cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

phy_qmath.c (7415B)


      1// SPDX-License-Identifier: ISC
      2/*
      3 * Copyright (c) 2010 Broadcom Corporation
      4 */
      5
      6#include "phy_qmath.h"
      7
      8/*
      9 * Description: This function make 16 bit unsigned multiplication.
     10 * To fit the output into 16 bits the 32 bit multiplication result is right
     11 * shifted by 16 bits.
     12 */
     13u16 qm_mulu16(u16 op1, u16 op2)
     14{
     15	return (u16) (((u32) op1 * (u32) op2) >> 16);
     16}
     17
     18/*
     19 * Description: This function make 16 bit multiplication and return the result
     20 * in 16 bits. To fit the multiplication result into 16 bits the multiplication
     21 * result is right shifted by 15 bits. Right shifting 15 bits instead of 16 bits
     22 * is done to remove the extra sign bit formed due to the multiplication.
     23 * When both the 16bit inputs are 0x8000 then the output is saturated to
     24 * 0x7fffffff.
     25 */
     26s16 qm_muls16(s16 op1, s16 op2)
     27{
     28	s32 result;
     29	if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000)
     30		result = 0x7fffffff;
     31	else
     32		result = ((s32) (op1) * (s32) (op2));
     33
     34	return (s16) (result >> 15);
     35}
     36
     37/*
     38 * Description: This function add two 32 bit numbers and return the 32bit
     39 * result. If the result overflow 32 bits, the output will be saturated to
     40 * 32bits.
     41 */
     42s32 qm_add32(s32 op1, s32 op2)
     43{
     44	s32 result;
     45	result = op1 + op2;
     46	if (op1 < 0 && op2 < 0 && result > 0)
     47		result = 0x80000000;
     48	else if (op1 > 0 && op2 > 0 && result < 0)
     49		result = 0x7fffffff;
     50
     51	return result;
     52}
     53
     54/*
     55 * Description: This function add two 16 bit numbers and return the 16bit
     56 * result. If the result overflow 16 bits, the output will be saturated to
     57 * 16bits.
     58 */
     59s16 qm_add16(s16 op1, s16 op2)
     60{
     61	s16 result;
     62	s32 temp = (s32) op1 + (s32) op2;
     63	if (temp > (s32) 0x7fff)
     64		result = (s16) 0x7fff;
     65	else if (temp < (s32) 0xffff8000)
     66		result = (s16) 0xffff8000;
     67	else
     68		result = (s16) temp;
     69
     70	return result;
     71}
     72
     73/*
     74 * Description: This function make 16 bit subtraction and return the 16bit
     75 * result. If the result overflow 16 bits, the output will be saturated to
     76 * 16bits.
     77 */
     78s16 qm_sub16(s16 op1, s16 op2)
     79{
     80	s16 result;
     81	s32 temp = (s32) op1 - (s32) op2;
     82	if (temp > (s32) 0x7fff)
     83		result = (s16) 0x7fff;
     84	else if (temp < (s32) 0xffff8000)
     85		result = (s16) 0xffff8000;
     86	else
     87		result = (s16) temp;
     88
     89	return result;
     90}
     91
     92/*
     93 * Description: This function make a 32 bit saturated left shift when the
     94 * specified shift is +ve. This function will make a 32 bit right shift when
     95 * the specified shift is -ve. This function return the result after shifting
     96 * operation.
     97 */
     98s32 qm_shl32(s32 op, int shift)
     99{
    100	int i;
    101	s32 result;
    102	result = op;
    103	if (shift > 31)
    104		shift = 31;
    105	else if (shift < -31)
    106		shift = -31;
    107	if (shift >= 0) {
    108		for (i = 0; i < shift; i++)
    109			result = qm_add32(result, result);
    110	} else {
    111		result = result >> (-shift);
    112	}
    113
    114	return result;
    115}
    116
    117/*
    118 * Description: This function make a 16 bit saturated left shift when the
    119 * specified shift is +ve. This function will make a 16 bit right shift when
    120 * the specified shift is -ve. This function return the result after shifting
    121 * operation.
    122 */
    123s16 qm_shl16(s16 op, int shift)
    124{
    125	int i;
    126	s16 result;
    127	result = op;
    128	if (shift > 15)
    129		shift = 15;
    130	else if (shift < -15)
    131		shift = -15;
    132	if (shift > 0) {
    133		for (i = 0; i < shift; i++)
    134			result = qm_add16(result, result);
    135	} else {
    136		result = result >> (-shift);
    137	}
    138
    139	return result;
    140}
    141
    142/*
    143 * Description: This function make a 16 bit right shift when shift is +ve.
    144 * This function make a 16 bit saturated left shift when shift is -ve. This
    145 * function return the result of the shift operation.
    146 */
    147s16 qm_shr16(s16 op, int shift)
    148{
    149	return qm_shl16(op, -shift);
    150}
    151
    152/*
    153 * Description: This function return the number of redundant sign bits in a
    154 * 32 bit number. Example: qm_norm32(0x00000080) = 23
    155 */
    156s16 qm_norm32(s32 op)
    157{
    158	u16 u16extraSignBits;
    159	if (op == 0) {
    160		return 31;
    161	} else {
    162		u16extraSignBits = 0;
    163		while ((op >> 31) == (op >> 30)) {
    164			u16extraSignBits++;
    165			op = op << 1;
    166		}
    167	}
    168	return u16extraSignBits;
    169}
    170
    171/* This table is log2(1+(i/32)) where i=[0:1:32], in q.15 format */
    172static const s16 log_table[] = {
    173	0,
    174	1455,
    175	2866,
    176	4236,
    177	5568,
    178	6863,
    179	8124,
    180	9352,
    181	10549,
    182	11716,
    183	12855,
    184	13968,
    185	15055,
    186	16117,
    187	17156,
    188	18173,
    189	19168,
    190	20143,
    191	21098,
    192	22034,
    193	22952,
    194	23852,
    195	24736,
    196	25604,
    197	26455,
    198	27292,
    199	28114,
    200	28922,
    201	29717,
    202	30498,
    203	31267,
    204	32024,
    205	32767
    206};
    207
    208#define LOG_TABLE_SIZE 32       /* log_table size */
    209#define LOG2_LOG_TABLE_SIZE 5   /* log2(log_table size) */
    210#define Q_LOG_TABLE 15          /* qformat of log_table */
    211#define LOG10_2         19728   /* log10(2) in q.16 */
    212
    213/*
    214 * Description:
    215 * This routine takes the input number N and its q format qN and compute
    216 * the log10(N). This routine first normalizes the input no N.	Then N is in
    217 * mag*(2^x) format. mag is any number in the range 2^30-(2^31 - 1).
    218 * Then log2(mag * 2^x) = log2(mag) + x is computed. From that
    219 * log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
    220 * This routine looks the log2 value in the table considering
    221 * LOG2_LOG_TABLE_SIZE+1 MSBs. As the MSB is always 1, only next
    222 * LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup. Next 16 MSBs are used
    223 * for interpolation.
    224 * Inputs:
    225 * N - number to which log10 has to be found.
    226 * qN - q format of N
    227 * log10N - address where log10(N) will be written.
    228 * qLog10N - address where log10N qformat will be written.
    229 * Note/Problem:
    230 * For accurate results input should be in normalized or near normalized form.
    231 */
    232void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
    233{
    234	s16 s16norm, s16tableIndex, s16errorApproximation;
    235	u16 u16offset;
    236	s32 s32log;
    237
    238	/* normalize the N. */
    239	s16norm = qm_norm32(N);
    240	N = N << s16norm;
    241
    242	/* The qformat of N after normalization.
    243	 * -30 is added to treat the no as between 1.0 to 2.0
    244	 * i.e. after adding the -30 to the qformat the decimal point will be
    245	 * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
    246	 * at the right side of 30th bit.
    247	 */
    248	qN = qN + s16norm - 30;
    249
    250	/* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the
    251	 * MSB */
    252	s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));
    253
    254	/* remove the MSB. the MSB is always 1 after normalization. */
    255	s16tableIndex =
    256		s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);
    257
    258	/* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
    259	N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);
    260
    261	/* take the offset as the 16 MSBS after table index.
    262	 */
    263	u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));
    264
    265	/* look the log value in the table. */
    266	s32log = log_table[s16tableIndex];      /* q.15 format */
    267
    268	/* interpolate using the offset. q.15 format. */
    269	s16errorApproximation = (s16) qm_mulu16(u16offset,
    270				(u16) (log_table[s16tableIndex + 1] -
    271				       log_table[s16tableIndex]));
    272
    273	 /* q.15 format */
    274	s32log = qm_add16((s16) s32log, s16errorApproximation);
    275
    276	/* adjust for the qformat of the N as
    277	 * log2(mag * 2^x) = log2(mag) + x
    278	 */
    279	s32log = qm_add32(s32log, ((s32) -qN) << 15);   /* q.15 format */
    280
    281	/* normalize the result. */
    282	s16norm = qm_norm32(s32log);
    283
    284	/* bring all the important bits into lower 16 bits */
    285	/* q.15+s16norm-16 format */
    286	s32log = qm_shl32(s32log, s16norm - 16);
    287
    288	/* compute the log10(N) by multiplying log2(N) with log10(2).
    289	 * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
    290	 * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
    291	 */
    292	*log10N = qm_muls16((s16) s32log, (s16) LOG10_2);
    293
    294	/* write the q format of the result. */
    295	*qLog10N = 15 + s16norm - 16 + 1;
    296
    297	return;
    298}