cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dma.c (43941B)


      1/*
      2 * Copyright (c) 2010 Broadcom Corporation
      3 *
      4 * Permission to use, copy, modify, and/or distribute this software for any
      5 * purpose with or without fee is hereby granted, provided that the above
      6 * copyright notice and this permission notice appear in all copies.
      7 *
      8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     15 */
     16
     17#include <linux/slab.h>
     18#include <linux/delay.h>
     19#include <linux/pci.h>
     20#include <net/cfg80211.h>
     21#include <net/mac80211.h>
     22
     23#include <brcmu_utils.h>
     24#include <aiutils.h>
     25#include "types.h"
     26#include "main.h"
     27#include "dma.h"
     28#include "soc.h"
     29#include "scb.h"
     30#include "ampdu.h"
     31#include "debug.h"
     32#include "brcms_trace_events.h"
     33
     34/*
     35 * dma register field offset calculation
     36 */
     37#define DMA64REGOFFS(field)		offsetof(struct dma64regs, field)
     38#define DMA64TXREGOFFS(di, field)	(di->d64txregbase + DMA64REGOFFS(field))
     39#define DMA64RXREGOFFS(di, field)	(di->d64rxregbase + DMA64REGOFFS(field))
     40
     41/*
     42 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
     43 * a contiguous 8kB physical address.
     44 */
     45#define D64RINGALIGN_BITS	13
     46#define	D64MAXRINGSZ		(1 << D64RINGALIGN_BITS)
     47#define	D64RINGALIGN		(1 << D64RINGALIGN_BITS)
     48
     49#define	D64MAXDD	(D64MAXRINGSZ / sizeof(struct dma64desc))
     50
     51/* transmit channel control */
     52#define	D64_XC_XE		0x00000001	/* transmit enable */
     53#define	D64_XC_SE		0x00000002	/* transmit suspend request */
     54#define	D64_XC_LE		0x00000004	/* loopback enable */
     55#define	D64_XC_FL		0x00000010	/* flush request */
     56#define	D64_XC_PD		0x00000800	/* parity check disable */
     57#define	D64_XC_AE		0x00030000	/* address extension bits */
     58#define	D64_XC_AE_SHIFT		16
     59
     60/* transmit descriptor table pointer */
     61#define	D64_XP_LD_MASK		0x00000fff	/* last valid descriptor */
     62
     63/* transmit channel status */
     64#define	D64_XS0_CD_MASK		0x00001fff	/* current descriptor pointer */
     65#define	D64_XS0_XS_MASK		0xf0000000	/* transmit state */
     66#define	D64_XS0_XS_SHIFT		28
     67#define	D64_XS0_XS_DISABLED	0x00000000	/* disabled */
     68#define	D64_XS0_XS_ACTIVE	0x10000000	/* active */
     69#define	D64_XS0_XS_IDLE		0x20000000	/* idle wait */
     70#define	D64_XS0_XS_STOPPED	0x30000000	/* stopped */
     71#define	D64_XS0_XS_SUSP		0x40000000	/* suspend pending */
     72
     73#define	D64_XS1_AD_MASK		0x00001fff	/* active descriptor */
     74#define	D64_XS1_XE_MASK		0xf0000000	/* transmit errors */
     75#define	D64_XS1_XE_SHIFT		28
     76#define	D64_XS1_XE_NOERR	0x00000000	/* no error */
     77#define	D64_XS1_XE_DPE		0x10000000	/* descriptor protocol error */
     78#define	D64_XS1_XE_DFU		0x20000000	/* data fifo underrun */
     79#define	D64_XS1_XE_DTE		0x30000000	/* data transfer error */
     80#define	D64_XS1_XE_DESRE	0x40000000	/* descriptor read error */
     81#define	D64_XS1_XE_COREE	0x50000000	/* core error */
     82
     83/* receive channel control */
     84/* receive enable */
     85#define	D64_RC_RE		0x00000001
     86/* receive frame offset */
     87#define	D64_RC_RO_MASK		0x000000fe
     88#define	D64_RC_RO_SHIFT		1
     89/* direct fifo receive (pio) mode */
     90#define	D64_RC_FM		0x00000100
     91/* separate rx header descriptor enable */
     92#define	D64_RC_SH		0x00000200
     93/* overflow continue */
     94#define	D64_RC_OC		0x00000400
     95/* parity check disable */
     96#define	D64_RC_PD		0x00000800
     97/* address extension bits */
     98#define	D64_RC_AE		0x00030000
     99#define	D64_RC_AE_SHIFT		16
    100
    101/* flags for dma controller */
    102/* partity enable */
    103#define DMA_CTRL_PEN		(1 << 0)
    104/* rx overflow continue */
    105#define DMA_CTRL_ROC		(1 << 1)
    106/* allow rx scatter to multiple descriptors */
    107#define DMA_CTRL_RXMULTI	(1 << 2)
    108/* Unframed Rx/Tx data */
    109#define DMA_CTRL_UNFRAMED	(1 << 3)
    110
    111/* receive descriptor table pointer */
    112#define	D64_RP_LD_MASK		0x00000fff	/* last valid descriptor */
    113
    114/* receive channel status */
    115#define	D64_RS0_CD_MASK		0x00001fff	/* current descriptor pointer */
    116#define	D64_RS0_RS_MASK		0xf0000000	/* receive state */
    117#define	D64_RS0_RS_SHIFT		28
    118#define	D64_RS0_RS_DISABLED	0x00000000	/* disabled */
    119#define	D64_RS0_RS_ACTIVE	0x10000000	/* active */
    120#define	D64_RS0_RS_IDLE		0x20000000	/* idle wait */
    121#define	D64_RS0_RS_STOPPED	0x30000000	/* stopped */
    122#define	D64_RS0_RS_SUSP		0x40000000	/* suspend pending */
    123
    124#define	D64_RS1_AD_MASK		0x0001ffff	/* active descriptor */
    125#define	D64_RS1_RE_MASK		0xf0000000	/* receive errors */
    126#define	D64_RS1_RE_SHIFT		28
    127#define	D64_RS1_RE_NOERR	0x00000000	/* no error */
    128#define	D64_RS1_RE_DPO		0x10000000	/* descriptor protocol error */
    129#define	D64_RS1_RE_DFU		0x20000000	/* data fifo overflow */
    130#define	D64_RS1_RE_DTE		0x30000000	/* data transfer error */
    131#define	D64_RS1_RE_DESRE	0x40000000	/* descriptor read error */
    132#define	D64_RS1_RE_COREE	0x50000000	/* core error */
    133
    134/* fifoaddr */
    135#define	D64_FA_OFF_MASK		0xffff	/* offset */
    136#define	D64_FA_SEL_MASK		0xf0000	/* select */
    137#define	D64_FA_SEL_SHIFT	16
    138#define	D64_FA_SEL_XDD		0x00000	/* transmit dma data */
    139#define	D64_FA_SEL_XDP		0x10000	/* transmit dma pointers */
    140#define	D64_FA_SEL_RDD		0x40000	/* receive dma data */
    141#define	D64_FA_SEL_RDP		0x50000	/* receive dma pointers */
    142#define	D64_FA_SEL_XFD		0x80000	/* transmit fifo data */
    143#define	D64_FA_SEL_XFP		0x90000	/* transmit fifo pointers */
    144#define	D64_FA_SEL_RFD		0xc0000	/* receive fifo data */
    145#define	D64_FA_SEL_RFP		0xd0000	/* receive fifo pointers */
    146#define	D64_FA_SEL_RSD		0xe0000	/* receive frame status data */
    147#define	D64_FA_SEL_RSP		0xf0000	/* receive frame status pointers */
    148
    149/* descriptor control flags 1 */
    150#define D64_CTRL_COREFLAGS	0x0ff00000	/* core specific flags */
    151#define	D64_CTRL1_EOT		((u32)1 << 28)	/* end of descriptor table */
    152#define	D64_CTRL1_IOC		((u32)1 << 29)	/* interrupt on completion */
    153#define	D64_CTRL1_EOF		((u32)1 << 30)	/* end of frame */
    154#define	D64_CTRL1_SOF		((u32)1 << 31)	/* start of frame */
    155
    156/* descriptor control flags 2 */
    157/* buffer byte count. real data len must <= 16KB */
    158#define	D64_CTRL2_BC_MASK	0x00007fff
    159/* address extension bits */
    160#define	D64_CTRL2_AE		0x00030000
    161#define	D64_CTRL2_AE_SHIFT	16
    162/* parity bit */
    163#define D64_CTRL2_PARITY	0x00040000
    164
    165/* control flags in the range [27:20] are core-specific and not defined here */
    166#define	D64_CTRL_CORE_MASK	0x0ff00000
    167
    168#define D64_RX_FRM_STS_LEN	0x0000ffff	/* frame length mask */
    169#define D64_RX_FRM_STS_OVFL	0x00800000	/* RxOverFlow */
    170#define D64_RX_FRM_STS_DSCRCNT	0x0f000000  /* no. of descriptors used - 1 */
    171#define D64_RX_FRM_STS_DATATYPE	0xf0000000	/* core-dependent data type */
    172
    173/*
    174 * packet headroom necessary to accommodate the largest header
    175 * in the system, (i.e TXOFF). By doing, we avoid the need to
    176 * allocate an extra buffer for the header when bridging to WL.
    177 * There is a compile time check in wlc.c which ensure that this
    178 * value is at least as big as TXOFF. This value is used in
    179 * dma_rxfill().
    180 */
    181
    182#define BCMEXTRAHDROOM 172
    183
    184#define	MAXNAMEL	8	/* 8 char names */
    185
    186/* macros to convert between byte offsets and indexes */
    187#define	B2I(bytes, type)	((bytes) / sizeof(type))
    188#define	I2B(index, type)	((index) * sizeof(type))
    189
    190#define	PCI32ADDR_HIGH		0xc0000000	/* address[31:30] */
    191#define	PCI32ADDR_HIGH_SHIFT	30	/* address[31:30] */
    192
    193#define	PCI64ADDR_HIGH		0x80000000	/* address[63] */
    194#define	PCI64ADDR_HIGH_SHIFT	31	/* address[63] */
    195
    196/*
    197 * DMA Descriptor
    198 * Descriptors are only read by the hardware, never written back.
    199 */
    200struct dma64desc {
    201	__le32 ctrl1;	/* misc control bits & bufcount */
    202	__le32 ctrl2;	/* buffer count and address extension */
    203	__le32 addrlow;	/* memory address of the date buffer, bits 31:0 */
    204	__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
    205};
    206
    207/* dma engine software state */
    208struct dma_info {
    209	struct dma_pub dma; /* exported structure */
    210	char name[MAXNAMEL];	/* callers name for diag msgs */
    211
    212	struct bcma_device *core;
    213	struct device *dmadev;
    214
    215	/* session information for AMPDU */
    216	struct brcms_ampdu_session ampdu_session;
    217
    218	bool dma64;	/* this dma engine is operating in 64-bit mode */
    219	bool addrext;	/* this dma engine supports DmaExtendedAddrChanges */
    220
    221	/* 64-bit dma tx engine registers */
    222	uint d64txregbase;
    223	/* 64-bit dma rx engine registers */
    224	uint d64rxregbase;
    225	/* pointer to dma64 tx descriptor ring */
    226	struct dma64desc *txd64;
    227	/* pointer to dma64 rx descriptor ring */
    228	struct dma64desc *rxd64;
    229
    230	u16 dmadesc_align;	/* alignment requirement for dma descriptors */
    231
    232	u16 ntxd;		/* # tx descriptors tunable */
    233	u16 txin;		/* index of next descriptor to reclaim */
    234	u16 txout;		/* index of next descriptor to post */
    235	/* pointer to parallel array of pointers to packets */
    236	struct sk_buff **txp;
    237	/* Aligned physical address of descriptor ring */
    238	dma_addr_t txdpa;
    239	/* Original physical address of descriptor ring */
    240	dma_addr_t txdpaorig;
    241	u16 txdalign;	/* #bytes added to alloc'd mem to align txd */
    242	u32 txdalloc;	/* #bytes allocated for the ring */
    243	u32 xmtptrbase;	/* When using unaligned descriptors, the ptr register
    244			 * is not just an index, it needs all 13 bits to be
    245			 * an offset from the addr register.
    246			 */
    247
    248	u16 nrxd;	/* # rx descriptors tunable */
    249	u16 rxin;	/* index of next descriptor to reclaim */
    250	u16 rxout;	/* index of next descriptor to post */
    251	/* pointer to parallel array of pointers to packets */
    252	struct sk_buff **rxp;
    253	/* Aligned physical address of descriptor ring */
    254	dma_addr_t rxdpa;
    255	/* Original physical address of descriptor ring */
    256	dma_addr_t rxdpaorig;
    257	u16 rxdalign;	/* #bytes added to alloc'd mem to align rxd */
    258	u32 rxdalloc;	/* #bytes allocated for the ring */
    259	u32 rcvptrbase;	/* Base for ptr reg when using unaligned descriptors */
    260
    261	/* tunables */
    262	unsigned int rxbufsize;	/* rx buffer size in bytes, not including
    263				 * the extra headroom
    264				 */
    265	uint rxextrahdrroom;	/* extra rx headroom, reverseved to assist upper
    266				 * stack, e.g. some rx pkt buffers will be
    267				 * bridged to tx side without byte copying.
    268				 * The extra headroom needs to be large enough
    269				 * to fit txheader needs. Some dongle driver may
    270				 * not need it.
    271				 */
    272	uint nrxpost;		/* # rx buffers to keep posted */
    273	unsigned int rxoffset;	/* rxcontrol offset */
    274	/* add to get dma address of descriptor ring, low 32 bits */
    275	uint ddoffsetlow;
    276	/*   high 32 bits */
    277	uint ddoffsethigh;
    278	/* add to get dma address of data buffer, low 32 bits */
    279	uint dataoffsetlow;
    280	/*   high 32 bits */
    281	uint dataoffsethigh;
    282	/* descriptor base need to be aligned or not */
    283	bool aligndesc_4k;
    284};
    285
    286/* Check for odd number of 1's */
    287static u32 parity32(__le32 data)
    288{
    289	/* no swap needed for counting 1's */
    290	u32 par_data = *(u32 *)&data;
    291
    292	par_data ^= par_data >> 16;
    293	par_data ^= par_data >> 8;
    294	par_data ^= par_data >> 4;
    295	par_data ^= par_data >> 2;
    296	par_data ^= par_data >> 1;
    297
    298	return par_data & 1;
    299}
    300
    301static bool dma64_dd_parity(struct dma64desc *dd)
    302{
    303	return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
    304}
    305
    306/* descriptor bumping functions */
    307
    308static uint xxd(uint x, uint n)
    309{
    310	return x & (n - 1); /* faster than %, but n must be power of 2 */
    311}
    312
    313static uint txd(struct dma_info *di, uint x)
    314{
    315	return xxd(x, di->ntxd);
    316}
    317
    318static uint rxd(struct dma_info *di, uint x)
    319{
    320	return xxd(x, di->nrxd);
    321}
    322
    323static uint nexttxd(struct dma_info *di, uint i)
    324{
    325	return txd(di, i + 1);
    326}
    327
    328static uint prevtxd(struct dma_info *di, uint i)
    329{
    330	return txd(di, i - 1);
    331}
    332
    333static uint nextrxd(struct dma_info *di, uint i)
    334{
    335	return rxd(di, i + 1);
    336}
    337
    338static uint ntxdactive(struct dma_info *di, uint h, uint t)
    339{
    340	return txd(di, t-h);
    341}
    342
    343static uint nrxdactive(struct dma_info *di, uint h, uint t)
    344{
    345	return rxd(di, t-h);
    346}
    347
    348static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
    349{
    350	uint dmactrlflags;
    351
    352	if (di == NULL)
    353		return 0;
    354
    355	dmactrlflags = di->dma.dmactrlflags;
    356	dmactrlflags &= ~mask;
    357	dmactrlflags |= flags;
    358
    359	/* If trying to enable parity, check if parity is actually supported */
    360	if (dmactrlflags & DMA_CTRL_PEN) {
    361		u32 control;
    362
    363		control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
    364		bcma_write32(di->core, DMA64TXREGOFFS(di, control),
    365		      control | D64_XC_PD);
    366		if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
    367		    D64_XC_PD)
    368			/* We *can* disable it so it is supported,
    369			 * restore control register
    370			 */
    371			bcma_write32(di->core, DMA64TXREGOFFS(di, control),
    372				     control);
    373		else
    374			/* Not supported, don't allow it to be enabled */
    375			dmactrlflags &= ~DMA_CTRL_PEN;
    376	}
    377
    378	di->dma.dmactrlflags = dmactrlflags;
    379
    380	return dmactrlflags;
    381}
    382
    383static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
    384{
    385	u32 w;
    386	bcma_set32(di->core, ctrl_offset, D64_XC_AE);
    387	w = bcma_read32(di->core, ctrl_offset);
    388	bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
    389	return (w & D64_XC_AE) == D64_XC_AE;
    390}
    391
    392/*
    393 * return true if this dma engine supports DmaExtendedAddrChanges,
    394 * otherwise false
    395 */
    396static bool _dma_isaddrext(struct dma_info *di)
    397{
    398	/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
    399
    400	/* not all tx or rx channel are available */
    401	if (di->d64txregbase != 0) {
    402		if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
    403			brcms_dbg_dma(di->core,
    404				      "%s: DMA64 tx doesn't have AE set\n",
    405				      di->name);
    406		return true;
    407	} else if (di->d64rxregbase != 0) {
    408		if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
    409			brcms_dbg_dma(di->core,
    410				      "%s: DMA64 rx doesn't have AE set\n",
    411				      di->name);
    412		return true;
    413	}
    414
    415	return false;
    416}
    417
    418static bool _dma_descriptor_align(struct dma_info *di)
    419{
    420	u32 addrl;
    421
    422	/* Check to see if the descriptors need to be aligned on 4K/8K or not */
    423	if (di->d64txregbase != 0) {
    424		bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
    425		addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
    426		if (addrl != 0)
    427			return false;
    428	} else if (di->d64rxregbase != 0) {
    429		bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
    430		addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
    431		if (addrl != 0)
    432			return false;
    433	}
    434	return true;
    435}
    436
    437/*
    438 * Descriptor table must start at the DMA hardware dictated alignment, so
    439 * allocated memory must be large enough to support this requirement.
    440 */
    441static void *dma_alloc_consistent(struct dma_info *di, uint size,
    442				  u16 align_bits, uint *alloced,
    443				  dma_addr_t *pap)
    444{
    445	if (align_bits) {
    446		u16 align = (1 << align_bits);
    447		if (!IS_ALIGNED(PAGE_SIZE, align))
    448			size += align;
    449		*alloced = size;
    450	}
    451	return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
    452}
    453
    454static
    455u8 dma_align_sizetobits(uint size)
    456{
    457	u8 bitpos = 0;
    458	while (size >>= 1)
    459		bitpos++;
    460	return bitpos;
    461}
    462
    463/* This function ensures that the DMA descriptor ring will not get allocated
    464 * across Page boundary. If the allocation is done across the page boundary
    465 * at the first time, then it is freed and the allocation is done at
    466 * descriptor ring size aligned location. This will ensure that the ring will
    467 * not cross page boundary
    468 */
    469static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
    470			   u16 *alignbits, uint *alloced,
    471			   dma_addr_t *descpa)
    472{
    473	void *va;
    474	u32 desc_strtaddr;
    475	u32 alignbytes = 1 << *alignbits;
    476
    477	va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
    478
    479	if (NULL == va)
    480		return NULL;
    481
    482	desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
    483	if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
    484							& boundary)) {
    485		*alignbits = dma_align_sizetobits(size);
    486		dma_free_coherent(di->dmadev, size, va, *descpa);
    487		va = dma_alloc_consistent(di, size, *alignbits,
    488			alloced, descpa);
    489	}
    490	return va;
    491}
    492
    493static bool dma64_alloc(struct dma_info *di, uint direction)
    494{
    495	u16 size;
    496	uint ddlen;
    497	void *va;
    498	uint alloced = 0;
    499	u16 align;
    500	u16 align_bits;
    501
    502	ddlen = sizeof(struct dma64desc);
    503
    504	size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
    505	align_bits = di->dmadesc_align;
    506	align = (1 << align_bits);
    507
    508	if (direction == DMA_TX) {
    509		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
    510			&alloced, &di->txdpaorig);
    511		if (va == NULL) {
    512			brcms_dbg_dma(di->core,
    513				      "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
    514				      di->name);
    515			return false;
    516		}
    517		align = (1 << align_bits);
    518		di->txd64 = (struct dma64desc *)
    519					roundup((unsigned long)va, align);
    520		di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
    521		di->txdpa = di->txdpaorig + di->txdalign;
    522		di->txdalloc = alloced;
    523	} else {
    524		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
    525			&alloced, &di->rxdpaorig);
    526		if (va == NULL) {
    527			brcms_dbg_dma(di->core,
    528				      "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
    529				      di->name);
    530			return false;
    531		}
    532		align = (1 << align_bits);
    533		di->rxd64 = (struct dma64desc *)
    534					roundup((unsigned long)va, align);
    535		di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
    536		di->rxdpa = di->rxdpaorig + di->rxdalign;
    537		di->rxdalloc = alloced;
    538	}
    539
    540	return true;
    541}
    542
    543static bool _dma_alloc(struct dma_info *di, uint direction)
    544{
    545	return dma64_alloc(di, direction);
    546}
    547
    548struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
    549			   uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
    550			   uint rxbufsize, int rxextheadroom,
    551			   uint nrxpost, uint rxoffset)
    552{
    553	struct si_pub *sih = wlc->hw->sih;
    554	struct bcma_device *core = wlc->hw->d11core;
    555	struct dma_info *di;
    556	u8 rev = core->id.rev;
    557	uint size;
    558	struct si_info *sii = container_of(sih, struct si_info, pub);
    559
    560	/* allocate private info structure */
    561	di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
    562	if (di == NULL)
    563		return NULL;
    564
    565	di->dma64 =
    566		((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
    567
    568	/* init dma reg info */
    569	di->core = core;
    570	di->d64txregbase = txregbase;
    571	di->d64rxregbase = rxregbase;
    572
    573	/*
    574	 * Default flags (which can be changed by the driver calling
    575	 * dma_ctrlflags before enable): For backwards compatibility
    576	 * both Rx Overflow Continue and Parity are DISABLED.
    577	 */
    578	_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
    579
    580	brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
    581		      "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
    582		      "txregbase %u rxregbase %u\n", name, "DMA64",
    583		      di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
    584		      rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
    585
    586	/* make a private copy of our callers name */
    587	strncpy(di->name, name, MAXNAMEL);
    588	di->name[MAXNAMEL - 1] = '\0';
    589
    590	di->dmadev = core->dma_dev;
    591
    592	/* save tunables */
    593	di->ntxd = (u16) ntxd;
    594	di->nrxd = (u16) nrxd;
    595
    596	/* the actual dma size doesn't include the extra headroom */
    597	di->rxextrahdrroom =
    598	    (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
    599	if (rxbufsize > BCMEXTRAHDROOM)
    600		di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
    601	else
    602		di->rxbufsize = (u16) rxbufsize;
    603
    604	di->nrxpost = (u16) nrxpost;
    605	di->rxoffset = (u8) rxoffset;
    606
    607	/*
    608	 * figure out the DMA physical address offset for dd and data
    609	 *     PCI/PCIE: they map silicon backplace address to zero
    610	 *     based memory, need offset
    611	 *     Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
    612	 *     swapped region for data buffer, not descriptor
    613	 */
    614	di->ddoffsetlow = 0;
    615	di->dataoffsetlow = 0;
    616	/* for pci bus, add offset */
    617	if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
    618		/* add offset for pcie with DMA64 bus */
    619		di->ddoffsetlow = 0;
    620		di->ddoffsethigh = SI_PCIE_DMA_H32;
    621	}
    622	di->dataoffsetlow = di->ddoffsetlow;
    623	di->dataoffsethigh = di->ddoffsethigh;
    624
    625	/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
    626	if ((core->id.id == BCMA_CORE_SDIO_DEV)
    627	    && ((rev > 0) && (rev <= 2)))
    628		di->addrext = false;
    629	else if ((core->id.id == BCMA_CORE_I2S) &&
    630		 ((rev == 0) || (rev == 1)))
    631		di->addrext = false;
    632	else
    633		di->addrext = _dma_isaddrext(di);
    634
    635	/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
    636	di->aligndesc_4k = _dma_descriptor_align(di);
    637	if (di->aligndesc_4k) {
    638		di->dmadesc_align = D64RINGALIGN_BITS;
    639		if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
    640			/* for smaller dd table, HW relax alignment reqmnt */
    641			di->dmadesc_align = D64RINGALIGN_BITS - 1;
    642	} else {
    643		di->dmadesc_align = 4;	/* 16 byte alignment */
    644	}
    645
    646	brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
    647		      di->aligndesc_4k, di->dmadesc_align);
    648
    649	/* allocate tx packet pointer vector */
    650	if (ntxd) {
    651		size = ntxd * sizeof(void *);
    652		di->txp = kzalloc(size, GFP_ATOMIC);
    653		if (di->txp == NULL)
    654			goto fail;
    655	}
    656
    657	/* allocate rx packet pointer vector */
    658	if (nrxd) {
    659		size = nrxd * sizeof(void *);
    660		di->rxp = kzalloc(size, GFP_ATOMIC);
    661		if (di->rxp == NULL)
    662			goto fail;
    663	}
    664
    665	/*
    666	 * allocate transmit descriptor ring, only need ntxd descriptors
    667	 * but it must be aligned
    668	 */
    669	if (ntxd) {
    670		if (!_dma_alloc(di, DMA_TX))
    671			goto fail;
    672	}
    673
    674	/*
    675	 * allocate receive descriptor ring, only need nrxd descriptors
    676	 * but it must be aligned
    677	 */
    678	if (nrxd) {
    679		if (!_dma_alloc(di, DMA_RX))
    680			goto fail;
    681	}
    682
    683	if ((di->ddoffsetlow != 0) && !di->addrext) {
    684		if (di->txdpa > SI_PCI_DMA_SZ) {
    685			brcms_dbg_dma(di->core,
    686				      "%s: txdpa 0x%x: addrext not supported\n",
    687				      di->name, (u32)di->txdpa);
    688			goto fail;
    689		}
    690		if (di->rxdpa > SI_PCI_DMA_SZ) {
    691			brcms_dbg_dma(di->core,
    692				      "%s: rxdpa 0x%x: addrext not supported\n",
    693				      di->name, (u32)di->rxdpa);
    694			goto fail;
    695		}
    696	}
    697
    698	/* Initialize AMPDU session */
    699	brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
    700
    701	brcms_dbg_dma(di->core,
    702		      "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
    703		      di->ddoffsetlow, di->ddoffsethigh,
    704		      di->dataoffsetlow, di->dataoffsethigh,
    705		      di->addrext);
    706
    707	return (struct dma_pub *) di;
    708
    709 fail:
    710	dma_detach((struct dma_pub *)di);
    711	return NULL;
    712}
    713
    714static inline void
    715dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
    716	     dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
    717{
    718	u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
    719
    720	/* PCI bus with big(>1G) physical address, use address extension */
    721	if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
    722		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
    723		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
    724		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
    725		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
    726	} else {
    727		/* address extension for 32-bit PCI */
    728		u32 ae;
    729
    730		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
    731		pa &= ~PCI32ADDR_HIGH;
    732
    733		ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
    734		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
    735		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
    736		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
    737		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
    738	}
    739	if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
    740		if (dma64_dd_parity(&ddring[outidx]))
    741			ddring[outidx].ctrl2 =
    742			     cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
    743	}
    744}
    745
    746/* !! may be called with core in reset */
    747void dma_detach(struct dma_pub *pub)
    748{
    749	struct dma_info *di = container_of(pub, struct dma_info, dma);
    750
    751	brcms_dbg_dma(di->core, "%s:\n", di->name);
    752
    753	/* free dma descriptor rings */
    754	if (di->txd64)
    755		dma_free_coherent(di->dmadev, di->txdalloc,
    756				  ((s8 *)di->txd64 - di->txdalign),
    757				  (di->txdpaorig));
    758	if (di->rxd64)
    759		dma_free_coherent(di->dmadev, di->rxdalloc,
    760				  ((s8 *)di->rxd64 - di->rxdalign),
    761				  (di->rxdpaorig));
    762
    763	/* free packet pointer vectors */
    764	kfree(di->txp);
    765	kfree(di->rxp);
    766
    767	/* free our private info structure */
    768	kfree(di);
    769
    770}
    771
    772/* initialize descriptor table base address */
    773static void
    774_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
    775{
    776	if (!di->aligndesc_4k) {
    777		if (direction == DMA_TX)
    778			di->xmtptrbase = pa;
    779		else
    780			di->rcvptrbase = pa;
    781	}
    782
    783	if ((di->ddoffsetlow == 0)
    784	    || !(pa & PCI32ADDR_HIGH)) {
    785		if (direction == DMA_TX) {
    786			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
    787				     pa + di->ddoffsetlow);
    788			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
    789				     di->ddoffsethigh);
    790		} else {
    791			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
    792				     pa + di->ddoffsetlow);
    793			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
    794				     di->ddoffsethigh);
    795		}
    796	} else {
    797		/* DMA64 32bits address extension */
    798		u32 ae;
    799
    800		/* shift the high bit(s) from pa to ae */
    801		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
    802		pa &= ~PCI32ADDR_HIGH;
    803
    804		if (direction == DMA_TX) {
    805			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
    806				     pa + di->ddoffsetlow);
    807			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
    808				     di->ddoffsethigh);
    809			bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
    810				       D64_XC_AE, (ae << D64_XC_AE_SHIFT));
    811		} else {
    812			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
    813				     pa + di->ddoffsetlow);
    814			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
    815				     di->ddoffsethigh);
    816			bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
    817				       D64_RC_AE, (ae << D64_RC_AE_SHIFT));
    818		}
    819	}
    820}
    821
    822static void _dma_rxenable(struct dma_info *di)
    823{
    824	uint dmactrlflags = di->dma.dmactrlflags;
    825	u32 control;
    826
    827	brcms_dbg_dma(di->core, "%s:\n", di->name);
    828
    829	control = D64_RC_RE | (bcma_read32(di->core,
    830					   DMA64RXREGOFFS(di, control)) &
    831			       D64_RC_AE);
    832
    833	if ((dmactrlflags & DMA_CTRL_PEN) == 0)
    834		control |= D64_RC_PD;
    835
    836	if (dmactrlflags & DMA_CTRL_ROC)
    837		control |= D64_RC_OC;
    838
    839	bcma_write32(di->core, DMA64RXREGOFFS(di, control),
    840		((di->rxoffset << D64_RC_RO_SHIFT) | control));
    841}
    842
    843void dma_rxinit(struct dma_pub *pub)
    844{
    845	struct dma_info *di = container_of(pub, struct dma_info, dma);
    846
    847	brcms_dbg_dma(di->core, "%s:\n", di->name);
    848
    849	if (di->nrxd == 0)
    850		return;
    851
    852	di->rxin = di->rxout = 0;
    853
    854	/* clear rx descriptor ring */
    855	memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
    856
    857	/* DMA engine with out alignment requirement requires table to be inited
    858	 * before enabling the engine
    859	 */
    860	if (!di->aligndesc_4k)
    861		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
    862
    863	_dma_rxenable(di);
    864
    865	if (di->aligndesc_4k)
    866		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
    867}
    868
    869static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
    870{
    871	uint i, curr;
    872	struct sk_buff *rxp;
    873	dma_addr_t pa;
    874
    875	i = di->rxin;
    876
    877	/* return if no packets posted */
    878	if (i == di->rxout)
    879		return NULL;
    880
    881	curr =
    882	    B2I(((bcma_read32(di->core,
    883			      DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
    884		 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
    885
    886	/* ignore curr if forceall */
    887	if (!forceall && (i == curr))
    888		return NULL;
    889
    890	/* get the packet pointer that corresponds to the rx descriptor */
    891	rxp = di->rxp[i];
    892	di->rxp[i] = NULL;
    893
    894	pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
    895
    896	/* clear this packet from the descriptor ring */
    897	dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
    898
    899	di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
    900	di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
    901
    902	di->rxin = nextrxd(di, i);
    903
    904	return rxp;
    905}
    906
    907static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
    908{
    909	if (di->nrxd == 0)
    910		return NULL;
    911
    912	return dma64_getnextrxp(di, forceall);
    913}
    914
    915/*
    916 * !! rx entry routine
    917 * returns the number packages in the next frame, or 0 if there are no more
    918 *   if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
    919 *   supported with pkts chain
    920 *   otherwise, it's treated as giant pkt and will be tossed.
    921 *   The DMA scattering starts with normal DMA header, followed by first
    922 *   buffer data. After it reaches the max size of buffer, the data continues
    923 *   in next DMA descriptor buffer WITHOUT DMA header
    924 */
    925int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
    926{
    927	struct dma_info *di = container_of(pub, struct dma_info, dma);
    928	struct sk_buff_head dma_frames;
    929	struct sk_buff *p, *next;
    930	uint len;
    931	uint pkt_len;
    932	int resid = 0;
    933	int pktcnt = 1;
    934
    935	skb_queue_head_init(&dma_frames);
    936 next_frame:
    937	p = _dma_getnextrxp(di, false);
    938	if (p == NULL)
    939		return 0;
    940
    941	len = le16_to_cpu(*(__le16 *) (p->data));
    942	brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
    943	dma_spin_for_len(len, p);
    944
    945	/* set actual length */
    946	pkt_len = min((di->rxoffset + len), di->rxbufsize);
    947	__skb_trim(p, pkt_len);
    948	skb_queue_tail(&dma_frames, p);
    949	resid = len - (di->rxbufsize - di->rxoffset);
    950
    951	/* check for single or multi-buffer rx */
    952	if (resid > 0) {
    953		while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
    954			pkt_len = min_t(uint, resid, di->rxbufsize);
    955			__skb_trim(p, pkt_len);
    956			skb_queue_tail(&dma_frames, p);
    957			resid -= di->rxbufsize;
    958			pktcnt++;
    959		}
    960
    961#ifdef DEBUG
    962		if (resid > 0) {
    963			uint cur;
    964			cur =
    965			    B2I(((bcma_read32(di->core,
    966					      DMA64RXREGOFFS(di, status0)) &
    967				  D64_RS0_CD_MASK) - di->rcvptrbase) &
    968				D64_RS0_CD_MASK, struct dma64desc);
    969			brcms_dbg_dma(di->core,
    970				      "rxin %d rxout %d, hw_curr %d\n",
    971				      di->rxin, di->rxout, cur);
    972		}
    973#endif				/* DEBUG */
    974
    975		if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
    976			brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
    977				      di->name, len);
    978			skb_queue_walk_safe(&dma_frames, p, next) {
    979				skb_unlink(p, &dma_frames);
    980				brcmu_pkt_buf_free_skb(p);
    981			}
    982			di->dma.rxgiants++;
    983			pktcnt = 1;
    984			goto next_frame;
    985		}
    986	}
    987
    988	skb_queue_splice_tail(&dma_frames, skb_list);
    989	return pktcnt;
    990}
    991
    992static bool dma64_rxidle(struct dma_info *di)
    993{
    994	brcms_dbg_dma(di->core, "%s:\n", di->name);
    995
    996	if (di->nrxd == 0)
    997		return true;
    998
    999	return ((bcma_read32(di->core,
   1000			     DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
   1001		(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
   1002		 D64_RS0_CD_MASK));
   1003}
   1004
   1005static bool dma64_txidle(struct dma_info *di)
   1006{
   1007	if (di->ntxd == 0)
   1008		return true;
   1009
   1010	return ((bcma_read32(di->core,
   1011			     DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
   1012		(bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
   1013		 D64_XS0_CD_MASK));
   1014}
   1015
   1016/*
   1017 * post receive buffers
   1018 *  Return false if refill failed completely or dma mapping failed. The ring
   1019 *  is empty, which will stall the rx dma and user might want to call rxfill
   1020 *  again asap. This is unlikely to happen on a memory-rich NIC, but often on
   1021 *  memory-constrained dongle.
   1022 */
   1023bool dma_rxfill(struct dma_pub *pub)
   1024{
   1025	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1026	struct sk_buff *p;
   1027	u16 rxin, rxout;
   1028	u32 flags = 0;
   1029	uint n;
   1030	uint i;
   1031	dma_addr_t pa;
   1032	uint extra_offset = 0;
   1033	bool ring_empty;
   1034
   1035	ring_empty = false;
   1036
   1037	/*
   1038	 * Determine how many receive buffers we're lacking
   1039	 * from the full complement, allocate, initialize,
   1040	 * and post them, then update the chip rx lastdscr.
   1041	 */
   1042
   1043	rxin = di->rxin;
   1044	rxout = di->rxout;
   1045
   1046	n = di->nrxpost - nrxdactive(di, rxin, rxout);
   1047
   1048	brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
   1049
   1050	if (di->rxbufsize > BCMEXTRAHDROOM)
   1051		extra_offset = di->rxextrahdrroom;
   1052
   1053	for (i = 0; i < n; i++) {
   1054		/*
   1055		 * the di->rxbufsize doesn't include the extra headroom,
   1056		 * we need to add it to the size to be allocated
   1057		 */
   1058		p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
   1059
   1060		if (p == NULL) {
   1061			brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
   1062				      di->name);
   1063			if (i == 0 && dma64_rxidle(di)) {
   1064				brcms_dbg_dma(di->core, "%s: ring is empty !\n",
   1065					      di->name);
   1066				ring_empty = true;
   1067			}
   1068			di->dma.rxnobuf++;
   1069			break;
   1070		}
   1071		/* reserve an extra headroom, if applicable */
   1072		if (extra_offset)
   1073			skb_pull(p, extra_offset);
   1074
   1075		/* Do a cached write instead of uncached write since DMA_MAP
   1076		 * will flush the cache.
   1077		 */
   1078		*(u32 *) (p->data) = 0;
   1079
   1080		pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
   1081				    DMA_FROM_DEVICE);
   1082		if (dma_mapping_error(di->dmadev, pa)) {
   1083			brcmu_pkt_buf_free_skb(p);
   1084			return false;
   1085		}
   1086
   1087		/* save the free packet pointer */
   1088		di->rxp[rxout] = p;
   1089
   1090		/* reset flags for each descriptor */
   1091		flags = 0;
   1092		if (rxout == (di->nrxd - 1))
   1093			flags = D64_CTRL1_EOT;
   1094
   1095		dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
   1096			     di->rxbufsize);
   1097		rxout = nextrxd(di, rxout);
   1098	}
   1099
   1100	di->rxout = rxout;
   1101
   1102	/* update the chip lastdscr pointer */
   1103	bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
   1104	      di->rcvptrbase + I2B(rxout, struct dma64desc));
   1105
   1106	return ring_empty;
   1107}
   1108
   1109void dma_rxreclaim(struct dma_pub *pub)
   1110{
   1111	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1112	struct sk_buff *p;
   1113
   1114	brcms_dbg_dma(di->core, "%s:\n", di->name);
   1115
   1116	while ((p = _dma_getnextrxp(di, true)))
   1117		brcmu_pkt_buf_free_skb(p);
   1118}
   1119
   1120void dma_counterreset(struct dma_pub *pub)
   1121{
   1122	/* reset all software counters */
   1123	pub->rxgiants = 0;
   1124	pub->rxnobuf = 0;
   1125	pub->txnobuf = 0;
   1126}
   1127
   1128/* get the address of the var in order to change later */
   1129unsigned long dma_getvar(struct dma_pub *pub, const char *name)
   1130{
   1131	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1132
   1133	if (!strcmp(name, "&txavail"))
   1134		return (unsigned long)&(di->dma.txavail);
   1135	return 0;
   1136}
   1137
   1138/* 64-bit DMA functions */
   1139
   1140void dma_txinit(struct dma_pub *pub)
   1141{
   1142	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1143	u32 control = D64_XC_XE;
   1144
   1145	brcms_dbg_dma(di->core, "%s:\n", di->name);
   1146
   1147	if (di->ntxd == 0)
   1148		return;
   1149
   1150	di->txin = di->txout = 0;
   1151	di->dma.txavail = di->ntxd - 1;
   1152
   1153	/* clear tx descriptor ring */
   1154	memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
   1155
   1156	/* DMA engine with out alignment requirement requires table to be inited
   1157	 * before enabling the engine
   1158	 */
   1159	if (!di->aligndesc_4k)
   1160		_dma_ddtable_init(di, DMA_TX, di->txdpa);
   1161
   1162	if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
   1163		control |= D64_XC_PD;
   1164	bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
   1165
   1166	/* DMA engine with alignment requirement requires table to be inited
   1167	 * before enabling the engine
   1168	 */
   1169	if (di->aligndesc_4k)
   1170		_dma_ddtable_init(di, DMA_TX, di->txdpa);
   1171}
   1172
   1173void dma_txsuspend(struct dma_pub *pub)
   1174{
   1175	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1176
   1177	brcms_dbg_dma(di->core, "%s:\n", di->name);
   1178
   1179	if (di->ntxd == 0)
   1180		return;
   1181
   1182	bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
   1183}
   1184
   1185void dma_txresume(struct dma_pub *pub)
   1186{
   1187	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1188
   1189	brcms_dbg_dma(di->core, "%s:\n", di->name);
   1190
   1191	if (di->ntxd == 0)
   1192		return;
   1193
   1194	bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
   1195}
   1196
   1197bool dma_txsuspended(struct dma_pub *pub)
   1198{
   1199	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1200
   1201	return (di->ntxd == 0) ||
   1202	       ((bcma_read32(di->core,
   1203			     DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
   1204		D64_XC_SE);
   1205}
   1206
   1207void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
   1208{
   1209	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1210	struct sk_buff *p;
   1211
   1212	brcms_dbg_dma(di->core, "%s: %s\n",
   1213		      di->name,
   1214		      range == DMA_RANGE_ALL ? "all" :
   1215		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
   1216		      "transferred");
   1217
   1218	if (di->txin == di->txout)
   1219		return;
   1220
   1221	while ((p = dma_getnexttxp(pub, range))) {
   1222		/* For unframed data, we don't have any packets to free */
   1223		if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
   1224			brcmu_pkt_buf_free_skb(p);
   1225	}
   1226}
   1227
   1228bool dma_txreset(struct dma_pub *pub)
   1229{
   1230	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1231	u32 status;
   1232
   1233	if (di->ntxd == 0)
   1234		return true;
   1235
   1236	/* suspend tx DMA first */
   1237	bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
   1238	SPINWAIT(((status =
   1239		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
   1240		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
   1241		  (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
   1242		 10000);
   1243
   1244	bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
   1245	SPINWAIT(((status =
   1246		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
   1247		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
   1248
   1249	/* wait for the last transaction to complete */
   1250	udelay(300);
   1251
   1252	return status == D64_XS0_XS_DISABLED;
   1253}
   1254
   1255bool dma_rxreset(struct dma_pub *pub)
   1256{
   1257	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1258	u32 status;
   1259
   1260	if (di->nrxd == 0)
   1261		return true;
   1262
   1263	bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
   1264	SPINWAIT(((status =
   1265		   (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
   1266		    D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
   1267
   1268	return status == D64_RS0_RS_DISABLED;
   1269}
   1270
   1271static void dma_txenq(struct dma_info *di, struct sk_buff *p)
   1272{
   1273	unsigned char *data;
   1274	uint len;
   1275	u16 txout;
   1276	u32 flags = 0;
   1277	dma_addr_t pa;
   1278
   1279	txout = di->txout;
   1280
   1281	if (WARN_ON(nexttxd(di, txout) == di->txin))
   1282		return;
   1283
   1284	/*
   1285	 * obtain and initialize transmit descriptor entry.
   1286	 */
   1287	data = p->data;
   1288	len = p->len;
   1289
   1290	/* get physical address of buffer start */
   1291	pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
   1292	/* if mapping failed, free skb */
   1293	if (dma_mapping_error(di->dmadev, pa)) {
   1294		brcmu_pkt_buf_free_skb(p);
   1295		return;
   1296	}
   1297	/* With a DMA segment list, Descriptor table is filled
   1298	 * using the segment list instead of looping over
   1299	 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
   1300	 * is when end of segment list is reached.
   1301	 */
   1302	flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
   1303	if (txout == (di->ntxd - 1))
   1304		flags |= D64_CTRL1_EOT;
   1305
   1306	dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
   1307
   1308	txout = nexttxd(di, txout);
   1309
   1310	/* save the packet */
   1311	di->txp[prevtxd(di, txout)] = p;
   1312
   1313	/* bump the tx descriptor index */
   1314	di->txout = txout;
   1315}
   1316
   1317static void ampdu_finalize(struct dma_info *di)
   1318{
   1319	struct brcms_ampdu_session *session = &di->ampdu_session;
   1320	struct sk_buff *p;
   1321
   1322	trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
   1323				  session->max_ampdu_len,
   1324				  session->max_ampdu_frames,
   1325				  session->ampdu_len,
   1326				  skb_queue_len(&session->skb_list),
   1327				  session->dma_len);
   1328
   1329	if (WARN_ON(skb_queue_empty(&session->skb_list)))
   1330		return;
   1331
   1332	brcms_c_ampdu_finalize(session);
   1333
   1334	while (!skb_queue_empty(&session->skb_list)) {
   1335		p = skb_dequeue(&session->skb_list);
   1336		dma_txenq(di, p);
   1337	}
   1338
   1339	bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
   1340		     di->xmtptrbase + I2B(di->txout, struct dma64desc));
   1341	brcms_c_ampdu_reset_session(session, session->wlc);
   1342}
   1343
   1344static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
   1345{
   1346	struct brcms_ampdu_session *session = &di->ampdu_session;
   1347	int ret;
   1348
   1349	ret = brcms_c_ampdu_add_frame(session, p);
   1350	if (ret == -ENOSPC) {
   1351		/*
   1352		 * AMPDU cannot accomodate this frame. Close out the in-
   1353		 * progress AMPDU session and start a new one.
   1354		 */
   1355		ampdu_finalize(di);
   1356		ret = brcms_c_ampdu_add_frame(session, p);
   1357	}
   1358
   1359	WARN_ON(ret);
   1360}
   1361
   1362/* Update count of available tx descriptors based on current DMA state */
   1363static void dma_update_txavail(struct dma_info *di)
   1364{
   1365	/*
   1366	 * Available space is number of descriptors less the number of
   1367	 * active descriptors and the number of queued AMPDU frames.
   1368	 */
   1369	di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
   1370			  skb_queue_len(&di->ampdu_session.skb_list) - 1;
   1371}
   1372
   1373/*
   1374 * !! tx entry routine
   1375 * WARNING: call must check the return value for error.
   1376 *   the error(toss frames) could be fatal and cause many subsequent hard
   1377 *   to debug problems
   1378 */
   1379int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
   1380	       struct sk_buff *p)
   1381{
   1382	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1383	struct brcms_ampdu_session *session = &di->ampdu_session;
   1384	struct ieee80211_tx_info *tx_info;
   1385	bool is_ampdu;
   1386
   1387	/* no use to transmit a zero length packet */
   1388	if (p->len == 0)
   1389		return 0;
   1390
   1391	/* return nonzero if out of tx descriptors */
   1392	if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
   1393		goto outoftxd;
   1394
   1395	tx_info = IEEE80211_SKB_CB(p);
   1396	is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
   1397	if (is_ampdu)
   1398		prep_ampdu_frame(di, p);
   1399	else
   1400		dma_txenq(di, p);
   1401
   1402	/* tx flow control */
   1403	dma_update_txavail(di);
   1404
   1405	/* kick the chip */
   1406	if (is_ampdu) {
   1407		/*
   1408		 * Start sending data if we've got a full AMPDU, there's
   1409		 * no more space in the DMA ring, or the ring isn't
   1410		 * currently transmitting.
   1411		 */
   1412		if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
   1413		    di->dma.txavail == 0 || dma64_txidle(di))
   1414			ampdu_finalize(di);
   1415	} else {
   1416		bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
   1417			     di->xmtptrbase + I2B(di->txout, struct dma64desc));
   1418	}
   1419
   1420	return 0;
   1421
   1422 outoftxd:
   1423	brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
   1424	brcmu_pkt_buf_free_skb(p);
   1425	di->dma.txavail = 0;
   1426	di->dma.txnobuf++;
   1427	return -ENOSPC;
   1428}
   1429
   1430void dma_txflush(struct dma_pub *pub)
   1431{
   1432	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1433	struct brcms_ampdu_session *session = &di->ampdu_session;
   1434
   1435	if (!skb_queue_empty(&session->skb_list))
   1436		ampdu_finalize(di);
   1437}
   1438
   1439int dma_txpending(struct dma_pub *pub)
   1440{
   1441	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1442	return ntxdactive(di, di->txin, di->txout);
   1443}
   1444
   1445/*
   1446 * If we have an active AMPDU session and are not transmitting,
   1447 * this function will force tx to start.
   1448 */
   1449void dma_kick_tx(struct dma_pub *pub)
   1450{
   1451	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1452	struct brcms_ampdu_session *session = &di->ampdu_session;
   1453
   1454	if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
   1455		ampdu_finalize(di);
   1456}
   1457
   1458/*
   1459 * Reclaim next completed txd (txds if using chained buffers) in the range
   1460 * specified and return associated packet.
   1461 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
   1462 * transmitted as noted by the hardware "CurrDescr" pointer.
   1463 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
   1464 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
   1465 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
   1466 * return associated packet regardless of the value of hardware pointers.
   1467 */
   1468struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
   1469{
   1470	struct dma_info *di = container_of(pub, struct dma_info, dma);
   1471	u16 start, end, i;
   1472	u16 active_desc;
   1473	struct sk_buff *txp;
   1474
   1475	brcms_dbg_dma(di->core, "%s: %s\n",
   1476		      di->name,
   1477		      range == DMA_RANGE_ALL ? "all" :
   1478		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
   1479		      "transferred");
   1480
   1481	if (di->ntxd == 0)
   1482		return NULL;
   1483
   1484	txp = NULL;
   1485
   1486	start = di->txin;
   1487	if (range == DMA_RANGE_ALL)
   1488		end = di->txout;
   1489	else {
   1490		end = (u16) (B2I(((bcma_read32(di->core,
   1491					       DMA64TXREGOFFS(di, status0)) &
   1492				   D64_XS0_CD_MASK) - di->xmtptrbase) &
   1493				 D64_XS0_CD_MASK, struct dma64desc));
   1494
   1495		if (range == DMA_RANGE_TRANSFERED) {
   1496			active_desc =
   1497				(u16)(bcma_read32(di->core,
   1498						  DMA64TXREGOFFS(di, status1)) &
   1499				      D64_XS1_AD_MASK);
   1500			active_desc =
   1501			    (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
   1502			active_desc = B2I(active_desc, struct dma64desc);
   1503			if (end != active_desc)
   1504				end = prevtxd(di, active_desc);
   1505		}
   1506	}
   1507
   1508	if ((start == 0) && (end > di->txout))
   1509		goto bogus;
   1510
   1511	for (i = start; i != end && !txp; i = nexttxd(di, i)) {
   1512		dma_addr_t pa;
   1513		uint size;
   1514
   1515		pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
   1516
   1517		size =
   1518		    (le32_to_cpu(di->txd64[i].ctrl2) &
   1519		     D64_CTRL2_BC_MASK);
   1520
   1521		di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
   1522		di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
   1523
   1524		txp = di->txp[i];
   1525		di->txp[i] = NULL;
   1526
   1527		dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
   1528	}
   1529
   1530	di->txin = i;
   1531
   1532	/* tx flow control */
   1533	dma_update_txavail(di);
   1534
   1535	return txp;
   1536
   1537 bogus:
   1538	brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
   1539		      start, end, di->txout);
   1540	return NULL;
   1541}
   1542
   1543/*
   1544 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
   1545 * modified. The modified portion of the packet is not under control of the DMA
   1546 * engine. This function calls a caller-supplied function for each packet in
   1547 * the caller specified dma chain.
   1548 */
   1549void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
   1550		      (void *pkt, void *arg_a), void *arg_a)
   1551{
   1552	struct dma_info *di = container_of(dmah, struct dma_info, dma);
   1553	uint i =   di->txin;
   1554	uint end = di->txout;
   1555	struct sk_buff *skb;
   1556	struct ieee80211_tx_info *tx_info;
   1557
   1558	while (i != end) {
   1559		skb = di->txp[i];
   1560		if (skb != NULL) {
   1561			tx_info = (struct ieee80211_tx_info *)skb->cb;
   1562			(callback_fnc)(tx_info, arg_a);
   1563		}
   1564		i = nexttxd(di, i);
   1565	}
   1566}