3249} 3250 3251 3252/* 3253 * Common code for PCDAC/PDADC tables 3254 */ 3255 3256/** 3257 * ath5k_setup_channel_powertable() - Set up power table for this channel 3258 * @ah: The &struct ath5k_hw 3259 * @channel: The &struct ieee80211_channel 3260 * @ee_mode: One of enum ath5k_driver_mode 3261 * @type: One of enum ath5k_powertable_type (eeprom.h) 3262 * 3263 * This is the main function that uses all of the above 3264 * to set PCDAC/PDADC table on hw for the current channel. 3265 * This table is used for tx power calibration on the baseband, 3266 * without it we get weird tx power levels and in some cases 3267 * distorted spectral mask 3268 */ 3269static int 3270ath5k_setup_channel_powertable(struct ath5k_hw *ah, 3271 struct ieee80211_channel *channel, 3272 u8 ee_mode, u8 type) 3273{ 3274 struct ath5k_pdgain_info *pdg_L, *pdg_R; 3275 struct ath5k_chan_pcal_info *pcinfo_L; 3276 struct ath5k_chan_pcal_info *pcinfo_R; 3277 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3278 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3279 s16 table_min[AR5K_EEPROM_N_PD_GAINS]; 3280 s16 table_max[AR5K_EEPROM_N_PD_GAINS]; 3281 u8 *tmpL; 3282 u8 *tmpR; 3283 u32 target = channel->center_freq; 3284 int pdg, i; 3285 3286 /* Get surrounding freq piers for this channel */ 3287 ath5k_get_chan_pcal_surrounding_piers(ah, channel, 3288 &pcinfo_L, 3289 &pcinfo_R); 3290 3291 /* Loop over pd gain curves on 3292 * surrounding freq piers by index */ 3293 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { 3294 3295 /* Fill curves in reverse order 3296 * from lower power (max gain) 3297 * to higher power. Use curve -> idx 3298 * backmapping we did on eeprom init */ 3299 u8 idx = pdg_curve_to_idx[pdg]; 3300 3301 /* Grab the needed curves by index */ 3302 pdg_L = &pcinfo_L->pd_curves[idx]; 3303 pdg_R = &pcinfo_R->pd_curves[idx]; 3304 3305 /* Initialize the temp tables */ 3306 tmpL = ah->ah_txpower.tmpL[pdg]; 3307 tmpR = ah->ah_txpower.tmpR[pdg]; 3308 3309 /* Set curve's x boundaries and create 3310 * curves so that they cover the same 3311 * range (if we don't do that one table 3312 * will have values on some range and the 3313 * other one won't have any so interpolation 3314 * will fail) */ 3315 table_min[pdg] = min(pdg_L->pd_pwr[0], 3316 pdg_R->pd_pwr[0]) / 2; 3317 3318 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 3319 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; 3320 3321 /* Now create the curves on surrounding channels 3322 * and interpolate if needed to get the final 3323 * curve for this gain on this channel */ 3324 switch (type) { 3325 case AR5K_PWRTABLE_LINEAR_PCDAC: 3326 /* Override min/max so that we don't loose 3327 * accuracy (don't divide by 2) */ 3328 table_min[pdg] = min(pdg_L->pd_pwr[0], 3329 pdg_R->pd_pwr[0]); 3330 3331 table_max[pdg] = 3332 max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 3333 pdg_R->pd_pwr[pdg_R->pd_points - 1]); 3334 3335 /* Override minimum so that we don't get 3336 * out of bounds while extrapolating 3337 * below. Don't do this when we have 2 3338 * curves and we are on the high power curve 3339 * because table_min is ok in this case */ 3340 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { 3341 3342 table_min[pdg] = 3343 ath5k_get_linear_pcdac_min(pdg_L->pd_step, 3344 pdg_R->pd_step, 3345 pdg_L->pd_pwr, 3346 pdg_R->pd_pwr); 3347 3348 /* Don't go too low because we will 3349 * miss the upper part of the curve. 3350 * Note: 126 = 31.5dB (max power supported) 3351 * in 0.25dB units */ 3352 if (table_max[pdg] - table_min[pdg] > 126) 3353 table_min[pdg] = table_max[pdg] - 126; 3354 } 3355 3356 fallthrough; 3357 case AR5K_PWRTABLE_PWR_TO_PCDAC: 3358 case AR5K_PWRTABLE_PWR_TO_PDADC: 3359 3360 ath5k_create_power_curve(table_min[pdg], 3361 table_max[pdg], 3362 pdg_L->pd_pwr, 3363 pdg_L->pd_step, 3364 pdg_L->pd_points, tmpL, type); 3365 3366 /* We are in a calibration 3367 * pier, no need to interpolate 3368 * between freq piers */ 3369 if (pcinfo_L == pcinfo_R) 3370 continue; 3371 3372 ath5k_create_power_curve(table_min[pdg], 3373 table_max[pdg], 3374 pdg_R->pd_pwr, 3375 pdg_R->pd_step, 3376 pdg_R->pd_points, tmpR, type); 3377 break; 3378 default: 3379 return -EINVAL; 3380 } 3381 3382 /* Interpolate between curves 3383 * of surrounding freq piers to 3384 * get the final curve for this 3385 * pd gain. Re-use tmpL for interpolation 3386 * output */ 3387 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && 3388 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 3389 tmpL[i] = (u8) ath5k_get_interpolated_value(target, 3390 (s16) pcinfo_L->freq, 3391 (s16) pcinfo_R->freq, 3392 (s16) tmpL[i], 3393 (s16) tmpR[i]); 3394 } 3395 } 3396 3397 /* Now we have a set of curves for this 3398 * channel on tmpL (x range is table_max - table_min 3399 * and y values are tmpL[pdg][]) sorted in the same 3400 * order as EEPROM (because we've used the backmapping). 3401 * So for RF5112 it's from higher power to lower power 3402 * and for RF2413 it's from lower power to higher power. 3403 * For RF5111 we only have one curve. */ 3404 3405 /* Fill min and max power levels for this 3406 * channel by interpolating the values on 3407 * surrounding channels to complete the dataset */ 3408 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, 3409 (s16) pcinfo_L->freq, 3410 (s16) pcinfo_R->freq, 3411 pcinfo_L->min_pwr, pcinfo_R->min_pwr); 3412 3413 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, 3414 (s16) pcinfo_L->freq, 3415 (s16) pcinfo_R->freq, 3416 pcinfo_L->max_pwr, pcinfo_R->max_pwr); 3417 3418 /* Fill PCDAC/PDADC table */ 3419 switch (type) { 3420 case AR5K_PWRTABLE_LINEAR_PCDAC: 3421 /* For RF5112 we can have one or two curves 3422 * and each curve covers a certain power lvl 3423 * range so we need to do some more processing */ 3424 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, 3425 ee->ee_pd_gains[ee_mode]); 3426 3427 /* Set txp.offset so that we can 3428 * match max power value with max 3429 * table index */ 3430 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); 3431 break; 3432 case AR5K_PWRTABLE_PWR_TO_PCDAC: 3433 /* We are done for RF5111 since it has only 3434 * one curve, just fit the curve on the table */ 3435 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); 3436 3437 /* No rate powertable adjustment for RF5111 */ 3438 ah->ah_txpower.txp_min_idx = 0; 3439 ah->ah_txpower.txp_offset = 0; 3440 break; 3441 case AR5K_PWRTABLE_PWR_TO_PDADC: 3442 /* Set PDADC boundaries and fill 3443 * final PDADC table */ 3444 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, 3445 ee->ee_pd_gains[ee_mode]); 3446 3447 /* Set txp.offset, note that table_min 3448 * can be negative */ 3449 ah->ah_txpower.txp_offset = table_min[0]; 3450 break; 3451 default: 3452 return -EINVAL; 3453 } 3454 3455 ah->ah_txpower.txp_setup = true; 3456 3457 return 0; 3458} 3459 3460/** 3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw 3462 * @ah: The &struct ath5k_hw 3463 * @ee_mode: One of enum ath5k_driver_mode 3464 * @type: One of enum ath5k_powertable_type (eeprom.h) 3465 */ 3466static void 3467ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) 3468{ 3469 if (type == AR5K_PWRTABLE_PWR_TO_PDADC) 3470 ath5k_write_pwr_to_pdadc_table(ah, ee_mode); 3471 else 3472 ath5k_write_pcdac_table(ah); 3473} 3474 3475 3476/** 3477 * DOC: Per-rate tx power setting 3478 * 3479 * This is the code that sets the desired tx power limit (below 3480 * maximum) on hw for each rate (we also have TPC that sets 3481 * power per packet type). We do that by providing an index on the 3482 * PCDAC/PDADC table we set up above, for each rate. 3483 * 3484 * For now we only limit txpower based on maximum tx power 3485 * supported by hw (what's inside rate_info) + conformance test 3486 * limits. We need to limit this even more, based on regulatory domain 3487 * etc to be safe. Normally this is done from above so we don't care 3488 * here, all we care is that the tx power we set will be O.K. 3489 * for the hw (e.g. won't create noise on PA etc). 3490 * 3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - 3492 * x values) and is indexed as follows: 3493 * rates[0] - rates[7] -> OFDM rates 3494 * rates[8] - rates[14] -> CCK rates 3495 * rates[15] -> XR rates (they all have the same power) 3496 */ 3497 3498/** 3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power 3500 * @ah: The &struct ath5k_hw 3501 * @max_pwr: The maximum tx power requested in 0.5dB steps 3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill 3503 * @ee_mode: One of enum ath5k_driver_mode 3504 */ 3505static void 3506ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, 3507 struct ath5k_rate_pcal_info *rate_info, 3508 u8 ee_mode) 3509{ 3510 unsigned int i; 3511 u16 *rates; 3512 s16 rate_idx_scaled = 0; 3513 3514 /* max_pwr is power level we got from driver/user in 0.5dB 3515 * units, switch to 0.25dB units so we can compare */ 3516 max_pwr *= 2; 3517 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; 3518 3519 /* apply rate limits */ 3520 rates = ah->ah_txpower.txp_rates_power_table; 3521 3522 /* OFDM rates 6 to 24Mb/s */ 3523 for (i = 0; i < 5; i++) 3524 rates[i] = min(max_pwr, rate_info->target_power_6to24); 3525 3526 /* Rest OFDM rates */ 3527 rates[5] = min(rates[0], rate_info->target_power_36); 3528 rates[6] = min(rates[0], rate_info->target_power_48); 3529 rates[7] = min(rates[0], rate_info->target_power_54); 3530 3531 /* CCK rates */ 3532 /* 1L */ 3533 rates[8] = min(rates[0], rate_info->target_power_6to24); 3534 /* 2L */ 3535 rates[9] = min(rates[0], rate_info->target_power_36); 3536 /* 2S */ 3537 rates[10] = min(rates[0], rate_info->target_power_36); 3538 /* 5L */ 3539 rates[11] = min(rates[0], rate_info->target_power_48); 3540 /* 5S */ 3541 rates[12] = min(rates[0], rate_info->target_power_48); 3542 /* 11L */ 3543 rates[13] = min(rates[0], rate_info->target_power_54); 3544 /* 11S */ 3545 rates[14] = min(rates[0], rate_info->target_power_54); 3546 3547 /* XR rates */ 3548 rates[15] = min(rates[0], rate_info->target_power_6to24); 3549 3550 /* CCK rates have different peak to average ratio 3551 * so we have to tweak their power so that gainf 3552 * correction works ok. For this we use OFDM to 3553 * CCK delta from eeprom */ 3554 if ((ee_mode == AR5K_EEPROM_MODE_11G) && 3555 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) 3556 for (i = 8; i <= 15; i++) 3557 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; 3558 3559 /* Save min/max and current tx power for this channel 3560 * in 0.25dB units. 3561 * 3562 * Note: We use rates[0] for current tx power because 3563 * it covers most of the rates, in most cases. It's our 3564 * tx power limit and what the user expects to see. */ 3565 ah->ah_txpower.txp_min_pwr = 2 * rates[7]; 3566 ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; 3567 3568 /* Set max txpower for correct OFDM operation on all rates 3569 * -that is the txpower for 54Mbit-, it's used for the PAPD 3570 * gain probe and it's in 0.5dB units */ 3571 ah->ah_txpower.txp_ofdm = rates[7]; 3572 3573 /* Now that we have all rates setup use table offset to 3574 * match the power range set by user with the power indices 3575 * on PCDAC/PDADC table */ 3576 for (i = 0; i < 16; i++) { 3577 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset; 3578 /* Don't get out of bounds */ 3579 if (rate_idx_scaled > 63) 3580 rate_idx_scaled = 63; 3581 if (rate_idx_scaled < 0) 3582 rate_idx_scaled = 0; 3583 rates[i] = rate_idx_scaled; 3584 } 3585} 3586 3587 3588/** 3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel 3590 * @ah: The &struct ath5k_hw 3591 * @channel: The &struct ieee80211_channel 3592 * @txpower: Requested tx power in 0.5dB steps 3593 * 3594 * Combines all of the above to set the requested tx power limit 3595 * on hw. 3596 */ 3597static int 3598ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3599 u8 txpower) 3600{ 3601 struct ath5k_rate_pcal_info rate_info; 3602 struct ieee80211_channel *curr_channel = ah->ah_current_channel; 3603 int ee_mode; 3604 u8 type; 3605 int ret; 3606 3607 if (txpower > AR5K_TUNE_MAX_TXPOWER) { 3608 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); 3609 return -EINVAL; 3610 } 3611 3612 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 3613 3614 /* Initialize TX power table */ 3615 switch (ah->ah_radio) { 3616 case AR5K_RF5110: 3617 /* TODO */ 3618 return 0; 3619 case AR5K_RF5111: 3620 type = AR5K_PWRTABLE_PWR_TO_PCDAC; 3621 break; 3622 case AR5K_RF5112: 3623 type = AR5K_PWRTABLE_LINEAR_PCDAC; 3624 break; 3625 case AR5K_RF2413: 3626 case AR5K_RF5413: 3627 case AR5K_RF2316: 3628 case AR5K_RF2317: 3629 case AR5K_RF2425: 3630 type = AR5K_PWRTABLE_PWR_TO_PDADC; 3631 break; 3632 default: 3633 return -EINVAL; 3634 } 3635 3636 /* 3637 * If we don't change channel/mode skip tx powertable calculation 3638 * and use the cached one. 3639 */ 3640 if (!ah->ah_txpower.txp_setup || 3641 (channel->hw_value != curr_channel->hw_value) || 3642 (channel->center_freq != curr_channel->center_freq)) { 3643 /* Reset TX power values but preserve requested 3644 * tx power from above */ 3645 int requested_txpower = ah->ah_txpower.txp_requested; 3646 3647 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); 3648 3649 /* Restore TPC setting and requested tx power */ 3650 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; 3651 3652 ah->ah_txpower.txp_requested = requested_txpower; 3653 3654 /* Calculate the powertable */ 3655 ret = ath5k_setup_channel_powertable(ah, channel, 3656 ee_mode, type); 3657 if (ret) 3658 return ret; 3659 } 3660 3661 /* Write table on hw */ 3662 ath5k_write_channel_powertable(ah, ee_mode, type); 3663 3664 /* Limit max power if we have a CTL available */ 3665 ath5k_get_max_ctl_power(ah, channel); 3666 3667 /* FIXME: Antenna reduction stuff */ 3668 3669 /* FIXME: Limit power on turbo modes */ 3670 3671 /* FIXME: TPC scale reduction */ 3672 3673 /* Get surrounding channels for per-rate power table 3674 * calibration */ 3675 ath5k_get_rate_pcal_data(ah, channel, &rate_info); 3676 3677 /* Setup rate power table */ 3678 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); 3679 3680 /* Write rate power table on hw */ 3681 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | 3682 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | 3683 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); 3684 3685 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | 3686 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | 3687 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); 3688 3689 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | 3690 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | 3691 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); 3692 3693 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | 3694 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | 3695 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); 3696 3697 /* FIXME: TPC support */ 3698 if (ah->ah_txpower.txp_tpc) { 3699 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | 3700 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 3701 3702 ath5k_hw_reg_write(ah, 3703 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | 3704 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | 3705 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), 3706 AR5K_TPC); 3707 } else { 3708 ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER, 3709 AR5K_PHY_TXPOWER_RATE_MAX); 3710 } 3711 3712 return 0; 3713} 3714 3715/** 3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel 3717 * @ah: The &struct ath5k_hw 3718 * @txpower: The requested tx power limit in 0.5dB steps 3719 * 3720 * This function provides access to ath5k_hw_txpower to the driver in 3721 * case user or an application changes it while PHY is running. 3722 */ 3723int 3724ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) 3725{ 3726 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, 3727 "changing txpower to %d\n", txpower); 3728 3729 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); 3730} 3731 3732 3733/*************\ 3734 Init function 3735\*************/ 3736 3737/** 3738 * ath5k_hw_phy_init() - Initialize PHY 3739 * @ah: The &struct ath5k_hw 3740 * @channel: The @struct ieee80211_channel 3741 * @mode: One of enum ath5k_driver_mode 3742 * @fast: Try a fast channel switch instead 3743 * 3744 * This is the main function used during reset to initialize PHY 3745 * or do a fast channel change if possible. 3746 * 3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a 3748 * warm reset state ! 3749 */ 3750int 3751ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3752 u8 mode, bool fast) 3753{ 3754 struct ieee80211_channel *curr_channel; 3755 int ret, i; 3756 u32 phy_tst1; 3757 ret = 0; 3758 3759 /* 3760 * Sanity check for fast flag 3761 * Don't try fast channel change when changing modulation 3762 * mode/band. We check for chip compatibility on 3763 * ath5k_hw_reset. 3764 */ 3765 curr_channel = ah->ah_current_channel; 3766 if (fast && (channel->hw_value != curr_channel->hw_value)) 3767 return -EINVAL; 3768 3769 /* 3770 * On fast channel change we only set the synth parameters 3771 * while PHY is running, enable calibration and skip the rest. 3772 */ 3773 if (fast) { 3774 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 3775 AR5K_PHY_RFBUS_REQ_REQUEST); 3776 for (i = 0; i < 100; i++) { 3777 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) 3778 break; 3779 udelay(5); 3780 } 3781 /* Failed */ 3782 if (i >= 100) 3783 return -EIO; 3784 3785 /* Set channel and wait for synth */ 3786 ret = ath5k_hw_channel(ah, channel); 3787 if (ret) 3788 return ret; 3789 3790 ath5k_hw_wait_for_synth(ah, channel); 3791 } 3792 3793 /* 3794 * Set TX power 3795 * 3796 * Note: We need to do that before we set 3797 * RF buffer settings on 5211/5212+ so that we 3798 * properly set curve indices. 3799 */ 3800 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ? 3801 ah->ah_txpower.txp_requested * 2 : 3802 AR5K_TUNE_MAX_TXPOWER); 3803 if (ret) 3804 return ret; 3805 3806 /* Write OFDM timings on 5212*/ 3807 if (ah->ah_version == AR5K_AR5212 && 3808 channel->hw_value != AR5K_MODE_11B) { 3809 3810 ret = ath5k_hw_write_ofdm_timings(ah, channel); 3811 if (ret) 3812 return ret; 3813 3814 /* Spur info is available only from EEPROM versions 3815 * greater than 5.3, but the EEPROM routines will use 3816 * static values for older versions */ 3817 if (ah->ah_mac_srev >= AR5K_SREV_AR5424) 3818 ath5k_hw_set_spur_mitigation_filter(ah, 3819 channel); 3820 } 3821 3822 /* If we used fast channel switching 3823 * we are done, release RF bus and 3824 * fire up NF calibration. 3825 * 3826 * Note: Only NF calibration due to 3827 * channel change, not AGC calibration 3828 * since AGC is still running ! 3829 */ 3830 if (fast) { 3831 /* 3832 * Release RF Bus grant 3833 */ 3834 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 3835 AR5K_PHY_RFBUS_REQ_REQUEST); 3836 3837 /* 3838 * Start NF calibration 3839 */ 3840 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 3841 AR5K_PHY_AGCCTL_NF); 3842 3843 return ret; 3844 } 3845 3846 /* 3847 * For 5210 we do all initialization using 3848 * initvals, so we don't have to modify 3849 * any settings (5210 also only supports 3850 * a/aturbo modes) 3851 */ 3852 if (ah->ah_version != AR5K_AR5210) { 3853 3854 /* 3855 * Write initial RF gain settings 3856 * This should work for both 5111/5112 3857 */ 3858 ret = ath5k_hw_rfgain_init(ah, channel->band); 3859 if (ret) 3860 return ret; 3861 3862 usleep_range(1000, 1500); 3863 3864 /* 3865 * Write RF buffer 3866 */ 3867 ret = ath5k_hw_rfregs_init(ah, channel, mode); 3868 if (ret) 3869 return ret; 3870 3871 /*Enable/disable 802.11b mode on 5111 3872 (enable 2111 frequency converter + CCK)*/ 3873 if (ah->ah_radio == AR5K_RF5111) { 3874 if (mode == AR5K_MODE_11B) 3875 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, 3876 AR5K_TXCFG_B_MODE); 3877 else 3878 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 3879 AR5K_TXCFG_B_MODE); 3880 } 3881 3882 } else if (ah->ah_version == AR5K_AR5210) { 3883 usleep_range(1000, 1500); 3884 /* Disable phy and wait */ 3885 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 3886 usleep_range(1000, 1500); 3887 } 3888 3889 /* Set channel on PHY */ 3890 ret = ath5k_hw_channel(ah, channel); 3891 if (ret) 3892 return ret; 3893 3894 /* 3895 * Enable the PHY and wait until completion 3896 * This includes BaseBand and Synthesizer 3897 * activation. 3898 */ 3899 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 3900 3901 ath5k_hw_wait_for_synth(ah, channel); 3902 3903 /* 3904 * Perform ADC test to see if baseband is ready 3905 * Set tx hold and check adc test register 3906 */ 3907 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); 3908 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); 3909 for (i = 0; i <= 20; i++) { 3910 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) 3911 break; 3912 usleep_range(200, 250); 3913 } 3914 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); 3915 3916 /* 3917 * Start automatic gain control calibration 3918 * 3919 * During AGC calibration RX path is re-routed to 3920 * a power detector so we don't receive anything. 3921 * 3922 * This method is used to calibrate some static offsets 3923 * used together with on-the fly I/Q calibration (the 3924 * one performed via ath5k_hw_phy_calibrate), which doesn't 3925 * interrupt rx path. 3926 * 3927 * While rx path is re-routed to the power detector we also 3928 * start a noise floor calibration to measure the 3929 * card's noise floor (the noise we measure when we are not 3930 * transmitting or receiving anything). 3931 * 3932 * If we are in a noisy environment, AGC calibration may time 3933 * out and/or noise floor calibration might timeout. 3934 */ 3935 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 3936 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); 3937 3938 /* At the same time start I/Q calibration for QAM constellation 3939 * -no need for CCK- */ 3940 ah->ah_iq_cal_needed = false; 3941 if (!(mode == AR5K_MODE_11B)) { 3942 ah->ah_iq_cal_needed = true; 3943 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 3944 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 3945 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 3946 AR5K_PHY_IQ_RUN); 3947 } 3948 3949 /* Wait for gain calibration to finish (we check for I/Q calibration 3950 * during ath5k_phy_calibrate) */ 3951 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 3952 AR5K_PHY_AGCCTL_CAL, 0, false)) { 3953 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", 3954 channel->center_freq); 3955 } 3956 3957 /* Restore antenna mode */ 3958 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); 3959 3960 return ret; 3961}