commands.h (129658B)
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2/* 3 * Copyright (C) 2005-2014 Intel Corporation 4 */ 5/* 6 * Please use this file (commands.h) only for uCode API definitions. 7 * Please use iwl-xxxx-hw.h for hardware-related definitions. 8 * Please use dev.h for driver implementation definitions. 9 */ 10 11#ifndef __iwl_commands_h__ 12#define __iwl_commands_h__ 13 14#include <linux/ieee80211.h> 15#include <linux/types.h> 16 17 18enum { 19 REPLY_ALIVE = 0x1, 20 REPLY_ERROR = 0x2, 21 REPLY_ECHO = 0x3, /* test command */ 22 23 /* RXON and QOS commands */ 24 REPLY_RXON = 0x10, 25 REPLY_RXON_ASSOC = 0x11, 26 REPLY_QOS_PARAM = 0x13, 27 REPLY_RXON_TIMING = 0x14, 28 29 /* Multi-Station support */ 30 REPLY_ADD_STA = 0x18, 31 REPLY_REMOVE_STA = 0x19, 32 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */ 33 REPLY_TXFIFO_FLUSH = 0x1e, 34 35 /* Security */ 36 REPLY_WEPKEY = 0x20, 37 38 /* RX, TX, LEDs */ 39 REPLY_TX = 0x1c, 40 REPLY_LEDS_CMD = 0x48, 41 REPLY_TX_LINK_QUALITY_CMD = 0x4e, 42 43 /* WiMAX coexistence */ 44 COEX_PRIORITY_TABLE_CMD = 0x5a, 45 COEX_MEDIUM_NOTIFICATION = 0x5b, 46 COEX_EVENT_CMD = 0x5c, 47 48 /* Calibration */ 49 TEMPERATURE_NOTIFICATION = 0x62, 50 CALIBRATION_CFG_CMD = 0x65, 51 CALIBRATION_RES_NOTIFICATION = 0x66, 52 CALIBRATION_COMPLETE_NOTIFICATION = 0x67, 53 54 /* 802.11h related */ 55 REPLY_QUIET_CMD = 0x71, /* not used */ 56 REPLY_CHANNEL_SWITCH = 0x72, 57 CHANNEL_SWITCH_NOTIFICATION = 0x73, 58 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74, 59 SPECTRUM_MEASURE_NOTIFICATION = 0x75, 60 61 /* Power Management */ 62 POWER_TABLE_CMD = 0x77, 63 PM_SLEEP_NOTIFICATION = 0x7A, 64 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B, 65 66 /* Scan commands and notifications */ 67 REPLY_SCAN_CMD = 0x80, 68 REPLY_SCAN_ABORT_CMD = 0x81, 69 SCAN_START_NOTIFICATION = 0x82, 70 SCAN_RESULTS_NOTIFICATION = 0x83, 71 SCAN_COMPLETE_NOTIFICATION = 0x84, 72 73 /* IBSS/AP commands */ 74 BEACON_NOTIFICATION = 0x90, 75 REPLY_TX_BEACON = 0x91, 76 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */ 77 78 /* Miscellaneous commands */ 79 REPLY_TX_POWER_DBM_CMD = 0x95, 80 QUIET_NOTIFICATION = 0x96, /* not used */ 81 REPLY_TX_PWR_TABLE_CMD = 0x97, 82 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */ 83 TX_ANT_CONFIGURATION_CMD = 0x98, 84 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */ 85 86 /* Bluetooth device coexistence config command */ 87 REPLY_BT_CONFIG = 0x9b, 88 89 /* Statistics */ 90 REPLY_STATISTICS_CMD = 0x9c, 91 STATISTICS_NOTIFICATION = 0x9d, 92 93 /* RF-KILL commands and notifications */ 94 REPLY_CARD_STATE_CMD = 0xa0, 95 CARD_STATE_NOTIFICATION = 0xa1, 96 97 /* Missed beacons notification */ 98 MISSED_BEACONS_NOTIFICATION = 0xa2, 99 100 REPLY_CT_KILL_CONFIG_CMD = 0xa4, 101 SENSITIVITY_CMD = 0xa8, 102 REPLY_PHY_CALIBRATION_CMD = 0xb0, 103 REPLY_RX_PHY_CMD = 0xc0, 104 REPLY_RX_MPDU_CMD = 0xc1, 105 REPLY_RX = 0xc3, 106 REPLY_COMPRESSED_BA = 0xc5, 107 108 /* BT Coex */ 109 REPLY_BT_COEX_PRIO_TABLE = 0xcc, 110 REPLY_BT_COEX_PROT_ENV = 0xcd, 111 REPLY_BT_COEX_PROFILE_NOTIF = 0xce, 112 113 /* PAN commands */ 114 REPLY_WIPAN_PARAMS = 0xb2, 115 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */ 116 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */ 117 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */ 118 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */ 119 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */ 120 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9, 121 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc, 122 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd, 123 124 REPLY_WOWLAN_PATTERNS = 0xe0, 125 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1, 126 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2, 127 REPLY_WOWLAN_TKIP_PARAMS = 0xe3, 128 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4, 129 REPLY_WOWLAN_GET_STATUS = 0xe5, 130 REPLY_D3_CONFIG = 0xd3, 131 132 REPLY_MAX = 0xff 133}; 134 135/* 136 * Minimum number of queues. MAX_NUM is defined in hw specific files. 137 * Set the minimum to accommodate 138 * - 4 standard TX queues 139 * - the command queue 140 * - 4 PAN TX queues 141 * - the PAN multicast queue, and 142 * - the AUX (TX during scan dwell) queue. 143 */ 144#define IWL_MIN_NUM_QUEUES 11 145 146/* 147 * Command queue depends on iPAN support. 148 */ 149#define IWL_DEFAULT_CMD_QUEUE_NUM 4 150#define IWL_IPAN_CMD_QUEUE_NUM 9 151 152#define IWL_TX_FIFO_BK 0 /* shared */ 153#define IWL_TX_FIFO_BE 1 154#define IWL_TX_FIFO_VI 2 /* shared */ 155#define IWL_TX_FIFO_VO 3 156#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK 157#define IWL_TX_FIFO_BE_IPAN 4 158#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI 159#define IWL_TX_FIFO_VO_IPAN 5 160/* re-uses the VO FIFO, uCode will properly flush/schedule */ 161#define IWL_TX_FIFO_AUX 5 162#define IWL_TX_FIFO_UNUSED 255 163 164#define IWLAGN_CMD_FIFO_NUM 7 165 166/* 167 * This queue number is required for proper operation 168 * because the ucode will stop/start the scheduler as 169 * required. 170 */ 171#define IWL_IPAN_MCAST_QUEUE 8 172 173/****************************************************************************** 174 * (0) 175 * Commonly used structures and definitions: 176 * Command header, rate_n_flags, txpower 177 * 178 *****************************************************************************/ 179 180/** 181 * iwlagn rate_n_flags bit fields 182 * 183 * rate_n_flags format is used in following iwlagn commands: 184 * REPLY_RX (response only) 185 * REPLY_RX_MPDU (response only) 186 * REPLY_TX (both command and response) 187 * REPLY_TX_LINK_QUALITY_CMD 188 * 189 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"): 190 * 2-0: 0) 6 Mbps 191 * 1) 12 Mbps 192 * 2) 18 Mbps 193 * 3) 24 Mbps 194 * 4) 36 Mbps 195 * 5) 48 Mbps 196 * 6) 54 Mbps 197 * 7) 60 Mbps 198 * 199 * 4-3: 0) Single stream (SISO) 200 * 1) Dual stream (MIMO) 201 * 2) Triple stream (MIMO) 202 * 203 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data 204 * 205 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"): 206 * 3-0: 0xD) 6 Mbps 207 * 0xF) 9 Mbps 208 * 0x5) 12 Mbps 209 * 0x7) 18 Mbps 210 * 0x9) 24 Mbps 211 * 0xB) 36 Mbps 212 * 0x1) 48 Mbps 213 * 0x3) 54 Mbps 214 * 215 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"): 216 * 6-0: 10) 1 Mbps 217 * 20) 2 Mbps 218 * 55) 5.5 Mbps 219 * 110) 11 Mbps 220 */ 221#define RATE_MCS_CODE_MSK 0x7 222#define RATE_MCS_SPATIAL_POS 3 223#define RATE_MCS_SPATIAL_MSK 0x18 224#define RATE_MCS_HT_DUP_POS 5 225#define RATE_MCS_HT_DUP_MSK 0x20 226/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */ 227#define RATE_MCS_RATE_MSK 0xff 228 229/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */ 230#define RATE_MCS_FLAGS_POS 8 231#define RATE_MCS_HT_POS 8 232#define RATE_MCS_HT_MSK 0x100 233 234/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ 235#define RATE_MCS_CCK_POS 9 236#define RATE_MCS_CCK_MSK 0x200 237 238/* Bit 10: (1) Use Green Field preamble */ 239#define RATE_MCS_GF_POS 10 240#define RATE_MCS_GF_MSK 0x400 241 242/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */ 243#define RATE_MCS_HT40_POS 11 244#define RATE_MCS_HT40_MSK 0x800 245 246/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */ 247#define RATE_MCS_DUP_POS 12 248#define RATE_MCS_DUP_MSK 0x1000 249 250/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ 251#define RATE_MCS_SGI_POS 13 252#define RATE_MCS_SGI_MSK 0x2000 253 254/** 255 * rate_n_flags Tx antenna masks 256 * bit14:16 257 */ 258#define RATE_MCS_ANT_POS 14 259#define RATE_MCS_ANT_A_MSK 0x04000 260#define RATE_MCS_ANT_B_MSK 0x08000 261#define RATE_MCS_ANT_C_MSK 0x10000 262#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK) 263#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK) 264#define RATE_ANT_NUM 3 265 266#define POWER_TABLE_NUM_ENTRIES 33 267#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32 268#define POWER_TABLE_CCK_ENTRY 32 269 270#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24 271#define IWL_PWR_CCK_ENTRIES 2 272 273/** 274 * struct tx_power_dual_stream 275 * 276 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH 277 * 278 * Same format as iwl_tx_power_dual_stream, but __le32 279 */ 280struct tx_power_dual_stream { 281 __le32 dw; 282} __packed; 283 284/** 285 * Command REPLY_TX_POWER_DBM_CMD = 0x98 286 * struct iwlagn_tx_power_dbm_cmd 287 */ 288#define IWLAGN_TX_POWER_AUTO 0x7f 289#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6) 290 291struct iwlagn_tx_power_dbm_cmd { 292 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 293 u8 flags; 294 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 295 u8 reserved; 296} __packed; 297 298/** 299 * Command TX_ANT_CONFIGURATION_CMD = 0x98 300 * This command is used to configure valid Tx antenna. 301 * By default uCode concludes the valid antenna according to the radio flavor. 302 * This command enables the driver to override/modify this conclusion. 303 */ 304struct iwl_tx_ant_config_cmd { 305 __le32 valid; 306} __packed; 307 308/****************************************************************************** 309 * (0a) 310 * Alive and Error Commands & Responses: 311 * 312 *****************************************************************************/ 313 314#define UCODE_VALID_OK cpu_to_le32(0x1) 315 316/** 317 * REPLY_ALIVE = 0x1 (response only, not a command) 318 * 319 * uCode issues this "alive" notification once the runtime image is ready 320 * to receive commands from the driver. This is the *second* "alive" 321 * notification that the driver will receive after rebooting uCode; 322 * this "alive" is indicated by subtype field != 9. 323 * 324 * See comments documenting "BSM" (bootstrap state machine). 325 * 326 * This response includes two pointers to structures within the device's 327 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging: 328 * 329 * 1) log_event_table_ptr indicates base of the event log. This traces 330 * a 256-entry history of uCode execution within a circular buffer. 331 * Its header format is: 332 * 333 * __le32 log_size; log capacity (in number of entries) 334 * __le32 type; (1) timestamp with each entry, (0) no timestamp 335 * __le32 wraps; # times uCode has wrapped to top of circular buffer 336 * __le32 write_index; next circular buffer entry that uCode would fill 337 * 338 * The header is followed by the circular buffer of log entries. Entries 339 * with timestamps have the following format: 340 * 341 * __le32 event_id; range 0 - 1500 342 * __le32 timestamp; low 32 bits of TSF (of network, if associated) 343 * __le32 data; event_id-specific data value 344 * 345 * Entries without timestamps contain only event_id and data. 346 * 347 * 348 * 2) error_event_table_ptr indicates base of the error log. This contains 349 * information about any uCode error that occurs. For agn, the format 350 * of the error log is defined by struct iwl_error_event_table. 351 * 352 * The Linux driver can print both logs to the system log when a uCode error 353 * occurs. 354 */ 355 356/* 357 * Note: This structure is read from the device with IO accesses, 358 * and the reading already does the endian conversion. As it is 359 * read with u32-sized accesses, any members with a different size 360 * need to be ordered correctly though! 361 */ 362struct iwl_error_event_table { 363 u32 valid; /* (nonzero) valid, (0) log is empty */ 364 u32 error_id; /* type of error */ 365 u32 pc; /* program counter */ 366 u32 blink1; /* branch link */ 367 u32 blink2; /* branch link */ 368 u32 ilink1; /* interrupt link */ 369 u32 ilink2; /* interrupt link */ 370 u32 data1; /* error-specific data */ 371 u32 data2; /* error-specific data */ 372 u32 line; /* source code line of error */ 373 u32 bcon_time; /* beacon timer */ 374 u32 tsf_low; /* network timestamp function timer */ 375 u32 tsf_hi; /* network timestamp function timer */ 376 u32 gp1; /* GP1 timer register */ 377 u32 gp2; /* GP2 timer register */ 378 u32 gp3; /* GP3 timer register */ 379 u32 ucode_ver; /* uCode version */ 380 u32 hw_ver; /* HW Silicon version */ 381 u32 brd_ver; /* HW board version */ 382 u32 log_pc; /* log program counter */ 383 u32 frame_ptr; /* frame pointer */ 384 u32 stack_ptr; /* stack pointer */ 385 u32 hcmd; /* last host command header */ 386 u32 isr0; /* isr status register LMPM_NIC_ISR0: 387 * rxtx_flag */ 388 u32 isr1; /* isr status register LMPM_NIC_ISR1: 389 * host_flag */ 390 u32 isr2; /* isr status register LMPM_NIC_ISR2: 391 * enc_flag */ 392 u32 isr3; /* isr status register LMPM_NIC_ISR3: 393 * time_flag */ 394 u32 isr4; /* isr status register LMPM_NIC_ISR4: 395 * wico interrupt */ 396 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 397 u32 wait_event; /* wait event() caller address */ 398 u32 l2p_control; /* L2pControlField */ 399 u32 l2p_duration; /* L2pDurationField */ 400 u32 l2p_mhvalid; /* L2pMhValidBits */ 401 u32 l2p_addr_match; /* L2pAddrMatchStat */ 402 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 403 * (LMPM_PMG_SEL) */ 404 u32 u_timestamp; /* indicate when the date and time of the 405 * compilation */ 406 u32 flow_handler; /* FH read/write pointers, RX credit */ 407} __packed; 408 409struct iwl_alive_resp { 410 u8 ucode_minor; 411 u8 ucode_major; 412 __le16 reserved1; 413 u8 sw_rev[8]; 414 u8 ver_type; 415 u8 ver_subtype; /* not "9" for runtime alive */ 416 __le16 reserved2; 417 __le32 log_event_table_ptr; /* SRAM address for event log */ 418 __le32 error_event_table_ptr; /* SRAM address for error log */ 419 __le32 timestamp; 420 __le32 is_valid; 421} __packed; 422 423/* 424 * REPLY_ERROR = 0x2 (response only, not a command) 425 */ 426struct iwl_error_resp { 427 __le32 error_type; 428 u8 cmd_id; 429 u8 reserved1; 430 __le16 bad_cmd_seq_num; 431 __le32 error_info; 432 __le64 timestamp; 433} __packed; 434 435/****************************************************************************** 436 * (1) 437 * RXON Commands & Responses: 438 * 439 *****************************************************************************/ 440 441/* 442 * Rx config defines & structure 443 */ 444/* rx_config device types */ 445enum { 446 RXON_DEV_TYPE_AP = 1, 447 RXON_DEV_TYPE_ESS = 3, 448 RXON_DEV_TYPE_IBSS = 4, 449 RXON_DEV_TYPE_SNIFFER = 6, 450 RXON_DEV_TYPE_CP = 7, 451 RXON_DEV_TYPE_2STA = 8, 452 RXON_DEV_TYPE_P2P = 9, 453}; 454 455 456#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0) 457#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0) 458#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1) 459#define RXON_RX_CHAIN_VALID_POS (1) 460#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4) 461#define RXON_RX_CHAIN_FORCE_SEL_POS (4) 462#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7) 463#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7) 464#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10) 465#define RXON_RX_CHAIN_CNT_POS (10) 466#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12) 467#define RXON_RX_CHAIN_MIMO_CNT_POS (12) 468#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14) 469#define RXON_RX_CHAIN_MIMO_FORCE_POS (14) 470 471/* rx_config flags */ 472/* band & modulation selection */ 473#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0) 474#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1) 475/* auto detection enable */ 476#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2) 477/* TGg protection when tx */ 478#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3) 479/* cck short slot & preamble */ 480#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4) 481#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5) 482/* antenna selection */ 483#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7) 484#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00) 485#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8) 486#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9) 487/* radar detection enable */ 488#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12) 489#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13) 490/* rx response to host with 8-byte TSF 491* (according to ON_AIR deassertion) */ 492#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15) 493 494 495/* HT flags */ 496#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22) 497#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22) 498 499#define RXON_FLG_HT_OPERATING_MODE_POS (23) 500 501#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23) 502#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23) 503 504#define RXON_FLG_CHANNEL_MODE_POS (25) 505#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25) 506 507/* channel mode */ 508enum { 509 CHANNEL_MODE_LEGACY = 0, 510 CHANNEL_MODE_PURE_40 = 1, 511 CHANNEL_MODE_MIXED = 2, 512 CHANNEL_MODE_RESERVED = 3, 513}; 514#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS) 515#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS) 516#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS) 517 518/* CTS to self (if spec allows) flag */ 519#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30) 520 521/* rx_config filter flags */ 522/* accept all data frames */ 523#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0) 524/* pass control & management to host */ 525#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1) 526/* accept multi-cast */ 527#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2) 528/* don't decrypt uni-cast frames */ 529#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3) 530/* don't decrypt multi-cast frames */ 531#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4) 532/* STA is associated */ 533#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5) 534/* transfer to host non bssid beacons in associated state */ 535#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6) 536 537/** 538 * REPLY_RXON = 0x10 (command, has simple generic response) 539 * 540 * RXON tunes the radio tuner to a service channel, and sets up a number 541 * of parameters that are used primarily for Rx, but also for Tx operations. 542 * 543 * NOTE: When tuning to a new channel, driver must set the 544 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent 545 * info within the device, including the station tables, tx retry 546 * rate tables, and txpower tables. Driver must build a new station 547 * table and txpower table before transmitting anything on the RXON 548 * channel. 549 * 550 * NOTE: All RXONs wipe clean the internal txpower table. Driver must 551 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10), 552 * regardless of whether RXON_FILTER_ASSOC_MSK is set. 553 */ 554 555struct iwl_rxon_cmd { 556 u8 node_addr[6]; 557 __le16 reserved1; 558 u8 bssid_addr[6]; 559 __le16 reserved2; 560 u8 wlap_bssid_addr[6]; 561 __le16 reserved3; 562 u8 dev_type; 563 u8 air_propagation; 564 __le16 rx_chain; 565 u8 ofdm_basic_rates; 566 u8 cck_basic_rates; 567 __le16 assoc_id; 568 __le32 flags; 569 __le32 filter_flags; 570 __le16 channel; 571 u8 ofdm_ht_single_stream_basic_rates; 572 u8 ofdm_ht_dual_stream_basic_rates; 573 u8 ofdm_ht_triple_stream_basic_rates; 574 u8 reserved5; 575 __le16 acquisition_data; 576 __le16 reserved6; 577} __packed; 578 579/* 580 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response) 581 */ 582struct iwl_rxon_assoc_cmd { 583 __le32 flags; 584 __le32 filter_flags; 585 u8 ofdm_basic_rates; 586 u8 cck_basic_rates; 587 __le16 reserved1; 588 u8 ofdm_ht_single_stream_basic_rates; 589 u8 ofdm_ht_dual_stream_basic_rates; 590 u8 ofdm_ht_triple_stream_basic_rates; 591 u8 reserved2; 592 __le16 rx_chain_select_flags; 593 __le16 acquisition_data; 594 __le32 reserved3; 595} __packed; 596 597#define IWL_CONN_MAX_LISTEN_INTERVAL 10 598#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */ 599 600/* 601 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response) 602 */ 603struct iwl_rxon_time_cmd { 604 __le64 timestamp; 605 __le16 beacon_interval; 606 __le16 atim_window; 607 __le32 beacon_init_val; 608 __le16 listen_interval; 609 u8 dtim_period; 610 u8 delta_cp_bss_tbtts; 611} __packed; 612 613/* 614 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response) 615 */ 616/** 617 * struct iwl5000_channel_switch_cmd 618 * @band: 0- 5.2GHz, 1- 2.4GHz 619 * @expect_beacon: 0- resume transmits after channel switch 620 * 1- wait for beacon to resume transmits 621 * @channel: new channel number 622 * @rxon_flags: Rx on flags 623 * @rxon_filter_flags: filtering parameters 624 * @switch_time: switch time in extended beacon format 625 * @reserved: reserved bytes 626 */ 627struct iwl5000_channel_switch_cmd { 628 u8 band; 629 u8 expect_beacon; 630 __le16 channel; 631 __le32 rxon_flags; 632 __le32 rxon_filter_flags; 633 __le32 switch_time; 634 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 635} __packed; 636 637/** 638 * struct iwl6000_channel_switch_cmd 639 * @band: 0- 5.2GHz, 1- 2.4GHz 640 * @expect_beacon: 0- resume transmits after channel switch 641 * 1- wait for beacon to resume transmits 642 * @channel: new channel number 643 * @rxon_flags: Rx on flags 644 * @rxon_filter_flags: filtering parameters 645 * @switch_time: switch time in extended beacon format 646 * @reserved: reserved bytes 647 */ 648struct iwl6000_channel_switch_cmd { 649 u8 band; 650 u8 expect_beacon; 651 __le16 channel; 652 __le32 rxon_flags; 653 __le32 rxon_filter_flags; 654 __le32 switch_time; 655 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 656} __packed; 657 658/* 659 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command) 660 */ 661struct iwl_csa_notification { 662 __le16 band; 663 __le16 channel; 664 __le32 status; /* 0 - OK, 1 - fail */ 665} __packed; 666 667/****************************************************************************** 668 * (2) 669 * Quality-of-Service (QOS) Commands & Responses: 670 * 671 *****************************************************************************/ 672 673/** 674 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM 675 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd 676 * 677 * @cw_min: Contention window, start value in numbers of slots. 678 * Should be a power-of-2, minus 1. Device's default is 0x0f. 679 * @cw_max: Contention window, max value in numbers of slots. 680 * Should be a power-of-2, minus 1. Device's default is 0x3f. 681 * @aifsn: Number of slots in Arbitration Interframe Space (before 682 * performing random backoff timing prior to Tx). Device default 1. 683 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. 684 * 685 * Device will automatically increase contention window by (2*CW) + 1 for each 686 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW 687 * value, to cap the CW value. 688 */ 689struct iwl_ac_qos { 690 __le16 cw_min; 691 __le16 cw_max; 692 u8 aifsn; 693 u8 reserved1; 694 __le16 edca_txop; 695} __packed; 696 697/* QoS flags defines */ 698#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01) 699#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02) 700#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10) 701 702/* Number of Access Categories (AC) (EDCA), queues 0..3 */ 703#define AC_NUM 4 704 705/* 706 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response) 707 * 708 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs 709 * 0: Background, 1: Best Effort, 2: Video, 3: Voice. 710 */ 711struct iwl_qosparam_cmd { 712 __le32 qos_flags; 713 struct iwl_ac_qos ac[AC_NUM]; 714} __packed; 715 716/****************************************************************************** 717 * (3) 718 * Add/Modify Stations Commands & Responses: 719 * 720 *****************************************************************************/ 721/* 722 * Multi station support 723 */ 724 725/* Special, dedicated locations within device's station table */ 726#define IWL_AP_ID 0 727#define IWL_AP_ID_PAN 1 728#define IWL_STA_ID 2 729#define IWLAGN_PAN_BCAST_ID 14 730#define IWLAGN_BROADCAST_ID 15 731#define IWLAGN_STATION_COUNT 16 732 733#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT 734 735#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2) 736#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8) 737#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13) 738#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17) 739#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18) 740#define STA_FLG_MAX_AGG_SIZE_POS (19) 741#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19) 742#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21) 743#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22) 744#define STA_FLG_AGG_MPDU_DENSITY_POS (23) 745#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23) 746 747/* Use in mode field. 1: modify existing entry, 0: add new station entry */ 748#define STA_CONTROL_MODIFY_MSK 0x01 749 750/* key flags __le16*/ 751#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007) 752#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000) 753#define STA_KEY_FLG_WEP cpu_to_le16(0x0001) 754#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002) 755#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003) 756 757#define STA_KEY_FLG_KEYID_POS 8 758#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800) 759/* wep key is either from global key (0) or from station info array (1) */ 760#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008) 761 762/* wep key in STA: 5-bytes (0) or 13-bytes (1) */ 763#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000) 764#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000) 765#define STA_KEY_MAX_NUM 8 766#define STA_KEY_MAX_NUM_PAN 16 767/* must not match WEP_INVALID_OFFSET */ 768#define IWLAGN_HW_KEY_DEFAULT 0xfe 769 770/* Flags indicate whether to modify vs. don't change various station params */ 771#define STA_MODIFY_KEY_MASK 0x01 772#define STA_MODIFY_TID_DISABLE_TX 0x02 773#define STA_MODIFY_TX_RATE_MSK 0x04 774#define STA_MODIFY_ADDBA_TID_MSK 0x08 775#define STA_MODIFY_DELBA_TID_MSK 0x10 776#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20 777 778/* agn */ 779struct iwl_keyinfo { 780 __le16 key_flags; 781 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */ 782 u8 reserved1; 783 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */ 784 u8 key_offset; 785 u8 reserved2; 786 u8 key[16]; /* 16-byte unicast decryption key */ 787 __le64 tx_secur_seq_cnt; 788 __le64 hw_tkip_mic_rx_key; 789 __le64 hw_tkip_mic_tx_key; 790} __packed; 791 792/** 793 * struct sta_id_modify 794 * @addr[ETH_ALEN]: station's MAC address 795 * @sta_id: index of station in uCode's station table 796 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change 797 * 798 * Driver selects unused table index when adding new station, 799 * or the index to a pre-existing station entry when modifying that station. 800 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP). 801 * 802 * modify_mask flags select which parameters to modify vs. leave alone. 803 */ 804struct sta_id_modify { 805 u8 addr[ETH_ALEN]; 806 __le16 reserved1; 807 u8 sta_id; 808 u8 modify_mask; 809 __le16 reserved2; 810} __packed; 811 812/* 813 * REPLY_ADD_STA = 0x18 (command) 814 * 815 * The device contains an internal table of per-station information, 816 * with info on security keys, aggregation parameters, and Tx rates for 817 * initial Tx attempt and any retries (agn devices uses 818 * REPLY_TX_LINK_QUALITY_CMD, 819 * 820 * REPLY_ADD_STA sets up the table entry for one station, either creating 821 * a new entry, or modifying a pre-existing one. 822 * 823 * NOTE: RXON command (without "associated" bit set) wipes the station table 824 * clean. Moving into RF_KILL state does this also. Driver must set up 825 * new station table before transmitting anything on the RXON channel 826 * (except active scans or active measurements; those commands carry 827 * their own txpower/rate setup data). 828 * 829 * When getting started on a new channel, driver must set up the 830 * IWL_BROADCAST_ID entry (last entry in the table). For a client 831 * station in a BSS, once an AP is selected, driver sets up the AP STA 832 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP 833 * are all that are needed for a BSS client station. If the device is 834 * used as AP, or in an IBSS network, driver must set up station table 835 * entries for all STAs in network, starting with index IWL_STA_ID. 836 */ 837 838struct iwl_addsta_cmd { 839 u8 mode; /* 1: modify existing, 0: add new station */ 840 u8 reserved[3]; 841 struct sta_id_modify sta; 842 struct iwl_keyinfo key; 843 __le32 station_flags; /* STA_FLG_* */ 844 __le32 station_flags_msk; /* STA_FLG_* */ 845 846 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID) 847 * corresponding to bit (e.g. bit 5 controls TID 5). 848 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */ 849 __le16 tid_disable_tx; 850 __le16 legacy_reserved; 851 852 /* TID for which to add block-ack support. 853 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 854 u8 add_immediate_ba_tid; 855 856 /* TID for which to remove block-ack support. 857 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */ 858 u8 remove_immediate_ba_tid; 859 860 /* Starting Sequence Number for added block-ack support. 861 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 862 __le16 add_immediate_ba_ssn; 863 864 /* 865 * Number of packets OK to transmit to station even though 866 * it is asleep -- used to synchronise PS-poll and u-APSD 867 * responses while ucode keeps track of STA sleep state. 868 */ 869 __le16 sleep_tx_count; 870 871 __le16 reserved2; 872} __packed; 873 874 875#define ADD_STA_SUCCESS_MSK 0x1 876#define ADD_STA_NO_ROOM_IN_TABLE 0x2 877#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4 878#define ADD_STA_MODIFY_NON_EXIST_STA 0x8 879/* 880 * REPLY_ADD_STA = 0x18 (response) 881 */ 882struct iwl_add_sta_resp { 883 u8 status; /* ADD_STA_* */ 884} __packed; 885 886#define REM_STA_SUCCESS_MSK 0x1 887/* 888 * REPLY_REM_STA = 0x19 (response) 889 */ 890struct iwl_rem_sta_resp { 891 u8 status; 892} __packed; 893 894/* 895 * REPLY_REM_STA = 0x19 (command) 896 */ 897struct iwl_rem_sta_cmd { 898 u8 num_sta; /* number of removed stations */ 899 u8 reserved[3]; 900 u8 addr[ETH_ALEN]; /* MAC addr of the first station */ 901 u8 reserved2[2]; 902} __packed; 903 904 905/* WiFi queues mask */ 906#define IWL_SCD_BK_MSK BIT(0) 907#define IWL_SCD_BE_MSK BIT(1) 908#define IWL_SCD_VI_MSK BIT(2) 909#define IWL_SCD_VO_MSK BIT(3) 910#define IWL_SCD_MGMT_MSK BIT(3) 911 912/* PAN queues mask */ 913#define IWL_PAN_SCD_BK_MSK BIT(4) 914#define IWL_PAN_SCD_BE_MSK BIT(5) 915#define IWL_PAN_SCD_VI_MSK BIT(6) 916#define IWL_PAN_SCD_VO_MSK BIT(7) 917#define IWL_PAN_SCD_MGMT_MSK BIT(7) 918#define IWL_PAN_SCD_MULTICAST_MSK BIT(8) 919 920#define IWL_AGG_TX_QUEUE_MSK 0xffc00 921 922#define IWL_DROP_ALL BIT(1) 923 924/* 925 * REPLY_TXFIFO_FLUSH = 0x1e(command and response) 926 * 927 * When using full FIFO flush this command checks the scheduler HW block WR/RD 928 * pointers to check if all the frames were transferred by DMA into the 929 * relevant TX FIFO queue. Only when the DMA is finished and the queue is 930 * empty the command can finish. 931 * This command is used to flush the TXFIFO from transmit commands, it may 932 * operate on single or multiple queues, the command queue can't be flushed by 933 * this command. The command response is returned when all the queue flush 934 * operations are done. Each TX command flushed return response with the FLUSH 935 * status set in the TX response status. When FIFO flush operation is used, 936 * the flush operation ends when both the scheduler DMA done and TXFIFO empty 937 * are set. 938 * 939 * @queue_control: bit mask for which queues to flush 940 * @flush_control: flush controls 941 * 0: Dump single MSDU 942 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable. 943 * 2: Dump all FIFO 944 */ 945struct iwl_txfifo_flush_cmd_v3 { 946 __le32 queue_control; 947 __le16 flush_control; 948 __le16 reserved; 949} __packed; 950 951struct iwl_txfifo_flush_cmd_v2 { 952 __le16 queue_control; 953 __le16 flush_control; 954} __packed; 955 956/* 957 * REPLY_WEP_KEY = 0x20 958 */ 959struct iwl_wep_key { 960 u8 key_index; 961 u8 key_offset; 962 u8 reserved1[2]; 963 u8 key_size; 964 u8 reserved2[3]; 965 u8 key[16]; 966} __packed; 967 968struct iwl_wep_cmd { 969 u8 num_keys; 970 u8 global_key_type; 971 u8 flags; 972 u8 reserved; 973 struct iwl_wep_key key[]; 974} __packed; 975 976#define WEP_KEY_WEP_TYPE 1 977#define WEP_KEYS_MAX 4 978#define WEP_INVALID_OFFSET 0xff 979#define WEP_KEY_LEN_64 5 980#define WEP_KEY_LEN_128 13 981 982/****************************************************************************** 983 * (4) 984 * Rx Responses: 985 * 986 *****************************************************************************/ 987 988#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0) 989#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1) 990 991#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0) 992#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1) 993#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2) 994#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3) 995#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70 996#define RX_RES_PHY_FLAGS_ANTENNA_POS 4 997#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7) 998 999#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8) 1000#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8) 1001#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8) 1002#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8) 1003#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8) 1004#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8) 1005 1006#define RX_RES_STATUS_STATION_FOUND (1<<6) 1007#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7) 1008 1009#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11) 1010#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11) 1011#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11) 1012#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11) 1013#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11) 1014 1015#define RX_MPDU_RES_STATUS_ICV_OK (0x20) 1016#define RX_MPDU_RES_STATUS_MIC_OK (0x40) 1017#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7) 1018#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800) 1019 1020 1021#define IWLAGN_RX_RES_PHY_CNT 8 1022#define IWLAGN_RX_RES_AGC_IDX 1 1023#define IWLAGN_RX_RES_RSSI_AB_IDX 2 1024#define IWLAGN_RX_RES_RSSI_C_IDX 3 1025#define IWLAGN_OFDM_AGC_MSK 0xfe00 1026#define IWLAGN_OFDM_AGC_BIT_POS 9 1027#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff 1028#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00 1029#define IWLAGN_OFDM_RSSI_A_BIT_POS 0 1030#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000 1031#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000 1032#define IWLAGN_OFDM_RSSI_B_BIT_POS 16 1033#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff 1034#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00 1035#define IWLAGN_OFDM_RSSI_C_BIT_POS 0 1036 1037struct iwlagn_non_cfg_phy { 1038 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */ 1039} __packed; 1040 1041 1042/* 1043 * REPLY_RX = 0xc3 (response only, not a command) 1044 * Used only for legacy (non 11n) frames. 1045 */ 1046struct iwl_rx_phy_res { 1047 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */ 1048 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */ 1049 u8 stat_id; /* configurable DSP phy data set ID */ 1050 u8 reserved1; 1051 __le64 timestamp; /* TSF at on air rise */ 1052 __le32 beacon_time_stamp; /* beacon at on-air rise */ 1053 __le16 phy_flags; /* general phy flags: band, modulation, ... */ 1054 __le16 channel; /* channel number */ 1055 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */ 1056 __le32 rate_n_flags; /* RATE_MCS_* */ 1057 __le16 byte_count; /* frame's byte-count */ 1058 __le16 frame_time; /* frame's time on the air */ 1059} __packed; 1060 1061struct iwl_rx_mpdu_res_start { 1062 __le16 byte_count; 1063 __le16 reserved; 1064} __packed; 1065 1066 1067/****************************************************************************** 1068 * (5) 1069 * Tx Commands & Responses: 1070 * 1071 * Driver must place each REPLY_TX command into one of the prioritized Tx 1072 * queues in host DRAM, shared between driver and device (see comments for 1073 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode 1074 * are preparing to transmit, the device pulls the Tx command over the PCI 1075 * bus via one of the device's Tx DMA channels, to fill an internal FIFO 1076 * from which data will be transmitted. 1077 * 1078 * uCode handles all timing and protocol related to control frames 1079 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler 1080 * handle reception of block-acks; uCode updates the host driver via 1081 * REPLY_COMPRESSED_BA. 1082 * 1083 * uCode handles retrying Tx when an ACK is expected but not received. 1084 * This includes trying lower data rates than the one requested in the Tx 1085 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn). 1086 * 1087 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD. 1088 * This command must be executed after every RXON command, before Tx can occur. 1089 *****************************************************************************/ 1090 1091/* REPLY_TX Tx flags field */ 1092 1093/* 1094 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it 1095 * before this frame. if CTS-to-self required check 1096 * RXON_FLG_SELF_CTS_EN status. 1097 */ 1098#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0) 1099 1100/* 1: Expect ACK from receiving station 1101 * 0: Don't expect ACK (MAC header's duration field s/b 0) 1102 * Set this for unicast frames, but not broadcast/multicast. */ 1103#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3) 1104 1105/* For agn devices: 1106 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD). 1107 * Tx command's initial_rate_index indicates first rate to try; 1108 * uCode walks through table for additional Tx attempts. 1109 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field. 1110 * This rate will be used for all Tx attempts; it will not be scaled. */ 1111#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4) 1112 1113/* 1: Expect immediate block-ack. 1114 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */ 1115#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6) 1116 1117/* Tx antenna selection field; reserved (0) for agn devices. */ 1118#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00) 1119 1120/* 1: Ignore Bluetooth priority for this frame. 1121 * 0: Delay Tx until Bluetooth device is done (normal usage). */ 1122#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12) 1123 1124/* 1: uCode overrides sequence control field in MAC header. 1125 * 0: Driver provides sequence control field in MAC header. 1126 * Set this for management frames, non-QOS data frames, non-unicast frames, 1127 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */ 1128#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13) 1129 1130/* 1: This frame is non-last MPDU; more fragments are coming. 1131 * 0: Last fragment, or not using fragmentation. */ 1132#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14) 1133 1134/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame. 1135 * 0: No TSF required in outgoing frame. 1136 * Set this for transmitting beacons and probe responses. */ 1137#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16) 1138 1139/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword 1140 * alignment of frame's payload data field. 1141 * 0: No pad 1142 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4 1143 * field (but not both). Driver must align frame data (i.e. data following 1144 * MAC header) to DWORD boundary. */ 1145#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20) 1146 1147/* accelerate aggregation support 1148 * 0 - no CCMP encryption; 1 - CCMP encryption */ 1149#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22) 1150 1151/* HCCA-AP - disable duration overwriting. */ 1152#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25) 1153 1154 1155/* 1156 * TX command security control 1157 */ 1158#define TX_CMD_SEC_WEP 0x01 1159#define TX_CMD_SEC_CCM 0x02 1160#define TX_CMD_SEC_TKIP 0x03 1161#define TX_CMD_SEC_MSK 0x03 1162#define TX_CMD_SEC_SHIFT 6 1163#define TX_CMD_SEC_KEY128 0x08 1164 1165/* 1166 * REPLY_TX = 0x1c (command) 1167 */ 1168 1169/* 1170 * Used for managing Tx retries when expecting block-acks. 1171 * Driver should set these fields to 0. 1172 */ 1173struct iwl_dram_scratch { 1174 u8 try_cnt; /* Tx attempts */ 1175 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */ 1176 __le16 reserved; 1177} __packed; 1178 1179struct iwl_tx_cmd { 1180 /* 1181 * MPDU byte count: 1182 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size, 1183 * + 8 byte IV for CCM or TKIP (not used for WEP) 1184 * + Data payload 1185 * + 8-byte MIC (not used for CCM/WEP) 1186 * NOTE: Does not include Tx command bytes, post-MAC pad bytes, 1187 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i 1188 * Range: 14-2342 bytes. 1189 */ 1190 __le16 len; 1191 1192 /* 1193 * MPDU or MSDU byte count for next frame. 1194 * Used for fragmentation and bursting, but not 11n aggregation. 1195 * Same as "len", but for next frame. Set to 0 if not applicable. 1196 */ 1197 __le16 next_frame_len; 1198 1199 __le32 tx_flags; /* TX_CMD_FLG_* */ 1200 1201 /* uCode may modify this field of the Tx command (in host DRAM!). 1202 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */ 1203 struct iwl_dram_scratch scratch; 1204 1205 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */ 1206 __le32 rate_n_flags; /* RATE_MCS_* */ 1207 1208 /* Index of destination station in uCode's station table */ 1209 u8 sta_id; 1210 1211 /* Type of security encryption: CCM or TKIP */ 1212 u8 sec_ctl; /* TX_CMD_SEC_* */ 1213 1214 /* 1215 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial 1216 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for 1217 * data frames, this field may be used to selectively reduce initial 1218 * rate (via non-0 value) for special frames (e.g. management), while 1219 * still supporting rate scaling for all frames. 1220 */ 1221 u8 initial_rate_index; 1222 u8 reserved; 1223 u8 key[16]; 1224 __le16 next_frame_flags; 1225 __le16 reserved2; 1226 union { 1227 __le32 life_time; 1228 __le32 attempt; 1229 } stop_time; 1230 1231 /* Host DRAM physical address pointer to "scratch" in this command. 1232 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */ 1233 __le32 dram_lsb_ptr; 1234 u8 dram_msb_ptr; 1235 1236 u8 rts_retry_limit; /*byte 50 */ 1237 u8 data_retry_limit; /*byte 51 */ 1238 u8 tid_tspec; 1239 union { 1240 __le16 pm_frame_timeout; 1241 __le16 attempt_duration; 1242 } timeout; 1243 1244 /* 1245 * Duration of EDCA burst Tx Opportunity, in 32-usec units. 1246 * Set this if txop time is not specified by HCCA protocol (e.g. by AP). 1247 */ 1248 __le16 driver_txop; 1249 1250 /* 1251 * MAC header goes here, followed by 2 bytes padding if MAC header 1252 * length is 26 or 30 bytes, followed by payload data 1253 */ 1254 union { 1255 DECLARE_FLEX_ARRAY(u8, payload); 1256 DECLARE_FLEX_ARRAY(struct ieee80211_hdr, hdr); 1257 }; 1258} __packed; 1259 1260/* 1261 * TX command response is sent after *agn* transmission attempts. 1262 * 1263 * both postpone and abort status are expected behavior from uCode. there is 1264 * no special operation required from driver; except for RFKILL_FLUSH, 1265 * which required tx flush host command to flush all the tx frames in queues 1266 */ 1267enum { 1268 TX_STATUS_SUCCESS = 0x01, 1269 TX_STATUS_DIRECT_DONE = 0x02, 1270 /* postpone TX */ 1271 TX_STATUS_POSTPONE_DELAY = 0x40, 1272 TX_STATUS_POSTPONE_FEW_BYTES = 0x41, 1273 TX_STATUS_POSTPONE_BT_PRIO = 0x42, 1274 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43, 1275 TX_STATUS_POSTPONE_CALC_TTAK = 0x44, 1276 /* abort TX */ 1277 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81, 1278 TX_STATUS_FAIL_SHORT_LIMIT = 0x82, 1279 TX_STATUS_FAIL_LONG_LIMIT = 0x83, 1280 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84, 1281 TX_STATUS_FAIL_DRAIN_FLOW = 0x85, 1282 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86, 1283 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87, 1284 TX_STATUS_FAIL_DEST_PS = 0x88, 1285 TX_STATUS_FAIL_HOST_ABORTED = 0x89, 1286 TX_STATUS_FAIL_BT_RETRY = 0x8a, 1287 TX_STATUS_FAIL_STA_INVALID = 0x8b, 1288 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c, 1289 TX_STATUS_FAIL_TID_DISABLE = 0x8d, 1290 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e, 1291 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f, 1292 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90, 1293 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91, 1294}; 1295 1296#define TX_PACKET_MODE_REGULAR 0x0000 1297#define TX_PACKET_MODE_BURST_SEQ 0x0100 1298#define TX_PACKET_MODE_BURST_FIRST 0x0200 1299 1300enum { 1301 TX_POWER_PA_NOT_ACTIVE = 0x0, 1302}; 1303 1304enum { 1305 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */ 1306 TX_STATUS_DELAY_MSK = 0x00000040, 1307 TX_STATUS_ABORT_MSK = 0x00000080, 1308 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */ 1309 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */ 1310 TX_RESERVED = 0x00780000, /* bits 19:22 */ 1311 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */ 1312 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */ 1313}; 1314 1315/* ******************************* 1316 * TX aggregation status 1317 ******************************* */ 1318 1319enum { 1320 AGG_TX_STATE_TRANSMITTED = 0x00, 1321 AGG_TX_STATE_UNDERRUN_MSK = 0x01, 1322 AGG_TX_STATE_BT_PRIO_MSK = 0x02, 1323 AGG_TX_STATE_FEW_BYTES_MSK = 0x04, 1324 AGG_TX_STATE_ABORT_MSK = 0x08, 1325 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10, 1326 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20, 1327 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40, 1328 AGG_TX_STATE_SCD_QUERY_MSK = 0x80, 1329 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100, 1330 AGG_TX_STATE_RESPONSE_MSK = 0x1ff, 1331 AGG_TX_STATE_DUMP_TX_MSK = 0x200, 1332 AGG_TX_STATE_DELAY_TX_MSK = 0x400 1333}; 1334 1335#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */ 1336#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */ 1337#define AGG_TX_TRY_POS 12 1338 1339#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \ 1340 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \ 1341 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK) 1342 1343/* # tx attempts for first frame in aggregation */ 1344#define AGG_TX_STATE_TRY_CNT_POS 12 1345#define AGG_TX_STATE_TRY_CNT_MSK 0xf000 1346 1347/* Command ID and sequence number of Tx command for this frame */ 1348#define AGG_TX_STATE_SEQ_NUM_POS 16 1349#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000 1350 1351/* 1352 * REPLY_TX = 0x1c (response) 1353 * 1354 * This response may be in one of two slightly different formats, indicated 1355 * by the frame_count field: 1356 * 1357 * 1) No aggregation (frame_count == 1). This reports Tx results for 1358 * a single frame. Multiple attempts, at various bit rates, may have 1359 * been made for this frame. 1360 * 1361 * 2) Aggregation (frame_count > 1). This reports Tx results for 1362 * 2 or more frames that used block-acknowledge. All frames were 1363 * transmitted at same rate. Rate scaling may have been used if first 1364 * frame in this new agg block failed in previous agg block(s). 1365 * 1366 * Note that, for aggregation, ACK (block-ack) status is not delivered here; 1367 * block-ack has not been received by the time the agn device records 1368 * this status. 1369 * This status relates to reasons the tx might have been blocked or aborted 1370 * within the sending station (this agn device), rather than whether it was 1371 * received successfully by the destination station. 1372 */ 1373struct agg_tx_status { 1374 __le16 status; 1375 __le16 sequence; 1376} __packed; 1377 1378/* refer to ra_tid */ 1379#define IWLAGN_TX_RES_TID_POS 0 1380#define IWLAGN_TX_RES_TID_MSK 0x0f 1381#define IWLAGN_TX_RES_RA_POS 4 1382#define IWLAGN_TX_RES_RA_MSK 0xf0 1383 1384struct iwlagn_tx_resp { 1385 u8 frame_count; /* 1 no aggregation, >1 aggregation */ 1386 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */ 1387 u8 failure_rts; /* # failures due to unsuccessful RTS */ 1388 u8 failure_frame; /* # failures due to no ACK (unused for agg) */ 1389 1390 /* For non-agg: Rate at which frame was successful. 1391 * For agg: Rate at which all frames were transmitted. */ 1392 __le32 rate_n_flags; /* RATE_MCS_* */ 1393 1394 /* For non-agg: RTS + CTS + frame tx attempts time + ACK. 1395 * For agg: RTS + CTS + aggregation tx time + block-ack time. */ 1396 __le16 wireless_media_time; /* uSecs */ 1397 1398 u8 pa_status; /* RF power amplifier measurement (not used) */ 1399 u8 pa_integ_res_a[3]; 1400 u8 pa_integ_res_b[3]; 1401 u8 pa_integ_res_C[3]; 1402 1403 __le32 tfd_info; 1404 __le16 seq_ctl; 1405 __le16 byte_cnt; 1406 u8 tlc_info; 1407 u8 ra_tid; /* tid (0:3), sta_id (4:7) */ 1408 __le16 frame_ctrl; 1409 /* 1410 * For non-agg: frame status TX_STATUS_* 1411 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status 1412 * fields follow this one, up to frame_count. 1413 * Bit fields: 1414 * 11- 0: AGG_TX_STATE_* status code 1415 * 15-12: Retry count for 1st frame in aggregation (retries 1416 * occur if tx failed for this frame when it was a 1417 * member of a previous aggregation block). If rate 1418 * scaling is used, retry count indicates the rate 1419 * table entry used for all frames in the new agg. 1420 * 31-16: Sequence # for this frame's Tx cmd (not SSN!) 1421 */ 1422 struct agg_tx_status status; /* TX status (in aggregation - 1423 * status of 1st frame) */ 1424} __packed; 1425/* 1426 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command) 1427 * 1428 * Reports Block-Acknowledge from recipient station 1429 */ 1430struct iwl_compressed_ba_resp { 1431 __le32 sta_addr_lo32; 1432 __le16 sta_addr_hi16; 1433 __le16 reserved; 1434 1435 /* Index of recipient (BA-sending) station in uCode's station table */ 1436 u8 sta_id; 1437 u8 tid; 1438 __le16 seq_ctl; 1439 __le64 bitmap; 1440 __le16 scd_flow; 1441 __le16 scd_ssn; 1442 u8 txed; /* number of frames sent */ 1443 u8 txed_2_done; /* number of frames acked */ 1444 __le16 reserved1; 1445} __packed; 1446 1447/* 1448 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response) 1449 * 1450 */ 1451 1452/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ 1453#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0) 1454 1455/* # of EDCA prioritized tx fifos */ 1456#define LINK_QUAL_AC_NUM AC_NUM 1457 1458/* # entries in rate scale table to support Tx retries */ 1459#define LINK_QUAL_MAX_RETRY_NUM 16 1460 1461/* Tx antenna selection values */ 1462#define LINK_QUAL_ANT_A_MSK (1 << 0) 1463#define LINK_QUAL_ANT_B_MSK (1 << 1) 1464#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK) 1465 1466 1467/** 1468 * struct iwl_link_qual_general_params 1469 * 1470 * Used in REPLY_TX_LINK_QUALITY_CMD 1471 */ 1472struct iwl_link_qual_general_params { 1473 u8 flags; 1474 1475 /* No entries at or above this (driver chosen) index contain MIMO */ 1476 u8 mimo_delimiter; 1477 1478 /* Best single antenna to use for single stream (legacy, SISO). */ 1479 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1480 1481 /* Best antennas to use for MIMO */ 1482 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1483 1484 /* 1485 * If driver needs to use different initial rates for different 1486 * EDCA QOS access categories (as implemented by tx fifos 0-3), 1487 * this table will set that up, by indicating the indexes in the 1488 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start. 1489 * Otherwise, driver should set all entries to 0. 1490 * 1491 * Entry usage: 1492 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice 1493 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3. 1494 */ 1495 u8 start_rate_index[LINK_QUAL_AC_NUM]; 1496} __packed; 1497 1498#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */ 1499#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000) 1500#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100) 1501 1502#define LINK_QUAL_AGG_DISABLE_START_DEF (3) 1503#define LINK_QUAL_AGG_DISABLE_START_MAX (255) 1504#define LINK_QUAL_AGG_DISABLE_START_MIN (0) 1505 1506#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63) 1507#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63) 1508#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0) 1509 1510/** 1511 * struct iwl_link_qual_agg_params 1512 * 1513 * Used in REPLY_TX_LINK_QUALITY_CMD 1514 */ 1515struct iwl_link_qual_agg_params { 1516 1517 /* 1518 *Maximum number of uSec in aggregation. 1519 * default set to 4000 (4 milliseconds) if not configured in .cfg 1520 */ 1521 __le16 agg_time_limit; 1522 1523 /* 1524 * Number of Tx retries allowed for a frame, before that frame will 1525 * no longer be considered for the start of an aggregation sequence 1526 * (scheduler will then try to tx it as single frame). 1527 * Driver should set this to 3. 1528 */ 1529 u8 agg_dis_start_th; 1530 1531 /* 1532 * Maximum number of frames in aggregation. 1533 * 0 = no limit (default). 1 = no aggregation. 1534 * Other values = max # frames in aggregation. 1535 */ 1536 u8 agg_frame_cnt_limit; 1537 1538 __le32 reserved; 1539} __packed; 1540 1541/* 1542 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response) 1543 * 1544 * For agn devices 1545 * 1546 * Each station in the agn device's internal station table has its own table 1547 * of 16 1548 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when 1549 * an ACK is not received. This command replaces the entire table for 1550 * one station. 1551 * 1552 * NOTE: Station must already be in agn device's station table. 1553 * Use REPLY_ADD_STA. 1554 * 1555 * The rate scaling procedures described below work well. Of course, other 1556 * procedures are possible, and may work better for particular environments. 1557 * 1558 * 1559 * FILLING THE RATE TABLE 1560 * 1561 * Given a particular initial rate and mode, as determined by the rate 1562 * scaling algorithm described below, the Linux driver uses the following 1563 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the 1564 * Link Quality command: 1565 * 1566 * 1567 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate: 1568 * a) Use this same initial rate for first 3 entries. 1569 * b) Find next lower available rate using same mode (SISO or MIMO), 1570 * use for next 3 entries. If no lower rate available, switch to 1571 * legacy mode (no HT40 channel, no MIMO, no short guard interval). 1572 * c) If using MIMO, set command's mimo_delimiter to number of entries 1573 * using MIMO (3 or 6). 1574 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel, 1575 * no MIMO, no short guard interval), at the next lower bit rate 1576 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow 1577 * legacy procedure for remaining table entries. 1578 * 1579 * 2) If using legacy initial rate: 1580 * a) Use the initial rate for only one entry. 1581 * b) For each following entry, reduce the rate to next lower available 1582 * rate, until reaching the lowest available rate. 1583 * c) When reducing rate, also switch antenna selection. 1584 * d) Once lowest available rate is reached, repeat this rate until 1585 * rate table is filled (16 entries), switching antenna each entry. 1586 * 1587 * 1588 * ACCUMULATING HISTORY 1589 * 1590 * The rate scaling algorithm for agn devices, as implemented in Linux driver, 1591 * uses two sets of frame Tx success history: One for the current/active 1592 * modulation mode, and one for a speculative/search mode that is being 1593 * attempted. If the speculative mode turns out to be more effective (i.e. 1594 * actual transfer rate is better), then the driver continues to use the 1595 * speculative mode as the new current active mode. 1596 * 1597 * Each history set contains, separately for each possible rate, data for a 1598 * sliding window of the 62 most recent tx attempts at that rate. The data 1599 * includes a shifting bitmap of success(1)/failure(0), and sums of successful 1600 * and attempted frames, from which the driver can additionally calculate a 1601 * success ratio (success / attempted) and number of failures 1602 * (attempted - success), and control the size of the window (attempted). 1603 * The driver uses the bit map to remove successes from the success sum, as 1604 * the oldest tx attempts fall out of the window. 1605 * 1606 * When the agn device makes multiple tx attempts for a given frame, each 1607 * attempt might be at a different rate, and have different modulation 1608 * characteristics (e.g. antenna, fat channel, short guard interval), as set 1609 * up in the rate scaling table in the Link Quality command. The driver must 1610 * determine which rate table entry was used for each tx attempt, to determine 1611 * which rate-specific history to update, and record only those attempts that 1612 * match the modulation characteristics of the history set. 1613 * 1614 * When using block-ack (aggregation), all frames are transmitted at the same 1615 * rate, since there is no per-attempt acknowledgment from the destination 1616 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in 1617 * rate_n_flags field. After receiving a block-ack, the driver can update 1618 * history for the entire block all at once. 1619 * 1620 * 1621 * FINDING BEST STARTING RATE: 1622 * 1623 * When working with a selected initial modulation mode (see below), the 1624 * driver attempts to find a best initial rate. The initial rate is the 1625 * first entry in the Link Quality command's rate table. 1626 * 1627 * 1) Calculate actual throughput (success ratio * expected throughput, see 1628 * table below) for current initial rate. Do this only if enough frames 1629 * have been attempted to make the value meaningful: at least 6 failed 1630 * tx attempts, or at least 8 successes. If not enough, don't try rate 1631 * scaling yet. 1632 * 1633 * 2) Find available rates adjacent to current initial rate. Available means: 1634 * a) supported by hardware && 1635 * b) supported by association && 1636 * c) within any constraints selected by user 1637 * 1638 * 3) Gather measured throughputs for adjacent rates. These might not have 1639 * enough history to calculate a throughput. That's okay, we might try 1640 * using one of them anyway! 1641 * 1642 * 4) Try decreasing rate if, for current rate: 1643 * a) success ratio is < 15% || 1644 * b) lower adjacent rate has better measured throughput || 1645 * c) higher adjacent rate has worse throughput, and lower is unmeasured 1646 * 1647 * As a sanity check, if decrease was determined above, leave rate 1648 * unchanged if: 1649 * a) lower rate unavailable 1650 * b) success ratio at current rate > 85% (very good) 1651 * c) current measured throughput is better than expected throughput 1652 * of lower rate (under perfect 100% tx conditions, see table below) 1653 * 1654 * 5) Try increasing rate if, for current rate: 1655 * a) success ratio is < 15% || 1656 * b) both adjacent rates' throughputs are unmeasured (try it!) || 1657 * b) higher adjacent rate has better measured throughput || 1658 * c) lower adjacent rate has worse throughput, and higher is unmeasured 1659 * 1660 * As a sanity check, if increase was determined above, leave rate 1661 * unchanged if: 1662 * a) success ratio at current rate < 70%. This is not particularly 1663 * good performance; higher rate is sure to have poorer success. 1664 * 1665 * 6) Re-evaluate the rate after each tx frame. If working with block- 1666 * acknowledge, history and statistics may be calculated for the entire 1667 * block (including prior history that fits within the history windows), 1668 * before re-evaluation. 1669 * 1670 * FINDING BEST STARTING MODULATION MODE: 1671 * 1672 * After working with a modulation mode for a "while" (and doing rate scaling), 1673 * the driver searches for a new initial mode in an attempt to improve 1674 * throughput. The "while" is measured by numbers of attempted frames: 1675 * 1676 * For legacy mode, search for new mode after: 1677 * 480 successful frames, or 160 failed frames 1678 * For high-throughput modes (SISO or MIMO), search for new mode after: 1679 * 4500 successful frames, or 400 failed frames 1680 * 1681 * Mode switch possibilities are (3 for each mode): 1682 * 1683 * For legacy: 1684 * Change antenna, try SISO (if HT association), try MIMO (if HT association) 1685 * For SISO: 1686 * Change antenna, try MIMO, try shortened guard interval (SGI) 1687 * For MIMO: 1688 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI) 1689 * 1690 * When trying a new mode, use the same bit rate as the old/current mode when 1691 * trying antenna switches and shortened guard interval. When switching to 1692 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate 1693 * for which the expected throughput (under perfect conditions) is about the 1694 * same or slightly better than the actual measured throughput delivered by 1695 * the old/current mode. 1696 * 1697 * Actual throughput can be estimated by multiplying the expected throughput 1698 * by the success ratio (successful / attempted tx frames). Frame size is 1699 * not considered in this calculation; it assumes that frame size will average 1700 * out to be fairly consistent over several samples. The following are 1701 * metric values for expected throughput assuming 100% success ratio. 1702 * Only G band has support for CCK rates: 1703 * 1704 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60 1705 * 1706 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186 1707 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186 1708 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202 1709 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211 1710 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251 1711 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257 1712 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257 1713 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264 1714 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289 1715 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293 1716 * 1717 * After the new mode has been tried for a short while (minimum of 6 failed 1718 * frames or 8 successful frames), compare success ratio and actual throughput 1719 * estimate of the new mode with the old. If either is better with the new 1720 * mode, continue to use the new mode. 1721 * 1722 * Continue comparing modes until all 3 possibilities have been tried. 1723 * If moving from legacy to HT, try all 3 possibilities from the new HT 1724 * mode. After trying all 3, a best mode is found. Continue to use this mode 1725 * for the longer "while" described above (e.g. 480 successful frames for 1726 * legacy), and then repeat the search process. 1727 * 1728 */ 1729struct iwl_link_quality_cmd { 1730 1731 /* Index of destination/recipient station in uCode's station table */ 1732 u8 sta_id; 1733 u8 reserved1; 1734 __le16 control; /* not used */ 1735 struct iwl_link_qual_general_params general_params; 1736 struct iwl_link_qual_agg_params agg_params; 1737 1738 /* 1739 * Rate info; when using rate-scaling, Tx command's initial_rate_index 1740 * specifies 1st Tx rate attempted, via index into this table. 1741 * agn devices works its way through table when retrying Tx. 1742 */ 1743 struct { 1744 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */ 1745 } rs_table[LINK_QUAL_MAX_RETRY_NUM]; 1746 __le32 reserved2; 1747} __packed; 1748 1749/* 1750 * BT configuration enable flags: 1751 * bit 0 - 1: BT channel announcement enabled 1752 * 0: disable 1753 * bit 1 - 1: priority of BT device enabled 1754 * 0: disable 1755 * bit 2 - 1: BT 2 wire support enabled 1756 * 0: disable 1757 */ 1758#define BT_COEX_DISABLE (0x0) 1759#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0) 1760#define BT_ENABLE_PRIORITY BIT(1) 1761#define BT_ENABLE_2_WIRE BIT(2) 1762 1763#define BT_COEX_DISABLE (0x0) 1764#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY) 1765 1766#define BT_LEAD_TIME_MIN (0x0) 1767#define BT_LEAD_TIME_DEF (0x1E) 1768#define BT_LEAD_TIME_MAX (0xFF) 1769 1770#define BT_MAX_KILL_MIN (0x1) 1771#define BT_MAX_KILL_DEF (0x5) 1772#define BT_MAX_KILL_MAX (0xFF) 1773 1774#define BT_DURATION_LIMIT_DEF 625 1775#define BT_DURATION_LIMIT_MAX 1250 1776#define BT_DURATION_LIMIT_MIN 625 1777 1778#define BT_ON_THRESHOLD_DEF 4 1779#define BT_ON_THRESHOLD_MAX 1000 1780#define BT_ON_THRESHOLD_MIN 1 1781 1782#define BT_FRAG_THRESHOLD_DEF 0 1783#define BT_FRAG_THRESHOLD_MAX 0 1784#define BT_FRAG_THRESHOLD_MIN 0 1785 1786#define BT_AGG_THRESHOLD_DEF 1200 1787#define BT_AGG_THRESHOLD_MAX 8000 1788#define BT_AGG_THRESHOLD_MIN 400 1789 1790/* 1791 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response) 1792 * 1793 * agn devices support hardware handshake with Bluetooth device on 1794 * same platform. Bluetooth device alerts wireless device when it will Tx; 1795 * wireless device can delay or kill its own Tx to accommodate. 1796 */ 1797struct iwl_bt_cmd { 1798 u8 flags; 1799 u8 lead_time; 1800 u8 max_kill; 1801 u8 reserved; 1802 __le32 kill_ack_mask; 1803 __le32 kill_cts_mask; 1804} __packed; 1805 1806#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0) 1807 1808#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5)) 1809#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3 1810#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0 1811#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1 1812#define IWLAGN_BT_FLAG_COEX_MODE_3W 2 1813#define IWLAGN_BT_FLAG_COEX_MODE_4W 3 1814 1815#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6) 1816/* Disable Sync PSPoll on SCO/eSCO */ 1817#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7) 1818 1819#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */ 1820#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */ 1821 1822#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF 1823#define IWLAGN_BT_PRIO_BOOST_MIN 0x00 1824#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0 1825#define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0 1826 1827#define IWLAGN_BT_MAX_KILL_DEFAULT 5 1828 1829#define IWLAGN_BT3_T7_DEFAULT 1 1830 1831enum iwl_bt_kill_idx { 1832 IWL_BT_KILL_DEFAULT = 0, 1833 IWL_BT_KILL_OVERRIDE = 1, 1834 IWL_BT_KILL_REDUCE = 2, 1835}; 1836 1837#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000) 1838#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000) 1839#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff) 1840#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0) 1841 1842#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2 1843 1844#define IWLAGN_BT3_T2_DEFAULT 0xc 1845 1846#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0)) 1847#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1)) 1848#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2)) 1849#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3)) 1850#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4)) 1851#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5)) 1852#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6)) 1853#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7)) 1854 1855#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \ 1856 IWLAGN_BT_VALID_BOOST | \ 1857 IWLAGN_BT_VALID_MAX_KILL | \ 1858 IWLAGN_BT_VALID_3W_TIMERS | \ 1859 IWLAGN_BT_VALID_KILL_ACK_MASK | \ 1860 IWLAGN_BT_VALID_KILL_CTS_MASK | \ 1861 IWLAGN_BT_VALID_REDUCED_TX_PWR | \ 1862 IWLAGN_BT_VALID_3W_LUT) 1863 1864#define IWLAGN_BT_REDUCED_TX_PWR BIT(0) 1865 1866#define IWLAGN_BT_DECISION_LUT_SIZE 12 1867 1868struct iwl_basic_bt_cmd { 1869 u8 flags; 1870 u8 ledtime; /* unused */ 1871 u8 max_kill; 1872 u8 bt3_timer_t7_value; 1873 __le32 kill_ack_mask; 1874 __le32 kill_cts_mask; 1875 u8 bt3_prio_sample_time; 1876 u8 bt3_timer_t2_value; 1877 __le16 bt4_reaction_time; /* unused */ 1878 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE]; 1879 /* 1880 * bit 0: use reduced tx power for control frame 1881 * bit 1 - 7: reserved 1882 */ 1883 u8 reduce_txpower; 1884 u8 reserved; 1885 __le16 valid; 1886}; 1887 1888struct iwl_bt_cmd_v1 { 1889 struct iwl_basic_bt_cmd basic; 1890 u8 prio_boost; 1891 /* 1892 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1893 * if configure the following patterns 1894 */ 1895 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1896 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1897}; 1898 1899struct iwl_bt_cmd_v2 { 1900 struct iwl_basic_bt_cmd basic; 1901 __le32 prio_boost; 1902 /* 1903 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1904 * if configure the following patterns 1905 */ 1906 u8 reserved; 1907 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1908 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1909}; 1910 1911#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0)) 1912 1913struct iwlagn_bt_sco_cmd { 1914 __le32 flags; 1915}; 1916 1917/****************************************************************************** 1918 * (6) 1919 * Spectrum Management (802.11h) Commands, Responses, Notifications: 1920 * 1921 *****************************************************************************/ 1922 1923/* 1924 * Spectrum Management 1925 */ 1926#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \ 1927 RXON_FILTER_CTL2HOST_MSK | \ 1928 RXON_FILTER_ACCEPT_GRP_MSK | \ 1929 RXON_FILTER_DIS_DECRYPT_MSK | \ 1930 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \ 1931 RXON_FILTER_ASSOC_MSK | \ 1932 RXON_FILTER_BCON_AWARE_MSK) 1933 1934struct iwl_measure_channel { 1935 __le32 duration; /* measurement duration in extended beacon 1936 * format */ 1937 u8 channel; /* channel to measure */ 1938 u8 type; /* see enum iwl_measure_type */ 1939 __le16 reserved; 1940} __packed; 1941 1942/* 1943 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command) 1944 */ 1945struct iwl_spectrum_cmd { 1946 __le16 len; /* number of bytes starting from token */ 1947 u8 token; /* token id */ 1948 u8 id; /* measurement id -- 0 or 1 */ 1949 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */ 1950 u8 periodic; /* 1 = periodic */ 1951 __le16 path_loss_timeout; 1952 __le32 start_time; /* start time in extended beacon format */ 1953 __le32 reserved2; 1954 __le32 flags; /* rxon flags */ 1955 __le32 filter_flags; /* rxon filter flags */ 1956 __le16 channel_count; /* minimum 1, maximum 10 */ 1957 __le16 reserved3; 1958 struct iwl_measure_channel channels[10]; 1959} __packed; 1960 1961/* 1962 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response) 1963 */ 1964struct iwl_spectrum_resp { 1965 u8 token; 1966 u8 id; /* id of the prior command replaced, or 0xff */ 1967 __le16 status; /* 0 - command will be handled 1968 * 1 - cannot handle (conflicts with another 1969 * measurement) */ 1970} __packed; 1971 1972enum iwl_measurement_state { 1973 IWL_MEASUREMENT_START = 0, 1974 IWL_MEASUREMENT_STOP = 1, 1975}; 1976 1977enum iwl_measurement_status { 1978 IWL_MEASUREMENT_OK = 0, 1979 IWL_MEASUREMENT_CONCURRENT = 1, 1980 IWL_MEASUREMENT_CSA_CONFLICT = 2, 1981 IWL_MEASUREMENT_TGH_CONFLICT = 3, 1982 /* 4-5 reserved */ 1983 IWL_MEASUREMENT_STOPPED = 6, 1984 IWL_MEASUREMENT_TIMEOUT = 7, 1985 IWL_MEASUREMENT_PERIODIC_FAILED = 8, 1986}; 1987 1988#define NUM_ELEMENTS_IN_HISTOGRAM 8 1989 1990struct iwl_measurement_histogram { 1991 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */ 1992 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */ 1993} __packed; 1994 1995/* clear channel availability counters */ 1996struct iwl_measurement_cca_counters { 1997 __le32 ofdm; 1998 __le32 cck; 1999} __packed; 2000 2001enum iwl_measure_type { 2002 IWL_MEASURE_BASIC = (1 << 0), 2003 IWL_MEASURE_CHANNEL_LOAD = (1 << 1), 2004 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2), 2005 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3), 2006 IWL_MEASURE_FRAME = (1 << 4), 2007 /* bits 5:6 are reserved */ 2008 IWL_MEASURE_IDLE = (1 << 7), 2009}; 2010 2011/* 2012 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command) 2013 */ 2014struct iwl_spectrum_notification { 2015 u8 id; /* measurement id -- 0 or 1 */ 2016 u8 token; 2017 u8 channel_index; /* index in measurement channel list */ 2018 u8 state; /* 0 - start, 1 - stop */ 2019 __le32 start_time; /* lower 32-bits of TSF */ 2020 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */ 2021 u8 channel; 2022 u8 type; /* see enum iwl_measurement_type */ 2023 u8 reserved1; 2024 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only 2025 * valid if applicable for measurement type requested. */ 2026 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */ 2027 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */ 2028 __le32 cca_time; /* channel load time in usecs */ 2029 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 - 2030 * unidentified */ 2031 u8 reserved2[3]; 2032 struct iwl_measurement_histogram histogram; 2033 __le32 stop_time; /* lower 32-bits of TSF */ 2034 __le32 status; /* see iwl_measurement_status */ 2035} __packed; 2036 2037/****************************************************************************** 2038 * (7) 2039 * Power Management Commands, Responses, Notifications: 2040 * 2041 *****************************************************************************/ 2042 2043/** 2044 * struct iwl_powertable_cmd - Power Table Command 2045 * @flags: See below: 2046 * 2047 * POWER_TABLE_CMD = 0x77 (command, has simple generic response) 2048 * 2049 * PM allow: 2050 * bit 0 - '0' Driver not allow power management 2051 * '1' Driver allow PM (use rest of parameters) 2052 * 2053 * uCode send sleep notifications: 2054 * bit 1 - '0' Don't send sleep notification 2055 * '1' send sleep notification (SEND_PM_NOTIFICATION) 2056 * 2057 * Sleep over DTIM 2058 * bit 2 - '0' PM have to walk up every DTIM 2059 * '1' PM could sleep over DTIM till listen Interval. 2060 * 2061 * PCI power managed 2062 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1) 2063 * '1' !(PCI_CFG_LINK_CTRL & 0x1) 2064 * 2065 * Fast PD 2066 * bit 4 - '1' Put radio to sleep when receiving frame for others 2067 * 2068 * Force sleep Modes 2069 * bit 31/30- '00' use both mac/xtal sleeps 2070 * '01' force Mac sleep 2071 * '10' force xtal sleep 2072 * '11' Illegal set 2073 * 2074 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then 2075 * ucode assume sleep over DTIM is allowed and we don't need to wake up 2076 * for every DTIM. 2077 */ 2078#define IWL_POWER_VEC_SIZE 5 2079 2080#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0)) 2081#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0)) 2082#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1)) 2083#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2)) 2084#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3)) 2085#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4)) 2086#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5)) 2087#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6)) 2088#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7)) 2089#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8)) 2090#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9)) 2091 2092struct iwl_powertable_cmd { 2093 __le16 flags; 2094 u8 keep_alive_seconds; 2095 u8 debug_flags; 2096 __le32 rx_data_timeout; 2097 __le32 tx_data_timeout; 2098 __le32 sleep_interval[IWL_POWER_VEC_SIZE]; 2099 __le32 keep_alive_beacons; 2100} __packed; 2101 2102/* 2103 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command) 2104 * all devices identical. 2105 */ 2106struct iwl_sleep_notification { 2107 u8 pm_sleep_mode; 2108 u8 pm_wakeup_src; 2109 __le16 reserved; 2110 __le32 sleep_time; 2111 __le32 tsf_low; 2112 __le32 bcon_timer; 2113} __packed; 2114 2115/* Sleep states. all devices identical. */ 2116enum { 2117 IWL_PM_NO_SLEEP = 0, 2118 IWL_PM_SLP_MAC = 1, 2119 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2, 2120 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3, 2121 IWL_PM_SLP_PHY = 4, 2122 IWL_PM_SLP_REPENT = 5, 2123 IWL_PM_WAKEUP_BY_TIMER = 6, 2124 IWL_PM_WAKEUP_BY_DRIVER = 7, 2125 IWL_PM_WAKEUP_BY_RFKILL = 8, 2126 /* 3 reserved */ 2127 IWL_PM_NUM_OF_MODES = 12, 2128}; 2129 2130/* 2131 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response) 2132 */ 2133#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */ 2134#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */ 2135#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */ 2136struct iwl_card_state_cmd { 2137 __le32 status; /* CARD_STATE_CMD_* request new power state */ 2138} __packed; 2139 2140/* 2141 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command) 2142 */ 2143struct iwl_card_state_notif { 2144 __le32 flags; 2145} __packed; 2146 2147#define HW_CARD_DISABLED 0x01 2148#define SW_CARD_DISABLED 0x02 2149#define CT_CARD_DISABLED 0x04 2150#define RXON_CARD_DISABLED 0x10 2151 2152struct iwl_ct_kill_config { 2153 __le32 reserved; 2154 __le32 critical_temperature_M; 2155 __le32 critical_temperature_R; 2156} __packed; 2157 2158/* 1000, and 6x00 */ 2159struct iwl_ct_kill_throttling_config { 2160 __le32 critical_temperature_exit; 2161 __le32 reserved; 2162 __le32 critical_temperature_enter; 2163} __packed; 2164 2165/****************************************************************************** 2166 * (8) 2167 * Scan Commands, Responses, Notifications: 2168 * 2169 *****************************************************************************/ 2170 2171#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0) 2172#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1) 2173 2174/** 2175 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table 2176 * 2177 * One for each channel in the scan list. 2178 * Each channel can independently select: 2179 * 1) SSID for directed active scans 2180 * 2) Txpower setting (for rate specified within Tx command) 2181 * 3) How long to stay on-channel (behavior may be modified by quiet_time, 2182 * quiet_plcp_th, good_CRC_th) 2183 * 2184 * To avoid uCode errors, make sure the following are true (see comments 2185 * under struct iwl_scan_cmd about max_out_time and quiet_time): 2186 * 1) If using passive_dwell (i.e. passive_dwell != 0): 2187 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0) 2188 * 2) quiet_time <= active_dwell 2189 * 3) If restricting off-channel time (i.e. max_out_time !=0): 2190 * passive_dwell < max_out_time 2191 * active_dwell < max_out_time 2192 */ 2193 2194struct iwl_scan_channel { 2195 /* 2196 * type is defined as: 2197 * 0:0 1 = active, 0 = passive 2198 * 1:20 SSID direct bit map; if a bit is set, then corresponding 2199 * SSID IE is transmitted in probe request. 2200 * 21:31 reserved 2201 */ 2202 __le32 type; 2203 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */ 2204 u8 tx_gain; /* gain for analog radio */ 2205 u8 dsp_atten; /* gain for DSP */ 2206 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */ 2207 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */ 2208} __packed; 2209 2210/* set number of direct probes __le32 type */ 2211#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1)))) 2212 2213/** 2214 * struct iwl_ssid_ie - directed scan network information element 2215 * 2216 * Up to 20 of these may appear in REPLY_SCAN_CMD, 2217 * selected by "type" bit field in struct iwl_scan_channel; 2218 * each channel may select different ssids from among the 20 entries. 2219 * SSID IEs get transmitted in reverse order of entry. 2220 */ 2221struct iwl_ssid_ie { 2222 u8 id; 2223 u8 len; 2224 u8 ssid[32]; 2225} __packed; 2226 2227#define PROBE_OPTION_MAX 20 2228#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF) 2229#define IWL_GOOD_CRC_TH_DISABLED 0 2230#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1) 2231#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff) 2232#define IWL_MAX_CMD_SIZE 4096 2233 2234/* 2235 * REPLY_SCAN_CMD = 0x80 (command) 2236 * 2237 * The hardware scan command is very powerful; the driver can set it up to 2238 * maintain (relatively) normal network traffic while doing a scan in the 2239 * background. The max_out_time and suspend_time control the ratio of how 2240 * long the device stays on an associated network channel ("service channel") 2241 * vs. how long it's away from the service channel, i.e. tuned to other channels 2242 * for scanning. 2243 * 2244 * max_out_time is the max time off-channel (in usec), and suspend_time 2245 * is how long (in "extended beacon" format) that the scan is "suspended" 2246 * after returning to the service channel. That is, suspend_time is the 2247 * time that we stay on the service channel, doing normal work, between 2248 * scan segments. The driver may set these parameters differently to support 2249 * scanning when associated vs. not associated, and light vs. heavy traffic 2250 * loads when associated. 2251 * 2252 * After receiving this command, the device's scan engine does the following; 2253 * 2254 * 1) Sends SCAN_START notification to driver 2255 * 2) Checks to see if it has time to do scan for one channel 2256 * 3) Sends NULL packet, with power-save (PS) bit set to 1, 2257 * to tell AP that we're going off-channel 2258 * 4) Tunes to first channel in scan list, does active or passive scan 2259 * 5) Sends SCAN_RESULT notification to driver 2260 * 6) Checks to see if it has time to do scan on *next* channel in list 2261 * 7) Repeats 4-6 until it no longer has time to scan the next channel 2262 * before max_out_time expires 2263 * 8) Returns to service channel 2264 * 9) Sends NULL packet with PS=0 to tell AP that we're back 2265 * 10) Stays on service channel until suspend_time expires 2266 * 11) Repeats entire process 2-10 until list is complete 2267 * 12) Sends SCAN_COMPLETE notification 2268 * 2269 * For fast, efficient scans, the scan command also has support for staying on 2270 * a channel for just a short time, if doing active scanning and getting no 2271 * responses to the transmitted probe request. This time is controlled by 2272 * quiet_time, and the number of received packets below which a channel is 2273 * considered "quiet" is controlled by quiet_plcp_threshold. 2274 * 2275 * For active scanning on channels that have regulatory restrictions against 2276 * blindly transmitting, the scan can listen before transmitting, to make sure 2277 * that there is already legitimate activity on the channel. If enough 2278 * packets are cleanly received on the channel (controlled by good_CRC_th, 2279 * typical value 1), the scan engine starts transmitting probe requests. 2280 * 2281 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands. 2282 * 2283 * To avoid uCode errors, see timing restrictions described under 2284 * struct iwl_scan_channel. 2285 */ 2286 2287enum iwl_scan_flags { 2288 /* BIT(0) currently unused */ 2289 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1), 2290 /* bits 2-7 reserved */ 2291}; 2292 2293struct iwl_scan_cmd { 2294 __le16 len; 2295 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */ 2296 u8 channel_count; /* # channels in channel list */ 2297 __le16 quiet_time; /* dwell only this # millisecs on quiet channel 2298 * (only for active scan) */ 2299 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */ 2300 __le16 good_CRC_th; /* passive -> active promotion threshold */ 2301 __le16 rx_chain; /* RXON_RX_CHAIN_* */ 2302 __le32 max_out_time; /* max usec to be away from associated (service) 2303 * channel */ 2304 __le32 suspend_time; /* pause scan this long (in "extended beacon 2305 * format") when returning to service chnl: 2306 */ 2307 __le32 flags; /* RXON_FLG_* */ 2308 __le32 filter_flags; /* RXON_FILTER_* */ 2309 2310 /* For active scans (set to all-0s for passive scans). 2311 * Does not include payload. Must specify Tx rate; no rate scaling. */ 2312 struct iwl_tx_cmd tx_cmd; 2313 2314 /* For directed active scans (set to all-0s otherwise) */ 2315 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX]; 2316 2317 /* 2318 * Probe request frame, followed by channel list. 2319 * 2320 * Size of probe request frame is specified by byte count in tx_cmd. 2321 * Channel list follows immediately after probe request frame. 2322 * Number of channels in list is specified by channel_count. 2323 * Each channel in list is of type: 2324 * 2325 * struct iwl_scan_channel channels[0]; 2326 * 2327 * NOTE: Only one band of channels can be scanned per pass. You 2328 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait 2329 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION) 2330 * before requesting another scan. 2331 */ 2332 u8 data[]; 2333} __packed; 2334 2335/* Can abort will notify by complete notification with abort status. */ 2336#define CAN_ABORT_STATUS cpu_to_le32(0x1) 2337/* complete notification statuses */ 2338#define ABORT_STATUS 0x2 2339 2340/* 2341 * REPLY_SCAN_CMD = 0x80 (response) 2342 */ 2343struct iwl_scanreq_notification { 2344 __le32 status; /* 1: okay, 2: cannot fulfill request */ 2345} __packed; 2346 2347/* 2348 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command) 2349 */ 2350struct iwl_scanstart_notification { 2351 __le32 tsf_low; 2352 __le32 tsf_high; 2353 __le32 beacon_timer; 2354 u8 channel; 2355 u8 band; 2356 u8 reserved[2]; 2357 __le32 status; 2358} __packed; 2359 2360#define SCAN_OWNER_STATUS 0x1 2361#define MEASURE_OWNER_STATUS 0x2 2362 2363#define IWL_PROBE_STATUS_OK 0 2364#define IWL_PROBE_STATUS_TX_FAILED BIT(0) 2365/* error statuses combined with TX_FAILED */ 2366#define IWL_PROBE_STATUS_FAIL_TTL BIT(1) 2367#define IWL_PROBE_STATUS_FAIL_BT BIT(2) 2368 2369#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */ 2370/* 2371 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command) 2372 */ 2373struct iwl_scanresults_notification { 2374 u8 channel; 2375 u8 band; 2376 u8 probe_status; 2377 u8 num_probe_not_sent; /* not enough time to send */ 2378 __le32 tsf_low; 2379 __le32 tsf_high; 2380 __le32 statistics[NUMBER_OF_STATISTICS]; 2381} __packed; 2382 2383/* 2384 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command) 2385 */ 2386struct iwl_scancomplete_notification { 2387 u8 scanned_channels; 2388 u8 status; 2389 u8 bt_status; /* BT On/Off status */ 2390 u8 last_channel; 2391 __le32 tsf_low; 2392 __le32 tsf_high; 2393} __packed; 2394 2395 2396/****************************************************************************** 2397 * (9) 2398 * IBSS/AP Commands and Notifications: 2399 * 2400 *****************************************************************************/ 2401 2402enum iwl_ibss_manager { 2403 IWL_NOT_IBSS_MANAGER = 0, 2404 IWL_IBSS_MANAGER = 1, 2405}; 2406 2407/* 2408 * BEACON_NOTIFICATION = 0x90 (notification only, not a command) 2409 */ 2410 2411struct iwlagn_beacon_notif { 2412 struct iwlagn_tx_resp beacon_notify_hdr; 2413 __le32 low_tsf; 2414 __le32 high_tsf; 2415 __le32 ibss_mgr_status; 2416} __packed; 2417 2418/* 2419 * REPLY_TX_BEACON = 0x91 (command, has simple generic response) 2420 */ 2421 2422struct iwl_tx_beacon_cmd { 2423 struct iwl_tx_cmd tx; 2424 __le16 tim_idx; 2425 u8 tim_size; 2426 u8 reserved1; 2427 struct ieee80211_hdr frame[]; /* beacon frame */ 2428} __packed; 2429 2430/****************************************************************************** 2431 * (10) 2432 * Statistics Commands and Notifications: 2433 * 2434 *****************************************************************************/ 2435 2436#define IWL_TEMP_CONVERT 260 2437 2438#define SUP_RATE_11A_MAX_NUM_CHANNELS 8 2439#define SUP_RATE_11B_MAX_NUM_CHANNELS 4 2440#define SUP_RATE_11G_MAX_NUM_CHANNELS 12 2441 2442/* Used for passing to driver number of successes and failures per rate */ 2443struct rate_histogram { 2444 union { 2445 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2446 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2447 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2448 } success; 2449 union { 2450 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2451 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2452 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2453 } failed; 2454} __packed; 2455 2456/* statistics command response */ 2457 2458struct statistics_dbg { 2459 __le32 burst_check; 2460 __le32 burst_count; 2461 __le32 wait_for_silence_timeout_cnt; 2462 __le32 reserved[3]; 2463} __packed; 2464 2465struct statistics_rx_phy { 2466 __le32 ina_cnt; 2467 __le32 fina_cnt; 2468 __le32 plcp_err; 2469 __le32 crc32_err; 2470 __le32 overrun_err; 2471 __le32 early_overrun_err; 2472 __le32 crc32_good; 2473 __le32 false_alarm_cnt; 2474 __le32 fina_sync_err_cnt; 2475 __le32 sfd_timeout; 2476 __le32 fina_timeout; 2477 __le32 unresponded_rts; 2478 __le32 rxe_frame_limit_overrun; 2479 __le32 sent_ack_cnt; 2480 __le32 sent_cts_cnt; 2481 __le32 sent_ba_rsp_cnt; 2482 __le32 dsp_self_kill; 2483 __le32 mh_format_err; 2484 __le32 re_acq_main_rssi_sum; 2485 __le32 reserved3; 2486} __packed; 2487 2488struct statistics_rx_ht_phy { 2489 __le32 plcp_err; 2490 __le32 overrun_err; 2491 __le32 early_overrun_err; 2492 __le32 crc32_good; 2493 __le32 crc32_err; 2494 __le32 mh_format_err; 2495 __le32 agg_crc32_good; 2496 __le32 agg_mpdu_cnt; 2497 __le32 agg_cnt; 2498 __le32 unsupport_mcs; 2499} __packed; 2500 2501#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1) 2502 2503struct statistics_rx_non_phy { 2504 __le32 bogus_cts; /* CTS received when not expecting CTS */ 2505 __le32 bogus_ack; /* ACK received when not expecting ACK */ 2506 __le32 non_bssid_frames; /* number of frames with BSSID that 2507 * doesn't belong to the STA BSSID */ 2508 __le32 filtered_frames; /* count frames that were dumped in the 2509 * filtering process */ 2510 __le32 non_channel_beacons; /* beacons with our bss id but not on 2511 * our serving channel */ 2512 __le32 channel_beacons; /* beacons with our bss id and in our 2513 * serving channel */ 2514 __le32 num_missed_bcon; /* number of missed beacons */ 2515 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the 2516 * ADC was in saturation */ 2517 __le32 ina_detection_search_time;/* total time (in 0.8us) searched 2518 * for INA */ 2519 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */ 2520 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */ 2521 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */ 2522 __le32 interference_data_flag; /* flag for interference data 2523 * availability. 1 when data is 2524 * available. */ 2525 __le32 channel_load; /* counts RX Enable time in uSec */ 2526 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM 2527 * and CCK) counter */ 2528 __le32 beacon_rssi_a; 2529 __le32 beacon_rssi_b; 2530 __le32 beacon_rssi_c; 2531 __le32 beacon_energy_a; 2532 __le32 beacon_energy_b; 2533 __le32 beacon_energy_c; 2534} __packed; 2535 2536struct statistics_rx_non_phy_bt { 2537 struct statistics_rx_non_phy common; 2538 /* additional stats for bt */ 2539 __le32 num_bt_kills; 2540 __le32 reserved[2]; 2541} __packed; 2542 2543struct statistics_rx { 2544 struct statistics_rx_phy ofdm; 2545 struct statistics_rx_phy cck; 2546 struct statistics_rx_non_phy general; 2547 struct statistics_rx_ht_phy ofdm_ht; 2548} __packed; 2549 2550struct statistics_rx_bt { 2551 struct statistics_rx_phy ofdm; 2552 struct statistics_rx_phy cck; 2553 struct statistics_rx_non_phy_bt general; 2554 struct statistics_rx_ht_phy ofdm_ht; 2555} __packed; 2556 2557/** 2558 * struct statistics_tx_power - current tx power 2559 * 2560 * @ant_a: current tx power on chain a in 1/2 dB step 2561 * @ant_b: current tx power on chain b in 1/2 dB step 2562 * @ant_c: current tx power on chain c in 1/2 dB step 2563 */ 2564struct statistics_tx_power { 2565 u8 ant_a; 2566 u8 ant_b; 2567 u8 ant_c; 2568 u8 reserved; 2569} __packed; 2570 2571struct statistics_tx_non_phy_agg { 2572 __le32 ba_timeout; 2573 __le32 ba_reschedule_frames; 2574 __le32 scd_query_agg_frame_cnt; 2575 __le32 scd_query_no_agg; 2576 __le32 scd_query_agg; 2577 __le32 scd_query_mismatch; 2578 __le32 frame_not_ready; 2579 __le32 underrun; 2580 __le32 bt_prio_kill; 2581 __le32 rx_ba_rsp_cnt; 2582} __packed; 2583 2584struct statistics_tx { 2585 __le32 preamble_cnt; 2586 __le32 rx_detected_cnt; 2587 __le32 bt_prio_defer_cnt; 2588 __le32 bt_prio_kill_cnt; 2589 __le32 few_bytes_cnt; 2590 __le32 cts_timeout; 2591 __le32 ack_timeout; 2592 __le32 expected_ack_cnt; 2593 __le32 actual_ack_cnt; 2594 __le32 dump_msdu_cnt; 2595 __le32 burst_abort_next_frame_mismatch_cnt; 2596 __le32 burst_abort_missing_next_frame_cnt; 2597 __le32 cts_timeout_collision; 2598 __le32 ack_or_ba_timeout_collision; 2599 struct statistics_tx_non_phy_agg agg; 2600 /* 2601 * "tx_power" are optional parameters provided by uCode, 2602 * 6000 series is the only device provide the information, 2603 * Those are reserved fields for all the other devices 2604 */ 2605 struct statistics_tx_power tx_power; 2606 __le32 reserved1; 2607} __packed; 2608 2609 2610struct statistics_div { 2611 __le32 tx_on_a; 2612 __le32 tx_on_b; 2613 __le32 exec_time; 2614 __le32 probe_time; 2615 __le32 reserved1; 2616 __le32 reserved2; 2617} __packed; 2618 2619struct statistics_general_common { 2620 __le32 temperature; /* radio temperature */ 2621 __le32 temperature_m; /* radio voltage */ 2622 struct statistics_dbg dbg; 2623 __le32 sleep_time; 2624 __le32 slots_out; 2625 __le32 slots_idle; 2626 __le32 ttl_timestamp; 2627 struct statistics_div div; 2628 __le32 rx_enable_counter; 2629 /* 2630 * num_of_sos_states: 2631 * count the number of times we have to re-tune 2632 * in order to get out of bad PHY status 2633 */ 2634 __le32 num_of_sos_states; 2635} __packed; 2636 2637struct statistics_bt_activity { 2638 /* Tx statistics */ 2639 __le32 hi_priority_tx_req_cnt; 2640 __le32 hi_priority_tx_denied_cnt; 2641 __le32 lo_priority_tx_req_cnt; 2642 __le32 lo_priority_tx_denied_cnt; 2643 /* Rx statistics */ 2644 __le32 hi_priority_rx_req_cnt; 2645 __le32 hi_priority_rx_denied_cnt; 2646 __le32 lo_priority_rx_req_cnt; 2647 __le32 lo_priority_rx_denied_cnt; 2648} __packed; 2649 2650struct statistics_general { 2651 struct statistics_general_common common; 2652 __le32 reserved2; 2653 __le32 reserved3; 2654} __packed; 2655 2656struct statistics_general_bt { 2657 struct statistics_general_common common; 2658 struct statistics_bt_activity activity; 2659 __le32 reserved2; 2660 __le32 reserved3; 2661} __packed; 2662 2663#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0) 2664#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1) 2665#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2) 2666 2667/* 2668 * REPLY_STATISTICS_CMD = 0x9c, 2669 * all devices identical. 2670 * 2671 * This command triggers an immediate response containing uCode statistics. 2672 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below. 2673 * 2674 * If the CLEAR_STATS configuration flag is set, uCode will clear its 2675 * internal copy of the statistics (counters) after issuing the response. 2676 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below). 2677 * 2678 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue 2679 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag 2680 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself. 2681 */ 2682#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */ 2683#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */ 2684struct iwl_statistics_cmd { 2685 __le32 configuration_flags; /* IWL_STATS_CONF_* */ 2686} __packed; 2687 2688/* 2689 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) 2690 * 2691 * By default, uCode issues this notification after receiving a beacon 2692 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the 2693 * REPLY_STATISTICS_CMD 0x9c, above. 2694 * 2695 * Statistics counters continue to increment beacon after beacon, but are 2696 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD 2697 * 0x9c with CLEAR_STATS bit set (see above). 2698 * 2699 * uCode also issues this notification during scans. uCode clears statistics 2700 * appropriately so that each notification contains statistics for only the 2701 * one channel that has just been scanned. 2702 */ 2703#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2) 2704#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8) 2705 2706struct iwl_notif_statistics { 2707 __le32 flag; 2708 struct statistics_rx rx; 2709 struct statistics_tx tx; 2710 struct statistics_general general; 2711} __packed; 2712 2713struct iwl_bt_notif_statistics { 2714 __le32 flag; 2715 struct statistics_rx_bt rx; 2716 struct statistics_tx tx; 2717 struct statistics_general_bt general; 2718} __packed; 2719 2720/* 2721 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command) 2722 * 2723 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed 2724 * in regardless of how many missed beacons, which mean when driver receive the 2725 * notification, inside the command, it can find all the beacons information 2726 * which include number of total missed beacons, number of consecutive missed 2727 * beacons, number of beacons received and number of beacons expected to 2728 * receive. 2729 * 2730 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio 2731 * in order to bring the radio/PHY back to working state; which has no relation 2732 * to when driver will perform sensitivity calibration. 2733 * 2734 * Driver should set it own missed_beacon_threshold to decide when to perform 2735 * sensitivity calibration based on number of consecutive missed beacons in 2736 * order to improve overall performance, especially in noisy environment. 2737 * 2738 */ 2739 2740#define IWL_MISSED_BEACON_THRESHOLD_MIN (1) 2741#define IWL_MISSED_BEACON_THRESHOLD_DEF (5) 2742#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF 2743 2744struct iwl_missed_beacon_notif { 2745 __le32 consecutive_missed_beacons; 2746 __le32 total_missed_becons; 2747 __le32 num_expected_beacons; 2748 __le32 num_recvd_beacons; 2749} __packed; 2750 2751 2752/****************************************************************************** 2753 * (11) 2754 * Rx Calibration Commands: 2755 * 2756 * With the uCode used for open source drivers, most Tx calibration (except 2757 * for Tx Power) and most Rx calibration is done by uCode during the 2758 * "initialize" phase of uCode boot. Driver must calibrate only: 2759 * 2760 * 1) Tx power (depends on temperature), described elsewhere 2761 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas) 2762 * 3) Receiver sensitivity (to optimize signal detection) 2763 * 2764 *****************************************************************************/ 2765 2766/** 2767 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response) 2768 * 2769 * This command sets up the Rx signal detector for a sensitivity level that 2770 * is high enough to lock onto all signals within the associated network, 2771 * but low enough to ignore signals that are below a certain threshold, so as 2772 * not to have too many "false alarms". False alarms are signals that the 2773 * Rx DSP tries to lock onto, but then discards after determining that they 2774 * are noise. 2775 * 2776 * The optimum number of false alarms is between 5 and 50 per 200 TUs 2777 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e. 2778 * time listening, not transmitting). Driver must adjust sensitivity so that 2779 * the ratio of actual false alarms to actual Rx time falls within this range. 2780 * 2781 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each 2782 * received beacon. These provide information to the driver to analyze the 2783 * sensitivity. Don't analyze statistics that come in from scanning, or any 2784 * other non-associated-network source. Pertinent statistics include: 2785 * 2786 * From "general" statistics (struct statistics_rx_non_phy): 2787 * 2788 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level) 2789 * Measure of energy of desired signal. Used for establishing a level 2790 * below which the device does not detect signals. 2791 * 2792 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB) 2793 * Measure of background noise in silent period after beacon. 2794 * 2795 * channel_load 2796 * uSecs of actual Rx time during beacon period (varies according to 2797 * how much time was spent transmitting). 2798 * 2799 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately: 2800 * 2801 * false_alarm_cnt 2802 * Signal locks abandoned early (before phy-level header). 2803 * 2804 * plcp_err 2805 * Signal locks abandoned late (during phy-level header). 2806 * 2807 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from 2808 * beacon to beacon, i.e. each value is an accumulation of all errors 2809 * before and including the latest beacon. Values will wrap around to 0 2810 * after counting up to 2^32 - 1. Driver must differentiate vs. 2811 * previous beacon's values to determine # false alarms in the current 2812 * beacon period. 2813 * 2814 * Total number of false alarms = false_alarms + plcp_errs 2815 * 2816 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd 2817 * (notice that the start points for OFDM are at or close to settings for 2818 * maximum sensitivity): 2819 * 2820 * START / MIN / MAX 2821 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120 2822 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210 2823 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140 2824 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270 2825 * 2826 * If actual rate of OFDM false alarms (+ plcp_errors) is too high 2827 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity 2828 * by *adding* 1 to all 4 of the table entries above, up to the max for 2829 * each entry. Conversely, if false alarm rate is too low (less than 5 2830 * for each 204.8 msecs listening), *subtract* 1 from each entry to 2831 * increase sensitivity. 2832 * 2833 * For CCK sensitivity, keep track of the following: 2834 * 2835 * 1). 20-beacon history of maximum background noise, indicated by 2836 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the 2837 * 3 receivers. For any given beacon, the "silence reference" is 2838 * the maximum of last 60 samples (20 beacons * 3 receivers). 2839 * 2840 * 2). 10-beacon history of strongest signal level, as indicated 2841 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers, 2842 * i.e. the strength of the signal through the best receiver at the 2843 * moment. These measurements are "upside down", with lower values 2844 * for stronger signals, so max energy will be *minimum* value. 2845 * 2846 * Then for any given beacon, the driver must determine the *weakest* 2847 * of the strongest signals; this is the minimum level that needs to be 2848 * successfully detected, when using the best receiver at the moment. 2849 * "Max cck energy" is the maximum (higher value means lower energy!) 2850 * of the last 10 minima. Once this is determined, driver must add 2851 * a little margin by adding "6" to it. 2852 * 2853 * 3). Number of consecutive beacon periods with too few false alarms. 2854 * Reset this to 0 at the first beacon period that falls within the 2855 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx). 2856 * 2857 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd 2858 * (notice that the start points for CCK are at maximum sensitivity): 2859 * 2860 * START / MIN / MAX 2861 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200 2862 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400 2863 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100 2864 * 2865 * If actual rate of CCK false alarms (+ plcp_errors) is too high 2866 * (greater than 50 for each 204.8 msecs listening), method for reducing 2867 * sensitivity is: 2868 * 2869 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2870 * up to max 400. 2871 * 2872 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160, 2873 * sensitivity has been reduced a significant amount; bring it up to 2874 * a moderate 161. Otherwise, *add* 3, up to max 200. 2875 * 2876 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160, 2877 * sensitivity has been reduced only a moderate or small amount; 2878 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX, 2879 * down to min 0. Otherwise (if gain has been significantly reduced), 2880 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value. 2881 * 2882 * b) Save a snapshot of the "silence reference". 2883 * 2884 * If actual rate of CCK false alarms (+ plcp_errors) is too low 2885 * (less than 5 for each 204.8 msecs listening), method for increasing 2886 * sensitivity is used only if: 2887 * 2888 * 1a) Previous beacon did not have too many false alarms 2889 * 1b) AND difference between previous "silence reference" and current 2890 * "silence reference" (prev - current) is 2 or more, 2891 * OR 2) 100 or more consecutive beacon periods have had rate of 2892 * less than 5 false alarms per 204.8 milliseconds rx time. 2893 * 2894 * Method for increasing sensitivity: 2895 * 2896 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX, 2897 * down to min 125. 2898 * 2899 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2900 * down to min 200. 2901 * 2902 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100. 2903 * 2904 * If actual rate of CCK false alarms (+ plcp_errors) is within good range 2905 * (between 5 and 50 for each 204.8 msecs listening): 2906 * 2907 * 1) Save a snapshot of the silence reference. 2908 * 2909 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors), 2910 * give some extra margin to energy threshold by *subtracting* 8 2911 * from value in HD_MIN_ENERGY_CCK_DET_INDEX. 2912 * 2913 * For all cases (too few, too many, good range), make sure that the CCK 2914 * detection threshold (energy) is below the energy level for robust 2915 * detection over the past 10 beacon periods, the "Max cck energy". 2916 * Lower values mean higher energy; this means making sure that the value 2917 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy". 2918 * 2919 */ 2920 2921/* 2922 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd) 2923 */ 2924#define HD_TABLE_SIZE (11) /* number of entries */ 2925#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */ 2926#define HD_MIN_ENERGY_OFDM_DET_INDEX (1) 2927#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2) 2928#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3) 2929#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4) 2930#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5) 2931#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6) 2932#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7) 2933#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8) 2934#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9) 2935#define HD_OFDM_ENERGY_TH_IN_INDEX (10) 2936 2937/* 2938 * Additional table entries in enhance SENSITIVITY_CMD 2939 */ 2940#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11) 2941#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12) 2942#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13) 2943#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14) 2944#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15) 2945#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16) 2946#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17) 2947#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18) 2948#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19) 2949#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20) 2950#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21) 2951#define HD_RESERVED (22) 2952 2953/* number of entries for enhanced tbl */ 2954#define ENHANCE_HD_TABLE_SIZE (23) 2955 2956/* number of additional entries for enhanced tbl */ 2957#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE) 2958 2959#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0) 2960#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0) 2961#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0) 2962#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668) 2963#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 2964#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486) 2965#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37) 2966#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853) 2967#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 2968#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476) 2969#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99) 2970 2971#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1) 2972#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1) 2973#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1) 2974#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600) 2975#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40) 2976#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486) 2977#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45) 2978#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853) 2979#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60) 2980#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476) 2981#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99) 2982 2983 2984/* Control field in struct iwl_sensitivity_cmd */ 2985#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0) 2986#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1) 2987 2988/** 2989 * struct iwl_sensitivity_cmd 2990 * @control: (1) updates working table, (0) updates default table 2991 * @table: energy threshold values, use HD_* as index into table 2992 * 2993 * Always use "1" in "control" to update uCode's working table and DSP. 2994 */ 2995struct iwl_sensitivity_cmd { 2996 __le16 control; /* always use "1" */ 2997 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */ 2998} __packed; 2999 3000/* 3001 * 3002 */ 3003struct iwl_enhance_sensitivity_cmd { 3004 __le16 control; /* always use "1" */ 3005 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */ 3006} __packed; 3007 3008 3009/** 3010 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response) 3011 * 3012 * This command sets the relative gains of agn device's 3 radio receiver chains. 3013 * 3014 * After the first association, driver should accumulate signal and noise 3015 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20 3016 * beacons from the associated network (don't collect statistics that come 3017 * in from scanning, or any other non-network source). 3018 * 3019 * DISCONNECTED ANTENNA: 3020 * 3021 * Driver should determine which antennas are actually connected, by comparing 3022 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the 3023 * following values over 20 beacons, one accumulator for each of the chains 3024 * a/b/c, from struct statistics_rx_non_phy: 3025 * 3026 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB) 3027 * 3028 * Find the strongest signal from among a/b/c. Compare the other two to the 3029 * strongest. If any signal is more than 15 dB (times 20, unless you 3030 * divide the accumulated values by 20) below the strongest, the driver 3031 * considers that antenna to be disconnected, and should not try to use that 3032 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected, 3033 * driver should declare the stronger one as connected, and attempt to use it 3034 * (A and B are the only 2 Tx chains!). 3035 * 3036 * 3037 * RX BALANCE: 3038 * 3039 * Driver should balance the 3 receivers (but just the ones that are connected 3040 * to antennas, see above) for gain, by comparing the average signal levels 3041 * detected during the silence after each beacon (background noise). 3042 * Accumulate (add) the following values over 20 beacons, one accumulator for 3043 * each of the chains a/b/c, from struct statistics_rx_non_phy: 3044 * 3045 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB) 3046 * 3047 * Find the weakest background noise level from among a/b/c. This Rx chain 3048 * will be the reference, with 0 gain adjustment. Attenuate other channels by 3049 * finding noise difference: 3050 * 3051 * (accum_noise[i] - accum_noise[reference]) / 30 3052 * 3053 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB. 3054 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the 3055 * driver should limit the difference results to a range of 0-3 (0-4.5 dB), 3056 * and set bit 2 to indicate "reduce gain". The value for the reference 3057 * (weakest) chain should be "0". 3058 * 3059 * diff_gain_[abc] bit fields: 3060 * 2: (1) reduce gain, (0) increase gain 3061 * 1-0: amount of gain, units of 1.5 dB 3062 */ 3063 3064/* Phy calibration command for series */ 3065enum { 3066 IWL_PHY_CALIBRATE_DC_CMD = 8, 3067 IWL_PHY_CALIBRATE_LO_CMD = 9, 3068 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11, 3069 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15, 3070 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16, 3071 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17, 3072 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18, 3073}; 3074 3075/* This enum defines the bitmap of various calibrations to enable in both 3076 * init ucode and runtime ucode through CALIBRATION_CFG_CMD. 3077 */ 3078enum iwl_ucode_calib_cfg { 3079 IWL_CALIB_CFG_RX_BB_IDX = BIT(0), 3080 IWL_CALIB_CFG_DC_IDX = BIT(1), 3081 IWL_CALIB_CFG_LO_IDX = BIT(2), 3082 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3), 3083 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4), 3084 IWL_CALIB_CFG_NOISE_IDX = BIT(5), 3085 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6), 3086 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7), 3087 IWL_CALIB_CFG_PAPD_IDX = BIT(8), 3088 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9), 3089 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10), 3090}; 3091 3092#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3093 IWL_CALIB_CFG_DC_IDX | \ 3094 IWL_CALIB_CFG_LO_IDX | \ 3095 IWL_CALIB_CFG_TX_IQ_IDX | \ 3096 IWL_CALIB_CFG_RX_IQ_IDX | \ 3097 IWL_CALIB_CFG_CRYSTAL_IDX) 3098 3099#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3100 IWL_CALIB_CFG_DC_IDX | \ 3101 IWL_CALIB_CFG_LO_IDX | \ 3102 IWL_CALIB_CFG_TX_IQ_IDX | \ 3103 IWL_CALIB_CFG_RX_IQ_IDX | \ 3104 IWL_CALIB_CFG_TEMPERATURE_IDX | \ 3105 IWL_CALIB_CFG_PAPD_IDX | \ 3106 IWL_CALIB_CFG_TX_PWR_IDX | \ 3107 IWL_CALIB_CFG_CRYSTAL_IDX) 3108 3109#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0)) 3110 3111struct iwl_calib_cfg_elmnt_s { 3112 __le32 is_enable; 3113 __le32 start; 3114 __le32 send_res; 3115 __le32 apply_res; 3116 __le32 reserved; 3117} __packed; 3118 3119struct iwl_calib_cfg_status_s { 3120 struct iwl_calib_cfg_elmnt_s once; 3121 struct iwl_calib_cfg_elmnt_s perd; 3122 __le32 flags; 3123} __packed; 3124 3125struct iwl_calib_cfg_cmd { 3126 struct iwl_calib_cfg_status_s ucd_calib_cfg; 3127 struct iwl_calib_cfg_status_s drv_calib_cfg; 3128 __le32 reserved1; 3129} __packed; 3130 3131struct iwl_calib_hdr { 3132 u8 op_code; 3133 u8 first_group; 3134 u8 groups_num; 3135 u8 data_valid; 3136} __packed; 3137 3138struct iwl_calib_cmd { 3139 struct iwl_calib_hdr hdr; 3140 u8 data[]; 3141} __packed; 3142 3143struct iwl_calib_xtal_freq_cmd { 3144 struct iwl_calib_hdr hdr; 3145 u8 cap_pin1; 3146 u8 cap_pin2; 3147 u8 pad[2]; 3148} __packed; 3149 3150#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700) 3151struct iwl_calib_temperature_offset_cmd { 3152 struct iwl_calib_hdr hdr; 3153 __le16 radio_sensor_offset; 3154 __le16 reserved; 3155} __packed; 3156 3157struct iwl_calib_temperature_offset_v2_cmd { 3158 struct iwl_calib_hdr hdr; 3159 __le16 radio_sensor_offset_high; 3160 __le16 radio_sensor_offset_low; 3161 __le16 burntVoltageRef; 3162 __le16 reserved; 3163} __packed; 3164 3165/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */ 3166struct iwl_calib_chain_noise_reset_cmd { 3167 struct iwl_calib_hdr hdr; 3168 u8 data[]; 3169}; 3170 3171/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */ 3172struct iwl_calib_chain_noise_gain_cmd { 3173 struct iwl_calib_hdr hdr; 3174 u8 delta_gain_1; 3175 u8 delta_gain_2; 3176 u8 pad[2]; 3177} __packed; 3178 3179/****************************************************************************** 3180 * (12) 3181 * Miscellaneous Commands: 3182 * 3183 *****************************************************************************/ 3184 3185/* 3186 * LEDs Command & Response 3187 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) 3188 * 3189 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), 3190 * this command turns it on or off, or sets up a periodic blinking cycle. 3191 */ 3192struct iwl_led_cmd { 3193 __le32 interval; /* "interval" in uSec */ 3194 u8 id; /* 1: Activity, 2: Link, 3: Tech */ 3195 u8 off; /* # intervals off while blinking; 3196 * "0", with >0 "on" value, turns LED on */ 3197 u8 on; /* # intervals on while blinking; 3198 * "0", regardless of "off", turns LED off */ 3199 u8 reserved; 3200} __packed; 3201 3202/* 3203 * station priority table entries 3204 * also used as potential "events" value for both 3205 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD 3206 */ 3207 3208/* 3209 * COEX events entry flag masks 3210 * RP - Requested Priority 3211 * WP - Win Medium Priority: priority assigned when the contention has been won 3212 */ 3213#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1) 3214#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2) 3215#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4) 3216 3217#define COEX_CU_UNASSOC_IDLE_RP 4 3218#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4 3219#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4 3220#define COEX_CU_CALIBRATION_RP 4 3221#define COEX_CU_PERIODIC_CALIBRATION_RP 4 3222#define COEX_CU_CONNECTION_ESTAB_RP 4 3223#define COEX_CU_ASSOCIATED_IDLE_RP 4 3224#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4 3225#define COEX_CU_ASSOC_AUTO_SCAN_RP 4 3226#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4 3227#define COEX_CU_RF_ON_RP 6 3228#define COEX_CU_RF_OFF_RP 4 3229#define COEX_CU_STAND_ALONE_DEBUG_RP 6 3230#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4 3231#define COEX_CU_RSRVD1_RP 4 3232#define COEX_CU_RSRVD2_RP 4 3233 3234#define COEX_CU_UNASSOC_IDLE_WP 3 3235#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3 3236#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3 3237#define COEX_CU_CALIBRATION_WP 3 3238#define COEX_CU_PERIODIC_CALIBRATION_WP 3 3239#define COEX_CU_CONNECTION_ESTAB_WP 3 3240#define COEX_CU_ASSOCIATED_IDLE_WP 3 3241#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3 3242#define COEX_CU_ASSOC_AUTO_SCAN_WP 3 3243#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3 3244#define COEX_CU_RF_ON_WP 3 3245#define COEX_CU_RF_OFF_WP 3 3246#define COEX_CU_STAND_ALONE_DEBUG_WP 6 3247#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3 3248#define COEX_CU_RSRVD1_WP 3 3249#define COEX_CU_RSRVD2_WP 3 3250 3251#define COEX_UNASSOC_IDLE_FLAGS 0 3252#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \ 3253 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3254 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3255#define COEX_UNASSOC_AUTO_SCAN_FLAGS \ 3256 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3257 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3258#define COEX_CALIBRATION_FLAGS \ 3259 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3260 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3261#define COEX_PERIODIC_CALIBRATION_FLAGS 0 3262/* 3263 * COEX_CONNECTION_ESTAB: 3264 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3265 */ 3266#define COEX_CONNECTION_ESTAB_FLAGS \ 3267 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3268 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3269 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3270#define COEX_ASSOCIATED_IDLE_FLAGS 0 3271#define COEX_ASSOC_MANUAL_SCAN_FLAGS \ 3272 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3273 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3274#define COEX_ASSOC_AUTO_SCAN_FLAGS \ 3275 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3276 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3277#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0 3278#define COEX_RF_ON_FLAGS 0 3279#define COEX_RF_OFF_FLAGS 0 3280#define COEX_STAND_ALONE_DEBUG_FLAGS \ 3281 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3282 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3283#define COEX_IPAN_ASSOC_LEVEL_FLAGS \ 3284 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3285 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3286 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3287#define COEX_RSRVD1_FLAGS 0 3288#define COEX_RSRVD2_FLAGS 0 3289/* 3290 * COEX_CU_RF_ON is the event wrapping all radio ownership. 3291 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3292 */ 3293#define COEX_CU_RF_ON_FLAGS \ 3294 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3295 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3296 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3297 3298 3299enum { 3300 /* un-association part */ 3301 COEX_UNASSOC_IDLE = 0, 3302 COEX_UNASSOC_MANUAL_SCAN = 1, 3303 COEX_UNASSOC_AUTO_SCAN = 2, 3304 /* calibration */ 3305 COEX_CALIBRATION = 3, 3306 COEX_PERIODIC_CALIBRATION = 4, 3307 /* connection */ 3308 COEX_CONNECTION_ESTAB = 5, 3309 /* association part */ 3310 COEX_ASSOCIATED_IDLE = 6, 3311 COEX_ASSOC_MANUAL_SCAN = 7, 3312 COEX_ASSOC_AUTO_SCAN = 8, 3313 COEX_ASSOC_ACTIVE_LEVEL = 9, 3314 /* RF ON/OFF */ 3315 COEX_RF_ON = 10, 3316 COEX_RF_OFF = 11, 3317 COEX_STAND_ALONE_DEBUG = 12, 3318 /* IPAN */ 3319 COEX_IPAN_ASSOC_LEVEL = 13, 3320 /* reserved */ 3321 COEX_RSRVD1 = 14, 3322 COEX_RSRVD2 = 15, 3323 COEX_NUM_OF_EVENTS = 16 3324}; 3325 3326/* 3327 * Coexistence WIFI/WIMAX Command 3328 * COEX_PRIORITY_TABLE_CMD = 0x5a 3329 * 3330 */ 3331struct iwl_wimax_coex_event_entry { 3332 u8 request_prio; 3333 u8 win_medium_prio; 3334 u8 reserved; 3335 u8 flags; 3336} __packed; 3337 3338/* COEX flag masks */ 3339 3340/* Station table is valid */ 3341#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1) 3342/* UnMask wake up src at unassociated sleep */ 3343#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4) 3344/* UnMask wake up src at associated sleep */ 3345#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8) 3346/* Enable CoEx feature. */ 3347#define COEX_FLAGS_COEX_ENABLE_MSK (0x80) 3348 3349struct iwl_wimax_coex_cmd { 3350 u8 flags; 3351 u8 reserved[3]; 3352 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS]; 3353} __packed; 3354 3355/* 3356 * Coexistence MEDIUM NOTIFICATION 3357 * COEX_MEDIUM_NOTIFICATION = 0x5b 3358 * 3359 * notification from uCode to host to indicate medium changes 3360 * 3361 */ 3362/* 3363 * status field 3364 * bit 0 - 2: medium status 3365 * bit 3: medium change indication 3366 * bit 4 - 31: reserved 3367 */ 3368/* status option values, (0 - 2 bits) */ 3369#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */ 3370#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */ 3371#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */ 3372#define COEX_MEDIUM_MSK (0x7) 3373 3374/* send notification status (1 bit) */ 3375#define COEX_MEDIUM_CHANGED (0x8) 3376#define COEX_MEDIUM_CHANGED_MSK (0x8) 3377#define COEX_MEDIUM_SHIFT (3) 3378 3379struct iwl_coex_medium_notification { 3380 __le32 status; 3381 __le32 events; 3382} __packed; 3383 3384/* 3385 * Coexistence EVENT Command 3386 * COEX_EVENT_CMD = 0x5c 3387 * 3388 * send from host to uCode for coex event request. 3389 */ 3390/* flags options */ 3391#define COEX_EVENT_REQUEST_MSK (0x1) 3392 3393struct iwl_coex_event_cmd { 3394 u8 flags; 3395 u8 event; 3396 __le16 reserved; 3397} __packed; 3398 3399struct iwl_coex_event_resp { 3400 __le32 status; 3401} __packed; 3402 3403 3404/****************************************************************************** 3405 * Bluetooth Coexistence commands 3406 * 3407 *****************************************************************************/ 3408 3409/* 3410 * BT Status notification 3411 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce 3412 */ 3413enum iwl_bt_coex_profile_traffic_load { 3414 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0, 3415 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1, 3416 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2, 3417 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3, 3418/* 3419 * There are no more even though below is a u8, the 3420 * indication from the BT device only has two bits. 3421 */ 3422}; 3423 3424#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1 3425#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2 3426 3427/* BT UART message - Share Part (BT -> WiFi) */ 3428#define BT_UART_MSG_FRAME1MSGTYPE_POS (0) 3429#define BT_UART_MSG_FRAME1MSGTYPE_MSK \ 3430 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS) 3431#define BT_UART_MSG_FRAME1SSN_POS (3) 3432#define BT_UART_MSG_FRAME1SSN_MSK \ 3433 (0x3 << BT_UART_MSG_FRAME1SSN_POS) 3434#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5) 3435#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \ 3436 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS) 3437#define BT_UART_MSG_FRAME1RESERVED_POS (6) 3438#define BT_UART_MSG_FRAME1RESERVED_MSK \ 3439 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS) 3440 3441#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0) 3442#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \ 3443 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS) 3444#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2) 3445#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \ 3446 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS) 3447#define BT_UART_MSG_FRAME2CHLSEQN_POS (4) 3448#define BT_UART_MSG_FRAME2CHLSEQN_MSK \ 3449 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS) 3450#define BT_UART_MSG_FRAME2INBAND_POS (5) 3451#define BT_UART_MSG_FRAME2INBAND_MSK \ 3452 (0x1 << BT_UART_MSG_FRAME2INBAND_POS) 3453#define BT_UART_MSG_FRAME2RESERVED_POS (6) 3454#define BT_UART_MSG_FRAME2RESERVED_MSK \ 3455 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS) 3456 3457#define BT_UART_MSG_FRAME3SCOESCO_POS (0) 3458#define BT_UART_MSG_FRAME3SCOESCO_MSK \ 3459 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS) 3460#define BT_UART_MSG_FRAME3SNIFF_POS (1) 3461#define BT_UART_MSG_FRAME3SNIFF_MSK \ 3462 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS) 3463#define BT_UART_MSG_FRAME3A2DP_POS (2) 3464#define BT_UART_MSG_FRAME3A2DP_MSK \ 3465 (0x1 << BT_UART_MSG_FRAME3A2DP_POS) 3466#define BT_UART_MSG_FRAME3ACL_POS (3) 3467#define BT_UART_MSG_FRAME3ACL_MSK \ 3468 (0x1 << BT_UART_MSG_FRAME3ACL_POS) 3469#define BT_UART_MSG_FRAME3MASTER_POS (4) 3470#define BT_UART_MSG_FRAME3MASTER_MSK \ 3471 (0x1 << BT_UART_MSG_FRAME3MASTER_POS) 3472#define BT_UART_MSG_FRAME3OBEX_POS (5) 3473#define BT_UART_MSG_FRAME3OBEX_MSK \ 3474 (0x1 << BT_UART_MSG_FRAME3OBEX_POS) 3475#define BT_UART_MSG_FRAME3RESERVED_POS (6) 3476#define BT_UART_MSG_FRAME3RESERVED_MSK \ 3477 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS) 3478 3479#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0) 3480#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \ 3481 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS) 3482#define BT_UART_MSG_FRAME4RESERVED_POS (6) 3483#define BT_UART_MSG_FRAME4RESERVED_MSK \ 3484 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS) 3485 3486#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0) 3487#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \ 3488 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS) 3489#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2) 3490#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \ 3491 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS) 3492#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4) 3493#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \ 3494 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS) 3495#define BT_UART_MSG_FRAME5RESERVED_POS (6) 3496#define BT_UART_MSG_FRAME5RESERVED_MSK \ 3497 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS) 3498 3499#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0) 3500#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \ 3501 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS) 3502#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5) 3503#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \ 3504 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS) 3505#define BT_UART_MSG_FRAME6RESERVED_POS (6) 3506#define BT_UART_MSG_FRAME6RESERVED_MSK \ 3507 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS) 3508 3509#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0) 3510#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \ 3511 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS) 3512#define BT_UART_MSG_FRAME7PAGE_POS (3) 3513#define BT_UART_MSG_FRAME7PAGE_MSK \ 3514 (0x1 << BT_UART_MSG_FRAME7PAGE_POS) 3515#define BT_UART_MSG_FRAME7INQUIRY_POS (4) 3516#define BT_UART_MSG_FRAME7INQUIRY_MSK \ 3517 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS) 3518#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5) 3519#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \ 3520 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS) 3521#define BT_UART_MSG_FRAME7RESERVED_POS (6) 3522#define BT_UART_MSG_FRAME7RESERVED_MSK \ 3523 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS) 3524 3525/* BT Session Activity 2 UART message (BT -> WiFi) */ 3526#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5) 3527#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \ 3528 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS) 3529#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6) 3530#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \ 3531 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS) 3532 3533#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0) 3534#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \ 3535 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS) 3536#define BT_UART_MSG_2_FRAME2RESERVED_POS (6) 3537#define BT_UART_MSG_2_FRAME2RESERVED_MSK \ 3538 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS) 3539 3540#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0) 3541#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \ 3542 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS) 3543#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4) 3544#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \ 3545 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS) 3546#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5) 3547#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \ 3548 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS) 3549#define BT_UART_MSG_2_FRAME3RESERVED_POS (6) 3550#define BT_UART_MSG_2_FRAME3RESERVED_MSK \ 3551 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS) 3552 3553#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0) 3554#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \ 3555 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS) 3556#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4) 3557#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \ 3558 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS) 3559#define BT_UART_MSG_2_FRAME4RESERVED_POS (6) 3560#define BT_UART_MSG_2_FRAME4RESERVED_MSK \ 3561 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS) 3562 3563#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0) 3564#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \ 3565 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS) 3566#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4) 3567#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \ 3568 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS) 3569#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5) 3570#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \ 3571 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS) 3572#define BT_UART_MSG_2_FRAME5RESERVED_POS (6) 3573#define BT_UART_MSG_2_FRAME5RESERVED_MSK \ 3574 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS) 3575 3576#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0) 3577#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \ 3578 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS) 3579#define BT_UART_MSG_2_FRAME6RFU_POS (5) 3580#define BT_UART_MSG_2_FRAME6RFU_MSK \ 3581 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS) 3582#define BT_UART_MSG_2_FRAME6RESERVED_POS (6) 3583#define BT_UART_MSG_2_FRAME6RESERVED_MSK \ 3584 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS) 3585 3586#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0) 3587#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \ 3588 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS) 3589#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3) 3590#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \ 3591 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS) 3592#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4) 3593#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \ 3594 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS) 3595#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5) 3596#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \ 3597 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS) 3598#define BT_UART_MSG_2_FRAME7RESERVED_POS (6) 3599#define BT_UART_MSG_2_FRAME7RESERVED_MSK \ 3600 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS) 3601 3602 3603#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62) 3604#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65) 3605 3606struct iwl_bt_uart_msg { 3607 u8 header; 3608 u8 frame1; 3609 u8 frame2; 3610 u8 frame3; 3611 u8 frame4; 3612 u8 frame5; 3613 u8 frame6; 3614 u8 frame7; 3615} __packed; 3616 3617struct iwl_bt_coex_profile_notif { 3618 struct iwl_bt_uart_msg last_bt_uart_msg; 3619 u8 bt_status; /* 0 - off, 1 - on */ 3620 u8 bt_traffic_load; /* 0 .. 3? */ 3621 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */ 3622 u8 reserved; 3623} __packed; 3624 3625#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0 3626#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1 3627#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1 3628#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e 3629#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4 3630#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0 3631#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1 3632 3633/* 3634 * BT Coexistence Priority table 3635 * REPLY_BT_COEX_PRIO_TABLE = 0xcc 3636 */ 3637enum bt_coex_prio_table_events { 3638 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0, 3639 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1, 3640 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2, 3641 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */ 3642 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4, 3643 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5, 3644 BT_COEX_PRIO_TBL_EVT_DTIM = 6, 3645 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7, 3646 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8, 3647 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9, 3648 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10, 3649 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11, 3650 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12, 3651 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13, 3652 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14, 3653 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15, 3654 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */ 3655 BT_COEX_PRIO_TBL_EVT_MAX, 3656}; 3657 3658enum bt_coex_prio_table_priorities { 3659 BT_COEX_PRIO_TBL_DISABLED = 0, 3660 BT_COEX_PRIO_TBL_PRIO_LOW = 1, 3661 BT_COEX_PRIO_TBL_PRIO_HIGH = 2, 3662 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3, 3663 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4, 3664 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5, 3665 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6, 3666 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7, 3667 BT_COEX_PRIO_TBL_MAX, 3668}; 3669 3670struct iwl_bt_coex_prio_table_cmd { 3671 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX]; 3672} __packed; 3673 3674#define IWL_BT_COEX_ENV_CLOSE 0 3675#define IWL_BT_COEX_ENV_OPEN 1 3676/* 3677 * BT Protection Envelope 3678 * REPLY_BT_COEX_PROT_ENV = 0xcd 3679 */ 3680struct iwl_bt_coex_prot_env_cmd { 3681 u8 action; /* 0 = closed, 1 = open */ 3682 u8 type; /* 0 .. 15 */ 3683 u8 reserved[2]; 3684} __packed; 3685 3686/* 3687 * REPLY_D3_CONFIG 3688 */ 3689enum iwlagn_d3_wakeup_filters { 3690 IWLAGN_D3_WAKEUP_RFKILL = BIT(0), 3691 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1), 3692}; 3693 3694struct iwlagn_d3_config_cmd { 3695 __le32 min_sleep_time; 3696 __le32 wakeup_flags; 3697} __packed; 3698 3699/* 3700 * REPLY_WOWLAN_PATTERNS 3701 */ 3702#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16 3703#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128 3704 3705struct iwlagn_wowlan_pattern { 3706 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8]; 3707 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN]; 3708 u8 mask_size; 3709 u8 pattern_size; 3710 __le16 reserved; 3711} __packed; 3712 3713#define IWLAGN_WOWLAN_MAX_PATTERNS 20 3714 3715struct iwlagn_wowlan_patterns_cmd { 3716 __le32 n_patterns; 3717 struct iwlagn_wowlan_pattern patterns[]; 3718} __packed; 3719 3720/* 3721 * REPLY_WOWLAN_WAKEUP_FILTER 3722 */ 3723enum iwlagn_wowlan_wakeup_filters { 3724 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0), 3725 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1), 3726 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2), 3727 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3), 3728 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4), 3729 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5), 3730 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6), 3731 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7), 3732 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8), 3733}; 3734 3735struct iwlagn_wowlan_wakeup_filter_cmd { 3736 __le32 enabled; 3737 __le16 non_qos_seq; 3738 __le16 reserved; 3739 __le16 qos_seq[8]; 3740}; 3741 3742/* 3743 * REPLY_WOWLAN_TSC_RSC_PARAMS 3744 */ 3745#define IWLAGN_NUM_RSC 16 3746 3747struct tkip_sc { 3748 __le16 iv16; 3749 __le16 pad; 3750 __le32 iv32; 3751} __packed; 3752 3753struct iwlagn_tkip_rsc_tsc { 3754 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC]; 3755 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC]; 3756 struct tkip_sc tsc; 3757} __packed; 3758 3759struct aes_sc { 3760 __le64 pn; 3761} __packed; 3762 3763struct iwlagn_aes_rsc_tsc { 3764 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC]; 3765 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC]; 3766 struct aes_sc tsc; 3767} __packed; 3768 3769union iwlagn_all_tsc_rsc { 3770 struct iwlagn_tkip_rsc_tsc tkip; 3771 struct iwlagn_aes_rsc_tsc aes; 3772}; 3773 3774struct iwlagn_wowlan_rsc_tsc_params_cmd { 3775 union iwlagn_all_tsc_rsc all_tsc_rsc; 3776} __packed; 3777 3778/* 3779 * REPLY_WOWLAN_TKIP_PARAMS 3780 */ 3781#define IWLAGN_MIC_KEY_SIZE 8 3782#define IWLAGN_P1K_SIZE 5 3783struct iwlagn_mic_keys { 3784 u8 tx[IWLAGN_MIC_KEY_SIZE]; 3785 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE]; 3786 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE]; 3787} __packed; 3788 3789struct iwlagn_p1k_cache { 3790 __le16 p1k[IWLAGN_P1K_SIZE]; 3791} __packed; 3792 3793#define IWLAGN_NUM_RX_P1K_CACHE 2 3794 3795struct iwlagn_wowlan_tkip_params_cmd { 3796 struct iwlagn_mic_keys mic_keys; 3797 struct iwlagn_p1k_cache tx; 3798 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE]; 3799 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE]; 3800} __packed; 3801 3802/* 3803 * REPLY_WOWLAN_KEK_KCK_MATERIAL 3804 */ 3805 3806#define IWLAGN_KCK_MAX_SIZE 32 3807#define IWLAGN_KEK_MAX_SIZE 32 3808 3809struct iwlagn_wowlan_kek_kck_material_cmd { 3810 u8 kck[IWLAGN_KCK_MAX_SIZE]; 3811 u8 kek[IWLAGN_KEK_MAX_SIZE]; 3812 __le16 kck_len; 3813 __le16 kek_len; 3814 __le64 replay_ctr; 3815} __packed; 3816 3817#define RF_KILL_INDICATOR_FOR_WOWLAN 0x87 3818 3819/* 3820 * REPLY_WOWLAN_GET_STATUS = 0xe5 3821 */ 3822struct iwlagn_wowlan_status { 3823 __le64 replay_ctr; 3824 __le32 rekey_status; 3825 __le32 wakeup_reason; 3826 u8 pattern_number; 3827 u8 reserved1; 3828 __le16 qos_seq_ctr[8]; 3829 __le16 non_qos_seq_ctr; 3830 __le16 reserved2; 3831 union iwlagn_all_tsc_rsc tsc_rsc; 3832 __le16 reserved3; 3833} __packed; 3834 3835/* 3836 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification) 3837 */ 3838 3839/* 3840 * Minimum slot time in TU 3841 */ 3842#define IWL_MIN_SLOT_TIME 20 3843 3844/** 3845 * struct iwl_wipan_slot 3846 * @width: Time in TU 3847 * @type: 3848 * 0 - BSS 3849 * 1 - PAN 3850 */ 3851struct iwl_wipan_slot { 3852 __le16 width; 3853 u8 type; 3854 u8 reserved; 3855} __packed; 3856 3857#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */ 3858#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */ 3859#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */ 3860#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4) 3861#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5) 3862 3863/** 3864 * struct iwl_wipan_params_cmd 3865 * @flags: 3866 * bit0: reserved 3867 * bit1: CP leave channel with CTS 3868 * bit2: CP leave channel qith Quiet 3869 * bit3: slotted mode 3870 * 1 - work in slotted mode 3871 * 0 - work in non slotted mode 3872 * bit4: filter beacon notification 3873 * bit5: full tx slotted mode. if this flag is set, 3874 * uCode will perform leaving channel methods in context switch 3875 * also when working in same channel mode 3876 * @num_slots: 1 - 10 3877 */ 3878struct iwl_wipan_params_cmd { 3879 __le16 flags; 3880 u8 reserved; 3881 u8 num_slots; 3882 struct iwl_wipan_slot slots[10]; 3883} __packed; 3884 3885/* 3886 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9 3887 * 3888 * TODO: Figure out what this is used for, 3889 * it can only switch between 2.4 GHz 3890 * channels!! 3891 */ 3892 3893struct iwl_wipan_p2p_channel_switch_cmd { 3894 __le16 channel; 3895 __le16 reserved; 3896}; 3897 3898/* 3899 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc 3900 * 3901 * This is used by the device to notify us of the 3902 * NoA schedule it determined so we can forward it 3903 * to userspace for inclusion in probe responses. 3904 * 3905 * In beacons, the NoA schedule is simply appended 3906 * to the frame we give the device. 3907 */ 3908 3909struct iwl_wipan_noa_descriptor { 3910 u8 count; 3911 __le32 duration; 3912 __le32 interval; 3913 __le32 starttime; 3914} __packed; 3915 3916struct iwl_wipan_noa_attribute { 3917 u8 id; 3918 __le16 length; 3919 u8 index; 3920 u8 ct_window; 3921 struct iwl_wipan_noa_descriptor descr0, descr1; 3922 u8 reserved; 3923} __packed; 3924 3925struct iwl_wipan_noa_notification { 3926 u32 noa_active; 3927 struct iwl_wipan_noa_attribute noa_attribute; 3928} __packed; 3929 3930#endif /* __iwl_commands_h__ */