cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

4965-calib.c (30734B)


      1/******************************************************************************
      2 *
      3 * This file is provided under a dual BSD/GPLv2 license.  When using or
      4 * redistributing this file, you may do so under either license.
      5 *
      6 * GPL LICENSE SUMMARY
      7 *
      8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
      9 *
     10 * This program is free software; you can redistribute it and/or modify
     11 * it under the terms of version 2 of the GNU General Public License as
     12 * published by the Free Software Foundation.
     13 *
     14 * This program is distributed in the hope that it will be useful, but
     15 * WITHOUT ANY WARRANTY; without even the implied warranty of
     16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     17 * General Public License for more details.
     18 *
     19 * You should have received a copy of the GNU General Public License
     20 * along with this program; if not, write to the Free Software
     21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
     22 * USA
     23 *
     24 * The full GNU General Public License is included in this distribution
     25 * in the file called LICENSE.GPL.
     26 *
     27 * Contact Information:
     28 *  Intel Linux Wireless <ilw@linux.intel.com>
     29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
     30 *
     31 * BSD LICENSE
     32 *
     33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
     34 * All rights reserved.
     35 *
     36 * Redistribution and use in source and binary forms, with or without
     37 * modification, are permitted provided that the following conditions
     38 * are met:
     39 *
     40 *  * Redistributions of source code must retain the above copyright
     41 *    notice, this list of conditions and the following disclaimer.
     42 *  * Redistributions in binary form must reproduce the above copyright
     43 *    notice, this list of conditions and the following disclaimer in
     44 *    the documentation and/or other materials provided with the
     45 *    distribution.
     46 *  * Neither the name Intel Corporation nor the names of its
     47 *    contributors may be used to endorse or promote products derived
     48 *    from this software without specific prior written permission.
     49 *
     50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     61 *****************************************************************************/
     62
     63#include <linux/slab.h>
     64#include <net/mac80211.h>
     65
     66#include "common.h"
     67#include "4965.h"
     68
     69/*****************************************************************************
     70 * INIT calibrations framework
     71 *****************************************************************************/
     72
     73struct stats_general_data {
     74	u32 beacon_silence_rssi_a;
     75	u32 beacon_silence_rssi_b;
     76	u32 beacon_silence_rssi_c;
     77	u32 beacon_energy_a;
     78	u32 beacon_energy_b;
     79	u32 beacon_energy_c;
     80};
     81
     82/*****************************************************************************
     83 * RUNTIME calibrations framework
     84 *****************************************************************************/
     85
     86/* "false alarms" are signals that our DSP tries to lock onto,
     87 *   but then determines that they are either noise, or transmissions
     88 *   from a distant wireless network (also "noise", really) that get
     89 *   "stepped on" by stronger transmissions within our own network.
     90 * This algorithm attempts to set a sensitivity level that is high
     91 *   enough to receive all of our own network traffic, but not so
     92 *   high that our DSP gets too busy trying to lock onto non-network
     93 *   activity/noise. */
     94static int
     95il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
     96		       struct stats_general_data *rx_info)
     97{
     98	u32 max_nrg_cck = 0;
     99	int i = 0;
    100	u8 max_silence_rssi = 0;
    101	u32 silence_ref = 0;
    102	u8 silence_rssi_a = 0;
    103	u8 silence_rssi_b = 0;
    104	u8 silence_rssi_c = 0;
    105	u32 val;
    106
    107	/* "false_alarms" values below are cross-multiplications to assess the
    108	 *   numbers of false alarms within the measured period of actual Rx
    109	 *   (Rx is off when we're txing), vs the min/max expected false alarms
    110	 *   (some should be expected if rx is sensitive enough) in a
    111	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
    112	 *
    113	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
    114	 *
    115	 * */
    116	u32 false_alarms = norm_fa * 200 * 1024;
    117	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
    118	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
    119	struct il_sensitivity_data *data = NULL;
    120	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
    121
    122	data = &(il->sensitivity_data);
    123
    124	data->nrg_auto_corr_silence_diff = 0;
    125
    126	/* Find max silence rssi among all 3 receivers.
    127	 * This is background noise, which may include transmissions from other
    128	 *    networks, measured during silence before our network's beacon */
    129	silence_rssi_a =
    130	    (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
    131	silence_rssi_b =
    132	    (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
    133	silence_rssi_c =
    134	    (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
    135
    136	val = max(silence_rssi_b, silence_rssi_c);
    137	max_silence_rssi = max(silence_rssi_a, (u8) val);
    138
    139	/* Store silence rssi in 20-beacon history table */
    140	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
    141	data->nrg_silence_idx++;
    142	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
    143		data->nrg_silence_idx = 0;
    144
    145	/* Find max silence rssi across 20 beacon history */
    146	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
    147		val = data->nrg_silence_rssi[i];
    148		silence_ref = max(silence_ref, val);
    149	}
    150	D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
    151		silence_rssi_b, silence_rssi_c, silence_ref);
    152
    153	/* Find max rx energy (min value!) among all 3 receivers,
    154	 *   measured during beacon frame.
    155	 * Save it in 10-beacon history table. */
    156	i = data->nrg_energy_idx;
    157	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
    158	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
    159
    160	data->nrg_energy_idx++;
    161	if (data->nrg_energy_idx >= 10)
    162		data->nrg_energy_idx = 0;
    163
    164	/* Find min rx energy (max value) across 10 beacon history.
    165	 * This is the minimum signal level that we want to receive well.
    166	 * Add backoff (margin so we don't miss slightly lower energy frames).
    167	 * This establishes an upper bound (min value) for energy threshold. */
    168	max_nrg_cck = data->nrg_value[0];
    169	for (i = 1; i < 10; i++)
    170		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
    171	max_nrg_cck += 6;
    172
    173	D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
    174		rx_info->beacon_energy_a, rx_info->beacon_energy_b,
    175		rx_info->beacon_energy_c, max_nrg_cck - 6);
    176
    177	/* Count number of consecutive beacons with fewer-than-desired
    178	 *   false alarms. */
    179	if (false_alarms < min_false_alarms)
    180		data->num_in_cck_no_fa++;
    181	else
    182		data->num_in_cck_no_fa = 0;
    183	D_CALIB("consecutive bcns with few false alarms = %u\n",
    184		data->num_in_cck_no_fa);
    185
    186	/* If we got too many false alarms this time, reduce sensitivity */
    187	if (false_alarms > max_false_alarms &&
    188	    data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
    189		D_CALIB("norm FA %u > max FA %u\n", false_alarms,
    190			max_false_alarms);
    191		D_CALIB("... reducing sensitivity\n");
    192		data->nrg_curr_state = IL_FA_TOO_MANY;
    193		/* Store for "fewer than desired" on later beacon */
    194		data->nrg_silence_ref = silence_ref;
    195
    196		/* increase energy threshold (reduce nrg value)
    197		 *   to decrease sensitivity */
    198		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
    199		/* Else if we got fewer than desired, increase sensitivity */
    200	} else if (false_alarms < min_false_alarms) {
    201		data->nrg_curr_state = IL_FA_TOO_FEW;
    202
    203		/* Compare silence level with silence level for most recent
    204		 *   healthy number or too many false alarms */
    205		data->nrg_auto_corr_silence_diff =
    206		    (s32) data->nrg_silence_ref - (s32) silence_ref;
    207
    208		D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
    209			false_alarms, min_false_alarms,
    210			data->nrg_auto_corr_silence_diff);
    211
    212		/* Increase value to increase sensitivity, but only if:
    213		 * 1a) previous beacon did *not* have *too many* false alarms
    214		 * 1b) AND there's a significant difference in Rx levels
    215		 *      from a previous beacon with too many, or healthy # FAs
    216		 * OR 2) We've seen a lot of beacons (100) with too few
    217		 *       false alarms */
    218		if (data->nrg_prev_state != IL_FA_TOO_MANY &&
    219		    (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
    220		     data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
    221
    222			D_CALIB("... increasing sensitivity\n");
    223			/* Increase nrg value to increase sensitivity */
    224			val = data->nrg_th_cck + NRG_STEP_CCK;
    225			data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
    226		} else {
    227			D_CALIB("... but not changing sensitivity\n");
    228		}
    229
    230		/* Else we got a healthy number of false alarms, keep status quo */
    231	} else {
    232		D_CALIB(" FA in safe zone\n");
    233		data->nrg_curr_state = IL_FA_GOOD_RANGE;
    234
    235		/* Store for use in "fewer than desired" with later beacon */
    236		data->nrg_silence_ref = silence_ref;
    237
    238		/* If previous beacon had too many false alarms,
    239		 *   give it some extra margin by reducing sensitivity again
    240		 *   (but don't go below measured energy of desired Rx) */
    241		if (IL_FA_TOO_MANY == data->nrg_prev_state) {
    242			D_CALIB("... increasing margin\n");
    243			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
    244				data->nrg_th_cck -= NRG_MARGIN;
    245			else
    246				data->nrg_th_cck = max_nrg_cck;
    247		}
    248	}
    249
    250	/* Make sure the energy threshold does not go above the measured
    251	 * energy of the desired Rx signals (reduced by backoff margin),
    252	 * or else we might start missing Rx frames.
    253	 * Lower value is higher energy, so we use max()!
    254	 */
    255	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
    256	D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
    257
    258	data->nrg_prev_state = data->nrg_curr_state;
    259
    260	/* Auto-correlation CCK algorithm */
    261	if (false_alarms > min_false_alarms) {
    262
    263		/* increase auto_corr values to decrease sensitivity
    264		 * so the DSP won't be disturbed by the noise
    265		 */
    266		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
    267			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
    268		else {
    269			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
    270			data->auto_corr_cck =
    271			    min((u32) ranges->auto_corr_max_cck, val);
    272		}
    273		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
    274		data->auto_corr_cck_mrc =
    275		    min((u32) ranges->auto_corr_max_cck_mrc, val);
    276	} else if (false_alarms < min_false_alarms &&
    277		   (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
    278		    data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
    279
    280		/* Decrease auto_corr values to increase sensitivity */
    281		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
    282		data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
    283		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
    284		data->auto_corr_cck_mrc =
    285		    max((u32) ranges->auto_corr_min_cck_mrc, val);
    286	}
    287
    288	return 0;
    289}
    290
    291static int
    292il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
    293{
    294	u32 val;
    295	u32 false_alarms = norm_fa * 200 * 1024;
    296	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
    297	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
    298	struct il_sensitivity_data *data = NULL;
    299	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
    300
    301	data = &(il->sensitivity_data);
    302
    303	/* If we got too many false alarms this time, reduce sensitivity */
    304	if (false_alarms > max_false_alarms) {
    305
    306		D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
    307			max_false_alarms);
    308
    309		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
    310		data->auto_corr_ofdm =
    311		    min((u32) ranges->auto_corr_max_ofdm, val);
    312
    313		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
    314		data->auto_corr_ofdm_mrc =
    315		    min((u32) ranges->auto_corr_max_ofdm_mrc, val);
    316
    317		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
    318		data->auto_corr_ofdm_x1 =
    319		    min((u32) ranges->auto_corr_max_ofdm_x1, val);
    320
    321		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
    322		data->auto_corr_ofdm_mrc_x1 =
    323		    min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
    324	}
    325
    326	/* Else if we got fewer than desired, increase sensitivity */
    327	else if (false_alarms < min_false_alarms) {
    328
    329		D_CALIB("norm FA %u < min FA %u\n", false_alarms,
    330			min_false_alarms);
    331
    332		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
    333		data->auto_corr_ofdm =
    334		    max((u32) ranges->auto_corr_min_ofdm, val);
    335
    336		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
    337		data->auto_corr_ofdm_mrc =
    338		    max((u32) ranges->auto_corr_min_ofdm_mrc, val);
    339
    340		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
    341		data->auto_corr_ofdm_x1 =
    342		    max((u32) ranges->auto_corr_min_ofdm_x1, val);
    343
    344		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
    345		data->auto_corr_ofdm_mrc_x1 =
    346		    max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
    347	} else {
    348		D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
    349			min_false_alarms, false_alarms, max_false_alarms);
    350	}
    351	return 0;
    352}
    353
    354static void
    355il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
    356				      struct il_sensitivity_data *data,
    357				      __le16 *tbl)
    358{
    359	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
    360	    cpu_to_le16((u16) data->auto_corr_ofdm);
    361	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
    362	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
    363	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
    364	    cpu_to_le16((u16) data->auto_corr_ofdm_x1);
    365	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
    366	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);
    367
    368	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
    369	    cpu_to_le16((u16) data->auto_corr_cck);
    370	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
    371	    cpu_to_le16((u16) data->auto_corr_cck_mrc);
    372
    373	tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
    374	tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);
    375
    376	tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
    377	    cpu_to_le16(data->barker_corr_th_min);
    378	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
    379	    cpu_to_le16(data->barker_corr_th_min_mrc);
    380	tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);
    381
    382	D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
    383		data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
    384		data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
    385		data->nrg_th_ofdm);
    386
    387	D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
    388		data->auto_corr_cck_mrc, data->nrg_th_cck);
    389}
    390
    391/* Prepare a C_SENSITIVITY, send to uCode if values have changed */
    392static int
    393il4965_sensitivity_write(struct il_priv *il)
    394{
    395	struct il_sensitivity_cmd cmd;
    396	struct il_sensitivity_data *data = NULL;
    397	struct il_host_cmd cmd_out = {
    398		.id = C_SENSITIVITY,
    399		.len = sizeof(struct il_sensitivity_cmd),
    400		.flags = CMD_ASYNC,
    401		.data = &cmd,
    402	};
    403
    404	data = &(il->sensitivity_data);
    405
    406	memset(&cmd, 0, sizeof(cmd));
    407
    408	il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
    409
    410	/* Update uCode's "work" table, and copy it to DSP */
    411	cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
    412
    413	/* Don't send command to uCode if nothing has changed */
    414	if (!memcmp
    415	    (&cmd.table[0], &(il->sensitivity_tbl[0]),
    416	     sizeof(u16) * HD_TBL_SIZE)) {
    417		D_CALIB("No change in C_SENSITIVITY\n");
    418		return 0;
    419	}
    420
    421	/* Copy table for comparison next time */
    422	memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
    423	       sizeof(u16) * HD_TBL_SIZE);
    424
    425	return il_send_cmd(il, &cmd_out);
    426}
    427
    428void
    429il4965_init_sensitivity(struct il_priv *il)
    430{
    431	int ret = 0;
    432	int i;
    433	struct il_sensitivity_data *data = NULL;
    434	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
    435
    436	if (il->disable_sens_cal)
    437		return;
    438
    439	D_CALIB("Start il4965_init_sensitivity\n");
    440
    441	/* Clear driver's sensitivity algo data */
    442	data = &(il->sensitivity_data);
    443
    444	if (ranges == NULL)
    445		return;
    446
    447	memset(data, 0, sizeof(struct il_sensitivity_data));
    448
    449	data->num_in_cck_no_fa = 0;
    450	data->nrg_curr_state = IL_FA_TOO_MANY;
    451	data->nrg_prev_state = IL_FA_TOO_MANY;
    452	data->nrg_silence_ref = 0;
    453	data->nrg_silence_idx = 0;
    454	data->nrg_energy_idx = 0;
    455
    456	for (i = 0; i < 10; i++)
    457		data->nrg_value[i] = 0;
    458
    459	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
    460		data->nrg_silence_rssi[i] = 0;
    461
    462	data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
    463	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
    464	data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
    465	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
    466	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
    467	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
    468	data->nrg_th_cck = ranges->nrg_th_cck;
    469	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
    470	data->barker_corr_th_min = ranges->barker_corr_th_min;
    471	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
    472	data->nrg_th_cca = ranges->nrg_th_cca;
    473
    474	data->last_bad_plcp_cnt_ofdm = 0;
    475	data->last_fa_cnt_ofdm = 0;
    476	data->last_bad_plcp_cnt_cck = 0;
    477	data->last_fa_cnt_cck = 0;
    478
    479	ret |= il4965_sensitivity_write(il);
    480	D_CALIB("<<return 0x%X\n", ret);
    481}
    482
    483void
    484il4965_sensitivity_calibration(struct il_priv *il, void *resp)
    485{
    486	u32 rx_enable_time;
    487	u32 fa_cck;
    488	u32 fa_ofdm;
    489	u32 bad_plcp_cck;
    490	u32 bad_plcp_ofdm;
    491	u32 norm_fa_ofdm;
    492	u32 norm_fa_cck;
    493	struct il_sensitivity_data *data = NULL;
    494	struct stats_rx_non_phy *rx_info;
    495	struct stats_rx_phy *ofdm, *cck;
    496	unsigned long flags;
    497	struct stats_general_data statis;
    498
    499	if (il->disable_sens_cal)
    500		return;
    501
    502	data = &(il->sensitivity_data);
    503
    504	if (!il_is_any_associated(il)) {
    505		D_CALIB("<< - not associated\n");
    506		return;
    507	}
    508
    509	spin_lock_irqsave(&il->lock, flags);
    510
    511	rx_info = &(((struct il_notif_stats *)resp)->rx.general);
    512	ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
    513	cck = &(((struct il_notif_stats *)resp)->rx.cck);
    514
    515	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
    516		D_CALIB("<< invalid data.\n");
    517		spin_unlock_irqrestore(&il->lock, flags);
    518		return;
    519	}
    520
    521	/* Extract Statistics: */
    522	rx_enable_time = le32_to_cpu(rx_info->channel_load);
    523	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
    524	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
    525	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
    526	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
    527
    528	statis.beacon_silence_rssi_a =
    529	    le32_to_cpu(rx_info->beacon_silence_rssi_a);
    530	statis.beacon_silence_rssi_b =
    531	    le32_to_cpu(rx_info->beacon_silence_rssi_b);
    532	statis.beacon_silence_rssi_c =
    533	    le32_to_cpu(rx_info->beacon_silence_rssi_c);
    534	statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
    535	statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
    536	statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
    537
    538	spin_unlock_irqrestore(&il->lock, flags);
    539
    540	D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
    541
    542	if (!rx_enable_time) {
    543		D_CALIB("<< RX Enable Time == 0!\n");
    544		return;
    545	}
    546
    547	/* These stats increase monotonically, and do not reset
    548	 *   at each beacon.  Calculate difference from last value, or just
    549	 *   use the new stats value if it has reset or wrapped around. */
    550	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
    551		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
    552	else {
    553		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
    554		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
    555	}
    556
    557	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
    558		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
    559	else {
    560		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
    561		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
    562	}
    563
    564	if (data->last_fa_cnt_ofdm > fa_ofdm)
    565		data->last_fa_cnt_ofdm = fa_ofdm;
    566	else {
    567		fa_ofdm -= data->last_fa_cnt_ofdm;
    568		data->last_fa_cnt_ofdm += fa_ofdm;
    569	}
    570
    571	if (data->last_fa_cnt_cck > fa_cck)
    572		data->last_fa_cnt_cck = fa_cck;
    573	else {
    574		fa_cck -= data->last_fa_cnt_cck;
    575		data->last_fa_cnt_cck += fa_cck;
    576	}
    577
    578	/* Total aborted signal locks */
    579	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
    580	norm_fa_cck = fa_cck + bad_plcp_cck;
    581
    582	D_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
    583		bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
    584
    585	il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
    586	il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
    587
    588	il4965_sensitivity_write(il);
    589}
    590
    591static inline u8
    592il4965_find_first_chain(u8 mask)
    593{
    594	if (mask & ANT_A)
    595		return CHAIN_A;
    596	if (mask & ANT_B)
    597		return CHAIN_B;
    598	return CHAIN_C;
    599}
    600
    601/*
    602 * Run disconnected antenna algorithm to find out which antennas are
    603 * disconnected.
    604 */
    605static void
    606il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
    607			    struct il_chain_noise_data *data)
    608{
    609	u32 active_chains = 0;
    610	u32 max_average_sig;
    611	u16 max_average_sig_antenna_i;
    612	u8 num_tx_chains;
    613	u8 first_chain;
    614	u16 i = 0;
    615
    616	average_sig[0] =
    617	    data->chain_signal_a /
    618	    il->cfg->chain_noise_num_beacons;
    619	average_sig[1] =
    620	    data->chain_signal_b /
    621	    il->cfg->chain_noise_num_beacons;
    622	average_sig[2] =
    623	    data->chain_signal_c /
    624	    il->cfg->chain_noise_num_beacons;
    625
    626	if (average_sig[0] >= average_sig[1]) {
    627		max_average_sig = average_sig[0];
    628		max_average_sig_antenna_i = 0;
    629		active_chains = (1 << max_average_sig_antenna_i);
    630	} else {
    631		max_average_sig = average_sig[1];
    632		max_average_sig_antenna_i = 1;
    633		active_chains = (1 << max_average_sig_antenna_i);
    634	}
    635
    636	if (average_sig[2] >= max_average_sig) {
    637		max_average_sig = average_sig[2];
    638		max_average_sig_antenna_i = 2;
    639		active_chains = (1 << max_average_sig_antenna_i);
    640	}
    641
    642	D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
    643		average_sig[2]);
    644	D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
    645		max_average_sig_antenna_i);
    646
    647	/* Compare signal strengths for all 3 receivers. */
    648	for (i = 0; i < NUM_RX_CHAINS; i++) {
    649		if (i != max_average_sig_antenna_i) {
    650			s32 rssi_delta = (max_average_sig - average_sig[i]);
    651
    652			/* If signal is very weak, compared with
    653			 * strongest, mark it as disconnected. */
    654			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
    655				data->disconn_array[i] = 1;
    656			else
    657				active_chains |= (1 << i);
    658			D_CALIB("i = %d  rssiDelta = %d  "
    659				"disconn_array[i] = %d\n", i, rssi_delta,
    660				data->disconn_array[i]);
    661		}
    662	}
    663
    664	/*
    665	 * The above algorithm sometimes fails when the ucode
    666	 * reports 0 for all chains. It's not clear why that
    667	 * happens to start with, but it is then causing trouble
    668	 * because this can make us enable more chains than the
    669	 * hardware really has.
    670	 *
    671	 * To be safe, simply mask out any chains that we know
    672	 * are not on the device.
    673	 */
    674	active_chains &= il->hw_params.valid_rx_ant;
    675
    676	num_tx_chains = 0;
    677	for (i = 0; i < NUM_RX_CHAINS; i++) {
    678		/* loops on all the bits of
    679		 * il->hw_setting.valid_tx_ant */
    680		u8 ant_msk = (1 << i);
    681		if (!(il->hw_params.valid_tx_ant & ant_msk))
    682			continue;
    683
    684		num_tx_chains++;
    685		if (data->disconn_array[i] == 0)
    686			/* there is a Tx antenna connected */
    687			break;
    688		if (num_tx_chains == il->hw_params.tx_chains_num &&
    689		    data->disconn_array[i]) {
    690			/*
    691			 * If all chains are disconnected
    692			 * connect the first valid tx chain
    693			 */
    694			first_chain =
    695			    il4965_find_first_chain(il->cfg->valid_tx_ant);
    696			data->disconn_array[first_chain] = 0;
    697			active_chains |= BIT(first_chain);
    698			D_CALIB("All Tx chains are disconnected"
    699				"- declare %d as connected\n", first_chain);
    700			break;
    701		}
    702	}
    703
    704	if (active_chains != il->hw_params.valid_rx_ant &&
    705	    active_chains != il->chain_noise_data.active_chains)
    706		D_CALIB("Detected that not all antennas are connected! "
    707			"Connected: %#x, valid: %#x.\n", active_chains,
    708			il->hw_params.valid_rx_ant);
    709
    710	/* Save for use within RXON, TX, SCAN commands, etc. */
    711	data->active_chains = active_chains;
    712	D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
    713}
    714
    715static void
    716il4965_gain_computation(struct il_priv *il, u32 * average_noise,
    717			u16 min_average_noise_antenna_i, u32 min_average_noise,
    718			u8 default_chain)
    719{
    720	int i, ret;
    721	struct il_chain_noise_data *data = &il->chain_noise_data;
    722
    723	data->delta_gain_code[min_average_noise_antenna_i] = 0;
    724
    725	for (i = default_chain; i < NUM_RX_CHAINS; i++) {
    726		s32 delta_g = 0;
    727
    728		if (!data->disconn_array[i] &&
    729		    data->delta_gain_code[i] ==
    730		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
    731			delta_g = average_noise[i] - min_average_noise;
    732			data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
    733			data->delta_gain_code[i] =
    734			    min(data->delta_gain_code[i],
    735				(u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
    736
    737			data->delta_gain_code[i] =
    738			    (data->delta_gain_code[i] | (1 << 2));
    739		} else {
    740			data->delta_gain_code[i] = 0;
    741		}
    742	}
    743	D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
    744		data->delta_gain_code[1], data->delta_gain_code[2]);
    745
    746	/* Differential gain gets sent to uCode only once */
    747	if (!data->radio_write) {
    748		struct il_calib_diff_gain_cmd cmd;
    749		data->radio_write = 1;
    750
    751		memset(&cmd, 0, sizeof(cmd));
    752		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
    753		cmd.diff_gain_a = data->delta_gain_code[0];
    754		cmd.diff_gain_b = data->delta_gain_code[1];
    755		cmd.diff_gain_c = data->delta_gain_code[2];
    756		ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
    757		if (ret)
    758			D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
    759
    760		/* TODO we might want recalculate
    761		 * rx_chain in rxon cmd */
    762
    763		/* Mark so we run this algo only once! */
    764		data->state = IL_CHAIN_NOISE_CALIBRATED;
    765	}
    766}
    767
    768/*
    769 * Accumulate 16 beacons of signal and noise stats for each of
    770 *   3 receivers/antennas/rx-chains, then figure out:
    771 * 1)  Which antennas are connected.
    772 * 2)  Differential rx gain settings to balance the 3 receivers.
    773 */
    774void
    775il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
    776{
    777	struct il_chain_noise_data *data = NULL;
    778
    779	u32 chain_noise_a;
    780	u32 chain_noise_b;
    781	u32 chain_noise_c;
    782	u32 chain_sig_a;
    783	u32 chain_sig_b;
    784	u32 chain_sig_c;
    785	u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
    786	u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
    787	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
    788	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
    789	u16 i = 0;
    790	u16 rxon_chnum = INITIALIZATION_VALUE;
    791	u16 stat_chnum = INITIALIZATION_VALUE;
    792	u8 rxon_band24;
    793	u8 stat_band24;
    794	unsigned long flags;
    795	struct stats_rx_non_phy *rx_info;
    796
    797	if (il->disable_chain_noise_cal)
    798		return;
    799
    800	data = &(il->chain_noise_data);
    801
    802	/*
    803	 * Accumulate just the first "chain_noise_num_beacons" after
    804	 * the first association, then we're done forever.
    805	 */
    806	if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
    807		if (data->state == IL_CHAIN_NOISE_ALIVE)
    808			D_CALIB("Wait for noise calib reset\n");
    809		return;
    810	}
    811
    812	spin_lock_irqsave(&il->lock, flags);
    813
    814	rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
    815
    816	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
    817		D_CALIB(" << Interference data unavailable\n");
    818		spin_unlock_irqrestore(&il->lock, flags);
    819		return;
    820	}
    821
    822	rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK);
    823	rxon_chnum = le16_to_cpu(il->staging.channel);
    824
    825	stat_band24 =
    826	    !!(((struct il_notif_stats *)stat_resp)->
    827	       flag & STATS_REPLY_FLG_BAND_24G_MSK);
    828	stat_chnum =
    829	    le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
    830
    831	/* Make sure we accumulate data for just the associated channel
    832	 *   (even if scanning). */
    833	if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
    834		D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
    835			rxon_band24);
    836		spin_unlock_irqrestore(&il->lock, flags);
    837		return;
    838	}
    839
    840	/*
    841	 *  Accumulate beacon stats values across
    842	 * "chain_noise_num_beacons"
    843	 */
    844	chain_noise_a =
    845	    le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
    846	chain_noise_b =
    847	    le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
    848	chain_noise_c =
    849	    le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
    850
    851	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
    852	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
    853	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
    854
    855	spin_unlock_irqrestore(&il->lock, flags);
    856
    857	data->beacon_count++;
    858
    859	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
    860	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
    861	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
    862
    863	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
    864	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
    865	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
    866
    867	D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
    868		data->beacon_count);
    869	D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
    870		chain_sig_c);
    871	D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
    872		chain_noise_c);
    873
    874	/* If this is the "chain_noise_num_beacons", determine:
    875	 * 1)  Disconnected antennas (using signal strengths)
    876	 * 2)  Differential gain (using silence noise) to balance receivers */
    877	if (data->beacon_count != il->cfg->chain_noise_num_beacons)
    878		return;
    879
    880	/* Analyze signal for disconnected antenna */
    881	il4965_find_disconn_antenna(il, average_sig, data);
    882
    883	/* Analyze noise for rx balance */
    884	average_noise[0] =
    885	    data->chain_noise_a / il->cfg->chain_noise_num_beacons;
    886	average_noise[1] =
    887	    data->chain_noise_b / il->cfg->chain_noise_num_beacons;
    888	average_noise[2] =
    889	    data->chain_noise_c / il->cfg->chain_noise_num_beacons;
    890
    891	for (i = 0; i < NUM_RX_CHAINS; i++) {
    892		if (!data->disconn_array[i] &&
    893		    average_noise[i] <= min_average_noise) {
    894			/* This means that chain i is active and has
    895			 * lower noise values so far: */
    896			min_average_noise = average_noise[i];
    897			min_average_noise_antenna_i = i;
    898		}
    899	}
    900
    901	D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
    902		average_noise[1], average_noise[2]);
    903
    904	D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
    905		min_average_noise_antenna_i);
    906
    907	il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
    908				min_average_noise,
    909				il4965_find_first_chain(il->cfg->valid_rx_ant));
    910
    911	/* Some power changes may have been made during the calibration.
    912	 * Update and commit the RXON
    913	 */
    914	if (il->ops->update_chain_flags)
    915		il->ops->update_chain_flags(il);
    916
    917	data->state = IL_CHAIN_NOISE_DONE;
    918	il_power_update_mode(il, false);
    919}
    920
    921void
    922il4965_reset_run_time_calib(struct il_priv *il)
    923{
    924	int i;
    925	memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
    926	memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
    927	for (i = 0; i < NUM_RX_CHAINS; i++)
    928		il->chain_noise_data.delta_gain_code[i] =
    929		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
    930
    931	/* Ask for stats now, the uCode will send notification
    932	 * periodically after association */
    933	il_send_stats_request(il, CMD_ASYNC, true);
    934}