4965.h (49765B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/****************************************************************************** 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * 6 * Contact Information: 7 * Intel Linux Wireless <ilw@linux.intel.com> 8 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 9 * 10 *****************************************************************************/ 11 12#ifndef __il_4965_h__ 13#define __il_4965_h__ 14 15struct il_rx_queue; 16struct il_rx_buf; 17struct il_rx_pkt; 18struct il_tx_queue; 19struct il_rxon_context; 20 21/* configuration for the _4965 devices */ 22extern struct il_cfg il4965_cfg; 23extern const struct il_ops il4965_ops; 24 25extern struct il_mod_params il4965_mod_params; 26 27/* tx queue */ 28void il4965_free_tfds_in_queue(struct il_priv *il, int sta_id, int tid, 29 int freed); 30 31/* RXON */ 32void il4965_set_rxon_chain(struct il_priv *il); 33 34/* uCode */ 35int il4965_verify_ucode(struct il_priv *il); 36 37/* lib */ 38void il4965_check_abort_status(struct il_priv *il, u8 frame_count, u32 status); 39 40void il4965_rx_queue_reset(struct il_priv *il, struct il_rx_queue *rxq); 41int il4965_rx_init(struct il_priv *il, struct il_rx_queue *rxq); 42int il4965_hw_nic_init(struct il_priv *il); 43int il4965_dump_fh(struct il_priv *il, char **buf, bool display); 44 45void il4965_nic_config(struct il_priv *il); 46 47/* rx */ 48void il4965_rx_queue_restock(struct il_priv *il); 49void il4965_rx_replenish(struct il_priv *il); 50void il4965_rx_replenish_now(struct il_priv *il); 51void il4965_rx_queue_free(struct il_priv *il, struct il_rx_queue *rxq); 52int il4965_rxq_stop(struct il_priv *il); 53int il4965_hwrate_to_mac80211_idx(u32 rate_n_flags, enum nl80211_band band); 54void il4965_rx_handle(struct il_priv *il); 55 56/* tx */ 57void il4965_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq); 58int il4965_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq, 59 dma_addr_t addr, u16 len, u8 reset, u8 pad); 60int il4965_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq); 61void il4965_hwrate_to_tx_control(struct il_priv *il, u32 rate_n_flags, 62 struct ieee80211_tx_info *info); 63int il4965_tx_skb(struct il_priv *il, 64 struct ieee80211_sta *sta, 65 struct sk_buff *skb); 66int il4965_tx_agg_start(struct il_priv *il, struct ieee80211_vif *vif, 67 struct ieee80211_sta *sta, u16 tid, u16 * ssn); 68int il4965_tx_agg_stop(struct il_priv *il, struct ieee80211_vif *vif, 69 struct ieee80211_sta *sta, u16 tid); 70int il4965_txq_check_empty(struct il_priv *il, int sta_id, u8 tid, int txq_id); 71int il4965_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx); 72void il4965_hw_txq_ctx_free(struct il_priv *il); 73int il4965_txq_ctx_alloc(struct il_priv *il); 74void il4965_txq_ctx_reset(struct il_priv *il); 75void il4965_txq_ctx_stop(struct il_priv *il); 76void il4965_txq_set_sched(struct il_priv *il, u32 mask); 77 78/* 79 * Acquire il->lock before calling this function ! 80 */ 81void il4965_set_wr_ptrs(struct il_priv *il, int txq_id, u32 idx); 82/** 83 * il4965_tx_queue_set_status - (optionally) start Tx/Cmd queue 84 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed 85 * @scd_retry: (1) Indicates queue will be used in aggregation mode 86 * 87 * NOTE: Acquire il->lock before calling this function ! 88 */ 89void il4965_tx_queue_set_status(struct il_priv *il, struct il_tx_queue *txq, 90 int tx_fifo_id, int scd_retry); 91 92/* scan */ 93int il4965_request_scan(struct il_priv *il, struct ieee80211_vif *vif); 94 95/* station mgmt */ 96int il4965_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif, 97 bool add); 98 99/* hcmd */ 100int il4965_send_beacon_cmd(struct il_priv *il); 101 102#ifdef CONFIG_IWLEGACY_DEBUG 103const char *il4965_get_tx_fail_reason(u32 status); 104#else 105static inline const char * 106il4965_get_tx_fail_reason(u32 status) 107{ 108 return ""; 109} 110#endif 111 112/* station management */ 113int il4965_alloc_bcast_station(struct il_priv *il); 114int il4965_add_bssid_station(struct il_priv *il, const u8 *addr, u8 *sta_id_r); 115int il4965_remove_default_wep_key(struct il_priv *il, 116 struct ieee80211_key_conf *key); 117int il4965_set_default_wep_key(struct il_priv *il, 118 struct ieee80211_key_conf *key); 119int il4965_restore_default_wep_keys(struct il_priv *il); 120int il4965_set_dynamic_key(struct il_priv *il, 121 struct ieee80211_key_conf *key, u8 sta_id); 122int il4965_remove_dynamic_key(struct il_priv *il, 123 struct ieee80211_key_conf *key, u8 sta_id); 124void il4965_update_tkip_key(struct il_priv *il, 125 struct ieee80211_key_conf *keyconf, 126 struct ieee80211_sta *sta, u32 iv32, 127 u16 *phase1key); 128int il4965_sta_tx_modify_enable_tid(struct il_priv *il, int sta_id, int tid); 129int il4965_sta_rx_agg_start(struct il_priv *il, struct ieee80211_sta *sta, 130 int tid, u16 ssn); 131int il4965_sta_rx_agg_stop(struct il_priv *il, struct ieee80211_sta *sta, 132 int tid); 133void il4965_sta_modify_sleep_tx_count(struct il_priv *il, int sta_id, int cnt); 134int il4965_update_bcast_stations(struct il_priv *il); 135 136/* rate */ 137static inline u8 138il4965_hw_get_rate(__le32 rate_n_flags) 139{ 140 return le32_to_cpu(rate_n_flags) & 0xFF; 141} 142 143/* eeprom */ 144void il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac); 145int il4965_eeprom_acquire_semaphore(struct il_priv *il); 146void il4965_eeprom_release_semaphore(struct il_priv *il); 147int il4965_eeprom_check_version(struct il_priv *il); 148 149/* mac80211 handlers (for 4965) */ 150void il4965_mac_tx(struct ieee80211_hw *hw, 151 struct ieee80211_tx_control *control, 152 struct sk_buff *skb); 153int il4965_mac_start(struct ieee80211_hw *hw); 154void il4965_mac_stop(struct ieee80211_hw *hw); 155void il4965_configure_filter(struct ieee80211_hw *hw, 156 unsigned int changed_flags, 157 unsigned int *total_flags, u64 multicast); 158int il4965_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 159 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 160 struct ieee80211_key_conf *key); 161void il4965_mac_update_tkip_key(struct ieee80211_hw *hw, 162 struct ieee80211_vif *vif, 163 struct ieee80211_key_conf *keyconf, 164 struct ieee80211_sta *sta, u32 iv32, 165 u16 *phase1key); 166int il4965_mac_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 167 struct ieee80211_ampdu_params *params); 168int il4965_mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 169 struct ieee80211_sta *sta); 170void 171il4965_mac_channel_switch(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 172 struct ieee80211_channel_switch *ch_switch); 173 174void il4965_led_enable(struct il_priv *il); 175 176/* EEPROM */ 177#define IL4965_EEPROM_IMG_SIZE 1024 178 179/* 180 * uCode queue management definitions ... 181 * The first queue used for block-ack aggregation is #7 (4965 only). 182 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7. 183 */ 184#define IL49_FIRST_AMPDU_QUEUE 7 185 186/* Sizes and addresses for instruction and data memory (SRAM) in 187 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */ 188#define IL49_RTC_INST_LOWER_BOUND (0x000000) 189#define IL49_RTC_INST_UPPER_BOUND (0x018000) 190 191#define IL49_RTC_DATA_LOWER_BOUND (0x800000) 192#define IL49_RTC_DATA_UPPER_BOUND (0x80A000) 193 194#define IL49_RTC_INST_SIZE (IL49_RTC_INST_UPPER_BOUND - \ 195 IL49_RTC_INST_LOWER_BOUND) 196#define IL49_RTC_DATA_SIZE (IL49_RTC_DATA_UPPER_BOUND - \ 197 IL49_RTC_DATA_LOWER_BOUND) 198 199#define IL49_MAX_INST_SIZE IL49_RTC_INST_SIZE 200#define IL49_MAX_DATA_SIZE IL49_RTC_DATA_SIZE 201 202/* Size of uCode instruction memory in bootstrap state machine */ 203#define IL49_MAX_BSM_SIZE BSM_SRAM_SIZE 204 205static inline int 206il4965_hw_valid_rtc_data_addr(u32 addr) 207{ 208 return (addr >= IL49_RTC_DATA_LOWER_BOUND && 209 addr < IL49_RTC_DATA_UPPER_BOUND); 210} 211 212/********************* START TEMPERATURE *************************************/ 213 214/** 215 * 4965 temperature calculation. 216 * 217 * The driver must calculate the device temperature before calculating 218 * a txpower setting (amplifier gain is temperature dependent). The 219 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration 220 * values used for the life of the driver, and one of which (R4) is the 221 * real-time temperature indicator. 222 * 223 * uCode provides all 4 values to the driver via the "initialize alive" 224 * notification (see struct il4965_init_alive_resp). After the runtime uCode 225 * image loads, uCode updates the R4 value via stats notifications 226 * (see N_STATS), which occur after each received beacon 227 * when associated, or can be requested via C_STATS. 228 * 229 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver 230 * must sign-extend to 32 bits before applying formula below. 231 * 232 * Formula: 233 * 234 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8 235 * 236 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is 237 * an additional correction, which should be centered around 0 degrees 238 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for 239 * centering the 97/100 correction around 0 degrees K. 240 * 241 * Add 273 to Kelvin value to find degrees Celsius, for comparing current 242 * temperature with factory-measured temperatures when calculating txpower 243 * settings. 244 */ 245#define TEMPERATURE_CALIB_KELVIN_OFFSET 8 246#define TEMPERATURE_CALIB_A_VAL 259 247 248/* Limit range of calculated temperature to be between these Kelvin values */ 249#define IL_TX_POWER_TEMPERATURE_MIN (263) 250#define IL_TX_POWER_TEMPERATURE_MAX (410) 251 252#define IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \ 253 ((t) < IL_TX_POWER_TEMPERATURE_MIN || \ 254 (t) > IL_TX_POWER_TEMPERATURE_MAX) 255 256void il4965_temperature_calib(struct il_priv *il); 257/********************* END TEMPERATURE ***************************************/ 258 259/********************* START TXPOWER *****************************************/ 260 261/** 262 * 4965 txpower calculations rely on information from three sources: 263 * 264 * 1) EEPROM 265 * 2) "initialize" alive notification 266 * 3) stats notifications 267 * 268 * EEPROM data consists of: 269 * 270 * 1) Regulatory information (max txpower and channel usage flags) is provided 271 * separately for each channel that can possibly supported by 4965. 272 * 40 MHz wide (.11n HT40) channels are listed separately from 20 MHz 273 * (legacy) channels. 274 * 275 * See struct il4965_eeprom_channel for format, and struct il4965_eeprom 276 * for locations in EEPROM. 277 * 278 * 2) Factory txpower calibration information is provided separately for 279 * sub-bands of contiguous channels. 2.4GHz has just one sub-band, 280 * but 5 GHz has several sub-bands. 281 * 282 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided. 283 * 284 * See struct il4965_eeprom_calib_info (and the tree of structures 285 * contained within it) for format, and struct il4965_eeprom for 286 * locations in EEPROM. 287 * 288 * "Initialization alive" notification (see struct il4965_init_alive_resp) 289 * consists of: 290 * 291 * 1) Temperature calculation parameters. 292 * 293 * 2) Power supply voltage measurement. 294 * 295 * 3) Tx gain compensation to balance 2 transmitters for MIMO use. 296 * 297 * Statistics notifications deliver: 298 * 299 * 1) Current values for temperature param R4. 300 */ 301 302/** 303 * To calculate a txpower setting for a given desired target txpower, channel, 304 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to 305 * support MIMO and transmit diversity), driver must do the following: 306 * 307 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel. 308 * Do not exceed regulatory limit; reduce target txpower if necessary. 309 * 310 * If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31), 311 * 2 transmitters will be used simultaneously; driver must reduce the 312 * regulatory limit by 3 dB (half-power) for each transmitter, so the 313 * combined total output of the 2 transmitters is within regulatory limits. 314 * 315 * 316 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by 317 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]); 318 * reduce target txpower if necessary. 319 * 320 * Backoff values below are in 1/2 dB units (equivalent to steps in 321 * txpower gain tables): 322 * 323 * OFDM 6 - 36 MBit: 10 steps (5 dB) 324 * OFDM 48 MBit: 15 steps (7.5 dB) 325 * OFDM 54 MBit: 17 steps (8.5 dB) 326 * OFDM 60 MBit: 20 steps (10 dB) 327 * CCK all rates: 10 steps (5 dB) 328 * 329 * Backoff values apply to saturation txpower on a per-transmitter basis; 330 * when using MIMO (2 transmitters), each transmitter uses the same 331 * saturation level provided in EEPROM, and the same backoff values; 332 * no reduction (such as with regulatory txpower limits) is required. 333 * 334 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel 335 * widths and 40 Mhz (.11n HT40) channel widths; there is no separate 336 * factory measurement for ht40 channels. 337 * 338 * The result of this step is the final target txpower. The rest of 339 * the steps figure out the proper settings for the device to achieve 340 * that target txpower. 341 * 342 * 343 * 3) Determine (EEPROM) calibration sub band for the target channel, by 344 * comparing against first and last channels in each sub band 345 * (see struct il4965_eeprom_calib_subband_info). 346 * 347 * 348 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets, 349 * referencing the 2 factory-measured (sample) channels within the sub band. 350 * 351 * Interpolation is based on difference between target channel's frequency 352 * and the sample channels' frequencies. Since channel numbers are based 353 * on frequency (5 MHz between each channel number), this is equivalent 354 * to interpolating based on channel number differences. 355 * 356 * Note that the sample channels may or may not be the channels at the 357 * edges of the sub band. The target channel may be "outside" of the 358 * span of the sampled channels. 359 * 360 * Driver may choose the pair (for 2 Tx chains) of measurements (see 361 * struct il4965_eeprom_calib_ch_info) for which the actual measured 362 * txpower comes closest to the desired txpower. Usually, though, 363 * the middle set of measurements is closest to the regulatory limits, 364 * and is therefore a good choice for all txpower calculations (this 365 * assumes that high accuracy is needed for maximizing legal txpower, 366 * while lower txpower configurations do not need as much accuracy). 367 * 368 * Driver should interpolate both members of the chosen measurement pair, 369 * i.e. for both Tx chains (radio transmitters), unless the driver knows 370 * that only one of the chains will be used (e.g. only one tx antenna 371 * connected, but this should be unusual). The rate scaling algorithm 372 * switches antennas to find best performance, so both Tx chains will 373 * be used (although only one at a time) even for non-MIMO transmissions. 374 * 375 * Driver should interpolate factory values for temperature, gain table 376 * idx, and actual power. The power amplifier detector values are 377 * not used by the driver. 378 * 379 * Sanity check: If the target channel happens to be one of the sample 380 * channels, the results should agree with the sample channel's 381 * measurements! 382 * 383 * 384 * 5) Find difference between desired txpower and (interpolated) 385 * factory-measured txpower. Using (interpolated) factory gain table idx 386 * (shown elsewhere) as a starting point, adjust this idx lower to 387 * increase txpower, or higher to decrease txpower, until the target 388 * txpower is reached. Each step in the gain table is 1/2 dB. 389 * 390 * For example, if factory measured txpower is 16 dBm, and target txpower 391 * is 13 dBm, add 6 steps to the factory gain idx to reduce txpower 392 * by 3 dB. 393 * 394 * 395 * 6) Find difference between current device temperature and (interpolated) 396 * factory-measured temperature for sub-band. Factory values are in 397 * degrees Celsius. To calculate current temperature, see comments for 398 * "4965 temperature calculation". 399 * 400 * If current temperature is higher than factory temperature, driver must 401 * increase gain (lower gain table idx), and vice verse. 402 * 403 * Temperature affects gain differently for different channels: 404 * 405 * 2.4 GHz all channels: 3.5 degrees per half-dB step 406 * 5 GHz channels 34-43: 4.5 degrees per half-dB step 407 * 5 GHz channels >= 44: 4.0 degrees per half-dB step 408 * 409 * NOTE: Temperature can increase rapidly when transmitting, especially 410 * with heavy traffic at high txpowers. Driver should update 411 * temperature calculations often under these conditions to 412 * maintain strong txpower in the face of rising temperature. 413 * 414 * 415 * 7) Find difference between current power supply voltage indicator 416 * (from "initialize alive") and factory-measured power supply voltage 417 * indicator (EEPROM). 418 * 419 * If the current voltage is higher (indicator is lower) than factory 420 * voltage, gain should be reduced (gain table idx increased) by: 421 * 422 * (eeprom - current) / 7 423 * 424 * If the current voltage is lower (indicator is higher) than factory 425 * voltage, gain should be increased (gain table idx decreased) by: 426 * 427 * 2 * (current - eeprom) / 7 428 * 429 * If number of idx steps in either direction turns out to be > 2, 430 * something is wrong ... just use 0. 431 * 432 * NOTE: Voltage compensation is independent of band/channel. 433 * 434 * NOTE: "Initialize" uCode measures current voltage, which is assumed 435 * to be constant after this initial measurement. Voltage 436 * compensation for txpower (number of steps in gain table) 437 * may be calculated once and used until the next uCode bootload. 438 * 439 * 440 * 8) If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31), 441 * adjust txpower for each transmitter chain, so txpower is balanced 442 * between the two chains. There are 5 pairs of tx_atten[group][chain] 443 * values in "initialize alive", one pair for each of 5 channel ranges: 444 * 445 * Group 0: 5 GHz channel 34-43 446 * Group 1: 5 GHz channel 44-70 447 * Group 2: 5 GHz channel 71-124 448 * Group 3: 5 GHz channel 125-200 449 * Group 4: 2.4 GHz all channels 450 * 451 * Add the tx_atten[group][chain] value to the idx for the target chain. 452 * The values are signed, but are in pairs of 0 and a non-negative number, 453 * so as to reduce gain (if necessary) of the "hotter" channel. This 454 * avoids any need to double-check for regulatory compliance after 455 * this step. 456 * 457 * 458 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation 459 * value to the idx: 460 * 461 * Hardware rev B: 9 steps (4.5 dB) 462 * Hardware rev C: 5 steps (2.5 dB) 463 * 464 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, 465 * bits [3:2], 1 = B, 2 = C. 466 * 467 * NOTE: This compensation is in addition to any saturation backoff that 468 * might have been applied in an earlier step. 469 * 470 * 471 * 10) Select the gain table, based on band (2.4 vs 5 GHz). 472 * 473 * Limit the adjusted idx to stay within the table! 474 * 475 * 476 * 11) Read gain table entries for DSP and radio gain, place into appropriate 477 * location(s) in command (struct il4965_txpowertable_cmd). 478 */ 479 480/** 481 * When MIMO is used (2 transmitters operating simultaneously), driver should 482 * limit each transmitter to deliver a max of 3 dB below the regulatory limit 483 * for the device. That is, use half power for each transmitter, so total 484 * txpower is within regulatory limits. 485 * 486 * The value "6" represents number of steps in gain table to reduce power 3 dB. 487 * Each step is 1/2 dB. 488 */ 489#define IL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6) 490 491/** 492 * CCK gain compensation. 493 * 494 * When calculating txpowers for CCK, after making sure that the target power 495 * is within regulatory and saturation limits, driver must additionally 496 * back off gain by adding these values to the gain table idx. 497 * 498 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, 499 * bits [3:2], 1 = B, 2 = C. 500 */ 501#define IL_TX_POWER_CCK_COMPENSATION_B_STEP (9) 502#define IL_TX_POWER_CCK_COMPENSATION_C_STEP (5) 503 504/* 505 * 4965 power supply voltage compensation for txpower 506 */ 507#define TX_POWER_IL_VOLTAGE_CODES_PER_03V (7) 508 509/** 510 * Gain tables. 511 * 512 * The following tables contain pair of values for setting txpower, i.e. 513 * gain settings for the output of the device's digital signal processor (DSP), 514 * and for the analog gain structure of the transmitter. 515 * 516 * Each entry in the gain tables represents a step of 1/2 dB. Note that these 517 * are *relative* steps, not indications of absolute output power. Output 518 * power varies with temperature, voltage, and channel frequency, and also 519 * requires consideration of average power (to satisfy regulatory constraints), 520 * and peak power (to avoid distortion of the output signal). 521 * 522 * Each entry contains two values: 523 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained 524 * linear value that multiplies the output of the digital signal processor, 525 * before being sent to the analog radio. 526 * 2) Radio gain. This sets the analog gain of the radio Tx path. 527 * It is a coarser setting, and behaves in a logarithmic (dB) fashion. 528 * 529 * EEPROM contains factory calibration data for txpower. This maps actual 530 * measured txpower levels to gain settings in the "well known" tables 531 * below ("well-known" means here that both factory calibration *and* the 532 * driver work with the same table). 533 * 534 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table 535 * has an extension (into negative idxes), in case the driver needs to 536 * boost power setting for high device temperatures (higher than would be 537 * present during factory calibration). A 5 Ghz EEPROM idx of "40" 538 * corresponds to the 49th entry in the table used by the driver. 539 */ 540#define MIN_TX_GAIN_IDX (0) /* highest gain, lowest idx, 2.4 */ 541#define MIN_TX_GAIN_IDX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */ 542 543/** 544 * 2.4 GHz gain table 545 * 546 * Index Dsp gain Radio gain 547 * 0 110 0x3f (highest gain) 548 * 1 104 0x3f 549 * 2 98 0x3f 550 * 3 110 0x3e 551 * 4 104 0x3e 552 * 5 98 0x3e 553 * 6 110 0x3d 554 * 7 104 0x3d 555 * 8 98 0x3d 556 * 9 110 0x3c 557 * 10 104 0x3c 558 * 11 98 0x3c 559 * 12 110 0x3b 560 * 13 104 0x3b 561 * 14 98 0x3b 562 * 15 110 0x3a 563 * 16 104 0x3a 564 * 17 98 0x3a 565 * 18 110 0x39 566 * 19 104 0x39 567 * 20 98 0x39 568 * 21 110 0x38 569 * 22 104 0x38 570 * 23 98 0x38 571 * 24 110 0x37 572 * 25 104 0x37 573 * 26 98 0x37 574 * 27 110 0x36 575 * 28 104 0x36 576 * 29 98 0x36 577 * 30 110 0x35 578 * 31 104 0x35 579 * 32 98 0x35 580 * 33 110 0x34 581 * 34 104 0x34 582 * 35 98 0x34 583 * 36 110 0x33 584 * 37 104 0x33 585 * 38 98 0x33 586 * 39 110 0x32 587 * 40 104 0x32 588 * 41 98 0x32 589 * 42 110 0x31 590 * 43 104 0x31 591 * 44 98 0x31 592 * 45 110 0x30 593 * 46 104 0x30 594 * 47 98 0x30 595 * 48 110 0x6 596 * 49 104 0x6 597 * 50 98 0x6 598 * 51 110 0x5 599 * 52 104 0x5 600 * 53 98 0x5 601 * 54 110 0x4 602 * 55 104 0x4 603 * 56 98 0x4 604 * 57 110 0x3 605 * 58 104 0x3 606 * 59 98 0x3 607 * 60 110 0x2 608 * 61 104 0x2 609 * 62 98 0x2 610 * 63 110 0x1 611 * 64 104 0x1 612 * 65 98 0x1 613 * 66 110 0x0 614 * 67 104 0x0 615 * 68 98 0x0 616 * 69 97 0 617 * 70 96 0 618 * 71 95 0 619 * 72 94 0 620 * 73 93 0 621 * 74 92 0 622 * 75 91 0 623 * 76 90 0 624 * 77 89 0 625 * 78 88 0 626 * 79 87 0 627 * 80 86 0 628 * 81 85 0 629 * 82 84 0 630 * 83 83 0 631 * 84 82 0 632 * 85 81 0 633 * 86 80 0 634 * 87 79 0 635 * 88 78 0 636 * 89 77 0 637 * 90 76 0 638 * 91 75 0 639 * 92 74 0 640 * 93 73 0 641 * 94 72 0 642 * 95 71 0 643 * 96 70 0 644 * 97 69 0 645 * 98 68 0 646 */ 647 648/** 649 * 5 GHz gain table 650 * 651 * Index Dsp gain Radio gain 652 * -9 123 0x3F (highest gain) 653 * -8 117 0x3F 654 * -7 110 0x3F 655 * -6 104 0x3F 656 * -5 98 0x3F 657 * -4 110 0x3E 658 * -3 104 0x3E 659 * -2 98 0x3E 660 * -1 110 0x3D 661 * 0 104 0x3D 662 * 1 98 0x3D 663 * 2 110 0x3C 664 * 3 104 0x3C 665 * 4 98 0x3C 666 * 5 110 0x3B 667 * 6 104 0x3B 668 * 7 98 0x3B 669 * 8 110 0x3A 670 * 9 104 0x3A 671 * 10 98 0x3A 672 * 11 110 0x39 673 * 12 104 0x39 674 * 13 98 0x39 675 * 14 110 0x38 676 * 15 104 0x38 677 * 16 98 0x38 678 * 17 110 0x37 679 * 18 104 0x37 680 * 19 98 0x37 681 * 20 110 0x36 682 * 21 104 0x36 683 * 22 98 0x36 684 * 23 110 0x35 685 * 24 104 0x35 686 * 25 98 0x35 687 * 26 110 0x34 688 * 27 104 0x34 689 * 28 98 0x34 690 * 29 110 0x33 691 * 30 104 0x33 692 * 31 98 0x33 693 * 32 110 0x32 694 * 33 104 0x32 695 * 34 98 0x32 696 * 35 110 0x31 697 * 36 104 0x31 698 * 37 98 0x31 699 * 38 110 0x30 700 * 39 104 0x30 701 * 40 98 0x30 702 * 41 110 0x25 703 * 42 104 0x25 704 * 43 98 0x25 705 * 44 110 0x24 706 * 45 104 0x24 707 * 46 98 0x24 708 * 47 110 0x23 709 * 48 104 0x23 710 * 49 98 0x23 711 * 50 110 0x22 712 * 51 104 0x18 713 * 52 98 0x18 714 * 53 110 0x17 715 * 54 104 0x17 716 * 55 98 0x17 717 * 56 110 0x16 718 * 57 104 0x16 719 * 58 98 0x16 720 * 59 110 0x15 721 * 60 104 0x15 722 * 61 98 0x15 723 * 62 110 0x14 724 * 63 104 0x14 725 * 64 98 0x14 726 * 65 110 0x13 727 * 66 104 0x13 728 * 67 98 0x13 729 * 68 110 0x12 730 * 69 104 0x08 731 * 70 98 0x08 732 * 71 110 0x07 733 * 72 104 0x07 734 * 73 98 0x07 735 * 74 110 0x06 736 * 75 104 0x06 737 * 76 98 0x06 738 * 77 110 0x05 739 * 78 104 0x05 740 * 79 98 0x05 741 * 80 110 0x04 742 * 81 104 0x04 743 * 82 98 0x04 744 * 83 110 0x03 745 * 84 104 0x03 746 * 85 98 0x03 747 * 86 110 0x02 748 * 87 104 0x02 749 * 88 98 0x02 750 * 89 110 0x01 751 * 90 104 0x01 752 * 91 98 0x01 753 * 92 110 0x00 754 * 93 104 0x00 755 * 94 98 0x00 756 * 95 93 0x00 757 * 96 88 0x00 758 * 97 83 0x00 759 * 98 78 0x00 760 */ 761 762/** 763 * Sanity checks and default values for EEPROM regulatory levels. 764 * If EEPROM values fall outside MIN/MAX range, use default values. 765 * 766 * Regulatory limits refer to the maximum average txpower allowed by 767 * regulatory agencies in the geographies in which the device is meant 768 * to be operated. These limits are SKU-specific (i.e. geography-specific), 769 * and channel-specific; each channel has an individual regulatory limit 770 * listed in the EEPROM. 771 * 772 * Units are in half-dBm (i.e. "34" means 17 dBm). 773 */ 774#define IL_TX_POWER_DEFAULT_REGULATORY_24 (34) 775#define IL_TX_POWER_DEFAULT_REGULATORY_52 (34) 776#define IL_TX_POWER_REGULATORY_MIN (0) 777#define IL_TX_POWER_REGULATORY_MAX (34) 778 779/** 780 * Sanity checks and default values for EEPROM saturation levels. 781 * If EEPROM values fall outside MIN/MAX range, use default values. 782 * 783 * Saturation is the highest level that the output power amplifier can produce 784 * without significant clipping distortion. This is a "peak" power level. 785 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK) 786 * require differing amounts of backoff, relative to their average power output, 787 * in order to avoid clipping distortion. 788 * 789 * Driver must make sure that it is violating neither the saturation limit, 790 * nor the regulatory limit, when calculating Tx power settings for various 791 * rates. 792 * 793 * Units are in half-dBm (i.e. "38" means 19 dBm). 794 */ 795#define IL_TX_POWER_DEFAULT_SATURATION_24 (38) 796#define IL_TX_POWER_DEFAULT_SATURATION_52 (38) 797#define IL_TX_POWER_SATURATION_MIN (20) 798#define IL_TX_POWER_SATURATION_MAX (50) 799 800/** 801 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance) 802 * and thermal Txpower calibration. 803 * 804 * When calculating txpower, driver must compensate for current device 805 * temperature; higher temperature requires higher gain. Driver must calculate 806 * current temperature (see "4965 temperature calculation"), then compare vs. 807 * factory calibration temperature in EEPROM; if current temperature is higher 808 * than factory temperature, driver must *increase* gain by proportions shown 809 * in table below. If current temperature is lower than factory, driver must 810 * *decrease* gain. 811 * 812 * Different frequency ranges require different compensation, as shown below. 813 */ 814/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */ 815#define CALIB_IL_TX_ATTEN_GR1_FCH 34 816#define CALIB_IL_TX_ATTEN_GR1_LCH 43 817 818/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */ 819#define CALIB_IL_TX_ATTEN_GR2_FCH 44 820#define CALIB_IL_TX_ATTEN_GR2_LCH 70 821 822/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */ 823#define CALIB_IL_TX_ATTEN_GR3_FCH 71 824#define CALIB_IL_TX_ATTEN_GR3_LCH 124 825 826/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */ 827#define CALIB_IL_TX_ATTEN_GR4_FCH 125 828#define CALIB_IL_TX_ATTEN_GR4_LCH 200 829 830/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */ 831#define CALIB_IL_TX_ATTEN_GR5_FCH 1 832#define CALIB_IL_TX_ATTEN_GR5_LCH 20 833 834enum { 835 CALIB_CH_GROUP_1 = 0, 836 CALIB_CH_GROUP_2 = 1, 837 CALIB_CH_GROUP_3 = 2, 838 CALIB_CH_GROUP_4 = 3, 839 CALIB_CH_GROUP_5 = 4, 840 CALIB_CH_GROUP_MAX 841}; 842 843/********************* END TXPOWER *****************************************/ 844 845/** 846 * Tx/Rx Queues 847 * 848 * Most communication between driver and 4965 is via queues of data buffers. 849 * For example, all commands that the driver issues to device's embedded 850 * controller (uCode) are via the command queue (one of the Tx queues). All 851 * uCode command responses/replies/notifications, including Rx frames, are 852 * conveyed from uCode to driver via the Rx queue. 853 * 854 * Most support for these queues, including handshake support, resides in 855 * structures in host DRAM, shared between the driver and the device. When 856 * allocating this memory, the driver must make sure that data written by 857 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's 858 * cache memory), so DRAM and cache are consistent, and the device can 859 * immediately see changes made by the driver. 860 * 861 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via 862 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array 863 * in DRAM containing 256 Transmit Frame Descriptors (TFDs). 864 */ 865#define IL49_NUM_FIFOS 7 866#define IL49_CMD_FIFO_NUM 4 867#define IL49_NUM_QUEUES 16 868#define IL49_NUM_AMPDU_QUEUES 8 869 870/** 871 * struct il4965_schedq_bc_tbl 872 * 873 * Byte Count table 874 * 875 * Each Tx queue uses a byte-count table containing 320 entries: 876 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that 877 * duplicate the first 64 entries (to avoid wrap-around within a Tx win; 878 * max Tx win is 64 TFDs). 879 * 880 * When driver sets up a new TFD, it must also enter the total byte count 881 * of the frame to be transmitted into the corresponding entry in the byte 882 * count table for the chosen Tx queue. If the TFD idx is 0-63, the driver 883 * must duplicate the byte count entry in corresponding idx 256-319. 884 * 885 * padding puts each byte count table on a 1024-byte boundary; 886 * 4965 assumes tables are separated by 1024 bytes. 887 */ 888struct il4965_scd_bc_tbl { 889 __le16 tfd_offset[TFD_QUEUE_BC_SIZE]; 890 u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)]; 891} __packed; 892 893#define IL4965_RTC_INST_LOWER_BOUND (0x000000) 894 895/* RSSI to dBm */ 896#define IL4965_RSSI_OFFSET 44 897 898/* PCI registers */ 899#define PCI_CFG_RETRY_TIMEOUT 0x041 900 901#define IL4965_DEFAULT_TX_RETRY 15 902 903/* EEPROM */ 904#define IL4965_FIRST_AMPDU_QUEUE 10 905 906/* Calibration */ 907void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp); 908void il4965_sensitivity_calibration(struct il_priv *il, void *resp); 909void il4965_init_sensitivity(struct il_priv *il); 910void il4965_reset_run_time_calib(struct il_priv *il); 911 912/* Debug */ 913#ifdef CONFIG_IWLEGACY_DEBUGFS 914extern const struct il_debugfs_ops il4965_debugfs_ops; 915#endif 916 917/****************************/ 918/* Flow Handler Definitions */ 919/****************************/ 920 921/** 922 * This I/O area is directly read/writable by driver (e.g. Linux uses writel()) 923 * Addresses are offsets from device's PCI hardware base address. 924 */ 925#define FH49_MEM_LOWER_BOUND (0x1000) 926#define FH49_MEM_UPPER_BOUND (0x2000) 927 928/** 929 * Keep-Warm (KW) buffer base address. 930 * 931 * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the 932 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency 933 * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host 934 * from going into a power-savings mode that would cause higher DRAM latency, 935 * and possible data over/under-runs, before all Tx/Rx is complete. 936 * 937 * Driver loads FH49_KW_MEM_ADDR_REG with the physical address (bits 35:4) 938 * of the buffer, which must be 4K aligned. Once this is set up, the 4965 939 * automatically invokes keep-warm accesses when normal accesses might not 940 * be sufficient to maintain fast DRAM response. 941 * 942 * Bit fields: 943 * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned 944 */ 945#define FH49_KW_MEM_ADDR_REG (FH49_MEM_LOWER_BOUND + 0x97C) 946 947/** 948 * TFD Circular Buffers Base (CBBC) addresses 949 * 950 * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident 951 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs) 952 * (see struct il_tfd_frame). These 16 pointer registers are offset by 0x04 953 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte 954 * aligned (address bits 0-7 must be 0). 955 * 956 * Bit fields in each pointer register: 957 * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned 958 */ 959#define FH49_MEM_CBBC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0) 960#define FH49_MEM_CBBC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xA10) 961 962/* Find TFD CB base pointer for given queue (range 0-15). */ 963#define FH49_MEM_CBBC_QUEUE(x) (FH49_MEM_CBBC_LOWER_BOUND + (x) * 0x4) 964 965/** 966 * Rx SRAM Control and Status Registers (RSCSR) 967 * 968 * These registers provide handshake between driver and 4965 for the Rx queue 969 * (this queue handles *all* command responses, notifications, Rx data, etc. 970 * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx 971 * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can 972 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer 973 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1 974 * mapping between RBDs and RBs. 975 * 976 * Driver must allocate host DRAM memory for the following, and set the 977 * physical address of each into 4965 registers: 978 * 979 * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256 980 * entries (although any power of 2, up to 4096, is selectable by driver). 981 * Each entry (1 dword) points to a receive buffer (RB) of consistent size 982 * (typically 4K, although 8K or 16K are also selectable by driver). 983 * Driver sets up RB size and number of RBDs in the CB via Rx config 984 * register FH49_MEM_RCSR_CHNL0_CONFIG_REG. 985 * 986 * Bit fields within one RBD: 987 * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned 988 * 989 * Driver sets physical address [35:8] of base of RBD circular buffer 990 * into FH49_RSCSR_CHNL0_RBDCB_BASE_REG [27:0]. 991 * 992 * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers 993 * (RBs) have been filled, via a "write pointer", actually the idx of 994 * the RB's corresponding RBD within the circular buffer. Driver sets 995 * physical address [35:4] into FH49_RSCSR_CHNL0_STTS_WPTR_REG [31:0]. 996 * 997 * Bit fields in lower dword of Rx status buffer (upper dword not used 998 * by driver; see struct il4965_shared, val0): 999 * 31-12: Not used by driver 1000 * 11- 0: Index of last filled Rx buffer descriptor 1001 * (4965 writes, driver reads this value) 1002 * 1003 * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must 1004 * enter pointers to these RBs into contiguous RBD circular buffer entries, 1005 * and update the 4965's "write" idx register, 1006 * FH49_RSCSR_CHNL0_RBDCB_WPTR_REG. 1007 * 1008 * This "write" idx corresponds to the *next* RBD that the driver will make 1009 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within 1010 * the circular buffer. This value should initially be 0 (before preparing any 1011 * RBs), should be 8 after preparing the first 8 RBs (for example), and must 1012 * wrap back to 0 at the end of the circular buffer (but don't wrap before 1013 * "read" idx has advanced past 1! See below). 1014 * NOTE: 4965 EXPECTS THE WRITE IDX TO BE INCREMENTED IN MULTIPLES OF 8. 1015 * 1016 * As the 4965 fills RBs (referenced from contiguous RBDs within the circular 1017 * buffer), it updates the Rx status buffer in host DRAM, 2) described above, 1018 * to tell the driver the idx of the latest filled RBD. The driver must 1019 * read this "read" idx from DRAM after receiving an Rx interrupt from 4965. 1020 * 1021 * The driver must also internally keep track of a third idx, which is the 1022 * next RBD to process. When receiving an Rx interrupt, driver should process 1023 * all filled but unprocessed RBs up to, but not including, the RB 1024 * corresponding to the "read" idx. For example, if "read" idx becomes "1", 1025 * driver may process the RB pointed to by RBD 0. Depending on volume of 1026 * traffic, there may be many RBs to process. 1027 * 1028 * If read idx == write idx, 4965 thinks there is no room to put new data. 1029 * Due to this, the maximum number of filled RBs is 255, instead of 256. To 1030 * be safe, make sure that there is a gap of at least 2 RBDs between "write" 1031 * and "read" idxes; that is, make sure that there are no more than 254 1032 * buffers waiting to be filled. 1033 */ 1034#define FH49_MEM_RSCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xBC0) 1035#define FH49_MEM_RSCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00) 1036#define FH49_MEM_RSCSR_CHNL0 (FH49_MEM_RSCSR_LOWER_BOUND) 1037 1038/** 1039 * Physical base address of 8-byte Rx Status buffer. 1040 * Bit fields: 1041 * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned. 1042 */ 1043#define FH49_RSCSR_CHNL0_STTS_WPTR_REG (FH49_MEM_RSCSR_CHNL0) 1044 1045/** 1046 * Physical base address of Rx Buffer Descriptor Circular Buffer. 1047 * Bit fields: 1048 * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned. 1049 */ 1050#define FH49_RSCSR_CHNL0_RBDCB_BASE_REG (FH49_MEM_RSCSR_CHNL0 + 0x004) 1051 1052/** 1053 * Rx write pointer (idx, really!). 1054 * Bit fields: 1055 * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1. 1056 * NOTE: For 256-entry circular buffer, use only bits [7:0]. 1057 */ 1058#define FH49_RSCSR_CHNL0_RBDCB_WPTR_REG (FH49_MEM_RSCSR_CHNL0 + 0x008) 1059#define FH49_RSCSR_CHNL0_WPTR (FH49_RSCSR_CHNL0_RBDCB_WPTR_REG) 1060 1061/** 1062 * Rx Config/Status Registers (RCSR) 1063 * Rx Config Reg for channel 0 (only channel used) 1064 * 1065 * Driver must initialize FH49_MEM_RCSR_CHNL0_CONFIG_REG as follows for 1066 * normal operation (see bit fields). 1067 * 1068 * Clearing FH49_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA. 1069 * Driver should poll FH49_MEM_RSSR_RX_STATUS_REG for 1070 * FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing. 1071 * 1072 * Bit fields: 1073 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame, 1074 * '10' operate normally 1075 * 29-24: reserved 1076 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal), 1077 * min "5" for 32 RBDs, max "12" for 4096 RBDs. 1078 * 19-18: reserved 1079 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K, 1080 * '10' 12K, '11' 16K. 1081 * 15-14: reserved 1082 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation) 1083 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec) 1084 * typical value 0x10 (about 1/2 msec) 1085 * 3- 0: reserved 1086 */ 1087#define FH49_MEM_RCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00) 1088#define FH49_MEM_RCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xCC0) 1089#define FH49_MEM_RCSR_CHNL0 (FH49_MEM_RCSR_LOWER_BOUND) 1090 1091#define FH49_MEM_RCSR_CHNL0_CONFIG_REG (FH49_MEM_RCSR_CHNL0) 1092 1093#define FH49_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0) /* bits 4-11 */ 1094#define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK (0x00001000) /* bits 12 */ 1095#define FH49_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000) /* bit 15 */ 1096#define FH49_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK (0x00030000) /* bits 16-17 */ 1097#define FH49_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000) /* bits 20-23 */ 1098#define FH49_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000) /* bits 30-31 */ 1099 1100#define FH49_RCSR_RX_CONFIG_RBDCB_SIZE_POS (20) 1101#define FH49_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS (4) 1102#define RX_RB_TIMEOUT (0x10) 1103 1104#define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000) 1105#define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000) 1106#define FH49_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000) 1107 1108#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000) 1109#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000) 1110#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000) 1111#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000) 1112 1113#define FH49_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY (0x00000004) 1114#define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000) 1115#define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000) 1116 1117/** 1118 * Rx Shared Status Registers (RSSR) 1119 * 1120 * After stopping Rx DMA channel (writing 0 to 1121 * FH49_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll 1122 * FH49_MEM_RSSR_RX_STATUS_REG until Rx channel is idle. 1123 * 1124 * Bit fields: 1125 * 24: 1 = Channel 0 is idle 1126 * 1127 * FH49_MEM_RSSR_SHARED_CTRL_REG and FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV 1128 * contain default values that should not be altered by the driver. 1129 */ 1130#define FH49_MEM_RSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC40) 1131#define FH49_MEM_RSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00) 1132 1133#define FH49_MEM_RSSR_SHARED_CTRL_REG (FH49_MEM_RSSR_LOWER_BOUND) 1134#define FH49_MEM_RSSR_RX_STATUS_REG (FH49_MEM_RSSR_LOWER_BOUND + 0x004) 1135#define FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\ 1136 (FH49_MEM_RSSR_LOWER_BOUND + 0x008) 1137 1138#define FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000) 1139 1140#define FH49_MEM_TFDIB_REG1_ADDR_BITSHIFT 28 1141 1142/* TFDB Area - TFDs buffer table */ 1143#define FH49_MEM_TFDIB_DRAM_ADDR_LSB_MSK (0xFFFFFFFF) 1144#define FH49_TFDIB_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x900) 1145#define FH49_TFDIB_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x958) 1146#define FH49_TFDIB_CTRL0_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl)) 1147#define FH49_TFDIB_CTRL1_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4) 1148 1149/** 1150 * Transmit DMA Channel Control/Status Registers (TCSR) 1151 * 1152 * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels 1153 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM, 1154 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes. 1155 * 1156 * To use a Tx DMA channel, driver must initialize its 1157 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl) with: 1158 * 1159 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1160 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL 1161 * 1162 * All other bits should be 0. 1163 * 1164 * Bit fields: 1165 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame, 1166 * '10' operate normally 1167 * 29- 4: Reserved, set to "0" 1168 * 3: Enable internal DMA requests (1, normal operation), disable (0) 1169 * 2- 0: Reserved, set to "0" 1170 */ 1171#define FH49_TCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00) 1172#define FH49_TCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xE60) 1173 1174/* Find Control/Status reg for given Tx DMA/FIFO channel */ 1175#define FH49_TCSR_CHNL_NUM (7) 1176#define FH50_TCSR_CHNL_NUM (8) 1177 1178/* TCSR: tx_config register values */ 1179#define FH49_TCSR_CHNL_TX_CONFIG_REG(_chnl) \ 1180 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl)) 1181#define FH49_TCSR_CHNL_TX_CREDIT_REG(_chnl) \ 1182 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4) 1183#define FH49_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \ 1184 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8) 1185 1186#define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000) 1187#define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV (0x00000001) 1188 1189#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE (0x00000000) 1190#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE (0x00000008) 1191 1192#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000) 1193#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000) 1194#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000) 1195 1196#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000) 1197#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000) 1198#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000) 1199 1200#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000) 1201#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000) 1202#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000) 1203 1204#define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000) 1205#define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000) 1206#define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003) 1207 1208#define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20) 1209#define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12) 1210 1211/** 1212 * Tx Shared Status Registers (TSSR) 1213 * 1214 * After stopping Tx DMA channel (writing 0 to 1215 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll 1216 * FH49_TSSR_TX_STATUS_REG until selected Tx channel is idle 1217 * (channel's buffers empty | no pending requests). 1218 * 1219 * Bit fields: 1220 * 31-24: 1 = Channel buffers empty (channel 7:0) 1221 * 23-16: 1 = No pending requests (channel 7:0) 1222 */ 1223#define FH49_TSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xEA0) 1224#define FH49_TSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xEC0) 1225 1226#define FH49_TSSR_TX_STATUS_REG (FH49_TSSR_LOWER_BOUND + 0x010) 1227 1228/** 1229 * Bit fields for TSSR(Tx Shared Status & Control) error status register: 1230 * 31: Indicates an address error when accessed to internal memory 1231 * uCode/driver must write "1" in order to clear this flag 1232 * 30: Indicates that Host did not send the expected number of dwords to FH 1233 * uCode/driver must write "1" in order to clear this flag 1234 * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA 1235 * command was received from the scheduler while the TRB was already full 1236 * with previous command 1237 * uCode/driver must write "1" in order to clear this flag 1238 * 7-0: Each status bit indicates a channel's TxCredit error. When an error 1239 * bit is set, it indicates that the FH has received a full indication 1240 * from the RTC TxFIFO and the current value of the TxCredit counter was 1241 * not equal to zero. This mean that the credit mechanism was not 1242 * synchronized to the TxFIFO status 1243 * uCode/driver must write "1" in order to clear this flag 1244 */ 1245#define FH49_TSSR_TX_ERROR_REG (FH49_TSSR_LOWER_BOUND + 0x018) 1246 1247#define FH49_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16) 1248 1249/* Tx service channels */ 1250#define FH49_SRVC_CHNL (9) 1251#define FH49_SRVC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9C8) 1252#define FH49_SRVC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0) 1253#define FH49_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \ 1254 (FH49_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4) 1255 1256#define FH49_TX_CHICKEN_BITS_REG (FH49_MEM_LOWER_BOUND + 0xE98) 1257/* Instruct FH to increment the retry count of a packet when 1258 * it is brought from the memory to TX-FIFO 1259 */ 1260#define FH49_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN (0x00000002) 1261 1262/* Keep Warm Size */ 1263#define IL_KW_SIZE 0x1000 /* 4k */ 1264 1265#endif /* __il_4965_h__ */