cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

phy.c (110491B)


      1/*
      2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
      3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
      4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
      5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
      6 *
      7 * Permission to use, copy, modify, and distribute this software for any
      8 * purpose with or without fee is hereby granted, provided that the above
      9 * copyright notice and this permission notice appear in all copies.
     10 *
     11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18 *
     19 */
     20
     21/***********************\
     22* PHY related functions *
     23\***********************/
     24
     25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     26
     27#include <linux/delay.h>
     28#include <linux/slab.h>
     29#include <asm/unaligned.h>
     30
     31#include "ath5k.h"
     32#include "reg.h"
     33#include "rfbuffer.h"
     34#include "rfgain.h"
     35#include "../regd.h"
     36
     37
     38/**
     39 * DOC: PHY related functions
     40 *
     41 * Here we handle the low-level functions related to baseband
     42 * and analog frontend (RF) parts. This is by far the most complex
     43 * part of the hw code so make sure you know what you are doing.
     44 *
     45 * Here is a list of what this is all about:
     46 *
     47 * - Channel setting/switching
     48 *
     49 * - Automatic Gain Control (AGC) calibration
     50 *
     51 * - Noise Floor calibration
     52 *
     53 * - I/Q imbalance calibration (QAM correction)
     54 *
     55 * - Calibration due to thermal changes (gain_F)
     56 *
     57 * - Spur noise mitigation
     58 *
     59 * - RF/PHY initialization for the various operating modes and bwmodes
     60 *
     61 * - Antenna control
     62 *
     63 * - TX power control per channel/rate/packet type
     64 *
     65 * Also have in mind we never got documentation for most of these
     66 * functions, what we have comes mostly from Atheros's code, reverse
     67 * engineering and patent docs/presentations etc.
     68 */
     69
     70
     71/******************\
     72* Helper functions *
     73\******************/
     74
     75/**
     76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
     77 * @ah: The &struct ath5k_hw
     78 * @band: One of enum nl80211_band
     79 *
     80 * Returns the revision number of a 2GHz, 5GHz or single chip
     81 * radio.
     82 */
     83u16
     84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
     85{
     86	unsigned int i;
     87	u32 srev;
     88	u16 ret;
     89
     90	/*
     91	 * Set the radio chip access register
     92	 */
     93	switch (band) {
     94	case NL80211_BAND_2GHZ:
     95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
     96		break;
     97	case NL80211_BAND_5GHZ:
     98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
     99		break;
    100	default:
    101		return 0;
    102	}
    103
    104	usleep_range(2000, 2500);
    105
    106	/* ...wait until PHY is ready and read the selected radio revision */
    107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
    108
    109	for (i = 0; i < 8; i++)
    110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
    111
    112	if (ah->ah_version == AR5K_AR5210) {
    113		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
    114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
    115	} else {
    116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
    117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
    118				((srev & 0x0f) << 4), 8);
    119	}
    120
    121	/* Reset to the 5GHz mode */
    122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
    123
    124	return ret;
    125}
    126
    127/**
    128 * ath5k_channel_ok() - Check if a channel is supported by the hw
    129 * @ah: The &struct ath5k_hw
    130 * @channel: The &struct ieee80211_channel
    131 *
    132 * Note: We don't do any regulatory domain checks here, it's just
    133 * a sanity check.
    134 */
    135bool
    136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
    137{
    138	u16 freq = channel->center_freq;
    139
    140	/* Check if the channel is in our supported range */
    141	if (channel->band == NL80211_BAND_2GHZ) {
    142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
    143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
    144			return true;
    145	} else if (channel->band == NL80211_BAND_5GHZ)
    146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
    147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
    148			return true;
    149
    150	return false;
    151}
    152
    153/**
    154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
    155 * @ah: The &struct ath5k_hw
    156 * @channel: The &struct ieee80211_channel
    157 */
    158bool
    159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
    160				struct ieee80211_channel *channel)
    161{
    162	u8 refclk_freq;
    163
    164	if ((ah->ah_radio == AR5K_RF5112) ||
    165	(ah->ah_radio == AR5K_RF5413) ||
    166	(ah->ah_radio == AR5K_RF2413) ||
    167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
    168		refclk_freq = 40;
    169	else
    170		refclk_freq = 32;
    171
    172	if ((channel->center_freq % refclk_freq != 0) &&
    173	((channel->center_freq % refclk_freq < 10) ||
    174	(channel->center_freq % refclk_freq > 22)))
    175		return true;
    176	else
    177		return false;
    178}
    179
    180/**
    181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
    182 * @ah: The &struct ath5k_hw
    183 * @rf_regs: The struct ath5k_rf_reg
    184 * @val: New value
    185 * @reg_id: RF register ID
    186 * @set: Indicate we need to swap data
    187 *
    188 * This is an internal function used to modify RF Banks before
    189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
    190 * infos.
    191 */
    192static unsigned int
    193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
    194					u32 val, u8 reg_id, bool set)
    195{
    196	const struct ath5k_rf_reg *rfreg = NULL;
    197	u8 offset, bank, num_bits, col, position;
    198	u16 entry;
    199	u32 mask, data, last_bit, bits_shifted, first_bit;
    200	u32 *rfb;
    201	s32 bits_left;
    202	int i;
    203
    204	data = 0;
    205	rfb = ah->ah_rf_banks;
    206
    207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
    208		if (rf_regs[i].index == reg_id) {
    209			rfreg = &rf_regs[i];
    210			break;
    211		}
    212	}
    213
    214	if (rfb == NULL || rfreg == NULL) {
    215		ATH5K_PRINTF("Rf register not found!\n");
    216		/* should not happen */
    217		return 0;
    218	}
    219
    220	bank = rfreg->bank;
    221	num_bits = rfreg->field.len;
    222	first_bit = rfreg->field.pos;
    223	col = rfreg->field.col;
    224
    225	/* first_bit is an offset from bank's
    226	 * start. Since we have all banks on
    227	 * the same array, we use this offset
    228	 * to mark each bank's start */
    229	offset = ah->ah_offset[bank];
    230
    231	/* Boundary check */
    232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
    233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
    234		return 0;
    235	}
    236
    237	entry = ((first_bit - 1) / 8) + offset;
    238	position = (first_bit - 1) % 8;
    239
    240	if (set)
    241		data = ath5k_hw_bitswap(val, num_bits);
    242
    243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
    244	     position = 0, entry++) {
    245
    246		last_bit = (position + bits_left > 8) ? 8 :
    247					position + bits_left;
    248
    249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
    250								(col * 8);
    251
    252		if (set) {
    253			rfb[entry] &= ~mask;
    254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
    255			data >>= (8 - position);
    256		} else {
    257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
    258				<< bits_shifted;
    259			bits_shifted += last_bit - position;
    260		}
    261
    262		bits_left -= 8 - position;
    263	}
    264
    265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
    266
    267	return data;
    268}
    269
    270/**
    271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
    272 * @ah: the &struct ath5k_hw
    273 * @channel: the currently set channel upon reset
    274 *
    275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
    276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
    277 *
    278 * Since delta slope is floating point we split it on its exponent and
    279 * mantissa and provide these values on hw.
    280 *
    281 * For more infos i think this patent is related
    282 * "http://www.freepatentsonline.com/7184495.html"
    283 */
    284static inline int
    285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
    286				struct ieee80211_channel *channel)
    287{
    288	/* Get exponent and mantissa and set it */
    289	u32 coef_scaled, coef_exp, coef_man,
    290		ds_coef_exp, ds_coef_man, clock;
    291
    292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
    293		(channel->hw_value == AR5K_MODE_11B));
    294
    295	/* Get coefficient
    296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
    297	 * we scale coef by shifting clock value by 24 for
    298	 * better precision since we use integers */
    299	switch (ah->ah_bwmode) {
    300	case AR5K_BWMODE_40MHZ:
    301		clock = 40 * 2;
    302		break;
    303	case AR5K_BWMODE_10MHZ:
    304		clock = 40 / 2;
    305		break;
    306	case AR5K_BWMODE_5MHZ:
    307		clock = 40 / 4;
    308		break;
    309	default:
    310		clock = 40;
    311		break;
    312	}
    313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
    314
    315	/* Get exponent
    316	 * ALGO: coef_exp = 14 - highest set bit position */
    317	coef_exp = ilog2(coef_scaled);
    318
    319	/* Doesn't make sense if it's zero*/
    320	if (!coef_scaled || !coef_exp)
    321		return -EINVAL;
    322
    323	/* Note: we've shifted coef_scaled by 24 */
    324	coef_exp = 14 - (coef_exp - 24);
    325
    326
    327	/* Get mantissa (significant digits)
    328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
    329	coef_man = coef_scaled +
    330		(1 << (24 - coef_exp - 1));
    331
    332	/* Calculate delta slope coefficient exponent
    333	 * and mantissa (remove scaling) and set them on hw */
    334	ds_coef_man = coef_man >> (24 - coef_exp);
    335	ds_coef_exp = coef_exp - 16;
    336
    337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
    338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
    339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
    340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
    341
    342	return 0;
    343}
    344
    345/**
    346 * ath5k_hw_phy_disable() - Disable PHY
    347 * @ah: The &struct ath5k_hw
    348 */
    349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
    350{
    351	/*Just a try M.F.*/
    352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
    353
    354	return 0;
    355}
    356
    357/**
    358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
    359 * @ah: The &struct ath5k_hw
    360 * @channel: The &struct ieee80211_channel
    361 */
    362static void
    363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
    364			struct ieee80211_channel *channel)
    365{
    366	/*
    367	 * On 5211+ read activation -> rx delay
    368	 * and use it (100ns steps).
    369	 */
    370	if (ah->ah_version != AR5K_AR5210) {
    371		u32 delay;
    372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
    373			AR5K_PHY_RX_DELAY_M;
    374		delay = (channel->hw_value == AR5K_MODE_11B) ?
    375			((delay << 2) / 22) : (delay / 10);
    376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
    377			delay = delay << 1;
    378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
    379			delay = delay << 2;
    380		/* XXX: /2 on turbo ? Let's be safe
    381		 * for now */
    382		usleep_range(100 + delay, 100 + (2 * delay));
    383	} else {
    384		usleep_range(1000, 1500);
    385	}
    386}
    387
    388
    389/**********************\
    390* RF Gain optimization *
    391\**********************/
    392
    393/**
    394 * DOC: RF Gain optimization
    395 *
    396 * This code is used to optimize RF gain on different environments
    397 * (temperature mostly) based on feedback from a power detector.
    398 *
    399 * It's only used on RF5111 and RF5112, later RF chips seem to have
    400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
    401 * no gain optimization ladder-.
    402 *
    403 * For more infos check out this patent doc
    404 * "http://www.freepatentsonline.com/7400691.html"
    405 *
    406 * This paper describes power drops as seen on the receiver due to
    407 * probe packets
    408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
    409 * %20of%20Power%20Control.pdf"
    410 *
    411 * And this is the MadWiFi bug entry related to the above
    412 * "http://madwifi-project.org/ticket/1659"
    413 * with various measurements and diagrams
    414 */
    415
    416/**
    417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
    418 * @ah: The &struct ath5k_hw
    419 */
    420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
    421{
    422	/* Initialize the gain optimization values */
    423	switch (ah->ah_radio) {
    424	case AR5K_RF5111:
    425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
    426		ah->ah_gain.g_low = 20;
    427		ah->ah_gain.g_high = 35;
    428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
    429		break;
    430	case AR5K_RF5112:
    431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
    432		ah->ah_gain.g_low = 20;
    433		ah->ah_gain.g_high = 85;
    434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
    435		break;
    436	default:
    437		return -EINVAL;
    438	}
    439
    440	return 0;
    441}
    442
    443/**
    444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
    445 * @ah: The &struct ath5k_hw
    446 *
    447 * Schedules a gain probe check on the next transmitted packet.
    448 * That means our next packet is going to be sent with lower
    449 * tx power and a Peak to Average Power Detector (PAPD) will try
    450 * to measure the gain.
    451 *
    452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
    453 * just after we enable the probe so that we don't mess with
    454 * standard traffic.
    455 */
    456static void
    457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
    458{
    459
    460	/* Skip if gain calibration is inactive or
    461	 * we already handle a probe request */
    462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
    463		return;
    464
    465	/* Send the packet with 2dB below max power as
    466	 * patent doc suggest */
    467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
    468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
    469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
    470
    471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
    472
    473}
    474
    475/**
    476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
    477 * @ah: The &struct ath5k_hw
    478 *
    479 * Calculate Gain_F measurement correction
    480 * based on the current step for RF5112 rev. 2
    481 */
    482static u32
    483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
    484{
    485	u32 mix, step;
    486	const struct ath5k_gain_opt *go;
    487	const struct ath5k_gain_opt_step *g_step;
    488	const struct ath5k_rf_reg *rf_regs;
    489
    490	/* Only RF5112 Rev. 2 supports it */
    491	if ((ah->ah_radio != AR5K_RF5112) ||
    492	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
    493		return 0;
    494
    495	go = &rfgain_opt_5112;
    496	rf_regs = rf_regs_5112a;
    497	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
    498
    499	g_step = &go->go_step[ah->ah_gain.g_step_idx];
    500
    501	if (ah->ah_rf_banks == NULL)
    502		return 0;
    503
    504	ah->ah_gain.g_f_corr = 0;
    505
    506	/* No VGA (Variable Gain Amplifier) override, skip */
    507	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
    508		return 0;
    509
    510	/* Mix gain stepping */
    511	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
    512
    513	/* Mix gain override */
    514	mix = g_step->gos_param[0];
    515
    516	switch (mix) {
    517	case 3:
    518		ah->ah_gain.g_f_corr = step * 2;
    519		break;
    520	case 2:
    521		ah->ah_gain.g_f_corr = (step - 5) * 2;
    522		break;
    523	case 1:
    524		ah->ah_gain.g_f_corr = step;
    525		break;
    526	default:
    527		ah->ah_gain.g_f_corr = 0;
    528		break;
    529	}
    530
    531	return ah->ah_gain.g_f_corr;
    532}
    533
    534/**
    535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
    536 * @ah: The &struct ath5k_hw
    537 *
    538 * Check if current gain_F measurement is in the range of our
    539 * power detector windows. If we get a measurement outside range
    540 * we know it's not accurate (detectors can't measure anything outside
    541 * their detection window) so we must ignore it.
    542 *
    543 * Returns true if readback was O.K. or false on failure
    544 */
    545static bool
    546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
    547{
    548	const struct ath5k_rf_reg *rf_regs;
    549	u32 step, mix_ovr, level[4];
    550
    551	if (ah->ah_rf_banks == NULL)
    552		return false;
    553
    554	if (ah->ah_radio == AR5K_RF5111) {
    555
    556		rf_regs = rf_regs_5111;
    557		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
    558
    559		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
    560			false);
    561
    562		level[0] = 0;
    563		level[1] = (step == 63) ? 50 : step + 4;
    564		level[2] = (step != 63) ? 64 : level[0];
    565		level[3] = level[2] + 50;
    566
    567		ah->ah_gain.g_high = level[3] -
    568			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
    569		ah->ah_gain.g_low = level[0] +
    570			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
    571	} else {
    572
    573		rf_regs = rf_regs_5112;
    574		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
    575
    576		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
    577			false);
    578
    579		level[0] = level[2] = 0;
    580
    581		if (mix_ovr == 1) {
    582			level[1] = level[3] = 83;
    583		} else {
    584			level[1] = level[3] = 107;
    585			ah->ah_gain.g_high = 55;
    586		}
    587	}
    588
    589	return (ah->ah_gain.g_current >= level[0] &&
    590			ah->ah_gain.g_current <= level[1]) ||
    591		(ah->ah_gain.g_current >= level[2] &&
    592			ah->ah_gain.g_current <= level[3]);
    593}
    594
    595/**
    596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
    597 * @ah: The &struct ath5k_hw
    598 *
    599 * Choose the right target gain based on current gain
    600 * and RF gain optimization ladder
    601 */
    602static s8
    603ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
    604{
    605	const struct ath5k_gain_opt *go;
    606	const struct ath5k_gain_opt_step *g_step;
    607	int ret = 0;
    608
    609	switch (ah->ah_radio) {
    610	case AR5K_RF5111:
    611		go = &rfgain_opt_5111;
    612		break;
    613	case AR5K_RF5112:
    614		go = &rfgain_opt_5112;
    615		break;
    616	default:
    617		return 0;
    618	}
    619
    620	g_step = &go->go_step[ah->ah_gain.g_step_idx];
    621
    622	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
    623
    624		/* Reached maximum */
    625		if (ah->ah_gain.g_step_idx == 0)
    626			return -1;
    627
    628		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
    629				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
    630				ah->ah_gain.g_step_idx > 0;
    631				g_step = &go->go_step[ah->ah_gain.g_step_idx])
    632			ah->ah_gain.g_target -= 2 *
    633			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
    634			    g_step->gos_gain);
    635
    636		ret = 1;
    637		goto done;
    638	}
    639
    640	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
    641
    642		/* Reached minimum */
    643		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
    644			return -2;
    645
    646		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
    647				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
    648				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
    649				g_step = &go->go_step[ah->ah_gain.g_step_idx])
    650			ah->ah_gain.g_target -= 2 *
    651			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
    652			    g_step->gos_gain);
    653
    654		ret = 2;
    655		goto done;
    656	}
    657
    658done:
    659	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
    660		"ret %d, gain step %u, current gain %u, target gain %u\n",
    661		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
    662		ah->ah_gain.g_target);
    663
    664	return ret;
    665}
    666
    667/**
    668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
    669 * @ah: The &struct ath5k_hw
    670 *
    671 * Main callback for thermal RF gain calibration engine
    672 * Check for a new gain reading and schedule an adjustment
    673 * if needed.
    674 *
    675 * Returns one of enum ath5k_rfgain codes
    676 */
    677enum ath5k_rfgain
    678ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
    679{
    680	u32 data, type;
    681	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    682
    683	if (ah->ah_rf_banks == NULL ||
    684	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
    685		return AR5K_RFGAIN_INACTIVE;
    686
    687	/* No check requested, either engine is inactive
    688	 * or an adjustment is already requested */
    689	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
    690		goto done;
    691
    692	/* Read the PAPD (Peak to Average Power Detector)
    693	 * register */
    694	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
    695
    696	/* No probe is scheduled, read gain_F measurement */
    697	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
    698		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
    699		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
    700
    701		/* If tx packet is CCK correct the gain_F measurement
    702		 * by cck ofdm gain delta */
    703		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
    704			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
    705				ah->ah_gain.g_current +=
    706					ee->ee_cck_ofdm_gain_delta;
    707			else
    708				ah->ah_gain.g_current +=
    709					AR5K_GAIN_CCK_PROBE_CORR;
    710		}
    711
    712		/* Further correct gain_F measurement for
    713		 * RF5112A radios */
    714		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
    715			ath5k_hw_rf_gainf_corr(ah);
    716			ah->ah_gain.g_current =
    717				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
    718				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
    719				0;
    720		}
    721
    722		/* Check if measurement is ok and if we need
    723		 * to adjust gain, schedule a gain adjustment,
    724		 * else switch back to the active state */
    725		if (ath5k_hw_rf_check_gainf_readback(ah) &&
    726		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
    727		ath5k_hw_rf_gainf_adjust(ah)) {
    728			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
    729		} else {
    730			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
    731		}
    732	}
    733
    734done:
    735	return ah->ah_gain.g_state;
    736}
    737
    738/**
    739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
    740 * @ah: The &struct ath5k_hw
    741 * @band: One of enum nl80211_band
    742 *
    743 * Write initial RF gain table to set the RF sensitivity.
    744 *
    745 * NOTE: This one works on all RF chips and has nothing to do
    746 * with Gain_F calibration
    747 */
    748static int
    749ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
    750{
    751	const struct ath5k_ini_rfgain *ath5k_rfg;
    752	unsigned int i, size, index;
    753
    754	switch (ah->ah_radio) {
    755	case AR5K_RF5111:
    756		ath5k_rfg = rfgain_5111;
    757		size = ARRAY_SIZE(rfgain_5111);
    758		break;
    759	case AR5K_RF5112:
    760		ath5k_rfg = rfgain_5112;
    761		size = ARRAY_SIZE(rfgain_5112);
    762		break;
    763	case AR5K_RF2413:
    764		ath5k_rfg = rfgain_2413;
    765		size = ARRAY_SIZE(rfgain_2413);
    766		break;
    767	case AR5K_RF2316:
    768		ath5k_rfg = rfgain_2316;
    769		size = ARRAY_SIZE(rfgain_2316);
    770		break;
    771	case AR5K_RF5413:
    772		ath5k_rfg = rfgain_5413;
    773		size = ARRAY_SIZE(rfgain_5413);
    774		break;
    775	case AR5K_RF2317:
    776	case AR5K_RF2425:
    777		ath5k_rfg = rfgain_2425;
    778		size = ARRAY_SIZE(rfgain_2425);
    779		break;
    780	default:
    781		return -EINVAL;
    782	}
    783
    784	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
    785
    786	for (i = 0; i < size; i++) {
    787		AR5K_REG_WAIT(i);
    788		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
    789			(u32)ath5k_rfg[i].rfg_register);
    790	}
    791
    792	return 0;
    793}
    794
    795
    796/********************\
    797* RF Registers setup *
    798\********************/
    799
    800/**
    801 * ath5k_hw_rfregs_init() - Initialize RF register settings
    802 * @ah: The &struct ath5k_hw
    803 * @channel: The &struct ieee80211_channel
    804 * @mode: One of enum ath5k_driver_mode
    805 *
    806 * Setup RF registers by writing RF buffer on hw. For
    807 * more infos on this, check out rfbuffer.h
    808 */
    809static int
    810ath5k_hw_rfregs_init(struct ath5k_hw *ah,
    811			struct ieee80211_channel *channel,
    812			unsigned int mode)
    813{
    814	const struct ath5k_rf_reg *rf_regs;
    815	const struct ath5k_ini_rfbuffer *ini_rfb;
    816	const struct ath5k_gain_opt *go = NULL;
    817	const struct ath5k_gain_opt_step *g_step;
    818	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    819	u8 ee_mode = 0;
    820	u32 *rfb;
    821	int i, obdb = -1, bank = -1;
    822
    823	switch (ah->ah_radio) {
    824	case AR5K_RF5111:
    825		rf_regs = rf_regs_5111;
    826		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
    827		ini_rfb = rfb_5111;
    828		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
    829		go = &rfgain_opt_5111;
    830		break;
    831	case AR5K_RF5112:
    832		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
    833			rf_regs = rf_regs_5112a;
    834			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
    835			ini_rfb = rfb_5112a;
    836			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
    837		} else {
    838			rf_regs = rf_regs_5112;
    839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
    840			ini_rfb = rfb_5112;
    841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
    842		}
    843		go = &rfgain_opt_5112;
    844		break;
    845	case AR5K_RF2413:
    846		rf_regs = rf_regs_2413;
    847		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
    848		ini_rfb = rfb_2413;
    849		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
    850		break;
    851	case AR5K_RF2316:
    852		rf_regs = rf_regs_2316;
    853		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
    854		ini_rfb = rfb_2316;
    855		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
    856		break;
    857	case AR5K_RF5413:
    858		rf_regs = rf_regs_5413;
    859		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
    860		ini_rfb = rfb_5413;
    861		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
    862		break;
    863	case AR5K_RF2317:
    864		rf_regs = rf_regs_2425;
    865		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
    866		ini_rfb = rfb_2317;
    867		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
    868		break;
    869	case AR5K_RF2425:
    870		rf_regs = rf_regs_2425;
    871		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
    872		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
    873			ini_rfb = rfb_2425;
    874			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
    875		} else {
    876			ini_rfb = rfb_2417;
    877			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
    878		}
    879		break;
    880	default:
    881		return -EINVAL;
    882	}
    883
    884	/* If it's the first time we set RF buffer, allocate
    885	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
    886	 * we set above */
    887	if (ah->ah_rf_banks == NULL) {
    888		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
    889								sizeof(u32),
    890								GFP_KERNEL);
    891		if (ah->ah_rf_banks == NULL) {
    892			ATH5K_ERR(ah, "out of memory\n");
    893			return -ENOMEM;
    894		}
    895	}
    896
    897	/* Copy values to modify them */
    898	rfb = ah->ah_rf_banks;
    899
    900	for (i = 0; i < ah->ah_rf_banks_size; i++) {
    901		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
    902			ATH5K_ERR(ah, "invalid bank\n");
    903			return -EINVAL;
    904		}
    905
    906		/* Bank changed, write down the offset */
    907		if (bank != ini_rfb[i].rfb_bank) {
    908			bank = ini_rfb[i].rfb_bank;
    909			ah->ah_offset[bank] = i;
    910		}
    911
    912		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
    913	}
    914
    915	/* Set Output and Driver bias current (OB/DB) */
    916	if (channel->band == NL80211_BAND_2GHZ) {
    917
    918		if (channel->hw_value == AR5K_MODE_11B)
    919			ee_mode = AR5K_EEPROM_MODE_11B;
    920		else
    921			ee_mode = AR5K_EEPROM_MODE_11G;
    922
    923		/* For RF511X/RF211X combination we
    924		 * use b_OB and b_DB parameters stored
    925		 * in eeprom on ee->ee_ob[ee_mode][0]
    926		 *
    927		 * For all other chips we use OB/DB for 2GHz
    928		 * stored in the b/g modal section just like
    929		 * 802.11a on ee->ee_ob[ee_mode][1] */
    930		if ((ah->ah_radio == AR5K_RF5111) ||
    931		(ah->ah_radio == AR5K_RF5112))
    932			obdb = 0;
    933		else
    934			obdb = 1;
    935
    936		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
    937						AR5K_RF_OB_2GHZ, true);
    938
    939		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
    940						AR5K_RF_DB_2GHZ, true);
    941
    942	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
    943	} else if ((channel->band == NL80211_BAND_5GHZ) ||
    944			(ah->ah_radio == AR5K_RF5111)) {
    945
    946		/* For 11a, Turbo and XR we need to choose
    947		 * OB/DB based on frequency range */
    948		ee_mode = AR5K_EEPROM_MODE_11A;
    949		obdb =	 channel->center_freq >= 5725 ? 3 :
    950			(channel->center_freq >= 5500 ? 2 :
    951			(channel->center_freq >= 5260 ? 1 :
    952			 (channel->center_freq > 4000 ? 0 : -1)));
    953
    954		if (obdb < 0)
    955			return -EINVAL;
    956
    957		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
    958						AR5K_RF_OB_5GHZ, true);
    959
    960		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
    961						AR5K_RF_DB_5GHZ, true);
    962	}
    963
    964	g_step = &go->go_step[ah->ah_gain.g_step_idx];
    965
    966	/* Set turbo mode (N/A on RF5413) */
    967	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
    968	(ah->ah_radio != AR5K_RF5413))
    969		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
    970
    971	/* Bank Modifications (chip-specific) */
    972	if (ah->ah_radio == AR5K_RF5111) {
    973
    974		/* Set gain_F settings according to current step */
    975		if (channel->hw_value != AR5K_MODE_11B) {
    976
    977			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
    978					AR5K_PHY_FRAME_CTL_TX_CLIP,
    979					g_step->gos_param[0]);
    980
    981			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
    982							AR5K_RF_PWD_90, true);
    983
    984			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
    985							AR5K_RF_PWD_84, true);
    986
    987			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
    988						AR5K_RF_RFGAIN_SEL, true);
    989
    990			/* We programmed gain_F parameters, switch back
    991			 * to active state */
    992			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
    993
    994		}
    995
    996		/* Bank 6/7 setup */
    997
    998		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
    999						AR5K_RF_PWD_XPD, true);
   1000
   1001		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
   1002						AR5K_RF_XPD_GAIN, true);
   1003
   1004		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
   1005						AR5K_RF_GAIN_I, true);
   1006
   1007		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
   1008						AR5K_RF_PLO_SEL, true);
   1009
   1010		/* Tweak power detectors for half/quarter rate support */
   1011		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
   1012		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
   1013			u8 wait_i;
   1014
   1015			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
   1016						AR5K_RF_WAIT_S, true);
   1017
   1018			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
   1019							0x1f : 0x10;
   1020
   1021			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
   1022						AR5K_RF_WAIT_I, true);
   1023			ath5k_hw_rfb_op(ah, rf_regs, 3,
   1024						AR5K_RF_MAX_TIME, true);
   1025
   1026		}
   1027	}
   1028
   1029	if (ah->ah_radio == AR5K_RF5112) {
   1030
   1031		/* Set gain_F settings according to current step */
   1032		if (channel->hw_value != AR5K_MODE_11B) {
   1033
   1034			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
   1035						AR5K_RF_MIXGAIN_OVR, true);
   1036
   1037			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
   1038						AR5K_RF_PWD_138, true);
   1039
   1040			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
   1041						AR5K_RF_PWD_137, true);
   1042
   1043			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
   1044						AR5K_RF_PWD_136, true);
   1045
   1046			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
   1047						AR5K_RF_PWD_132, true);
   1048
   1049			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
   1050						AR5K_RF_PWD_131, true);
   1051
   1052			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
   1053						AR5K_RF_PWD_130, true);
   1054
   1055			/* We programmed gain_F parameters, switch back
   1056			 * to active state */
   1057			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
   1058		}
   1059
   1060		/* Bank 6/7 setup */
   1061
   1062		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
   1063						AR5K_RF_XPD_SEL, true);
   1064
   1065		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
   1066			/* Rev. 1 supports only one xpd */
   1067			ath5k_hw_rfb_op(ah, rf_regs,
   1068						ee->ee_x_gain[ee_mode],
   1069						AR5K_RF_XPD_GAIN, true);
   1070
   1071		} else {
   1072			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
   1073			if (ee->ee_pd_gains[ee_mode] > 1) {
   1074				ath5k_hw_rfb_op(ah, rf_regs,
   1075						pdg_curve_to_idx[0],
   1076						AR5K_RF_PD_GAIN_LO, true);
   1077				ath5k_hw_rfb_op(ah, rf_regs,
   1078						pdg_curve_to_idx[1],
   1079						AR5K_RF_PD_GAIN_HI, true);
   1080			} else {
   1081				ath5k_hw_rfb_op(ah, rf_regs,
   1082						pdg_curve_to_idx[0],
   1083						AR5K_RF_PD_GAIN_LO, true);
   1084				ath5k_hw_rfb_op(ah, rf_regs,
   1085						pdg_curve_to_idx[0],
   1086						AR5K_RF_PD_GAIN_HI, true);
   1087			}
   1088
   1089			/* Lower synth voltage on Rev 2 */
   1090			if (ah->ah_radio == AR5K_RF5112 &&
   1091			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
   1092				ath5k_hw_rfb_op(ah, rf_regs, 2,
   1093						AR5K_RF_HIGH_VC_CP, true);
   1094
   1095				ath5k_hw_rfb_op(ah, rf_regs, 2,
   1096						AR5K_RF_MID_VC_CP, true);
   1097
   1098				ath5k_hw_rfb_op(ah, rf_regs, 2,
   1099						AR5K_RF_LOW_VC_CP, true);
   1100
   1101				ath5k_hw_rfb_op(ah, rf_regs, 2,
   1102						AR5K_RF_PUSH_UP, true);
   1103			}
   1104
   1105			/* Decrease power consumption on 5213+ BaseBand */
   1106			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
   1107				ath5k_hw_rfb_op(ah, rf_regs, 1,
   1108						AR5K_RF_PAD2GND, true);
   1109
   1110				ath5k_hw_rfb_op(ah, rf_regs, 1,
   1111						AR5K_RF_XB2_LVL, true);
   1112
   1113				ath5k_hw_rfb_op(ah, rf_regs, 1,
   1114						AR5K_RF_XB5_LVL, true);
   1115
   1116				ath5k_hw_rfb_op(ah, rf_regs, 1,
   1117						AR5K_RF_PWD_167, true);
   1118
   1119				ath5k_hw_rfb_op(ah, rf_regs, 1,
   1120						AR5K_RF_PWD_166, true);
   1121			}
   1122		}
   1123
   1124		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
   1125						AR5K_RF_GAIN_I, true);
   1126
   1127		/* Tweak power detector for half/quarter rates */
   1128		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
   1129		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
   1130			u8 pd_delay;
   1131
   1132			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
   1133							0xf : 0x8;
   1134
   1135			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
   1136						AR5K_RF_PD_PERIOD_A, true);
   1137			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
   1138						AR5K_RF_PD_DELAY_A, true);
   1139
   1140		}
   1141	}
   1142
   1143	if (ah->ah_radio == AR5K_RF5413 &&
   1144	channel->band == NL80211_BAND_2GHZ) {
   1145
   1146		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
   1147									true);
   1148
   1149		/* Set optimum value for early revisions (on pci-e chips) */
   1150		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
   1151		ah->ah_mac_srev < AR5K_SREV_AR5413)
   1152			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
   1153						AR5K_RF_PWD_ICLOBUF_2G, true);
   1154
   1155	}
   1156
   1157	/* Write RF banks on hw */
   1158	for (i = 0; i < ah->ah_rf_banks_size; i++) {
   1159		AR5K_REG_WAIT(i);
   1160		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
   1161	}
   1162
   1163	return 0;
   1164}
   1165
   1166
   1167/**************************\
   1168  PHY/RF channel functions
   1169\**************************/
   1170
   1171/**
   1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
   1173 * @channel: The &struct ieee80211_channel
   1174 *
   1175 * Map channel frequency to IEEE channel number and convert it
   1176 * to an internal channel value used by the RF5110 chipset.
   1177 */
   1178static u32
   1179ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
   1180{
   1181	u32 athchan;
   1182
   1183	athchan = (ath5k_hw_bitswap(
   1184			(ieee80211_frequency_to_channel(
   1185				channel->center_freq) - 24) / 2, 5)
   1186				<< 1) | (1 << 6) | 0x1;
   1187	return athchan;
   1188}
   1189
   1190/**
   1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
   1192 * @ah: The &struct ath5k_hw
   1193 * @channel: The &struct ieee80211_channel
   1194 */
   1195static int
   1196ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
   1197		struct ieee80211_channel *channel)
   1198{
   1199	u32 data;
   1200
   1201	/*
   1202	 * Set the channel and wait
   1203	 */
   1204	data = ath5k_hw_rf5110_chan2athchan(channel);
   1205	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
   1206	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
   1207	usleep_range(1000, 1500);
   1208
   1209	return 0;
   1210}
   1211
   1212/**
   1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
   1214 * @ieee: IEEE channel number
   1215 * @athchan: The &struct ath5k_athchan_2ghz
   1216 *
   1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
   1218 * we need to add some offsets and extra flags to the data values we pass
   1219 * on to the PHY. So for every 2GHz channel this function gets called
   1220 * to do the conversion.
   1221 */
   1222static int
   1223ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
   1224		struct ath5k_athchan_2ghz *athchan)
   1225{
   1226	int channel;
   1227
   1228	/* Cast this value to catch negative channel numbers (>= -19) */
   1229	channel = (int)ieee;
   1230
   1231	/*
   1232	 * Map 2GHz IEEE channel to 5GHz Atheros channel
   1233	 */
   1234	if (channel <= 13) {
   1235		athchan->a2_athchan = 115 + channel;
   1236		athchan->a2_flags = 0x46;
   1237	} else if (channel == 14) {
   1238		athchan->a2_athchan = 124;
   1239		athchan->a2_flags = 0x44;
   1240	} else if (channel >= 15 && channel <= 26) {
   1241		athchan->a2_athchan = ((channel - 14) * 4) + 132;
   1242		athchan->a2_flags = 0x46;
   1243	} else
   1244		return -EINVAL;
   1245
   1246	return 0;
   1247}
   1248
   1249/**
   1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
   1251 * @ah: The &struct ath5k_hw
   1252 * @channel: The &struct ieee80211_channel
   1253 */
   1254static int
   1255ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
   1256		struct ieee80211_channel *channel)
   1257{
   1258	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
   1259	unsigned int ath5k_channel =
   1260		ieee80211_frequency_to_channel(channel->center_freq);
   1261	u32 data0, data1, clock;
   1262	int ret;
   1263
   1264	/*
   1265	 * Set the channel on the RF5111 radio
   1266	 */
   1267	data0 = data1 = 0;
   1268
   1269	if (channel->band == NL80211_BAND_2GHZ) {
   1270		/* Map 2GHz channel to 5GHz Atheros channel ID */
   1271		ret = ath5k_hw_rf5111_chan2athchan(
   1272			ieee80211_frequency_to_channel(channel->center_freq),
   1273			&ath5k_channel_2ghz);
   1274		if (ret)
   1275			return ret;
   1276
   1277		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
   1278		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
   1279		    << 5) | (1 << 4);
   1280	}
   1281
   1282	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
   1283		clock = 1;
   1284		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
   1285			(clock << 1) | (1 << 10) | 1;
   1286	} else {
   1287		clock = 0;
   1288		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
   1289			<< 2) | (clock << 1) | (1 << 10) | 1;
   1290	}
   1291
   1292	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
   1293			AR5K_RF_BUFFER);
   1294	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
   1295			AR5K_RF_BUFFER_CONTROL_3);
   1296
   1297	return 0;
   1298}
   1299
   1300/**
   1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
   1302 * @ah: The &struct ath5k_hw
   1303 * @channel: The &struct ieee80211_channel
   1304 *
   1305 * On RF5112/2112 and newer we don't need to do any conversion.
   1306 * We pass the frequency value after a few modifications to the
   1307 * chip directly.
   1308 *
   1309 * NOTE: Make sure channel frequency given is within our range or else
   1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
   1311 */
   1312static int
   1313ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
   1314		struct ieee80211_channel *channel)
   1315{
   1316	u32 data, data0, data1, data2;
   1317	u16 c;
   1318
   1319	data = data0 = data1 = data2 = 0;
   1320	c = channel->center_freq;
   1321
   1322	/* My guess based on code:
   1323	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
   1324	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
   1325	 * (3040/2). data0 is used to set the PLL divider and data1
   1326	 * selects synth mode. */
   1327	if (c < 4800) {
   1328		/* Channel 14 and all frequencies with 2Hz spacing
   1329		 * below/above (non-standard channels) */
   1330		if (!((c - 2224) % 5)) {
   1331			/* Same as (c - 2224) / 5 */
   1332			data0 = ((2 * (c - 704)) - 3040) / 10;
   1333			data1 = 1;
   1334		/* Channel 1 and all frequencies with 5Hz spacing
   1335		 * below/above (standard channels without channel 14) */
   1336		} else if (!((c - 2192) % 5)) {
   1337			/* Same as (c - 2192) / 5 */
   1338			data0 = ((2 * (c - 672)) - 3040) / 10;
   1339			data1 = 0;
   1340		} else
   1341			return -EINVAL;
   1342
   1343		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
   1344	/* This is more complex, we have a single synthesizer with
   1345	 * 4 reference clock settings (?) based on frequency spacing
   1346	 * and set using data2. LO is at 4800Hz and data0 is again used
   1347	 * to set some divider.
   1348	 *
   1349	 * NOTE: There is an old atheros presentation at Stanford
   1350	 * that mentions a method called dual direct conversion
   1351	 * with 1GHz sliding IF for RF5110. Maybe that's what we
   1352	 * have here, or an updated version. */
   1353	} else if ((c % 5) != 2 || c > 5435) {
   1354		if (!(c % 20) && c >= 5120) {
   1355			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
   1356			data2 = ath5k_hw_bitswap(3, 2);
   1357		} else if (!(c % 10)) {
   1358			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
   1359			data2 = ath5k_hw_bitswap(2, 2);
   1360		} else if (!(c % 5)) {
   1361			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
   1362			data2 = ath5k_hw_bitswap(1, 2);
   1363		} else
   1364			return -EINVAL;
   1365	} else {
   1366		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
   1367		data2 = ath5k_hw_bitswap(0, 2);
   1368	}
   1369
   1370	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
   1371
   1372	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
   1373	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
   1374
   1375	return 0;
   1376}
   1377
   1378/**
   1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
   1380 * @ah: The &struct ath5k_hw
   1381 * @channel: The &struct ieee80211_channel
   1382 *
   1383 * AR2425/2417 have a different 2GHz RF so code changes
   1384 * a little bit from RF5112.
   1385 */
   1386static int
   1387ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
   1388		struct ieee80211_channel *channel)
   1389{
   1390	u32 data, data0, data2;
   1391	u16 c;
   1392
   1393	data = data0 = data2 = 0;
   1394	c = channel->center_freq;
   1395
   1396	if (c < 4800) {
   1397		data0 = ath5k_hw_bitswap((c - 2272), 8);
   1398		data2 = 0;
   1399	/* ? 5GHz ? */
   1400	} else if ((c % 5) != 2 || c > 5435) {
   1401		if (!(c % 20) && c < 5120)
   1402			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
   1403		else if (!(c % 10))
   1404			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
   1405		else if (!(c % 5))
   1406			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
   1407		else
   1408			return -EINVAL;
   1409		data2 = ath5k_hw_bitswap(1, 2);
   1410	} else {
   1411		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
   1412		data2 = ath5k_hw_bitswap(0, 2);
   1413	}
   1414
   1415	data = (data0 << 4) | data2 << 2 | 0x1001;
   1416
   1417	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
   1418	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
   1419
   1420	return 0;
   1421}
   1422
   1423/**
   1424 * ath5k_hw_channel() - Set a channel on the radio chip
   1425 * @ah: The &struct ath5k_hw
   1426 * @channel: The &struct ieee80211_channel
   1427 *
   1428 * This is the main function called to set a channel on the
   1429 * radio chip based on the radio chip version.
   1430 */
   1431static int
   1432ath5k_hw_channel(struct ath5k_hw *ah,
   1433		struct ieee80211_channel *channel)
   1434{
   1435	int ret;
   1436	/*
   1437	 * Check bounds supported by the PHY (we don't care about regulatory
   1438	 * restrictions at this point).
   1439	 */
   1440	if (!ath5k_channel_ok(ah, channel)) {
   1441		ATH5K_ERR(ah,
   1442			"channel frequency (%u MHz) out of supported "
   1443			"band range\n",
   1444			channel->center_freq);
   1445		return -EINVAL;
   1446	}
   1447
   1448	/*
   1449	 * Set the channel and wait
   1450	 */
   1451	switch (ah->ah_radio) {
   1452	case AR5K_RF5110:
   1453		ret = ath5k_hw_rf5110_channel(ah, channel);
   1454		break;
   1455	case AR5K_RF5111:
   1456		ret = ath5k_hw_rf5111_channel(ah, channel);
   1457		break;
   1458	case AR5K_RF2317:
   1459	case AR5K_RF2425:
   1460		ret = ath5k_hw_rf2425_channel(ah, channel);
   1461		break;
   1462	default:
   1463		ret = ath5k_hw_rf5112_channel(ah, channel);
   1464		break;
   1465	}
   1466
   1467	if (ret)
   1468		return ret;
   1469
   1470	/* Set JAPAN setting for channel 14 */
   1471	if (channel->center_freq == 2484) {
   1472		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
   1473				AR5K_PHY_CCKTXCTL_JAPAN);
   1474	} else {
   1475		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
   1476				AR5K_PHY_CCKTXCTL_WORLD);
   1477	}
   1478
   1479	ah->ah_current_channel = channel;
   1480
   1481	return 0;
   1482}
   1483
   1484
   1485/*****************\
   1486  PHY calibration
   1487\*****************/
   1488
   1489/**
   1490 * DOC: PHY Calibration routines
   1491 *
   1492 * Noise floor calibration: When we tell the hardware to
   1493 * perform a noise floor calibration by setting the
   1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
   1495 * sample-and-hold the minimum noise level seen at the antennas.
   1496 * This value is then stored in a ring buffer of recently measured
   1497 * noise floor values so we have a moving window of the last few
   1498 * samples. The median of the values in the history is then loaded
   1499 * into the hardware for its own use for RSSI and CCA measurements.
   1500 * This type of calibration doesn't interfere with traffic.
   1501 *
   1502 * AGC calibration: When we tell the hardware to perform
   1503 * an AGC (Automatic Gain Control) calibration by setting the
   1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
   1505 * a calibration on the DC offsets of ADCs. During this period
   1506 * rx/tx gets disabled so we have to deal with it on the driver
   1507 * part.
   1508 *
   1509 * I/Q calibration: When we tell the hardware to perform
   1510 * an I/Q calibration, it tries to correct I/Q imbalance and
   1511 * fix QAM constellation by sampling data from rxed frames.
   1512 * It doesn't interfere with traffic.
   1513 *
   1514 * For more infos on AGC and I/Q calibration check out patent doc
   1515 * #03/094463.
   1516 */
   1517
   1518/**
   1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
   1520 * @ah: The &struct ath5k_hw
   1521 */
   1522static s32
   1523ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
   1524{
   1525	s32 val;
   1526
   1527	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
   1528	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
   1529}
   1530
   1531/**
   1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
   1533 * @ah: The &struct ath5k_hw
   1534 */
   1535void
   1536ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
   1537{
   1538	int i;
   1539
   1540	ah->ah_nfcal_hist.index = 0;
   1541	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
   1542		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
   1543}
   1544
   1545/**
   1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
   1547 * @ah: The &struct ath5k_hw
   1548 * @noise_floor: The NF we got from hw
   1549 */
   1550static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
   1551{
   1552	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
   1553	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
   1554	hist->nfval[hist->index] = noise_floor;
   1555}
   1556
   1557/**
   1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
   1559 * @ah: The &struct ath5k_hw
   1560 */
   1561static s16
   1562ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
   1563{
   1564	s16 sort[ATH5K_NF_CAL_HIST_MAX];
   1565	s16 tmp;
   1566	int i, j;
   1567
   1568	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
   1569	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
   1570		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
   1571			if (sort[j] > sort[j - 1]) {
   1572				tmp = sort[j];
   1573				sort[j] = sort[j - 1];
   1574				sort[j - 1] = tmp;
   1575			}
   1576		}
   1577	}
   1578	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
   1579		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
   1580			"cal %d:%d\n", i, sort[i]);
   1581	}
   1582	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
   1583}
   1584
   1585/**
   1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
   1587 * @ah: The &struct ath5k_hw
   1588 *
   1589 * This is the main function we call to perform a NF calibration,
   1590 * it reads NF from hardware, calculates the median and updates
   1591 * NF on hw.
   1592 */
   1593void
   1594ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
   1595{
   1596	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1597	u32 val;
   1598	s16 nf, threshold;
   1599	u8 ee_mode;
   1600
   1601	/* keep last value if calibration hasn't completed */
   1602	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
   1603		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
   1604			"NF did not complete in calibration window\n");
   1605
   1606		return;
   1607	}
   1608
   1609	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
   1610
   1611	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
   1612
   1613	/* completed NF calibration, test threshold */
   1614	nf = ath5k_hw_read_measured_noise_floor(ah);
   1615	threshold = ee->ee_noise_floor_thr[ee_mode];
   1616
   1617	if (nf > threshold) {
   1618		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
   1619			"noise floor failure detected; "
   1620			"read %d, threshold %d\n",
   1621			nf, threshold);
   1622
   1623		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
   1624	}
   1625
   1626	ath5k_hw_update_nfcal_hist(ah, nf);
   1627	nf = ath5k_hw_get_median_noise_floor(ah);
   1628
   1629	/* load noise floor (in .5 dBm) so the hardware will use it */
   1630	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
   1631	val |= (nf * 2) & AR5K_PHY_NF_M;
   1632	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
   1633
   1634	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
   1635		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
   1636
   1637	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
   1638		0, false);
   1639
   1640	/*
   1641	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
   1642	 * so that we're not capped by the median we just loaded.
   1643	 * This will be used as the initial value for the next noise
   1644	 * floor calibration.
   1645	 */
   1646	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
   1647	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
   1648	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
   1649		AR5K_PHY_AGCCTL_NF_EN |
   1650		AR5K_PHY_AGCCTL_NF_NOUPDATE |
   1651		AR5K_PHY_AGCCTL_NF);
   1652
   1653	ah->ah_noise_floor = nf;
   1654
   1655	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
   1656
   1657	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
   1658		"noise floor calibrated: %d\n", nf);
   1659}
   1660
   1661/**
   1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
   1663 * @ah: The &struct ath5k_hw
   1664 * @channel: The &struct ieee80211_channel
   1665 *
   1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
   1667 */
   1668static int
   1669ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
   1670		struct ieee80211_channel *channel)
   1671{
   1672	u32 phy_sig, phy_agc, phy_sat, beacon;
   1673	int ret;
   1674
   1675	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
   1676		return 0;
   1677
   1678	/*
   1679	 * Disable beacons and RX/TX queues, wait
   1680	 */
   1681	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
   1682		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
   1683	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
   1684	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
   1685
   1686	usleep_range(2000, 2500);
   1687
   1688	/*
   1689	 * Set the channel (with AGC turned off)
   1690	 */
   1691	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
   1692	udelay(10);
   1693	ret = ath5k_hw_channel(ah, channel);
   1694
   1695	/*
   1696	 * Activate PHY and wait
   1697	 */
   1698	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
   1699	usleep_range(1000, 1500);
   1700
   1701	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
   1702
   1703	if (ret)
   1704		return ret;
   1705
   1706	/*
   1707	 * Calibrate the radio chip
   1708	 */
   1709
   1710	/* Remember normal state */
   1711	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
   1712	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
   1713	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
   1714
   1715	/* Update radio registers */
   1716	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
   1717		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
   1718
   1719	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
   1720			AR5K_PHY_AGCCOARSE_LO)) |
   1721		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
   1722		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
   1723
   1724	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
   1725			AR5K_PHY_ADCSAT_THR)) |
   1726		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
   1727		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
   1728
   1729	udelay(20);
   1730
   1731	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
   1732	udelay(10);
   1733	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
   1734	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
   1735
   1736	usleep_range(1000, 1500);
   1737
   1738	/*
   1739	 * Enable calibration and wait until completion
   1740	 */
   1741	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
   1742
   1743	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
   1744			AR5K_PHY_AGCCTL_CAL, 0, false);
   1745
   1746	/* Reset to normal state */
   1747	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
   1748	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
   1749	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
   1750
   1751	if (ret) {
   1752		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
   1753				channel->center_freq);
   1754		return ret;
   1755	}
   1756
   1757	/*
   1758	 * Re-enable RX/TX and beacons
   1759	 */
   1760	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
   1761		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
   1762	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
   1763
   1764	return 0;
   1765}
   1766
   1767/**
   1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
   1769 * @ah: The &struct ath5k_hw
   1770 */
   1771static int
   1772ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
   1773{
   1774	u32 i_pwr, q_pwr;
   1775	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
   1776	int i;
   1777
   1778	/* Skip if I/Q calibration is not needed or if it's still running */
   1779	if (!ah->ah_iq_cal_needed)
   1780		return -EINVAL;
   1781	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
   1782		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
   1783				"I/Q calibration still running");
   1784		return -EBUSY;
   1785	}
   1786
   1787	/* Calibration has finished, get the results and re-run */
   1788
   1789	/* Work around for empty results which can apparently happen on 5212:
   1790	 * Read registers up to 10 times until we get both i_pr and q_pwr */
   1791	for (i = 0; i <= 10; i++) {
   1792		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
   1793		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
   1794		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
   1795		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
   1796			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
   1797		if (i_pwr && q_pwr)
   1798			break;
   1799	}
   1800
   1801	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
   1802
   1803	if (ah->ah_version == AR5K_AR5211)
   1804		q_coffd = q_pwr >> 6;
   1805	else
   1806		q_coffd = q_pwr >> 7;
   1807
   1808	/* In case i_coffd became zero, cancel calibration
   1809	 * not only it's too small, it'll also result a divide
   1810	 * by zero later on. */
   1811	if (i_coffd == 0 || q_coffd < 2)
   1812		return -ECANCELED;
   1813
   1814	/* Protect against loss of sign bits */
   1815
   1816	i_coff = (-iq_corr) / i_coffd;
   1817	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
   1818
   1819	if (ah->ah_version == AR5K_AR5211)
   1820		q_coff = (i_pwr / q_coffd) - 64;
   1821	else
   1822		q_coff = (i_pwr / q_coffd) - 128;
   1823	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
   1824
   1825	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
   1826			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
   1827			i_coff, q_coff, i_coffd, q_coffd);
   1828
   1829	/* Commit new I/Q values (set enable bit last to match HAL sources) */
   1830	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
   1831	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
   1832	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
   1833
   1834	/* Re-enable calibration -if we don't we'll commit
   1835	 * the same values again and again */
   1836	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
   1837			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
   1838	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
   1839
   1840	return 0;
   1841}
   1842
   1843/**
   1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
   1845 * @ah: The &struct ath5k_hw
   1846 * @channel: The &struct ieee80211_channel
   1847 *
   1848 * The main function we call from above to perform
   1849 * a short or full PHY calibration based on RF chip
   1850 * and current channel
   1851 */
   1852int
   1853ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
   1854		struct ieee80211_channel *channel)
   1855{
   1856	int ret;
   1857
   1858	if (ah->ah_radio == AR5K_RF5110)
   1859		return ath5k_hw_rf5110_calibrate(ah, channel);
   1860
   1861	ret = ath5k_hw_rf511x_iq_calibrate(ah);
   1862	if (ret) {
   1863		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
   1864			"No I/Q correction performed (%uMHz)\n",
   1865			channel->center_freq);
   1866
   1867		/* Happens all the time if there is not much
   1868		 * traffic, consider it normal behaviour. */
   1869		ret = 0;
   1870	}
   1871
   1872	/* On full calibration request a PAPD probe for
   1873	 * gainf calibration if needed */
   1874	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
   1875	    (ah->ah_radio == AR5K_RF5111 ||
   1876	     ah->ah_radio == AR5K_RF5112) &&
   1877	    channel->hw_value != AR5K_MODE_11B)
   1878		ath5k_hw_request_rfgain_probe(ah);
   1879
   1880	/* Update noise floor */
   1881	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
   1882		ath5k_hw_update_noise_floor(ah);
   1883
   1884	return ret;
   1885}
   1886
   1887
   1888/***************************\
   1889* Spur mitigation functions *
   1890\***************************/
   1891
   1892/**
   1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
   1894 * @ah: The &struct ath5k_hw
   1895 * @channel: The &struct ieee80211_channel
   1896 *
   1897 * This function gets called during PHY initialization to
   1898 * configure the spur filter for the given channel. Spur is noise
   1899 * generated due to "reflection" effects, for more information on this
   1900 * method check out patent US7643810
   1901 */
   1902static void
   1903ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
   1904				struct ieee80211_channel *channel)
   1905{
   1906	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1907	u32 mag_mask[4] = {0, 0, 0, 0};
   1908	u32 pilot_mask[2] = {0, 0};
   1909	/* Note: fbin values are scaled up by 2 */
   1910	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
   1911	s32 spur_delta_phase, spur_freq_sigma_delta;
   1912	s32 spur_offset, num_symbols_x16;
   1913	u8 num_symbol_offsets, i, freq_band;
   1914
   1915	/* Convert current frequency to fbin value (the same way channels
   1916	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
   1917	 * up by 2 so we can compare it later */
   1918	if (channel->band == NL80211_BAND_2GHZ) {
   1919		chan_fbin = (channel->center_freq - 2300) * 10;
   1920		freq_band = AR5K_EEPROM_BAND_2GHZ;
   1921	} else {
   1922		chan_fbin = (channel->center_freq - 4900) * 10;
   1923		freq_band = AR5K_EEPROM_BAND_5GHZ;
   1924	}
   1925
   1926	/* Check if any spur_chan_fbin from EEPROM is
   1927	 * within our current channel's spur detection range */
   1928	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
   1929	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
   1930	/* XXX: Half/Quarter channels ?*/
   1931	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
   1932		spur_detection_window *= 2;
   1933
   1934	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
   1935		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
   1936
   1937		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
   1938		 * so it's zero if we got nothing from EEPROM */
   1939		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
   1940			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
   1941			break;
   1942		}
   1943
   1944		if ((chan_fbin - spur_detection_window <=
   1945		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
   1946		(chan_fbin + spur_detection_window >=
   1947		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
   1948			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
   1949			break;
   1950		}
   1951	}
   1952
   1953	/* We need to enable spur filter for this channel */
   1954	if (spur_chan_fbin) {
   1955		spur_offset = spur_chan_fbin - chan_fbin;
   1956		/*
   1957		 * Calculate deltas:
   1958		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
   1959		 * spur_delta_phase -> spur_offset / chip_freq << 11
   1960		 * Note: Both values have 100Hz resolution
   1961		 */
   1962		switch (ah->ah_bwmode) {
   1963		case AR5K_BWMODE_40MHZ:
   1964			/* Both sample_freq and chip_freq are 80MHz */
   1965			spur_delta_phase = (spur_offset << 16) / 25;
   1966			spur_freq_sigma_delta = (spur_delta_phase >> 10);
   1967			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
   1968			break;
   1969		case AR5K_BWMODE_10MHZ:
   1970			/* Both sample_freq and chip_freq are 20MHz (?) */
   1971			spur_delta_phase = (spur_offset << 18) / 25;
   1972			spur_freq_sigma_delta = (spur_delta_phase >> 10);
   1973			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
   1974			break;
   1975		case AR5K_BWMODE_5MHZ:
   1976			/* Both sample_freq and chip_freq are 10MHz (?) */
   1977			spur_delta_phase = (spur_offset << 19) / 25;
   1978			spur_freq_sigma_delta = (spur_delta_phase >> 10);
   1979			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
   1980			break;
   1981		default:
   1982			if (channel->band == NL80211_BAND_5GHZ) {
   1983				/* Both sample_freq and chip_freq are 40MHz */
   1984				spur_delta_phase = (spur_offset << 17) / 25;
   1985				spur_freq_sigma_delta =
   1986						(spur_delta_phase >> 10);
   1987				symbol_width =
   1988					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
   1989			} else {
   1990				/* sample_freq -> 40MHz chip_freq -> 44MHz
   1991				 * (for b compatibility) */
   1992				spur_delta_phase = (spur_offset << 17) / 25;
   1993				spur_freq_sigma_delta =
   1994						(spur_offset << 8) / 55;
   1995				symbol_width =
   1996					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
   1997			}
   1998			break;
   1999		}
   2000
   2001		/* Calculate pilot and magnitude masks */
   2002
   2003		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
   2004		 * and divide by symbol_width to find how many symbols we have
   2005		 * Note: number of symbols is scaled up by 16 */
   2006		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
   2007
   2008		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
   2009		if (!(num_symbols_x16 & 0xF))
   2010			/* _X_ */
   2011			num_symbol_offsets = 3;
   2012		else
   2013			/* _xx_ */
   2014			num_symbol_offsets = 4;
   2015
   2016		for (i = 0; i < num_symbol_offsets; i++) {
   2017
   2018			/* Calculate pilot mask */
   2019			s32 curr_sym_off =
   2020				(num_symbols_x16 / 16) + i + 25;
   2021
   2022			/* Pilot magnitude mask seems to be a way to
   2023			 * declare the boundaries for our detection
   2024			 * window or something, it's 2 for the middle
   2025			 * value(s) where the symbol is expected to be
   2026			 * and 1 on the boundary values */
   2027			u8 plt_mag_map =
   2028				(i == 0 || i == (num_symbol_offsets - 1))
   2029								? 1 : 2;
   2030
   2031			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
   2032				if (curr_sym_off <= 25)
   2033					pilot_mask[0] |= 1 << curr_sym_off;
   2034				else if (curr_sym_off >= 27)
   2035					pilot_mask[0] |= 1 << (curr_sym_off - 1);
   2036			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
   2037				pilot_mask[1] |= 1 << (curr_sym_off - 33);
   2038
   2039			/* Calculate magnitude mask (for viterbi decoder) */
   2040			if (curr_sym_off >= -1 && curr_sym_off <= 14)
   2041				mag_mask[0] |=
   2042					plt_mag_map << (curr_sym_off + 1) * 2;
   2043			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
   2044				mag_mask[1] |=
   2045					plt_mag_map << (curr_sym_off - 15) * 2;
   2046			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
   2047				mag_mask[2] |=
   2048					plt_mag_map << (curr_sym_off - 31) * 2;
   2049			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
   2050				mag_mask[3] |=
   2051					plt_mag_map << (curr_sym_off - 47) * 2;
   2052
   2053		}
   2054
   2055		/* Write settings on hw to enable spur filter */
   2056		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
   2057					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
   2058		/* XXX: Self correlator also ? */
   2059		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
   2060					AR5K_PHY_IQ_PILOT_MASK_EN |
   2061					AR5K_PHY_IQ_CHAN_MASK_EN |
   2062					AR5K_PHY_IQ_SPUR_FILT_EN);
   2063
   2064		/* Set delta phase and freq sigma delta */
   2065		ath5k_hw_reg_write(ah,
   2066				AR5K_REG_SM(spur_delta_phase,
   2067					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
   2068				AR5K_REG_SM(spur_freq_sigma_delta,
   2069				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
   2070				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
   2071				AR5K_PHY_TIMING_11);
   2072
   2073		/* Write pilot masks */
   2074		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
   2075		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
   2076					AR5K_PHY_TIMING_8_PILOT_MASK_2,
   2077					pilot_mask[1]);
   2078
   2079		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
   2080		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
   2081					AR5K_PHY_TIMING_10_PILOT_MASK_2,
   2082					pilot_mask[1]);
   2083
   2084		/* Write magnitude masks */
   2085		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
   2086		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
   2087		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
   2088		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
   2089					AR5K_PHY_BIN_MASK_CTL_MASK_4,
   2090					mag_mask[3]);
   2091
   2092		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
   2093		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
   2094		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
   2095		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
   2096					AR5K_PHY_BIN_MASK2_4_MASK_4,
   2097					mag_mask[3]);
   2098
   2099	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
   2100	AR5K_PHY_IQ_SPUR_FILT_EN) {
   2101		/* Clean up spur mitigation settings and disable filter */
   2102		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
   2103					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
   2104		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
   2105					AR5K_PHY_IQ_PILOT_MASK_EN |
   2106					AR5K_PHY_IQ_CHAN_MASK_EN |
   2107					AR5K_PHY_IQ_SPUR_FILT_EN);
   2108		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
   2109
   2110		/* Clear pilot masks */
   2111		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
   2112		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
   2113					AR5K_PHY_TIMING_8_PILOT_MASK_2,
   2114					0);
   2115
   2116		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
   2117		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
   2118					AR5K_PHY_TIMING_10_PILOT_MASK_2,
   2119					0);
   2120
   2121		/* Clear magnitude masks */
   2122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
   2123		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
   2124		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
   2125		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
   2126					AR5K_PHY_BIN_MASK_CTL_MASK_4,
   2127					0);
   2128
   2129		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
   2130		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
   2131		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
   2132		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
   2133					AR5K_PHY_BIN_MASK2_4_MASK_4,
   2134					0);
   2135	}
   2136}
   2137
   2138
   2139/*****************\
   2140* Antenna control *
   2141\*****************/
   2142
   2143/**
   2144 * DOC: Antenna control
   2145 *
   2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
   2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
   2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
   2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
   2150 *
   2151 * We can have a single antenna for RX and multiple antennas for TX.
   2152 * RX antenna is our "default" antenna (usually antenna 1) set on
   2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
   2154 * (0 for automatic selection, 1 - 14 antenna number).
   2155 *
   2156 * We can let hw do all the work doing fast antenna diversity for both
   2157 * tx and rx or we can do things manually. Here are the options we have
   2158 * (all are bits of STA_ID1 register):
   2159 *
   2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
   2161 * control descriptor, use the default antenna to transmit or else use the last
   2162 * antenna on which we received an ACK.
   2163 *
   2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
   2165 * the antenna on which we got the ACK for that frame.
   2166 *
   2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
   2168 * one on the TX descriptor.
   2169 *
   2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
   2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
   2172 *
   2173 * Using the above we support the following scenarios:
   2174 *
   2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
   2176 *
   2177 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
   2178 *
   2179 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
   2180 *
   2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
   2182 *
   2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
   2184 *
   2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
   2186 *
   2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
   2188 *
   2189 * Also note that when setting antenna to F on tx descriptor card inverts
   2190 * current tx antenna.
   2191 */
   2192
   2193/**
   2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
   2195 * @ah: The &struct ath5k_hw
   2196 * @ant: Antenna number
   2197 */
   2198static void
   2199ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
   2200{
   2201	if (ah->ah_version != AR5K_AR5210)
   2202		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
   2203}
   2204
   2205/**
   2206 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
   2207 * @ah: The &struct ath5k_hw
   2208 * @ee_mode: One of enum ath5k_driver_mode
   2209 * @enable: True to enable, false to disable
   2210 */
   2211static void
   2212ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
   2213{
   2214	switch (ee_mode) {
   2215	case AR5K_EEPROM_MODE_11G:
   2216		/* XXX: This is set to
   2217		 * disabled on initvals !!! */
   2218	case AR5K_EEPROM_MODE_11A:
   2219		if (enable)
   2220			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
   2221					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
   2222		else
   2223			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
   2224					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
   2225		break;
   2226	case AR5K_EEPROM_MODE_11B:
   2227		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
   2228					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
   2229		break;
   2230	default:
   2231		return;
   2232	}
   2233
   2234	if (enable) {
   2235		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
   2236				AR5K_PHY_RESTART_DIV_GC, 4);
   2237
   2238		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
   2239					AR5K_PHY_FAST_ANT_DIV_EN);
   2240	} else {
   2241		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
   2242				AR5K_PHY_RESTART_DIV_GC, 0);
   2243
   2244		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
   2245					AR5K_PHY_FAST_ANT_DIV_EN);
   2246	}
   2247}
   2248
   2249/**
   2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
   2251 * @ah: The &struct ath5k_hw
   2252 * @ee_mode: One of enum ath5k_driver_mode
   2253 *
   2254 * Switch table comes from EEPROM and includes information on controlling
   2255 * the 2 antenna RX attenuators
   2256 */
   2257void
   2258ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
   2259{
   2260	u8 ant0, ant1;
   2261
   2262	/*
   2263	 * In case a fixed antenna was set as default
   2264	 * use the same switch table twice.
   2265	 */
   2266	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
   2267		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
   2268	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
   2269		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
   2270	else {
   2271		ant0 = AR5K_ANT_SWTABLE_A;
   2272		ant1 = AR5K_ANT_SWTABLE_B;
   2273	}
   2274
   2275	/* Set antenna idle switch table */
   2276	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
   2277			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
   2278			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
   2279			AR5K_PHY_ANT_CTL_TXRX_EN));
   2280
   2281	/* Set antenna switch tables */
   2282	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
   2283		AR5K_PHY_ANT_SWITCH_TABLE_0);
   2284	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
   2285		AR5K_PHY_ANT_SWITCH_TABLE_1);
   2286}
   2287
   2288/**
   2289 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
   2290 * @ah: The &struct ath5k_hw
   2291 * @ant_mode: One of enum ath5k_ant_mode
   2292 */
   2293void
   2294ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
   2295{
   2296	struct ieee80211_channel *channel = ah->ah_current_channel;
   2297	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
   2298	bool use_def_for_sg;
   2299	int ee_mode;
   2300	u8 def_ant, tx_ant;
   2301	u32 sta_id1 = 0;
   2302
   2303	/* if channel is not initialized yet we can't set the antennas
   2304	 * so just store the mode. it will be set on the next reset */
   2305	if (channel == NULL) {
   2306		ah->ah_ant_mode = ant_mode;
   2307		return;
   2308	}
   2309
   2310	def_ant = ah->ah_def_ant;
   2311
   2312	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
   2313
   2314	switch (ant_mode) {
   2315	case AR5K_ANTMODE_DEFAULT:
   2316		tx_ant = 0;
   2317		use_def_for_tx = false;
   2318		update_def_on_tx = false;
   2319		use_def_for_rts = false;
   2320		use_def_for_sg = false;
   2321		fast_div = true;
   2322		break;
   2323	case AR5K_ANTMODE_FIXED_A:
   2324		def_ant = 1;
   2325		tx_ant = 1;
   2326		use_def_for_tx = true;
   2327		update_def_on_tx = false;
   2328		use_def_for_rts = true;
   2329		use_def_for_sg = true;
   2330		fast_div = false;
   2331		break;
   2332	case AR5K_ANTMODE_FIXED_B:
   2333		def_ant = 2;
   2334		tx_ant = 2;
   2335		use_def_for_tx = true;
   2336		update_def_on_tx = false;
   2337		use_def_for_rts = true;
   2338		use_def_for_sg = true;
   2339		fast_div = false;
   2340		break;
   2341	case AR5K_ANTMODE_SINGLE_AP:
   2342		def_ant = 1;	/* updated on tx */
   2343		tx_ant = 0;
   2344		use_def_for_tx = true;
   2345		update_def_on_tx = true;
   2346		use_def_for_rts = true;
   2347		use_def_for_sg = true;
   2348		fast_div = true;
   2349		break;
   2350	case AR5K_ANTMODE_SECTOR_AP:
   2351		tx_ant = 1;	/* variable */
   2352		use_def_for_tx = false;
   2353		update_def_on_tx = false;
   2354		use_def_for_rts = true;
   2355		use_def_for_sg = false;
   2356		fast_div = false;
   2357		break;
   2358	case AR5K_ANTMODE_SECTOR_STA:
   2359		tx_ant = 1;	/* variable */
   2360		use_def_for_tx = true;
   2361		update_def_on_tx = false;
   2362		use_def_for_rts = true;
   2363		use_def_for_sg = false;
   2364		fast_div = true;
   2365		break;
   2366	case AR5K_ANTMODE_DEBUG:
   2367		def_ant = 1;
   2368		tx_ant = 2;
   2369		use_def_for_tx = false;
   2370		update_def_on_tx = false;
   2371		use_def_for_rts = false;
   2372		use_def_for_sg = false;
   2373		fast_div = false;
   2374		break;
   2375	default:
   2376		return;
   2377	}
   2378
   2379	ah->ah_tx_ant = tx_ant;
   2380	ah->ah_ant_mode = ant_mode;
   2381	ah->ah_def_ant = def_ant;
   2382
   2383	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
   2384	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
   2385	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
   2386	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
   2387
   2388	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
   2389
   2390	if (sta_id1)
   2391		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
   2392
   2393	ath5k_hw_set_antenna_switch(ah, ee_mode);
   2394	/* Note: set diversity before default antenna
   2395	 * because it won't work correctly */
   2396	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
   2397	ath5k_hw_set_def_antenna(ah, def_ant);
   2398}
   2399
   2400
   2401/****************\
   2402* TX power setup *
   2403\****************/
   2404
   2405/*
   2406 * Helper functions
   2407 */
   2408
   2409/**
   2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
   2411 * @target: X value of the middle point
   2412 * @x_left: X value of the left point
   2413 * @x_right: X value of the right point
   2414 * @y_left: Y value of the left point
   2415 * @y_right: Y value of the right point
   2416 */
   2417static s16
   2418ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
   2419					s16 y_left, s16 y_right)
   2420{
   2421	s16 ratio, result;
   2422
   2423	/* Avoid divide by zero and skip interpolation
   2424	 * if we have the same point */
   2425	if ((x_left == x_right) || (y_left == y_right))
   2426		return y_left;
   2427
   2428	/*
   2429	 * Since we use ints and not fps, we need to scale up in
   2430	 * order to get a sane ratio value (or else we 'll eg. get
   2431	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
   2432	 * to have some accuracy both for 0.5 and 0.25 steps.
   2433	 */
   2434	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
   2435
   2436	/* Now scale down to be in range */
   2437	result = y_left + (ratio * (target - x_left) / 100);
   2438
   2439	return result;
   2440}
   2441
   2442/**
   2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
   2444 * linear PCDAC curve
   2445 * @stepL: Left array with y values (pcdac steps)
   2446 * @stepR: Right array with y values (pcdac steps)
   2447 * @pwrL: Left array with x values (power steps)
   2448 * @pwrR: Right array with x values (power steps)
   2449 *
   2450 * Since we have the top of the curve and we draw the line below
   2451 * until we reach 1 (1 pcdac step) we need to know which point
   2452 * (x value) that is so that we don't go below x axis and have negative
   2453 * pcdac values when creating the curve, or fill the table with zeros.
   2454 */
   2455static s16
   2456ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
   2457				const s16 *pwrL, const s16 *pwrR)
   2458{
   2459	s8 tmp;
   2460	s16 min_pwrL, min_pwrR;
   2461	s16 pwr_i;
   2462
   2463	/* Some vendors write the same pcdac value twice !!! */
   2464	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
   2465		return max(pwrL[0], pwrR[0]);
   2466
   2467	if (pwrL[0] == pwrL[1])
   2468		min_pwrL = pwrL[0];
   2469	else {
   2470		pwr_i = pwrL[0];
   2471		do {
   2472			pwr_i--;
   2473			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
   2474							pwrL[0], pwrL[1],
   2475							stepL[0], stepL[1]);
   2476		} while (tmp > 1);
   2477
   2478		min_pwrL = pwr_i;
   2479	}
   2480
   2481	if (pwrR[0] == pwrR[1])
   2482		min_pwrR = pwrR[0];
   2483	else {
   2484		pwr_i = pwrR[0];
   2485		do {
   2486			pwr_i--;
   2487			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
   2488							pwrR[0], pwrR[1],
   2489							stepR[0], stepR[1]);
   2490		} while (tmp > 1);
   2491
   2492		min_pwrR = pwr_i;
   2493	}
   2494
   2495	/* Keep the right boundary so that it works for both curves */
   2496	return max(min_pwrL, min_pwrR);
   2497}
   2498
   2499/**
   2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
   2501 * @pmin: Minimum power value (xmin)
   2502 * @pmax: Maximum power value (xmax)
   2503 * @pwr: Array of power steps (x values)
   2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
   2505 * @num_points: Number of provided points
   2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
   2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
   2508 *
   2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
   2510 * Power to PCDAC curve.
   2511 *
   2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
   2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
   2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
   2515 * one curves on hw so we can go up to 128 (which is the max step we
   2516 * can write on the final table).
   2517 *
   2518 * We write y values (PCDAC/PDADC steps) on hw.
   2519 */
   2520static void
   2521ath5k_create_power_curve(s16 pmin, s16 pmax,
   2522			const s16 *pwr, const u8 *vpd,
   2523			u8 num_points,
   2524			u8 *vpd_table, u8 type)
   2525{
   2526	u8 idx[2] = { 0, 1 };
   2527	s16 pwr_i = 2 * pmin;
   2528	int i;
   2529
   2530	if (num_points < 2)
   2531		return;
   2532
   2533	/* We want the whole line, so adjust boundaries
   2534	 * to cover the entire power range. Note that
   2535	 * power values are already 0.25dB so no need
   2536	 * to multiply pwr_i by 2 */
   2537	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
   2538		pwr_i = pmin;
   2539		pmin = 0;
   2540		pmax = 63;
   2541	}
   2542
   2543	/* Find surrounding turning points (TPs)
   2544	 * and interpolate between them */
   2545	for (i = 0; (i <= (u16) (pmax - pmin)) &&
   2546	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
   2547
   2548		/* We passed the right TP, move to the next set of TPs
   2549		 * if we pass the last TP, extrapolate above using the last
   2550		 * two TPs for ratio */
   2551		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
   2552			idx[0]++;
   2553			idx[1]++;
   2554		}
   2555
   2556		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
   2557						pwr[idx[0]], pwr[idx[1]],
   2558						vpd[idx[0]], vpd[idx[1]]);
   2559
   2560		/* Increase by 0.5dB
   2561		 * (0.25 dB units) */
   2562		pwr_i += 2;
   2563	}
   2564}
   2565
   2566/**
   2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
   2568 * for a given channel.
   2569 * @ah: The &struct ath5k_hw
   2570 * @channel: The &struct ieee80211_channel
   2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
   2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
   2573 *
   2574 * Get the surrounding per-channel power calibration piers
   2575 * for a given frequency so that we can interpolate between
   2576 * them and come up with an appropriate dataset for our current
   2577 * channel.
   2578 */
   2579static void
   2580ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
   2581			struct ieee80211_channel *channel,
   2582			struct ath5k_chan_pcal_info **pcinfo_l,
   2583			struct ath5k_chan_pcal_info **pcinfo_r)
   2584{
   2585	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   2586	struct ath5k_chan_pcal_info *pcinfo;
   2587	u8 idx_l, idx_r;
   2588	u8 mode, max, i;
   2589	u32 target = channel->center_freq;
   2590
   2591	idx_l = 0;
   2592	idx_r = 0;
   2593
   2594	switch (channel->hw_value) {
   2595	case AR5K_EEPROM_MODE_11A:
   2596		pcinfo = ee->ee_pwr_cal_a;
   2597		mode = AR5K_EEPROM_MODE_11A;
   2598		break;
   2599	case AR5K_EEPROM_MODE_11B:
   2600		pcinfo = ee->ee_pwr_cal_b;
   2601		mode = AR5K_EEPROM_MODE_11B;
   2602		break;
   2603	case AR5K_EEPROM_MODE_11G:
   2604	default:
   2605		pcinfo = ee->ee_pwr_cal_g;
   2606		mode = AR5K_EEPROM_MODE_11G;
   2607		break;
   2608	}
   2609	max = ee->ee_n_piers[mode] - 1;
   2610
   2611	/* Frequency is below our calibrated
   2612	 * range. Use the lowest power curve
   2613	 * we have */
   2614	if (target < pcinfo[0].freq) {
   2615		idx_l = idx_r = 0;
   2616		goto done;
   2617	}
   2618
   2619	/* Frequency is above our calibrated
   2620	 * range. Use the highest power curve
   2621	 * we have */
   2622	if (target > pcinfo[max].freq) {
   2623		idx_l = idx_r = max;
   2624		goto done;
   2625	}
   2626
   2627	/* Frequency is inside our calibrated
   2628	 * channel range. Pick the surrounding
   2629	 * calibration piers so that we can
   2630	 * interpolate */
   2631	for (i = 0; i <= max; i++) {
   2632
   2633		/* Frequency matches one of our calibration
   2634		 * piers, no need to interpolate, just use
   2635		 * that calibration pier */
   2636		if (pcinfo[i].freq == target) {
   2637			idx_l = idx_r = i;
   2638			goto done;
   2639		}
   2640
   2641		/* We found a calibration pier that's above
   2642		 * frequency, use this pier and the previous
   2643		 * one to interpolate */
   2644		if (target < pcinfo[i].freq) {
   2645			idx_r = i;
   2646			idx_l = idx_r - 1;
   2647			goto done;
   2648		}
   2649	}
   2650
   2651done:
   2652	*pcinfo_l = &pcinfo[idx_l];
   2653	*pcinfo_r = &pcinfo[idx_r];
   2654}
   2655
   2656/**
   2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
   2658 * calibration data
   2659 * @ah: The &struct ath5k_hw *ah,
   2660 * @channel: The &struct ieee80211_channel
   2661 * @rates: The &struct ath5k_rate_pcal_info to fill
   2662 *
   2663 * Get the surrounding per-rate power calibration data
   2664 * for a given frequency and interpolate between power
   2665 * values to set max target power supported by hw for
   2666 * each rate on this frequency.
   2667 */
   2668static void
   2669ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
   2670			struct ieee80211_channel *channel,
   2671			struct ath5k_rate_pcal_info *rates)
   2672{
   2673	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   2674	struct ath5k_rate_pcal_info *rpinfo;
   2675	u8 idx_l, idx_r;
   2676	u8 mode, max, i;
   2677	u32 target = channel->center_freq;
   2678
   2679	idx_l = 0;
   2680	idx_r = 0;
   2681
   2682	switch (channel->hw_value) {
   2683	case AR5K_MODE_11A:
   2684		rpinfo = ee->ee_rate_tpwr_a;
   2685		mode = AR5K_EEPROM_MODE_11A;
   2686		break;
   2687	case AR5K_MODE_11B:
   2688		rpinfo = ee->ee_rate_tpwr_b;
   2689		mode = AR5K_EEPROM_MODE_11B;
   2690		break;
   2691	case AR5K_MODE_11G:
   2692	default:
   2693		rpinfo = ee->ee_rate_tpwr_g;
   2694		mode = AR5K_EEPROM_MODE_11G;
   2695		break;
   2696	}
   2697	max = ee->ee_rate_target_pwr_num[mode] - 1;
   2698
   2699	/* Get the surrounding calibration
   2700	 * piers - same as above */
   2701	if (target < rpinfo[0].freq) {
   2702		idx_l = idx_r = 0;
   2703		goto done;
   2704	}
   2705
   2706	if (target > rpinfo[max].freq) {
   2707		idx_l = idx_r = max;
   2708		goto done;
   2709	}
   2710
   2711	for (i = 0; i <= max; i++) {
   2712
   2713		if (rpinfo[i].freq == target) {
   2714			idx_l = idx_r = i;
   2715			goto done;
   2716		}
   2717
   2718		if (target < rpinfo[i].freq) {
   2719			idx_r = i;
   2720			idx_l = idx_r - 1;
   2721			goto done;
   2722		}
   2723	}
   2724
   2725done:
   2726	/* Now interpolate power value, based on the frequency */
   2727	rates->freq = target;
   2728
   2729	rates->target_power_6to24 =
   2730		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
   2731					rpinfo[idx_r].freq,
   2732					rpinfo[idx_l].target_power_6to24,
   2733					rpinfo[idx_r].target_power_6to24);
   2734
   2735	rates->target_power_36 =
   2736		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
   2737					rpinfo[idx_r].freq,
   2738					rpinfo[idx_l].target_power_36,
   2739					rpinfo[idx_r].target_power_36);
   2740
   2741	rates->target_power_48 =
   2742		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
   2743					rpinfo[idx_r].freq,
   2744					rpinfo[idx_l].target_power_48,
   2745					rpinfo[idx_r].target_power_48);
   2746
   2747	rates->target_power_54 =
   2748		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
   2749					rpinfo[idx_r].freq,
   2750					rpinfo[idx_l].target_power_54,
   2751					rpinfo[idx_r].target_power_54);
   2752}
   2753
   2754/**
   2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
   2756 * @ah: the &struct ath5k_hw
   2757 * @channel: The &struct ieee80211_channel
   2758 *
   2759 * Get the max edge power for this channel if
   2760 * we have such data from EEPROM's Conformance Test
   2761 * Limits (CTL), and limit max power if needed.
   2762 */
   2763static void
   2764ath5k_get_max_ctl_power(struct ath5k_hw *ah,
   2765			struct ieee80211_channel *channel)
   2766{
   2767	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
   2768	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   2769	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
   2770	u8 *ctl_val = ee->ee_ctl;
   2771	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
   2772	s16 edge_pwr = 0;
   2773	u8 rep_idx;
   2774	u8 i, ctl_mode;
   2775	u8 ctl_idx = 0xFF;
   2776	u32 target = channel->center_freq;
   2777
   2778	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
   2779
   2780	switch (channel->hw_value) {
   2781	case AR5K_MODE_11A:
   2782		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
   2783			ctl_mode |= AR5K_CTL_TURBO;
   2784		else
   2785			ctl_mode |= AR5K_CTL_11A;
   2786		break;
   2787	case AR5K_MODE_11G:
   2788		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
   2789			ctl_mode |= AR5K_CTL_TURBOG;
   2790		else
   2791			ctl_mode |= AR5K_CTL_11G;
   2792		break;
   2793	case AR5K_MODE_11B:
   2794		ctl_mode |= AR5K_CTL_11B;
   2795		break;
   2796	default:
   2797		return;
   2798	}
   2799
   2800	for (i = 0; i < ee->ee_ctls; i++) {
   2801		if (ctl_val[i] == ctl_mode) {
   2802			ctl_idx = i;
   2803			break;
   2804		}
   2805	}
   2806
   2807	/* If we have a CTL dataset available grab it and find the
   2808	 * edge power for our frequency */
   2809	if (ctl_idx == 0xFF)
   2810		return;
   2811
   2812	/* Edge powers are sorted by frequency from lower
   2813	 * to higher. Each CTL corresponds to 8 edge power
   2814	 * measurements. */
   2815	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
   2816
   2817	/* Don't do boundaries check because we
   2818	 * might have more that one bands defined
   2819	 * for this mode */
   2820
   2821	/* Get the edge power that's closer to our
   2822	 * frequency */
   2823	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
   2824		rep_idx += i;
   2825		if (target <= rep[rep_idx].freq)
   2826			edge_pwr = (s16) rep[rep_idx].edge;
   2827	}
   2828
   2829	if (edge_pwr)
   2830		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
   2831}
   2832
   2833
   2834/*
   2835 * Power to PCDAC table functions
   2836 */
   2837
   2838/**
   2839 * DOC: Power to PCDAC table functions
   2840 *
   2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
   2842 * for each calibrated channel. Each curve has 0,5dB Power steps
   2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
   2844 * exponential function. To recreate the curve we read 11 points
   2845 * from eeprom (eeprom.c) and interpolate here.
   2846 *
   2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
   2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
   2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
   2850 * power steps on x axis and PCDAC steps on y axis and looks like a
   2851 * linear function. To recreate the curve and pass the power values
   2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
   2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
   2854 * and interpolate here.
   2855 *
   2856 * For a given channel we get the calibrated points (piers) for it or
   2857 * -if we don't have calibration data for this specific channel- from the
   2858 * available surrounding channels we have calibration data for, after we do a
   2859 * linear interpolation between them. Then since we have our calibrated points
   2860 * for this channel, we do again a linear interpolation between them to get the
   2861 * whole curve.
   2862 *
   2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
   2864 */
   2865
   2866/**
   2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
   2868 * @ah: The &struct ath5k_hw
   2869 * @table_min: Minimum power (x min)
   2870 * @table_max: Maximum power (x max)
   2871 *
   2872 * No further processing is needed for RF5111, the only thing we have to
   2873 * do is fill the values below and above calibration range since eeprom data
   2874 * may not cover the entire PCDAC table.
   2875 */
   2876static void
   2877ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
   2878							s16 *table_max)
   2879{
   2880	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
   2881	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
   2882	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
   2883	s16	min_pwr, max_pwr;
   2884
   2885	/* Get table boundaries */
   2886	min_pwr = table_min[0];
   2887	pcdac_0 = pcdac_tmp[0];
   2888
   2889	max_pwr = table_max[0];
   2890	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
   2891
   2892	/* Extrapolate below minimum using pcdac_0 */
   2893	pcdac_i = 0;
   2894	for (i = 0; i < min_pwr; i++)
   2895		pcdac_out[pcdac_i++] = pcdac_0;
   2896
   2897	/* Copy values from pcdac_tmp */
   2898	pwr_idx = min_pwr;
   2899	for (i = 0; pwr_idx <= max_pwr &&
   2900		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
   2901		pcdac_out[pcdac_i++] = pcdac_tmp[i];
   2902		pwr_idx++;
   2903	}
   2904
   2905	/* Extrapolate above maximum */
   2906	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
   2907		pcdac_out[pcdac_i++] = pcdac_n;
   2908
   2909}
   2910
   2911/**
   2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
   2913 * @ah: The &struct ath5k_hw
   2914 * @table_min: Minimum power (x min)
   2915 * @table_max: Maximum power (x max)
   2916 * @pdcurves: Number of pd curves
   2917 *
   2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
   2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
   2920 * higher txpower range). We need to put them both on pcdac_out and place
   2921 * them in the correct location. In case we only have one curve available
   2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
   2923 * available pwr levels since it's always the higher power curve). Extrapolate
   2924 * below and above final table if needed.
   2925 */
   2926static void
   2927ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
   2928						s16 *table_max, u8 pdcurves)
   2929{
   2930	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
   2931	u8	*pcdac_low_pwr;
   2932	u8	*pcdac_high_pwr;
   2933	u8	*pcdac_tmp;
   2934	u8	pwr;
   2935	s16	max_pwr_idx;
   2936	s16	min_pwr_idx;
   2937	s16	mid_pwr_idx = 0;
   2938	/* Edge flag turns on the 7nth bit on the PCDAC
   2939	 * to declare the higher power curve (force values
   2940	 * to be greater than 64). If we only have one curve
   2941	 * we don't need to set this, if we have 2 curves and
   2942	 * fill the table backwards this can also be used to
   2943	 * switch from higher power curve to lower power curve */
   2944	u8	edge_flag;
   2945	int	i;
   2946
   2947	/* When we have only one curve available
   2948	 * that's the higher power curve. If we have
   2949	 * two curves the first is the high power curve
   2950	 * and the next is the low power curve. */
   2951	if (pdcurves > 1) {
   2952		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
   2953		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
   2954		mid_pwr_idx = table_max[1] - table_min[1] - 1;
   2955		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
   2956
   2957		/* If table size goes beyond 31.5dB, keep the
   2958		 * upper 31.5dB range when setting tx power.
   2959		 * Note: 126 = 31.5 dB in quarter dB steps */
   2960		if (table_max[0] - table_min[1] > 126)
   2961			min_pwr_idx = table_max[0] - 126;
   2962		else
   2963			min_pwr_idx = table_min[1];
   2964
   2965		/* Since we fill table backwards
   2966		 * start from high power curve */
   2967		pcdac_tmp = pcdac_high_pwr;
   2968
   2969		edge_flag = 0x40;
   2970	} else {
   2971		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
   2972		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
   2973		min_pwr_idx = table_min[0];
   2974		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
   2975		pcdac_tmp = pcdac_high_pwr;
   2976		edge_flag = 0;
   2977	}
   2978
   2979	/* This is used when setting tx power*/
   2980	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
   2981
   2982	/* Fill Power to PCDAC table backwards */
   2983	pwr = max_pwr_idx;
   2984	for (i = 63; i >= 0; i--) {
   2985		/* Entering lower power range, reset
   2986		 * edge flag and set pcdac_tmp to lower
   2987		 * power curve.*/
   2988		if (edge_flag == 0x40 &&
   2989		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
   2990			edge_flag = 0x00;
   2991			pcdac_tmp = pcdac_low_pwr;
   2992			pwr = mid_pwr_idx / 2;
   2993		}
   2994
   2995		/* Don't go below 1, extrapolate below if we have
   2996		 * already switched to the lower power curve -or
   2997		 * we only have one curve and edge_flag is zero
   2998		 * anyway */
   2999		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
   3000			while (i >= 0) {
   3001				pcdac_out[i] = pcdac_out[i + 1];
   3002				i--;
   3003			}
   3004			break;
   3005		}
   3006
   3007		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
   3008
   3009		/* Extrapolate above if pcdac is greater than
   3010		 * 126 -this can happen because we OR pcdac_out
   3011		 * value with edge_flag on high power curve */
   3012		if (pcdac_out[i] > 126)
   3013			pcdac_out[i] = 126;
   3014
   3015		/* Decrease by a 0.5dB step */
   3016		pwr--;
   3017	}
   3018}
   3019
   3020/**
   3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
   3022 * @ah: The &struct ath5k_hw
   3023 */
   3024static void
   3025ath5k_write_pcdac_table(struct ath5k_hw *ah)
   3026{
   3027	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
   3028	int	i;
   3029
   3030	/*
   3031	 * Write TX power values
   3032	 */
   3033	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
   3034		ath5k_hw_reg_write(ah,
   3035			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
   3036			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
   3037			AR5K_PHY_PCDAC_TXPOWER(i));
   3038	}
   3039}
   3040
   3041
   3042/*
   3043 * Power to PDADC table functions
   3044 */
   3045
   3046/**
   3047 * DOC: Power to PDADC table functions
   3048 *
   3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
   3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
   3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
   3052 * PDADC steps on y axis and looks like an exponential function like the
   3053 * RF5111 curve.
   3054 *
   3055 * To recreate the curves we read the points from eeprom (eeprom.c)
   3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
   3057 * curves are used (like RF5112) but vendors have the opportunity to include
   3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
   3059 * point for better accuracy like RF5112.
   3060 *
   3061 * The process is similar to what we do above for RF5111/5112
   3062 */
   3063
   3064/**
   3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
   3066 * @ah: The &struct ath5k_hw
   3067 * @pwr_min: Minimum power (x min)
   3068 * @pwr_max: Maximum power (x max)
   3069 * @pdcurves: Number of available curves
   3070 *
   3071 * Combine the various pd curves and create the final Power to PDADC table
   3072 * We can have up to 4 pd curves, we need to do a similar process
   3073 * as we do for RF5112. This time we don't have an edge_flag but we
   3074 * set the gain boundaries on a separate register.
   3075 */
   3076static void
   3077ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
   3078			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
   3079{
   3080	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
   3081	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
   3082	u8 *pdadc_tmp;
   3083	s16 pdadc_0;
   3084	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
   3085	u8 pd_gain_overlap;
   3086
   3087	/* Note: Register value is initialized on initvals
   3088	 * there is no feedback from hw.
   3089	 * XXX: What about pd_gain_overlap from EEPROM ? */
   3090	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
   3091		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
   3092
   3093	/* Create final PDADC table */
   3094	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
   3095		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
   3096
   3097		if (pdg == pdcurves - 1)
   3098			/* 2 dB boundary stretch for last
   3099			 * (higher power) curve */
   3100			gain_boundaries[pdg] = pwr_max[pdg] + 4;
   3101		else
   3102			/* Set gain boundary in the middle
   3103			 * between this curve and the next one */
   3104			gain_boundaries[pdg] =
   3105				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
   3106
   3107		/* Sanity check in case our 2 db stretch got out of
   3108		 * range. */
   3109		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
   3110			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
   3111
   3112		/* For the first curve (lower power)
   3113		 * start from 0 dB */
   3114		if (pdg == 0)
   3115			pdadc_0 = 0;
   3116		else
   3117			/* For the other curves use the gain overlap */
   3118			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
   3119							pd_gain_overlap;
   3120
   3121		/* Force each power step to be at least 0.5 dB */
   3122		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
   3123			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
   3124		else
   3125			pwr_step = 1;
   3126
   3127		/* If pdadc_0 is negative, we need to extrapolate
   3128		 * below this pdgain by a number of pwr_steps */
   3129		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
   3130			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
   3131			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
   3132			pdadc_0++;
   3133		}
   3134
   3135		/* Set last pwr level, using gain boundaries */
   3136		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
   3137		/* Limit it to be inside pwr range */
   3138		table_size = pwr_max[pdg] - pwr_min[pdg];
   3139		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
   3140
   3141		/* Fill pdadc_out table */
   3142		while (pdadc_0 < max_idx && pdadc_i < 128)
   3143			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
   3144
   3145		/* Need to extrapolate above this pdgain? */
   3146		if (pdadc_n <= max_idx)
   3147			continue;
   3148
   3149		/* Force each power step to be at least 0.5 dB */
   3150		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
   3151			pwr_step = pdadc_tmp[table_size - 1] -
   3152						pdadc_tmp[table_size - 2];
   3153		else
   3154			pwr_step = 1;
   3155
   3156		/* Extrapolate above */
   3157		while ((pdadc_0 < (s16) pdadc_n) &&
   3158		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
   3159			s16 tmp = pdadc_tmp[table_size - 1] +
   3160					(pdadc_0 - max_idx) * pwr_step;
   3161			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
   3162			pdadc_0++;
   3163		}
   3164	}
   3165
   3166	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
   3167		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
   3168		pdg++;
   3169	}
   3170
   3171	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
   3172		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
   3173		pdadc_i++;
   3174	}
   3175
   3176	/* Set gain boundaries */
   3177	ath5k_hw_reg_write(ah,
   3178		AR5K_REG_SM(pd_gain_overlap,
   3179			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
   3180		AR5K_REG_SM(gain_boundaries[0],
   3181			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
   3182		AR5K_REG_SM(gain_boundaries[1],
   3183			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
   3184		AR5K_REG_SM(gain_boundaries[2],
   3185			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
   3186		AR5K_REG_SM(gain_boundaries[3],
   3187			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
   3188		AR5K_PHY_TPC_RG5);
   3189
   3190	/* Used for setting rate power table */
   3191	ah->ah_txpower.txp_min_idx = pwr_min[0];
   3192
   3193}
   3194
   3195/**
   3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
   3197 * @ah: The &struct ath5k_hw
   3198 * @ee_mode: One of enum ath5k_driver_mode
   3199 */
   3200static void
   3201ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
   3202{
   3203	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   3204	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
   3205	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
   3206	u8 pdcurves = ee->ee_pd_gains[ee_mode];
   3207	u32 reg;
   3208	u8 i;
   3209
   3210	/* Select the right pdgain curves */
   3211
   3212	/* Clear current settings */
   3213	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
   3214	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
   3215		AR5K_PHY_TPC_RG1_PDGAIN_2 |
   3216		AR5K_PHY_TPC_RG1_PDGAIN_3 |
   3217		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
   3218
   3219	/*
   3220	 * Use pd_gains curve from eeprom
   3221	 *
   3222	 * This overrides the default setting from initvals
   3223	 * in case some vendors (e.g. Zcomax) don't use the default
   3224	 * curves. If we don't honor their settings we 'll get a
   3225	 * 5dB (1 * gain overlap ?) drop.
   3226	 */
   3227	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
   3228
   3229	switch (pdcurves) {
   3230	case 3:
   3231		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
   3232		fallthrough;
   3233	case 2:
   3234		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
   3235		fallthrough;
   3236	case 1:
   3237		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
   3238		break;
   3239	}
   3240	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
   3241
   3242	/*
   3243	 * Write TX power values
   3244	 */
   3245	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
   3246		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
   3247		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
   3248	}
   3249}
   3250
   3251
   3252/*
   3253 * Common code for PCDAC/PDADC tables
   3254 */
   3255
   3256/**
   3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
   3258 * @ah: The &struct ath5k_hw
   3259 * @channel: The &struct ieee80211_channel
   3260 * @ee_mode: One of enum ath5k_driver_mode
   3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
   3262 *
   3263 * This is the main function that uses all of the above
   3264 * to set PCDAC/PDADC table on hw for the current channel.
   3265 * This table is used for tx power calibration on the baseband,
   3266 * without it we get weird tx power levels and in some cases
   3267 * distorted spectral mask
   3268 */
   3269static int
   3270ath5k_setup_channel_powertable(struct ath5k_hw *ah,
   3271			struct ieee80211_channel *channel,
   3272			u8 ee_mode, u8 type)
   3273{
   3274	struct ath5k_pdgain_info *pdg_L, *pdg_R;
   3275	struct ath5k_chan_pcal_info *pcinfo_L;
   3276	struct ath5k_chan_pcal_info *pcinfo_R;
   3277	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   3278	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
   3279	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
   3280	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
   3281	u8 *tmpL;
   3282	u8 *tmpR;
   3283	u32 target = channel->center_freq;
   3284	int pdg, i;
   3285
   3286	/* Get surrounding freq piers for this channel */
   3287	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
   3288						&pcinfo_L,
   3289						&pcinfo_R);
   3290
   3291	/* Loop over pd gain curves on
   3292	 * surrounding freq piers by index */
   3293	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
   3294
   3295		/* Fill curves in reverse order
   3296		 * from lower power (max gain)
   3297		 * to higher power. Use curve -> idx
   3298		 * backmapping we did on eeprom init */
   3299		u8 idx = pdg_curve_to_idx[pdg];
   3300
   3301		/* Grab the needed curves by index */
   3302		pdg_L = &pcinfo_L->pd_curves[idx];
   3303		pdg_R = &pcinfo_R->pd_curves[idx];
   3304
   3305		/* Initialize the temp tables */
   3306		tmpL = ah->ah_txpower.tmpL[pdg];
   3307		tmpR = ah->ah_txpower.tmpR[pdg];
   3308
   3309		/* Set curve's x boundaries and create
   3310		 * curves so that they cover the same
   3311		 * range (if we don't do that one table
   3312		 * will have values on some range and the
   3313		 * other one won't have any so interpolation
   3314		 * will fail) */
   3315		table_min[pdg] = min(pdg_L->pd_pwr[0],
   3316					pdg_R->pd_pwr[0]) / 2;
   3317
   3318		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
   3319				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
   3320
   3321		/* Now create the curves on surrounding channels
   3322		 * and interpolate if needed to get the final
   3323		 * curve for this gain on this channel */
   3324		switch (type) {
   3325		case AR5K_PWRTABLE_LINEAR_PCDAC:
   3326			/* Override min/max so that we don't loose
   3327			 * accuracy (don't divide by 2) */
   3328			table_min[pdg] = min(pdg_L->pd_pwr[0],
   3329						pdg_R->pd_pwr[0]);
   3330
   3331			table_max[pdg] =
   3332				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
   3333					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
   3334
   3335			/* Override minimum so that we don't get
   3336			 * out of bounds while extrapolating
   3337			 * below. Don't do this when we have 2
   3338			 * curves and we are on the high power curve
   3339			 * because table_min is ok in this case */
   3340			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
   3341
   3342				table_min[pdg] =
   3343					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
   3344								pdg_R->pd_step,
   3345								pdg_L->pd_pwr,
   3346								pdg_R->pd_pwr);
   3347
   3348				/* Don't go too low because we will
   3349				 * miss the upper part of the curve.
   3350				 * Note: 126 = 31.5dB (max power supported)
   3351				 * in 0.25dB units */
   3352				if (table_max[pdg] - table_min[pdg] > 126)
   3353					table_min[pdg] = table_max[pdg] - 126;
   3354			}
   3355
   3356			fallthrough;
   3357		case AR5K_PWRTABLE_PWR_TO_PCDAC:
   3358		case AR5K_PWRTABLE_PWR_TO_PDADC:
   3359
   3360			ath5k_create_power_curve(table_min[pdg],
   3361						table_max[pdg],
   3362						pdg_L->pd_pwr,
   3363						pdg_L->pd_step,
   3364						pdg_L->pd_points, tmpL, type);
   3365
   3366			/* We are in a calibration
   3367			 * pier, no need to interpolate
   3368			 * between freq piers */
   3369			if (pcinfo_L == pcinfo_R)
   3370				continue;
   3371
   3372			ath5k_create_power_curve(table_min[pdg],
   3373						table_max[pdg],
   3374						pdg_R->pd_pwr,
   3375						pdg_R->pd_step,
   3376						pdg_R->pd_points, tmpR, type);
   3377			break;
   3378		default:
   3379			return -EINVAL;
   3380		}
   3381
   3382		/* Interpolate between curves
   3383		 * of surrounding freq piers to
   3384		 * get the final curve for this
   3385		 * pd gain. Re-use tmpL for interpolation
   3386		 * output */
   3387		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
   3388		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
   3389			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
   3390							(s16) pcinfo_L->freq,
   3391							(s16) pcinfo_R->freq,
   3392							(s16) tmpL[i],
   3393							(s16) tmpR[i]);
   3394		}
   3395	}
   3396
   3397	/* Now we have a set of curves for this
   3398	 * channel on tmpL (x range is table_max - table_min
   3399	 * and y values are tmpL[pdg][]) sorted in the same
   3400	 * order as EEPROM (because we've used the backmapping).
   3401	 * So for RF5112 it's from higher power to lower power
   3402	 * and for RF2413 it's from lower power to higher power.
   3403	 * For RF5111 we only have one curve. */
   3404
   3405	/* Fill min and max power levels for this
   3406	 * channel by interpolating the values on
   3407	 * surrounding channels to complete the dataset */
   3408	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
   3409					(s16) pcinfo_L->freq,
   3410					(s16) pcinfo_R->freq,
   3411					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
   3412
   3413	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
   3414					(s16) pcinfo_L->freq,
   3415					(s16) pcinfo_R->freq,
   3416					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
   3417
   3418	/* Fill PCDAC/PDADC table */
   3419	switch (type) {
   3420	case AR5K_PWRTABLE_LINEAR_PCDAC:
   3421		/* For RF5112 we can have one or two curves
   3422		 * and each curve covers a certain power lvl
   3423		 * range so we need to do some more processing */
   3424		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
   3425						ee->ee_pd_gains[ee_mode]);
   3426
   3427		/* Set txp.offset so that we can
   3428		 * match max power value with max
   3429		 * table index */
   3430		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
   3431		break;
   3432	case AR5K_PWRTABLE_PWR_TO_PCDAC:
   3433		/* We are done for RF5111 since it has only
   3434		 * one curve, just fit the curve on the table */
   3435		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
   3436
   3437		/* No rate powertable adjustment for RF5111 */
   3438		ah->ah_txpower.txp_min_idx = 0;
   3439		ah->ah_txpower.txp_offset = 0;
   3440		break;
   3441	case AR5K_PWRTABLE_PWR_TO_PDADC:
   3442		/* Set PDADC boundaries and fill
   3443		 * final PDADC table */
   3444		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
   3445						ee->ee_pd_gains[ee_mode]);
   3446
   3447		/* Set txp.offset, note that table_min
   3448		 * can be negative */
   3449		ah->ah_txpower.txp_offset = table_min[0];
   3450		break;
   3451	default:
   3452		return -EINVAL;
   3453	}
   3454
   3455	ah->ah_txpower.txp_setup = true;
   3456
   3457	return 0;
   3458}
   3459
   3460/**
   3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
   3462 * @ah: The &struct ath5k_hw
   3463 * @ee_mode: One of enum ath5k_driver_mode
   3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
   3465 */
   3466static void
   3467ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
   3468{
   3469	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
   3470		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
   3471	else
   3472		ath5k_write_pcdac_table(ah);
   3473}
   3474
   3475
   3476/**
   3477 * DOC: Per-rate tx power setting
   3478 *
   3479 * This is the code that sets the desired tx power limit (below
   3480 * maximum) on hw for each rate (we also have TPC that sets
   3481 * power per packet type). We do that by providing an index on the
   3482 * PCDAC/PDADC table we set up above, for each rate.
   3483 *
   3484 * For now we only limit txpower based on maximum tx power
   3485 * supported by hw (what's inside rate_info) + conformance test
   3486 * limits. We need to limit this even more, based on regulatory domain
   3487 * etc to be safe. Normally this is done from above so we don't care
   3488 * here, all we care is that the tx power we set will be O.K.
   3489 * for the hw (e.g. won't create noise on PA etc).
   3490 *
   3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
   3492 * x values) and is indexed as follows:
   3493 * rates[0] - rates[7] -> OFDM rates
   3494 * rates[8] - rates[14] -> CCK rates
   3495 * rates[15] -> XR rates (they all have the same power)
   3496 */
   3497
   3498/**
   3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
   3500 * @ah: The &struct ath5k_hw
   3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
   3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
   3503 * @ee_mode: One of enum ath5k_driver_mode
   3504 */
   3505static void
   3506ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
   3507			struct ath5k_rate_pcal_info *rate_info,
   3508			u8 ee_mode)
   3509{
   3510	unsigned int i;
   3511	u16 *rates;
   3512	s16 rate_idx_scaled = 0;
   3513
   3514	/* max_pwr is power level we got from driver/user in 0.5dB
   3515	 * units, switch to 0.25dB units so we can compare */
   3516	max_pwr *= 2;
   3517	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
   3518
   3519	/* apply rate limits */
   3520	rates = ah->ah_txpower.txp_rates_power_table;
   3521
   3522	/* OFDM rates 6 to 24Mb/s */
   3523	for (i = 0; i < 5; i++)
   3524		rates[i] = min(max_pwr, rate_info->target_power_6to24);
   3525
   3526	/* Rest OFDM rates */
   3527	rates[5] = min(rates[0], rate_info->target_power_36);
   3528	rates[6] = min(rates[0], rate_info->target_power_48);
   3529	rates[7] = min(rates[0], rate_info->target_power_54);
   3530
   3531	/* CCK rates */
   3532	/* 1L */
   3533	rates[8] = min(rates[0], rate_info->target_power_6to24);
   3534	/* 2L */
   3535	rates[9] = min(rates[0], rate_info->target_power_36);
   3536	/* 2S */
   3537	rates[10] = min(rates[0], rate_info->target_power_36);
   3538	/* 5L */
   3539	rates[11] = min(rates[0], rate_info->target_power_48);
   3540	/* 5S */
   3541	rates[12] = min(rates[0], rate_info->target_power_48);
   3542	/* 11L */
   3543	rates[13] = min(rates[0], rate_info->target_power_54);
   3544	/* 11S */
   3545	rates[14] = min(rates[0], rate_info->target_power_54);
   3546
   3547	/* XR rates */
   3548	rates[15] = min(rates[0], rate_info->target_power_6to24);
   3549
   3550	/* CCK rates have different peak to average ratio
   3551	 * so we have to tweak their power so that gainf
   3552	 * correction works ok. For this we use OFDM to
   3553	 * CCK delta from eeprom */
   3554	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
   3555	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
   3556		for (i = 8; i <= 15; i++)
   3557			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
   3558
   3559	/* Save min/max and current tx power for this channel
   3560	 * in 0.25dB units.
   3561	 *
   3562	 * Note: We use rates[0] for current tx power because
   3563	 * it covers most of the rates, in most cases. It's our
   3564	 * tx power limit and what the user expects to see. */
   3565	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
   3566	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
   3567
   3568	/* Set max txpower for correct OFDM operation on all rates
   3569	 * -that is the txpower for 54Mbit-, it's used for the PAPD
   3570	 * gain probe and it's in 0.5dB units */
   3571	ah->ah_txpower.txp_ofdm = rates[7];
   3572
   3573	/* Now that we have all rates setup use table offset to
   3574	 * match the power range set by user with the power indices
   3575	 * on PCDAC/PDADC table */
   3576	for (i = 0; i < 16; i++) {
   3577		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
   3578		/* Don't get out of bounds */
   3579		if (rate_idx_scaled > 63)
   3580			rate_idx_scaled = 63;
   3581		if (rate_idx_scaled < 0)
   3582			rate_idx_scaled = 0;
   3583		rates[i] = rate_idx_scaled;
   3584	}
   3585}
   3586
   3587
   3588/**
   3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
   3590 * @ah: The &struct ath5k_hw
   3591 * @channel: The &struct ieee80211_channel
   3592 * @txpower: Requested tx power in 0.5dB steps
   3593 *
   3594 * Combines all of the above to set the requested tx power limit
   3595 * on hw.
   3596 */
   3597static int
   3598ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
   3599		 u8 txpower)
   3600{
   3601	struct ath5k_rate_pcal_info rate_info;
   3602	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
   3603	int ee_mode;
   3604	u8 type;
   3605	int ret;
   3606
   3607	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
   3608		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
   3609		return -EINVAL;
   3610	}
   3611
   3612	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
   3613
   3614	/* Initialize TX power table */
   3615	switch (ah->ah_radio) {
   3616	case AR5K_RF5110:
   3617		/* TODO */
   3618		return 0;
   3619	case AR5K_RF5111:
   3620		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
   3621		break;
   3622	case AR5K_RF5112:
   3623		type = AR5K_PWRTABLE_LINEAR_PCDAC;
   3624		break;
   3625	case AR5K_RF2413:
   3626	case AR5K_RF5413:
   3627	case AR5K_RF2316:
   3628	case AR5K_RF2317:
   3629	case AR5K_RF2425:
   3630		type = AR5K_PWRTABLE_PWR_TO_PDADC;
   3631		break;
   3632	default:
   3633		return -EINVAL;
   3634	}
   3635
   3636	/*
   3637	 * If we don't change channel/mode skip tx powertable calculation
   3638	 * and use the cached one.
   3639	 */
   3640	if (!ah->ah_txpower.txp_setup ||
   3641	    (channel->hw_value != curr_channel->hw_value) ||
   3642	    (channel->center_freq != curr_channel->center_freq)) {
   3643		/* Reset TX power values but preserve requested
   3644		 * tx power from above */
   3645		int requested_txpower = ah->ah_txpower.txp_requested;
   3646
   3647		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
   3648
   3649		/* Restore TPC setting and requested tx power */
   3650		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
   3651
   3652		ah->ah_txpower.txp_requested = requested_txpower;
   3653
   3654		/* Calculate the powertable */
   3655		ret = ath5k_setup_channel_powertable(ah, channel,
   3656							ee_mode, type);
   3657		if (ret)
   3658			return ret;
   3659	}
   3660
   3661	/* Write table on hw */
   3662	ath5k_write_channel_powertable(ah, ee_mode, type);
   3663
   3664	/* Limit max power if we have a CTL available */
   3665	ath5k_get_max_ctl_power(ah, channel);
   3666
   3667	/* FIXME: Antenna reduction stuff */
   3668
   3669	/* FIXME: Limit power on turbo modes */
   3670
   3671	/* FIXME: TPC scale reduction */
   3672
   3673	/* Get surrounding channels for per-rate power table
   3674	 * calibration */
   3675	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
   3676
   3677	/* Setup rate power table */
   3678	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
   3679
   3680	/* Write rate power table on hw */
   3681	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
   3682		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
   3683		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
   3684
   3685	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
   3686		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
   3687		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
   3688
   3689	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
   3690		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
   3691		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
   3692
   3693	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
   3694		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
   3695		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
   3696
   3697	/* FIXME: TPC support */
   3698	if (ah->ah_txpower.txp_tpc) {
   3699		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
   3700			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
   3701
   3702		ath5k_hw_reg_write(ah,
   3703			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
   3704			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
   3705			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
   3706			AR5K_TPC);
   3707	} else {
   3708		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
   3709			AR5K_PHY_TXPOWER_RATE_MAX);
   3710	}
   3711
   3712	return 0;
   3713}
   3714
   3715/**
   3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
   3717 * @ah: The &struct ath5k_hw
   3718 * @txpower: The requested tx power limit in 0.5dB steps
   3719 *
   3720 * This function provides access to ath5k_hw_txpower to the driver in
   3721 * case user or an application changes it while PHY is running.
   3722 */
   3723int
   3724ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
   3725{
   3726	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
   3727		"changing txpower to %d\n", txpower);
   3728
   3729	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
   3730}
   3731
   3732
   3733/*************\
   3734 Init function
   3735\*************/
   3736
   3737/**
   3738 * ath5k_hw_phy_init() - Initialize PHY
   3739 * @ah: The &struct ath5k_hw
   3740 * @channel: The @struct ieee80211_channel
   3741 * @mode: One of enum ath5k_driver_mode
   3742 * @fast: Try a fast channel switch instead
   3743 *
   3744 * This is the main function used during reset to initialize PHY
   3745 * or do a fast channel change if possible.
   3746 *
   3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
   3748 * warm reset state !
   3749 */
   3750int
   3751ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
   3752		      u8 mode, bool fast)
   3753{
   3754	struct ieee80211_channel *curr_channel;
   3755	int ret, i;
   3756	u32 phy_tst1;
   3757	ret = 0;
   3758
   3759	/*
   3760	 * Sanity check for fast flag
   3761	 * Don't try fast channel change when changing modulation
   3762	 * mode/band. We check for chip compatibility on
   3763	 * ath5k_hw_reset.
   3764	 */
   3765	curr_channel = ah->ah_current_channel;
   3766	if (fast && (channel->hw_value != curr_channel->hw_value))
   3767		return -EINVAL;
   3768
   3769	/*
   3770	 * On fast channel change we only set the synth parameters
   3771	 * while PHY is running, enable calibration and skip the rest.
   3772	 */
   3773	if (fast) {
   3774		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
   3775				    AR5K_PHY_RFBUS_REQ_REQUEST);
   3776		for (i = 0; i < 100; i++) {
   3777			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
   3778				break;
   3779			udelay(5);
   3780		}
   3781		/* Failed */
   3782		if (i >= 100)
   3783			return -EIO;
   3784
   3785		/* Set channel and wait for synth */
   3786		ret = ath5k_hw_channel(ah, channel);
   3787		if (ret)
   3788			return ret;
   3789
   3790		ath5k_hw_wait_for_synth(ah, channel);
   3791	}
   3792
   3793	/*
   3794	 * Set TX power
   3795	 *
   3796	 * Note: We need to do that before we set
   3797	 * RF buffer settings on 5211/5212+ so that we
   3798	 * properly set curve indices.
   3799	 */
   3800	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
   3801					ah->ah_txpower.txp_requested * 2 :
   3802					AR5K_TUNE_MAX_TXPOWER);
   3803	if (ret)
   3804		return ret;
   3805
   3806	/* Write OFDM timings on 5212*/
   3807	if (ah->ah_version == AR5K_AR5212 &&
   3808		channel->hw_value != AR5K_MODE_11B) {
   3809
   3810		ret = ath5k_hw_write_ofdm_timings(ah, channel);
   3811		if (ret)
   3812			return ret;
   3813
   3814		/* Spur info is available only from EEPROM versions
   3815		 * greater than 5.3, but the EEPROM routines will use
   3816		 * static values for older versions */
   3817		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
   3818			ath5k_hw_set_spur_mitigation_filter(ah,
   3819							    channel);
   3820	}
   3821
   3822	/* If we used fast channel switching
   3823	 * we are done, release RF bus and
   3824	 * fire up NF calibration.
   3825	 *
   3826	 * Note: Only NF calibration due to
   3827	 * channel change, not AGC calibration
   3828	 * since AGC is still running !
   3829	 */
   3830	if (fast) {
   3831		/*
   3832		 * Release RF Bus grant
   3833		 */
   3834		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
   3835				    AR5K_PHY_RFBUS_REQ_REQUEST);
   3836
   3837		/*
   3838		 * Start NF calibration
   3839		 */
   3840		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
   3841					AR5K_PHY_AGCCTL_NF);
   3842
   3843		return ret;
   3844	}
   3845
   3846	/*
   3847	 * For 5210 we do all initialization using
   3848	 * initvals, so we don't have to modify
   3849	 * any settings (5210 also only supports
   3850	 * a/aturbo modes)
   3851	 */
   3852	if (ah->ah_version != AR5K_AR5210) {
   3853
   3854		/*
   3855		 * Write initial RF gain settings
   3856		 * This should work for both 5111/5112
   3857		 */
   3858		ret = ath5k_hw_rfgain_init(ah, channel->band);
   3859		if (ret)
   3860			return ret;
   3861
   3862		usleep_range(1000, 1500);
   3863
   3864		/*
   3865		 * Write RF buffer
   3866		 */
   3867		ret = ath5k_hw_rfregs_init(ah, channel, mode);
   3868		if (ret)
   3869			return ret;
   3870
   3871		/*Enable/disable 802.11b mode on 5111
   3872		(enable 2111 frequency converter + CCK)*/
   3873		if (ah->ah_radio == AR5K_RF5111) {
   3874			if (mode == AR5K_MODE_11B)
   3875				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
   3876				    AR5K_TXCFG_B_MODE);
   3877			else
   3878				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
   3879				    AR5K_TXCFG_B_MODE);
   3880		}
   3881
   3882	} else if (ah->ah_version == AR5K_AR5210) {
   3883		usleep_range(1000, 1500);
   3884		/* Disable phy and wait */
   3885		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
   3886		usleep_range(1000, 1500);
   3887	}
   3888
   3889	/* Set channel on PHY */
   3890	ret = ath5k_hw_channel(ah, channel);
   3891	if (ret)
   3892		return ret;
   3893
   3894	/*
   3895	 * Enable the PHY and wait until completion
   3896	 * This includes BaseBand and Synthesizer
   3897	 * activation.
   3898	 */
   3899	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
   3900
   3901	ath5k_hw_wait_for_synth(ah, channel);
   3902
   3903	/*
   3904	 * Perform ADC test to see if baseband is ready
   3905	 * Set tx hold and check adc test register
   3906	 */
   3907	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
   3908	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
   3909	for (i = 0; i <= 20; i++) {
   3910		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
   3911			break;
   3912		usleep_range(200, 250);
   3913	}
   3914	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
   3915
   3916	/*
   3917	 * Start automatic gain control calibration
   3918	 *
   3919	 * During AGC calibration RX path is re-routed to
   3920	 * a power detector so we don't receive anything.
   3921	 *
   3922	 * This method is used to calibrate some static offsets
   3923	 * used together with on-the fly I/Q calibration (the
   3924	 * one performed via ath5k_hw_phy_calibrate), which doesn't
   3925	 * interrupt rx path.
   3926	 *
   3927	 * While rx path is re-routed to the power detector we also
   3928	 * start a noise floor calibration to measure the
   3929	 * card's noise floor (the noise we measure when we are not
   3930	 * transmitting or receiving anything).
   3931	 *
   3932	 * If we are in a noisy environment, AGC calibration may time
   3933	 * out and/or noise floor calibration might timeout.
   3934	 */
   3935	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
   3936				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
   3937
   3938	/* At the same time start I/Q calibration for QAM constellation
   3939	 * -no need for CCK- */
   3940	ah->ah_iq_cal_needed = false;
   3941	if (!(mode == AR5K_MODE_11B)) {
   3942		ah->ah_iq_cal_needed = true;
   3943		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
   3944				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
   3945		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
   3946				AR5K_PHY_IQ_RUN);
   3947	}
   3948
   3949	/* Wait for gain calibration to finish (we check for I/Q calibration
   3950	 * during ath5k_phy_calibrate) */
   3951	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
   3952			AR5K_PHY_AGCCTL_CAL, 0, false)) {
   3953		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
   3954			channel->center_freq);
   3955	}
   3956
   3957	/* Restore antenna mode */
   3958	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
   3959
   3960	return ret;
   3961}