cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rx.c (70994B)


      1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
      2/*
      3 * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
      4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
      5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
      6 */
      7#include <linux/sched.h>
      8#include <linux/wait.h>
      9#include <linux/gfp.h>
     10
     11#include "iwl-prph.h"
     12#include "iwl-io.h"
     13#include "internal.h"
     14#include "iwl-op-mode.h"
     15#include "iwl-context-info-gen3.h"
     16
     17/******************************************************************************
     18 *
     19 * RX path functions
     20 *
     21 ******************************************************************************/
     22
     23/*
     24 * Rx theory of operation
     25 *
     26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
     27 * each of which point to Receive Buffers to be filled by the NIC.  These get
     28 * used not only for Rx frames, but for any command response or notification
     29 * from the NIC.  The driver and NIC manage the Rx buffers by means
     30 * of indexes into the circular buffer.
     31 *
     32 * Rx Queue Indexes
     33 * The host/firmware share two index registers for managing the Rx buffers.
     34 *
     35 * The READ index maps to the first position that the firmware may be writing
     36 * to -- the driver can read up to (but not including) this position and get
     37 * good data.
     38 * The READ index is managed by the firmware once the card is enabled.
     39 *
     40 * The WRITE index maps to the last position the driver has read from -- the
     41 * position preceding WRITE is the last slot the firmware can place a packet.
     42 *
     43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
     44 * WRITE = READ.
     45 *
     46 * During initialization, the host sets up the READ queue position to the first
     47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
     48 *
     49 * When the firmware places a packet in a buffer, it will advance the READ index
     50 * and fire the RX interrupt.  The driver can then query the READ index and
     51 * process as many packets as possible, moving the WRITE index forward as it
     52 * resets the Rx queue buffers with new memory.
     53 *
     54 * The management in the driver is as follows:
     55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
     56 *   When the interrupt handler is called, the request is processed.
     57 *   The page is either stolen - transferred to the upper layer
     58 *   or reused - added immediately to the iwl->rxq->rx_free list.
     59 * + When the page is stolen - the driver updates the matching queue's used
     60 *   count, detaches the RBD and transfers it to the queue used list.
     61 *   When there are two used RBDs - they are transferred to the allocator empty
     62 *   list. Work is then scheduled for the allocator to start allocating
     63 *   eight buffers.
     64 *   When there are another 6 used RBDs - they are transferred to the allocator
     65 *   empty list and the driver tries to claim the pre-allocated buffers and
     66 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
     67 *   until ready.
     68 *   When there are 8+ buffers in the free list - either from allocation or from
     69 *   8 reused unstolen pages - restock is called to update the FW and indexes.
     70 * + In order to make sure the allocator always has RBDs to use for allocation
     71 *   the allocator has initial pool in the size of num_queues*(8-2) - the
     72 *   maximum missing RBDs per allocation request (request posted with 2
     73 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
     74 *   The queues supplies the recycle of the rest of the RBDs.
     75 * + A received packet is processed and handed to the kernel network stack,
     76 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
     77 * + If there are no allocated buffers in iwl->rxq->rx_free,
     78 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
     79 *   If there were enough free buffers and RX_STALLED is set it is cleared.
     80 *
     81 *
     82 * Driver sequence:
     83 *
     84 * iwl_rxq_alloc()            Allocates rx_free
     85 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
     86 *                            iwl_pcie_rxq_restock.
     87 *                            Used only during initialization.
     88 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
     89 *                            queue, updates firmware pointers, and updates
     90 *                            the WRITE index.
     91 * iwl_pcie_rx_allocator()     Background work for allocating pages.
     92 *
     93 * -- enable interrupts --
     94 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
     95 *                            READ INDEX, detaching the SKB from the pool.
     96 *                            Moves the packet buffer from queue to rx_used.
     97 *                            Posts and claims requests to the allocator.
     98 *                            Calls iwl_pcie_rxq_restock to refill any empty
     99 *                            slots.
    100 *
    101 * RBD life-cycle:
    102 *
    103 * Init:
    104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
    105 *
    106 * Regular Receive interrupt:
    107 * Page Stolen:
    108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
    109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
    110 * Page not Stolen:
    111 * rxq.queue -> rxq.rx_free -> rxq.queue
    112 * ...
    113 *
    114 */
    115
    116/*
    117 * iwl_rxq_space - Return number of free slots available in queue.
    118 */
    119static int iwl_rxq_space(const struct iwl_rxq *rxq)
    120{
    121	/* Make sure rx queue size is a power of 2 */
    122	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
    123
    124	/*
    125	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
    126	 * between empty and completely full queues.
    127	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
    128	 * defined for negative dividends.
    129	 */
    130	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
    131}
    132
    133/*
    134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
    135 */
    136static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
    137{
    138	return cpu_to_le32((u32)(dma_addr >> 8));
    139}
    140
    141/*
    142 * iwl_pcie_rx_stop - stops the Rx DMA
    143 */
    144int iwl_pcie_rx_stop(struct iwl_trans *trans)
    145{
    146	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
    147		/* TODO: remove this once fw does it */
    148		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
    149		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
    150					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
    151	} else if (trans->trans_cfg->mq_rx_supported) {
    152		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
    153		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
    154					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
    155	} else {
    156		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
    157		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
    158					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
    159					   1000);
    160	}
    161}
    162
    163/*
    164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
    165 */
    166static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
    167				    struct iwl_rxq *rxq)
    168{
    169	u32 reg;
    170
    171	lockdep_assert_held(&rxq->lock);
    172
    173	/*
    174	 * explicitly wake up the NIC if:
    175	 * 1. shadow registers aren't enabled
    176	 * 2. there is a chance that the NIC is asleep
    177	 */
    178	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
    179	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
    180		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
    181
    182		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
    183			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
    184				       reg);
    185			iwl_set_bit(trans, CSR_GP_CNTRL,
    186				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
    187			rxq->need_update = true;
    188			return;
    189		}
    190	}
    191
    192	rxq->write_actual = round_down(rxq->write, 8);
    193	if (!trans->trans_cfg->mq_rx_supported)
    194		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
    195	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
    196		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
    197			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
    198	else
    199		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
    200			    rxq->write_actual);
    201}
    202
    203static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
    204{
    205	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    206	int i;
    207
    208	for (i = 0; i < trans->num_rx_queues; i++) {
    209		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
    210
    211		if (!rxq->need_update)
    212			continue;
    213		spin_lock_bh(&rxq->lock);
    214		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
    215		rxq->need_update = false;
    216		spin_unlock_bh(&rxq->lock);
    217	}
    218}
    219
    220static void iwl_pcie_restock_bd(struct iwl_trans *trans,
    221				struct iwl_rxq *rxq,
    222				struct iwl_rx_mem_buffer *rxb)
    223{
    224	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
    225		struct iwl_rx_transfer_desc *bd = rxq->bd;
    226
    227		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
    228
    229		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
    230		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
    231	} else {
    232		__le64 *bd = rxq->bd;
    233
    234		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
    235	}
    236
    237	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
    238		     (u32)rxb->vid, rxq->id, rxq->write);
    239}
    240
    241/*
    242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
    243 */
    244static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
    245				  struct iwl_rxq *rxq)
    246{
    247	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    248	struct iwl_rx_mem_buffer *rxb;
    249
    250	/*
    251	 * If the device isn't enabled - no need to try to add buffers...
    252	 * This can happen when we stop the device and still have an interrupt
    253	 * pending. We stop the APM before we sync the interrupts because we
    254	 * have to (see comment there). On the other hand, since the APM is
    255	 * stopped, we cannot access the HW (in particular not prph).
    256	 * So don't try to restock if the APM has been already stopped.
    257	 */
    258	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
    259		return;
    260
    261	spin_lock_bh(&rxq->lock);
    262	while (rxq->free_count) {
    263		/* Get next free Rx buffer, remove from free list */
    264		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
    265				       list);
    266		list_del(&rxb->list);
    267		rxb->invalid = false;
    268		/* some low bits are expected to be unset (depending on hw) */
    269		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
    270		/* Point to Rx buffer via next RBD in circular buffer */
    271		iwl_pcie_restock_bd(trans, rxq, rxb);
    272		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
    273		rxq->free_count--;
    274	}
    275	spin_unlock_bh(&rxq->lock);
    276
    277	/*
    278	 * If we've added more space for the firmware to place data, tell it.
    279	 * Increment device's write pointer in multiples of 8.
    280	 */
    281	if (rxq->write_actual != (rxq->write & ~0x7)) {
    282		spin_lock_bh(&rxq->lock);
    283		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
    284		spin_unlock_bh(&rxq->lock);
    285	}
    286}
    287
    288/*
    289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
    290 */
    291static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
    292				  struct iwl_rxq *rxq)
    293{
    294	struct iwl_rx_mem_buffer *rxb;
    295
    296	/*
    297	 * If the device isn't enabled - not need to try to add buffers...
    298	 * This can happen when we stop the device and still have an interrupt
    299	 * pending. We stop the APM before we sync the interrupts because we
    300	 * have to (see comment there). On the other hand, since the APM is
    301	 * stopped, we cannot access the HW (in particular not prph).
    302	 * So don't try to restock if the APM has been already stopped.
    303	 */
    304	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
    305		return;
    306
    307	spin_lock_bh(&rxq->lock);
    308	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
    309		__le32 *bd = (__le32 *)rxq->bd;
    310		/* The overwritten rxb must be a used one */
    311		rxb = rxq->queue[rxq->write];
    312		BUG_ON(rxb && rxb->page);
    313
    314		/* Get next free Rx buffer, remove from free list */
    315		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
    316				       list);
    317		list_del(&rxb->list);
    318		rxb->invalid = false;
    319
    320		/* Point to Rx buffer via next RBD in circular buffer */
    321		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
    322		rxq->queue[rxq->write] = rxb;
    323		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
    324		rxq->free_count--;
    325	}
    326	spin_unlock_bh(&rxq->lock);
    327
    328	/* If we've added more space for the firmware to place data, tell it.
    329	 * Increment device's write pointer in multiples of 8. */
    330	if (rxq->write_actual != (rxq->write & ~0x7)) {
    331		spin_lock_bh(&rxq->lock);
    332		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
    333		spin_unlock_bh(&rxq->lock);
    334	}
    335}
    336
    337/*
    338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
    339 *
    340 * If there are slots in the RX queue that need to be restocked,
    341 * and we have free pre-allocated buffers, fill the ranks as much
    342 * as we can, pulling from rx_free.
    343 *
    344 * This moves the 'write' index forward to catch up with 'processed', and
    345 * also updates the memory address in the firmware to reference the new
    346 * target buffer.
    347 */
    348static
    349void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
    350{
    351	if (trans->trans_cfg->mq_rx_supported)
    352		iwl_pcie_rxmq_restock(trans, rxq);
    353	else
    354		iwl_pcie_rxsq_restock(trans, rxq);
    355}
    356
    357/*
    358 * iwl_pcie_rx_alloc_page - allocates and returns a page.
    359 *
    360 */
    361static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
    362					   u32 *offset, gfp_t priority)
    363{
    364	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    365	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
    366	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
    367	struct page *page;
    368	gfp_t gfp_mask = priority;
    369
    370	if (trans_pcie->rx_page_order > 0)
    371		gfp_mask |= __GFP_COMP;
    372
    373	if (trans_pcie->alloc_page) {
    374		spin_lock_bh(&trans_pcie->alloc_page_lock);
    375		/* recheck */
    376		if (trans_pcie->alloc_page) {
    377			*offset = trans_pcie->alloc_page_used;
    378			page = trans_pcie->alloc_page;
    379			trans_pcie->alloc_page_used += rbsize;
    380			if (trans_pcie->alloc_page_used >= allocsize)
    381				trans_pcie->alloc_page = NULL;
    382			else
    383				get_page(page);
    384			spin_unlock_bh(&trans_pcie->alloc_page_lock);
    385			return page;
    386		}
    387		spin_unlock_bh(&trans_pcie->alloc_page_lock);
    388	}
    389
    390	/* Alloc a new receive buffer */
    391	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
    392	if (!page) {
    393		if (net_ratelimit())
    394			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
    395				       trans_pcie->rx_page_order);
    396		/*
    397		 * Issue an error if we don't have enough pre-allocated
    398		  * buffers.
    399		 */
    400		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
    401			IWL_CRIT(trans,
    402				 "Failed to alloc_pages\n");
    403		return NULL;
    404	}
    405
    406	if (2 * rbsize <= allocsize) {
    407		spin_lock_bh(&trans_pcie->alloc_page_lock);
    408		if (!trans_pcie->alloc_page) {
    409			get_page(page);
    410			trans_pcie->alloc_page = page;
    411			trans_pcie->alloc_page_used = rbsize;
    412		}
    413		spin_unlock_bh(&trans_pcie->alloc_page_lock);
    414	}
    415
    416	*offset = 0;
    417	return page;
    418}
    419
    420/*
    421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
    422 *
    423 * A used RBD is an Rx buffer that has been given to the stack. To use it again
    424 * a page must be allocated and the RBD must point to the page. This function
    425 * doesn't change the HW pointer but handles the list of pages that is used by
    426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
    427 * allocated buffers.
    428 */
    429void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
    430			    struct iwl_rxq *rxq)
    431{
    432	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    433	struct iwl_rx_mem_buffer *rxb;
    434	struct page *page;
    435
    436	while (1) {
    437		unsigned int offset;
    438
    439		spin_lock_bh(&rxq->lock);
    440		if (list_empty(&rxq->rx_used)) {
    441			spin_unlock_bh(&rxq->lock);
    442			return;
    443		}
    444		spin_unlock_bh(&rxq->lock);
    445
    446		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
    447		if (!page)
    448			return;
    449
    450		spin_lock_bh(&rxq->lock);
    451
    452		if (list_empty(&rxq->rx_used)) {
    453			spin_unlock_bh(&rxq->lock);
    454			__free_pages(page, trans_pcie->rx_page_order);
    455			return;
    456		}
    457		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
    458				       list);
    459		list_del(&rxb->list);
    460		spin_unlock_bh(&rxq->lock);
    461
    462		BUG_ON(rxb->page);
    463		rxb->page = page;
    464		rxb->offset = offset;
    465		/* Get physical address of the RB */
    466		rxb->page_dma =
    467			dma_map_page(trans->dev, page, rxb->offset,
    468				     trans_pcie->rx_buf_bytes,
    469				     DMA_FROM_DEVICE);
    470		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
    471			rxb->page = NULL;
    472			spin_lock_bh(&rxq->lock);
    473			list_add(&rxb->list, &rxq->rx_used);
    474			spin_unlock_bh(&rxq->lock);
    475			__free_pages(page, trans_pcie->rx_page_order);
    476			return;
    477		}
    478
    479		spin_lock_bh(&rxq->lock);
    480
    481		list_add_tail(&rxb->list, &rxq->rx_free);
    482		rxq->free_count++;
    483
    484		spin_unlock_bh(&rxq->lock);
    485	}
    486}
    487
    488void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
    489{
    490	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    491	int i;
    492
    493	if (!trans_pcie->rx_pool)
    494		return;
    495
    496	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
    497		if (!trans_pcie->rx_pool[i].page)
    498			continue;
    499		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
    500			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
    501		__free_pages(trans_pcie->rx_pool[i].page,
    502			     trans_pcie->rx_page_order);
    503		trans_pcie->rx_pool[i].page = NULL;
    504	}
    505}
    506
    507/*
    508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
    509 *
    510 * Allocates for each received request 8 pages
    511 * Called as a scheduled work item.
    512 */
    513static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
    514{
    515	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    516	struct iwl_rb_allocator *rba = &trans_pcie->rba;
    517	struct list_head local_empty;
    518	int pending = atomic_read(&rba->req_pending);
    519
    520	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
    521
    522	/* If we were scheduled - there is at least one request */
    523	spin_lock_bh(&rba->lock);
    524	/* swap out the rba->rbd_empty to a local list */
    525	list_replace_init(&rba->rbd_empty, &local_empty);
    526	spin_unlock_bh(&rba->lock);
    527
    528	while (pending) {
    529		int i;
    530		LIST_HEAD(local_allocated);
    531		gfp_t gfp_mask = GFP_KERNEL;
    532
    533		/* Do not post a warning if there are only a few requests */
    534		if (pending < RX_PENDING_WATERMARK)
    535			gfp_mask |= __GFP_NOWARN;
    536
    537		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
    538			struct iwl_rx_mem_buffer *rxb;
    539			struct page *page;
    540
    541			/* List should never be empty - each reused RBD is
    542			 * returned to the list, and initial pool covers any
    543			 * possible gap between the time the page is allocated
    544			 * to the time the RBD is added.
    545			 */
    546			BUG_ON(list_empty(&local_empty));
    547			/* Get the first rxb from the rbd list */
    548			rxb = list_first_entry(&local_empty,
    549					       struct iwl_rx_mem_buffer, list);
    550			BUG_ON(rxb->page);
    551
    552			/* Alloc a new receive buffer */
    553			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
    554						      gfp_mask);
    555			if (!page)
    556				continue;
    557			rxb->page = page;
    558
    559			/* Get physical address of the RB */
    560			rxb->page_dma = dma_map_page(trans->dev, page,
    561						     rxb->offset,
    562						     trans_pcie->rx_buf_bytes,
    563						     DMA_FROM_DEVICE);
    564			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
    565				rxb->page = NULL;
    566				__free_pages(page, trans_pcie->rx_page_order);
    567				continue;
    568			}
    569
    570			/* move the allocated entry to the out list */
    571			list_move(&rxb->list, &local_allocated);
    572			i++;
    573		}
    574
    575		atomic_dec(&rba->req_pending);
    576		pending--;
    577
    578		if (!pending) {
    579			pending = atomic_read(&rba->req_pending);
    580			if (pending)
    581				IWL_DEBUG_TPT(trans,
    582					      "Got more pending allocation requests = %d\n",
    583					      pending);
    584		}
    585
    586		spin_lock_bh(&rba->lock);
    587		/* add the allocated rbds to the allocator allocated list */
    588		list_splice_tail(&local_allocated, &rba->rbd_allocated);
    589		/* get more empty RBDs for current pending requests */
    590		list_splice_tail_init(&rba->rbd_empty, &local_empty);
    591		spin_unlock_bh(&rba->lock);
    592
    593		atomic_inc(&rba->req_ready);
    594
    595	}
    596
    597	spin_lock_bh(&rba->lock);
    598	/* return unused rbds to the allocator empty list */
    599	list_splice_tail(&local_empty, &rba->rbd_empty);
    600	spin_unlock_bh(&rba->lock);
    601
    602	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
    603}
    604
    605/*
    606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
    607.*
    608.* Called by queue when the queue posted allocation request and
    609 * has freed 8 RBDs in order to restock itself.
    610 * This function directly moves the allocated RBs to the queue's ownership
    611 * and updates the relevant counters.
    612 */
    613static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
    614				      struct iwl_rxq *rxq)
    615{
    616	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    617	struct iwl_rb_allocator *rba = &trans_pcie->rba;
    618	int i;
    619
    620	lockdep_assert_held(&rxq->lock);
    621
    622	/*
    623	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
    624	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
    625	 * function will return early, as there are no ready requests.
    626	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
    627	 * req_ready > 0, i.e. - there are ready requests and the function
    628	 * hands one request to the caller.
    629	 */
    630	if (atomic_dec_if_positive(&rba->req_ready) < 0)
    631		return;
    632
    633	spin_lock(&rba->lock);
    634	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
    635		/* Get next free Rx buffer, remove it from free list */
    636		struct iwl_rx_mem_buffer *rxb =
    637			list_first_entry(&rba->rbd_allocated,
    638					 struct iwl_rx_mem_buffer, list);
    639
    640		list_move(&rxb->list, &rxq->rx_free);
    641	}
    642	spin_unlock(&rba->lock);
    643
    644	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
    645	rxq->free_count += RX_CLAIM_REQ_ALLOC;
    646}
    647
    648void iwl_pcie_rx_allocator_work(struct work_struct *data)
    649{
    650	struct iwl_rb_allocator *rba_p =
    651		container_of(data, struct iwl_rb_allocator, rx_alloc);
    652	struct iwl_trans_pcie *trans_pcie =
    653		container_of(rba_p, struct iwl_trans_pcie, rba);
    654
    655	iwl_pcie_rx_allocator(trans_pcie->trans);
    656}
    657
    658static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
    659{
    660	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
    661		return sizeof(struct iwl_rx_transfer_desc);
    662
    663	return trans->trans_cfg->mq_rx_supported ?
    664			sizeof(__le64) : sizeof(__le32);
    665}
    666
    667static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
    668{
    669	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
    670		return sizeof(struct iwl_rx_completion_desc_bz);
    671
    672	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
    673		return sizeof(struct iwl_rx_completion_desc);
    674
    675	return sizeof(__le32);
    676}
    677
    678static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
    679				  struct iwl_rxq *rxq)
    680{
    681	int free_size = iwl_pcie_free_bd_size(trans);
    682
    683	if (rxq->bd)
    684		dma_free_coherent(trans->dev,
    685				  free_size * rxq->queue_size,
    686				  rxq->bd, rxq->bd_dma);
    687	rxq->bd_dma = 0;
    688	rxq->bd = NULL;
    689
    690	rxq->rb_stts_dma = 0;
    691	rxq->rb_stts = NULL;
    692
    693	if (rxq->used_bd)
    694		dma_free_coherent(trans->dev,
    695				  iwl_pcie_used_bd_size(trans) *
    696					rxq->queue_size,
    697				  rxq->used_bd, rxq->used_bd_dma);
    698	rxq->used_bd_dma = 0;
    699	rxq->used_bd = NULL;
    700}
    701
    702static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
    703				  struct iwl_rxq *rxq)
    704{
    705	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    706	struct device *dev = trans->dev;
    707	int i;
    708	int free_size;
    709	bool use_rx_td = (trans->trans_cfg->device_family >=
    710			  IWL_DEVICE_FAMILY_AX210);
    711	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
    712			      sizeof(struct iwl_rb_status);
    713
    714	spin_lock_init(&rxq->lock);
    715	if (trans->trans_cfg->mq_rx_supported)
    716		rxq->queue_size = trans->cfg->num_rbds;
    717	else
    718		rxq->queue_size = RX_QUEUE_SIZE;
    719
    720	free_size = iwl_pcie_free_bd_size(trans);
    721
    722	/*
    723	 * Allocate the circular buffer of Read Buffer Descriptors
    724	 * (RBDs)
    725	 */
    726	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
    727				     &rxq->bd_dma, GFP_KERNEL);
    728	if (!rxq->bd)
    729		goto err;
    730
    731	if (trans->trans_cfg->mq_rx_supported) {
    732		rxq->used_bd = dma_alloc_coherent(dev,
    733						  iwl_pcie_used_bd_size(trans) *
    734							rxq->queue_size,
    735						  &rxq->used_bd_dma,
    736						  GFP_KERNEL);
    737		if (!rxq->used_bd)
    738			goto err;
    739	}
    740
    741	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
    742	rxq->rb_stts_dma =
    743		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
    744
    745	return 0;
    746
    747err:
    748	for (i = 0; i < trans->num_rx_queues; i++) {
    749		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
    750
    751		iwl_pcie_free_rxq_dma(trans, rxq);
    752	}
    753
    754	return -ENOMEM;
    755}
    756
    757static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
    758{
    759	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    760	struct iwl_rb_allocator *rba = &trans_pcie->rba;
    761	int i, ret;
    762	size_t rb_stts_size = trans->trans_cfg->device_family >=
    763				IWL_DEVICE_FAMILY_AX210 ?
    764			      sizeof(__le16) : sizeof(struct iwl_rb_status);
    765
    766	if (WARN_ON(trans_pcie->rxq))
    767		return -EINVAL;
    768
    769	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
    770				  GFP_KERNEL);
    771	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
    772				      sizeof(trans_pcie->rx_pool[0]),
    773				      GFP_KERNEL);
    774	trans_pcie->global_table =
    775		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
    776			sizeof(trans_pcie->global_table[0]),
    777			GFP_KERNEL);
    778	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
    779	    !trans_pcie->global_table) {
    780		ret = -ENOMEM;
    781		goto err;
    782	}
    783
    784	spin_lock_init(&rba->lock);
    785
    786	/*
    787	 * Allocate the driver's pointer to receive buffer status.
    788	 * Allocate for all queues continuously (HW requirement).
    789	 */
    790	trans_pcie->base_rb_stts =
    791			dma_alloc_coherent(trans->dev,
    792					   rb_stts_size * trans->num_rx_queues,
    793					   &trans_pcie->base_rb_stts_dma,
    794					   GFP_KERNEL);
    795	if (!trans_pcie->base_rb_stts) {
    796		ret = -ENOMEM;
    797		goto err;
    798	}
    799
    800	for (i = 0; i < trans->num_rx_queues; i++) {
    801		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
    802
    803		rxq->id = i;
    804		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
    805		if (ret)
    806			goto err;
    807	}
    808	return 0;
    809
    810err:
    811	if (trans_pcie->base_rb_stts) {
    812		dma_free_coherent(trans->dev,
    813				  rb_stts_size * trans->num_rx_queues,
    814				  trans_pcie->base_rb_stts,
    815				  trans_pcie->base_rb_stts_dma);
    816		trans_pcie->base_rb_stts = NULL;
    817		trans_pcie->base_rb_stts_dma = 0;
    818	}
    819	kfree(trans_pcie->rx_pool);
    820	trans_pcie->rx_pool = NULL;
    821	kfree(trans_pcie->global_table);
    822	trans_pcie->global_table = NULL;
    823	kfree(trans_pcie->rxq);
    824	trans_pcie->rxq = NULL;
    825
    826	return ret;
    827}
    828
    829static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
    830{
    831	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    832	u32 rb_size;
    833	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
    834
    835	switch (trans_pcie->rx_buf_size) {
    836	case IWL_AMSDU_4K:
    837		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
    838		break;
    839	case IWL_AMSDU_8K:
    840		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
    841		break;
    842	case IWL_AMSDU_12K:
    843		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
    844		break;
    845	default:
    846		WARN_ON(1);
    847		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
    848	}
    849
    850	if (!iwl_trans_grab_nic_access(trans))
    851		return;
    852
    853	/* Stop Rx DMA */
    854	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
    855	/* reset and flush pointers */
    856	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
    857	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
    858	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
    859
    860	/* Reset driver's Rx queue write index */
    861	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
    862
    863	/* Tell device where to find RBD circular buffer in DRAM */
    864	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
    865		    (u32)(rxq->bd_dma >> 8));
    866
    867	/* Tell device where in DRAM to update its Rx status */
    868	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
    869		    rxq->rb_stts_dma >> 4);
    870
    871	/* Enable Rx DMA
    872	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
    873	 *      the credit mechanism in 5000 HW RX FIFO
    874	 * Direct rx interrupts to hosts
    875	 * Rx buffer size 4 or 8k or 12k
    876	 * RB timeout 0x10
    877	 * 256 RBDs
    878	 */
    879	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
    880		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
    881		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
    882		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
    883		    rb_size |
    884		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
    885		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
    886
    887	iwl_trans_release_nic_access(trans);
    888
    889	/* Set interrupt coalescing timer to default (2048 usecs) */
    890	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
    891
    892	/* W/A for interrupt coalescing bug in 7260 and 3160 */
    893	if (trans->cfg->host_interrupt_operation_mode)
    894		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
    895}
    896
    897static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
    898{
    899	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
    900	u32 rb_size, enabled = 0;
    901	int i;
    902
    903	switch (trans_pcie->rx_buf_size) {
    904	case IWL_AMSDU_2K:
    905		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
    906		break;
    907	case IWL_AMSDU_4K:
    908		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
    909		break;
    910	case IWL_AMSDU_8K:
    911		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
    912		break;
    913	case IWL_AMSDU_12K:
    914		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
    915		break;
    916	default:
    917		WARN_ON(1);
    918		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
    919	}
    920
    921	if (!iwl_trans_grab_nic_access(trans))
    922		return;
    923
    924	/* Stop Rx DMA */
    925	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
    926	/* disable free amd used rx queue operation */
    927	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
    928
    929	for (i = 0; i < trans->num_rx_queues; i++) {
    930		/* Tell device where to find RBD free table in DRAM */
    931		iwl_write_prph64_no_grab(trans,
    932					 RFH_Q_FRBDCB_BA_LSB(i),
    933					 trans_pcie->rxq[i].bd_dma);
    934		/* Tell device where to find RBD used table in DRAM */
    935		iwl_write_prph64_no_grab(trans,
    936					 RFH_Q_URBDCB_BA_LSB(i),
    937					 trans_pcie->rxq[i].used_bd_dma);
    938		/* Tell device where in DRAM to update its Rx status */
    939		iwl_write_prph64_no_grab(trans,
    940					 RFH_Q_URBD_STTS_WPTR_LSB(i),
    941					 trans_pcie->rxq[i].rb_stts_dma);
    942		/* Reset device indice tables */
    943		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
    944		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
    945		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
    946
    947		enabled |= BIT(i) | BIT(i + 16);
    948	}
    949
    950	/*
    951	 * Enable Rx DMA
    952	 * Rx buffer size 4 or 8k or 12k
    953	 * Min RB size 4 or 8
    954	 * Drop frames that exceed RB size
    955	 * 512 RBDs
    956	 */
    957	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
    958			       RFH_DMA_EN_ENABLE_VAL | rb_size |
    959			       RFH_RXF_DMA_MIN_RB_4_8 |
    960			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
    961			       RFH_RXF_DMA_RBDCB_SIZE_512);
    962
    963	/*
    964	 * Activate DMA snooping.
    965	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
    966	 * Default queue is 0
    967	 */
    968	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
    969			       RFH_GEN_CFG_RFH_DMA_SNOOP |
    970			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
    971			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
    972			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
    973					       trans->trans_cfg->integrated ?
    974					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
    975					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
    976	/* Enable the relevant rx queues */
    977	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
    978
    979	iwl_trans_release_nic_access(trans);
    980
    981	/* Set interrupt coalescing timer to default (2048 usecs) */
    982	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
    983}
    984
    985void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
    986{
    987	lockdep_assert_held(&rxq->lock);
    988
    989	INIT_LIST_HEAD(&rxq->rx_free);
    990	INIT_LIST_HEAD(&rxq->rx_used);
    991	rxq->free_count = 0;
    992	rxq->used_count = 0;
    993}
    994
    995static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
    996
    997static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
    998{
    999	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
   1000	struct iwl_trans_pcie *trans_pcie;
   1001	struct iwl_trans *trans;
   1002	int ret;
   1003
   1004	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
   1005	trans = trans_pcie->trans;
   1006
   1007	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
   1008
   1009	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
   1010		      rxq->id, ret, budget);
   1011
   1012	if (ret < budget) {
   1013		spin_lock(&trans_pcie->irq_lock);
   1014		if (test_bit(STATUS_INT_ENABLED, &trans->status))
   1015			_iwl_enable_interrupts(trans);
   1016		spin_unlock(&trans_pcie->irq_lock);
   1017
   1018		napi_complete_done(&rxq->napi, ret);
   1019	}
   1020
   1021	return ret;
   1022}
   1023
   1024static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
   1025{
   1026	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
   1027	struct iwl_trans_pcie *trans_pcie;
   1028	struct iwl_trans *trans;
   1029	int ret;
   1030
   1031	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
   1032	trans = trans_pcie->trans;
   1033
   1034	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
   1035	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
   1036		      budget);
   1037
   1038	if (ret < budget) {
   1039		int irq_line = rxq->id;
   1040
   1041		/* FIRST_RSS is shared with line 0 */
   1042		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
   1043		    rxq->id == 1)
   1044			irq_line = 0;
   1045
   1046		spin_lock(&trans_pcie->irq_lock);
   1047		iwl_pcie_clear_irq(trans, irq_line);
   1048		spin_unlock(&trans_pcie->irq_lock);
   1049
   1050		napi_complete_done(&rxq->napi, ret);
   1051	}
   1052
   1053	return ret;
   1054}
   1055
   1056static int _iwl_pcie_rx_init(struct iwl_trans *trans)
   1057{
   1058	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1059	struct iwl_rxq *def_rxq;
   1060	struct iwl_rb_allocator *rba = &trans_pcie->rba;
   1061	int i, err, queue_size, allocator_pool_size, num_alloc;
   1062
   1063	if (!trans_pcie->rxq) {
   1064		err = iwl_pcie_rx_alloc(trans);
   1065		if (err)
   1066			return err;
   1067	}
   1068	def_rxq = trans_pcie->rxq;
   1069
   1070	cancel_work_sync(&rba->rx_alloc);
   1071
   1072	spin_lock_bh(&rba->lock);
   1073	atomic_set(&rba->req_pending, 0);
   1074	atomic_set(&rba->req_ready, 0);
   1075	INIT_LIST_HEAD(&rba->rbd_allocated);
   1076	INIT_LIST_HEAD(&rba->rbd_empty);
   1077	spin_unlock_bh(&rba->lock);
   1078
   1079	/* free all first - we overwrite everything here */
   1080	iwl_pcie_free_rbs_pool(trans);
   1081
   1082	for (i = 0; i < RX_QUEUE_SIZE; i++)
   1083		def_rxq->queue[i] = NULL;
   1084
   1085	for (i = 0; i < trans->num_rx_queues; i++) {
   1086		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
   1087
   1088		spin_lock_bh(&rxq->lock);
   1089		/*
   1090		 * Set read write pointer to reflect that we have processed
   1091		 * and used all buffers, but have not restocked the Rx queue
   1092		 * with fresh buffers
   1093		 */
   1094		rxq->read = 0;
   1095		rxq->write = 0;
   1096		rxq->write_actual = 0;
   1097		memset(rxq->rb_stts, 0,
   1098		       (trans->trans_cfg->device_family >=
   1099			IWL_DEVICE_FAMILY_AX210) ?
   1100		       sizeof(__le16) : sizeof(struct iwl_rb_status));
   1101
   1102		iwl_pcie_rx_init_rxb_lists(rxq);
   1103
   1104		spin_unlock_bh(&rxq->lock);
   1105
   1106		if (!rxq->napi.poll) {
   1107			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
   1108
   1109			if (trans_pcie->msix_enabled)
   1110				poll = iwl_pcie_napi_poll_msix;
   1111
   1112			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
   1113				       poll, NAPI_POLL_WEIGHT);
   1114			napi_enable(&rxq->napi);
   1115		}
   1116
   1117	}
   1118
   1119	/* move the pool to the default queue and allocator ownerships */
   1120	queue_size = trans->trans_cfg->mq_rx_supported ?
   1121			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
   1122	allocator_pool_size = trans->num_rx_queues *
   1123		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
   1124	num_alloc = queue_size + allocator_pool_size;
   1125
   1126	for (i = 0; i < num_alloc; i++) {
   1127		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
   1128
   1129		if (i < allocator_pool_size)
   1130			list_add(&rxb->list, &rba->rbd_empty);
   1131		else
   1132			list_add(&rxb->list, &def_rxq->rx_used);
   1133		trans_pcie->global_table[i] = rxb;
   1134		rxb->vid = (u16)(i + 1);
   1135		rxb->invalid = true;
   1136	}
   1137
   1138	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
   1139
   1140	return 0;
   1141}
   1142
   1143int iwl_pcie_rx_init(struct iwl_trans *trans)
   1144{
   1145	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1146	int ret = _iwl_pcie_rx_init(trans);
   1147
   1148	if (ret)
   1149		return ret;
   1150
   1151	if (trans->trans_cfg->mq_rx_supported)
   1152		iwl_pcie_rx_mq_hw_init(trans);
   1153	else
   1154		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
   1155
   1156	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
   1157
   1158	spin_lock_bh(&trans_pcie->rxq->lock);
   1159	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
   1160	spin_unlock_bh(&trans_pcie->rxq->lock);
   1161
   1162	return 0;
   1163}
   1164
   1165int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
   1166{
   1167	/* Set interrupt coalescing timer to default (2048 usecs) */
   1168	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
   1169
   1170	/*
   1171	 * We don't configure the RFH.
   1172	 * Restock will be done at alive, after firmware configured the RFH.
   1173	 */
   1174	return _iwl_pcie_rx_init(trans);
   1175}
   1176
   1177void iwl_pcie_rx_free(struct iwl_trans *trans)
   1178{
   1179	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1180	struct iwl_rb_allocator *rba = &trans_pcie->rba;
   1181	int i;
   1182	size_t rb_stts_size = trans->trans_cfg->device_family >=
   1183				IWL_DEVICE_FAMILY_AX210 ?
   1184			      sizeof(__le16) : sizeof(struct iwl_rb_status);
   1185
   1186	/*
   1187	 * if rxq is NULL, it means that nothing has been allocated,
   1188	 * exit now
   1189	 */
   1190	if (!trans_pcie->rxq) {
   1191		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
   1192		return;
   1193	}
   1194
   1195	cancel_work_sync(&rba->rx_alloc);
   1196
   1197	iwl_pcie_free_rbs_pool(trans);
   1198
   1199	if (trans_pcie->base_rb_stts) {
   1200		dma_free_coherent(trans->dev,
   1201				  rb_stts_size * trans->num_rx_queues,
   1202				  trans_pcie->base_rb_stts,
   1203				  trans_pcie->base_rb_stts_dma);
   1204		trans_pcie->base_rb_stts = NULL;
   1205		trans_pcie->base_rb_stts_dma = 0;
   1206	}
   1207
   1208	for (i = 0; i < trans->num_rx_queues; i++) {
   1209		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
   1210
   1211		iwl_pcie_free_rxq_dma(trans, rxq);
   1212
   1213		if (rxq->napi.poll) {
   1214			napi_disable(&rxq->napi);
   1215			netif_napi_del(&rxq->napi);
   1216		}
   1217	}
   1218	kfree(trans_pcie->rx_pool);
   1219	kfree(trans_pcie->global_table);
   1220	kfree(trans_pcie->rxq);
   1221
   1222	if (trans_pcie->alloc_page)
   1223		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
   1224}
   1225
   1226static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
   1227					  struct iwl_rb_allocator *rba)
   1228{
   1229	spin_lock(&rba->lock);
   1230	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
   1231	spin_unlock(&rba->lock);
   1232}
   1233
   1234/*
   1235 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
   1236 *
   1237 * Called when a RBD can be reused. The RBD is transferred to the allocator.
   1238 * When there are 2 empty RBDs - a request for allocation is posted
   1239 */
   1240static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
   1241				  struct iwl_rx_mem_buffer *rxb,
   1242				  struct iwl_rxq *rxq, bool emergency)
   1243{
   1244	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1245	struct iwl_rb_allocator *rba = &trans_pcie->rba;
   1246
   1247	/* Move the RBD to the used list, will be moved to allocator in batches
   1248	 * before claiming or posting a request*/
   1249	list_add_tail(&rxb->list, &rxq->rx_used);
   1250
   1251	if (unlikely(emergency))
   1252		return;
   1253
   1254	/* Count the allocator owned RBDs */
   1255	rxq->used_count++;
   1256
   1257	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
   1258	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
   1259	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
   1260	 * after but we still need to post another request.
   1261	 */
   1262	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
   1263		/* Move the 2 RBDs to the allocator ownership.
   1264		 Allocator has another 6 from pool for the request completion*/
   1265		iwl_pcie_rx_move_to_allocator(rxq, rba);
   1266
   1267		atomic_inc(&rba->req_pending);
   1268		queue_work(rba->alloc_wq, &rba->rx_alloc);
   1269	}
   1270}
   1271
   1272static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
   1273				struct iwl_rxq *rxq,
   1274				struct iwl_rx_mem_buffer *rxb,
   1275				bool emergency,
   1276				int i)
   1277{
   1278	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1279	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
   1280	bool page_stolen = false;
   1281	int max_len = trans_pcie->rx_buf_bytes;
   1282	u32 offset = 0;
   1283
   1284	if (WARN_ON(!rxb))
   1285		return;
   1286
   1287	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
   1288
   1289	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
   1290		struct iwl_rx_packet *pkt;
   1291		bool reclaim;
   1292		int len;
   1293		struct iwl_rx_cmd_buffer rxcb = {
   1294			._offset = rxb->offset + offset,
   1295			._rx_page_order = trans_pcie->rx_page_order,
   1296			._page = rxb->page,
   1297			._page_stolen = false,
   1298			.truesize = max_len,
   1299		};
   1300
   1301		pkt = rxb_addr(&rxcb);
   1302
   1303		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
   1304			IWL_DEBUG_RX(trans,
   1305				     "Q %d: RB end marker at offset %d\n",
   1306				     rxq->id, offset);
   1307			break;
   1308		}
   1309
   1310		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
   1311			FH_RSCSR_RXQ_POS != rxq->id,
   1312		     "frame on invalid queue - is on %d and indicates %d\n",
   1313		     rxq->id,
   1314		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
   1315			FH_RSCSR_RXQ_POS);
   1316
   1317		IWL_DEBUG_RX(trans,
   1318			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
   1319			     rxq->id, offset,
   1320			     iwl_get_cmd_string(trans,
   1321						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
   1322			     pkt->hdr.group_id, pkt->hdr.cmd,
   1323			     le16_to_cpu(pkt->hdr.sequence));
   1324
   1325		len = iwl_rx_packet_len(pkt);
   1326		len += sizeof(u32); /* account for status word */
   1327
   1328		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
   1329
   1330		/* check that what the device tells us made sense */
   1331		if (len < sizeof(*pkt) || offset > max_len)
   1332			break;
   1333
   1334		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
   1335		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
   1336
   1337		/* Reclaim a command buffer only if this packet is a response
   1338		 *   to a (driver-originated) command.
   1339		 * If the packet (e.g. Rx frame) originated from uCode,
   1340		 *   there is no command buffer to reclaim.
   1341		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
   1342		 *   but apparently a few don't get set; catch them here. */
   1343		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
   1344		if (reclaim && !pkt->hdr.group_id) {
   1345			int i;
   1346
   1347			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
   1348				if (trans_pcie->no_reclaim_cmds[i] ==
   1349							pkt->hdr.cmd) {
   1350					reclaim = false;
   1351					break;
   1352				}
   1353			}
   1354		}
   1355
   1356		if (rxq->id == trans_pcie->def_rx_queue)
   1357			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
   1358				       &rxcb);
   1359		else
   1360			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
   1361					   &rxcb, rxq->id);
   1362
   1363		/*
   1364		 * After here, we should always check rxcb._page_stolen,
   1365		 * if it is true then one of the handlers took the page.
   1366		 */
   1367
   1368		if (reclaim) {
   1369			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
   1370			int index = SEQ_TO_INDEX(sequence);
   1371			int cmd_index = iwl_txq_get_cmd_index(txq, index);
   1372
   1373			kfree_sensitive(txq->entries[cmd_index].free_buf);
   1374			txq->entries[cmd_index].free_buf = NULL;
   1375
   1376			/* Invoke any callbacks, transfer the buffer to caller,
   1377			 * and fire off the (possibly) blocking
   1378			 * iwl_trans_send_cmd()
   1379			 * as we reclaim the driver command queue */
   1380			if (!rxcb._page_stolen)
   1381				iwl_pcie_hcmd_complete(trans, &rxcb);
   1382			else
   1383				IWL_WARN(trans, "Claim null rxb?\n");
   1384		}
   1385
   1386		page_stolen |= rxcb._page_stolen;
   1387		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
   1388			break;
   1389	}
   1390
   1391	/* page was stolen from us -- free our reference */
   1392	if (page_stolen) {
   1393		__free_pages(rxb->page, trans_pcie->rx_page_order);
   1394		rxb->page = NULL;
   1395	}
   1396
   1397	/* Reuse the page if possible. For notification packets and
   1398	 * SKBs that fail to Rx correctly, add them back into the
   1399	 * rx_free list for reuse later. */
   1400	if (rxb->page != NULL) {
   1401		rxb->page_dma =
   1402			dma_map_page(trans->dev, rxb->page, rxb->offset,
   1403				     trans_pcie->rx_buf_bytes,
   1404				     DMA_FROM_DEVICE);
   1405		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
   1406			/*
   1407			 * free the page(s) as well to not break
   1408			 * the invariant that the items on the used
   1409			 * list have no page(s)
   1410			 */
   1411			__free_pages(rxb->page, trans_pcie->rx_page_order);
   1412			rxb->page = NULL;
   1413			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
   1414		} else {
   1415			list_add_tail(&rxb->list, &rxq->rx_free);
   1416			rxq->free_count++;
   1417		}
   1418	} else
   1419		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
   1420}
   1421
   1422static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
   1423						  struct iwl_rxq *rxq, int i,
   1424						  bool *join)
   1425{
   1426	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1427	struct iwl_rx_mem_buffer *rxb;
   1428	u16 vid;
   1429
   1430	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
   1431	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
   1432
   1433	if (!trans->trans_cfg->mq_rx_supported) {
   1434		rxb = rxq->queue[i];
   1435		rxq->queue[i] = NULL;
   1436		return rxb;
   1437	}
   1438
   1439	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
   1440		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
   1441
   1442		vid = le16_to_cpu(cd[i].rbid);
   1443		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
   1444	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
   1445		struct iwl_rx_completion_desc *cd = rxq->used_bd;
   1446
   1447		vid = le16_to_cpu(cd[i].rbid);
   1448		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
   1449	} else {
   1450		__le32 *cd = rxq->used_bd;
   1451
   1452		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
   1453	}
   1454
   1455	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
   1456		goto out_err;
   1457
   1458	rxb = trans_pcie->global_table[vid - 1];
   1459	if (rxb->invalid)
   1460		goto out_err;
   1461
   1462	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
   1463
   1464	rxb->invalid = true;
   1465
   1466	return rxb;
   1467
   1468out_err:
   1469	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
   1470	iwl_force_nmi(trans);
   1471	return NULL;
   1472}
   1473
   1474/*
   1475 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
   1476 */
   1477static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
   1478{
   1479	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1480	struct iwl_rxq *rxq;
   1481	u32 r, i, count = 0, handled = 0;
   1482	bool emergency = false;
   1483
   1484	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
   1485		return budget;
   1486
   1487	rxq = &trans_pcie->rxq[queue];
   1488
   1489restart:
   1490	spin_lock(&rxq->lock);
   1491	/* uCode's read index (stored in shared DRAM) indicates the last Rx
   1492	 * buffer that the driver may process (last buffer filled by ucode). */
   1493	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
   1494	i = rxq->read;
   1495
   1496	/* W/A 9000 device step A0 wrap-around bug */
   1497	r &= (rxq->queue_size - 1);
   1498
   1499	/* Rx interrupt, but nothing sent from uCode */
   1500	if (i == r)
   1501		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
   1502
   1503	while (i != r && ++handled < budget) {
   1504		struct iwl_rb_allocator *rba = &trans_pcie->rba;
   1505		struct iwl_rx_mem_buffer *rxb;
   1506		/* number of RBDs still waiting for page allocation */
   1507		u32 rb_pending_alloc =
   1508			atomic_read(&trans_pcie->rba.req_pending) *
   1509			RX_CLAIM_REQ_ALLOC;
   1510		bool join = false;
   1511
   1512		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
   1513			     !emergency)) {
   1514			iwl_pcie_rx_move_to_allocator(rxq, rba);
   1515			emergency = true;
   1516			IWL_DEBUG_TPT(trans,
   1517				      "RX path is in emergency. Pending allocations %d\n",
   1518				      rb_pending_alloc);
   1519		}
   1520
   1521		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
   1522
   1523		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
   1524		if (!rxb)
   1525			goto out;
   1526
   1527		if (unlikely(join || rxq->next_rb_is_fragment)) {
   1528			rxq->next_rb_is_fragment = join;
   1529			/*
   1530			 * We can only get a multi-RB in the following cases:
   1531			 *  - firmware issue, sending a too big notification
   1532			 *  - sniffer mode with a large A-MSDU
   1533			 *  - large MTU frames (>2k)
   1534			 * since the multi-RB functionality is limited to newer
   1535			 * hardware that cannot put multiple entries into a
   1536			 * single RB.
   1537			 *
   1538			 * Right now, the higher layers aren't set up to deal
   1539			 * with that, so discard all of these.
   1540			 */
   1541			list_add_tail(&rxb->list, &rxq->rx_free);
   1542			rxq->free_count++;
   1543		} else {
   1544			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
   1545		}
   1546
   1547		i = (i + 1) & (rxq->queue_size - 1);
   1548
   1549		/*
   1550		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
   1551		 * try to claim the pre-allocated buffers from the allocator.
   1552		 * If not ready - will try to reclaim next time.
   1553		 * There is no need to reschedule work - allocator exits only
   1554		 * on success
   1555		 */
   1556		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
   1557			iwl_pcie_rx_allocator_get(trans, rxq);
   1558
   1559		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
   1560			/* Add the remaining empty RBDs for allocator use */
   1561			iwl_pcie_rx_move_to_allocator(rxq, rba);
   1562		} else if (emergency) {
   1563			count++;
   1564			if (count == 8) {
   1565				count = 0;
   1566				if (rb_pending_alloc < rxq->queue_size / 3) {
   1567					IWL_DEBUG_TPT(trans,
   1568						      "RX path exited emergency. Pending allocations %d\n",
   1569						      rb_pending_alloc);
   1570					emergency = false;
   1571				}
   1572
   1573				rxq->read = i;
   1574				spin_unlock(&rxq->lock);
   1575				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
   1576				iwl_pcie_rxq_restock(trans, rxq);
   1577				goto restart;
   1578			}
   1579		}
   1580	}
   1581out:
   1582	/* Backtrack one entry */
   1583	rxq->read = i;
   1584	spin_unlock(&rxq->lock);
   1585
   1586	/*
   1587	 * handle a case where in emergency there are some unallocated RBDs.
   1588	 * those RBDs are in the used list, but are not tracked by the queue's
   1589	 * used_count which counts allocator owned RBDs.
   1590	 * unallocated emergency RBDs must be allocated on exit, otherwise
   1591	 * when called again the function may not be in emergency mode and
   1592	 * they will be handed to the allocator with no tracking in the RBD
   1593	 * allocator counters, which will lead to them never being claimed back
   1594	 * by the queue.
   1595	 * by allocating them here, they are now in the queue free list, and
   1596	 * will be restocked by the next call of iwl_pcie_rxq_restock.
   1597	 */
   1598	if (unlikely(emergency && count))
   1599		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
   1600
   1601	iwl_pcie_rxq_restock(trans, rxq);
   1602
   1603	return handled;
   1604}
   1605
   1606static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
   1607{
   1608	u8 queue = entry->entry;
   1609	struct msix_entry *entries = entry - queue;
   1610
   1611	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
   1612}
   1613
   1614/*
   1615 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
   1616 * This interrupt handler should be used with RSS queue only.
   1617 */
   1618irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
   1619{
   1620	struct msix_entry *entry = dev_id;
   1621	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
   1622	struct iwl_trans *trans = trans_pcie->trans;
   1623	struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
   1624
   1625	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
   1626
   1627	if (WARN_ON(entry->entry >= trans->num_rx_queues))
   1628		return IRQ_NONE;
   1629
   1630	if (!rxq) {
   1631		if (net_ratelimit())
   1632			IWL_ERR(trans,
   1633				"[%d] Got MSI-X interrupt before we have Rx queues\n",
   1634				entry->entry);
   1635		return IRQ_NONE;
   1636	}
   1637
   1638	lock_map_acquire(&trans->sync_cmd_lockdep_map);
   1639	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
   1640
   1641	local_bh_disable();
   1642	if (napi_schedule_prep(&rxq->napi))
   1643		__napi_schedule(&rxq->napi);
   1644	else
   1645		iwl_pcie_clear_irq(trans, entry->entry);
   1646	local_bh_enable();
   1647
   1648	lock_map_release(&trans->sync_cmd_lockdep_map);
   1649
   1650	return IRQ_HANDLED;
   1651}
   1652
   1653/*
   1654 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
   1655 */
   1656static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
   1657{
   1658	int i;
   1659
   1660	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
   1661	if (trans->cfg->internal_wimax_coex &&
   1662	    !trans->cfg->apmg_not_supported &&
   1663	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
   1664			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
   1665	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
   1666			    APMG_PS_CTRL_VAL_RESET_REQ))) {
   1667		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
   1668		iwl_op_mode_wimax_active(trans->op_mode);
   1669		wake_up(&trans->wait_command_queue);
   1670		return;
   1671	}
   1672
   1673	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
   1674		if (!trans->txqs.txq[i])
   1675			continue;
   1676		del_timer(&trans->txqs.txq[i]->stuck_timer);
   1677	}
   1678
   1679	/* The STATUS_FW_ERROR bit is set in this function. This must happen
   1680	 * before we wake up the command caller, to ensure a proper cleanup. */
   1681	iwl_trans_fw_error(trans, false);
   1682
   1683	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
   1684	wake_up(&trans->wait_command_queue);
   1685}
   1686
   1687static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
   1688{
   1689	u32 inta;
   1690
   1691	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
   1692
   1693	trace_iwlwifi_dev_irq(trans->dev);
   1694
   1695	/* Discover which interrupts are active/pending */
   1696	inta = iwl_read32(trans, CSR_INT);
   1697
   1698	/* the thread will service interrupts and re-enable them */
   1699	return inta;
   1700}
   1701
   1702/* a device (PCI-E) page is 4096 bytes long */
   1703#define ICT_SHIFT	12
   1704#define ICT_SIZE	(1 << ICT_SHIFT)
   1705#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
   1706
   1707/* interrupt handler using ict table, with this interrupt driver will
   1708 * stop using INTA register to get device's interrupt, reading this register
   1709 * is expensive, device will write interrupts in ICT dram table, increment
   1710 * index then will fire interrupt to driver, driver will OR all ICT table
   1711 * entries from current index up to table entry with 0 value. the result is
   1712 * the interrupt we need to service, driver will set the entries back to 0 and
   1713 * set index.
   1714 */
   1715static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
   1716{
   1717	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1718	u32 inta;
   1719	u32 val = 0;
   1720	u32 read;
   1721
   1722	trace_iwlwifi_dev_irq(trans->dev);
   1723
   1724	/* Ignore interrupt if there's nothing in NIC to service.
   1725	 * This may be due to IRQ shared with another device,
   1726	 * or due to sporadic interrupts thrown from our NIC. */
   1727	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
   1728	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
   1729	if (!read)
   1730		return 0;
   1731
   1732	/*
   1733	 * Collect all entries up to the first 0, starting from ict_index;
   1734	 * note we already read at ict_index.
   1735	 */
   1736	do {
   1737		val |= read;
   1738		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
   1739				trans_pcie->ict_index, read);
   1740		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
   1741		trans_pcie->ict_index =
   1742			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
   1743
   1744		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
   1745		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
   1746					   read);
   1747	} while (read);
   1748
   1749	/* We should not get this value, just ignore it. */
   1750	if (val == 0xffffffff)
   1751		val = 0;
   1752
   1753	/*
   1754	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
   1755	 * (bit 15 before shifting it to 31) to clear when using interrupt
   1756	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
   1757	 * so we use them to decide on the real state of the Rx bit.
   1758	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
   1759	 */
   1760	if (val & 0xC0000)
   1761		val |= 0x8000;
   1762
   1763	inta = (0xff & val) | ((0xff00 & val) << 16);
   1764	return inta;
   1765}
   1766
   1767void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
   1768{
   1769	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1770	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
   1771	bool hw_rfkill, prev, report;
   1772
   1773	mutex_lock(&trans_pcie->mutex);
   1774	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
   1775	hw_rfkill = iwl_is_rfkill_set(trans);
   1776	if (hw_rfkill) {
   1777		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
   1778		set_bit(STATUS_RFKILL_HW, &trans->status);
   1779	}
   1780	if (trans_pcie->opmode_down)
   1781		report = hw_rfkill;
   1782	else
   1783		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
   1784
   1785	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
   1786		 hw_rfkill ? "disable radio" : "enable radio");
   1787
   1788	isr_stats->rfkill++;
   1789
   1790	if (prev != report)
   1791		iwl_trans_pcie_rf_kill(trans, report);
   1792	mutex_unlock(&trans_pcie->mutex);
   1793
   1794	if (hw_rfkill) {
   1795		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
   1796				       &trans->status))
   1797			IWL_DEBUG_RF_KILL(trans,
   1798					  "Rfkill while SYNC HCMD in flight\n");
   1799		wake_up(&trans->wait_command_queue);
   1800	} else {
   1801		clear_bit(STATUS_RFKILL_HW, &trans->status);
   1802		if (trans_pcie->opmode_down)
   1803			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
   1804	}
   1805}
   1806
   1807irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
   1808{
   1809	struct iwl_trans *trans = dev_id;
   1810	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   1811	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
   1812	u32 inta = 0;
   1813	u32 handled = 0;
   1814	bool polling = false;
   1815
   1816	lock_map_acquire(&trans->sync_cmd_lockdep_map);
   1817
   1818	spin_lock_bh(&trans_pcie->irq_lock);
   1819
   1820	/* dram interrupt table not set yet,
   1821	 * use legacy interrupt.
   1822	 */
   1823	if (likely(trans_pcie->use_ict))
   1824		inta = iwl_pcie_int_cause_ict(trans);
   1825	else
   1826		inta = iwl_pcie_int_cause_non_ict(trans);
   1827
   1828	if (iwl_have_debug_level(IWL_DL_ISR)) {
   1829		IWL_DEBUG_ISR(trans,
   1830			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
   1831			      inta, trans_pcie->inta_mask,
   1832			      iwl_read32(trans, CSR_INT_MASK),
   1833			      iwl_read32(trans, CSR_FH_INT_STATUS));
   1834		if (inta & (~trans_pcie->inta_mask))
   1835			IWL_DEBUG_ISR(trans,
   1836				      "We got a masked interrupt (0x%08x)\n",
   1837				      inta & (~trans_pcie->inta_mask));
   1838	}
   1839
   1840	inta &= trans_pcie->inta_mask;
   1841
   1842	/*
   1843	 * Ignore interrupt if there's nothing in NIC to service.
   1844	 * This may be due to IRQ shared with another device,
   1845	 * or due to sporadic interrupts thrown from our NIC.
   1846	 */
   1847	if (unlikely(!inta)) {
   1848		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
   1849		/*
   1850		 * Re-enable interrupts here since we don't
   1851		 * have anything to service
   1852		 */
   1853		if (test_bit(STATUS_INT_ENABLED, &trans->status))
   1854			_iwl_enable_interrupts(trans);
   1855		spin_unlock_bh(&trans_pcie->irq_lock);
   1856		lock_map_release(&trans->sync_cmd_lockdep_map);
   1857		return IRQ_NONE;
   1858	}
   1859
   1860	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
   1861		/*
   1862		 * Hardware disappeared. It might have
   1863		 * already raised an interrupt.
   1864		 */
   1865		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
   1866		spin_unlock_bh(&trans_pcie->irq_lock);
   1867		goto out;
   1868	}
   1869
   1870	/* Ack/clear/reset pending uCode interrupts.
   1871	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
   1872	 */
   1873	/* There is a hardware bug in the interrupt mask function that some
   1874	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
   1875	 * they are disabled in the CSR_INT_MASK register. Furthermore the
   1876	 * ICT interrupt handling mechanism has another bug that might cause
   1877	 * these unmasked interrupts fail to be detected. We workaround the
   1878	 * hardware bugs here by ACKing all the possible interrupts so that
   1879	 * interrupt coalescing can still be achieved.
   1880	 */
   1881	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
   1882
   1883	if (iwl_have_debug_level(IWL_DL_ISR))
   1884		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
   1885			      inta, iwl_read32(trans, CSR_INT_MASK));
   1886
   1887	spin_unlock_bh(&trans_pcie->irq_lock);
   1888
   1889	/* Now service all interrupt bits discovered above. */
   1890	if (inta & CSR_INT_BIT_HW_ERR) {
   1891		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
   1892
   1893		/* Tell the device to stop sending interrupts */
   1894		iwl_disable_interrupts(trans);
   1895
   1896		isr_stats->hw++;
   1897		iwl_pcie_irq_handle_error(trans);
   1898
   1899		handled |= CSR_INT_BIT_HW_ERR;
   1900
   1901		goto out;
   1902	}
   1903
   1904	/* NIC fires this, but we don't use it, redundant with WAKEUP */
   1905	if (inta & CSR_INT_BIT_SCD) {
   1906		IWL_DEBUG_ISR(trans,
   1907			      "Scheduler finished to transmit the frame/frames.\n");
   1908		isr_stats->sch++;
   1909	}
   1910
   1911	/* Alive notification via Rx interrupt will do the real work */
   1912	if (inta & CSR_INT_BIT_ALIVE) {
   1913		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
   1914		isr_stats->alive++;
   1915		if (trans->trans_cfg->gen2) {
   1916			/*
   1917			 * We can restock, since firmware configured
   1918			 * the RFH
   1919			 */
   1920			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
   1921		}
   1922
   1923		handled |= CSR_INT_BIT_ALIVE;
   1924	}
   1925
   1926	/* Safely ignore these bits for debug checks below */
   1927	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
   1928
   1929	/* HW RF KILL switch toggled */
   1930	if (inta & CSR_INT_BIT_RF_KILL) {
   1931		iwl_pcie_handle_rfkill_irq(trans);
   1932		handled |= CSR_INT_BIT_RF_KILL;
   1933	}
   1934
   1935	/* Chip got too hot and stopped itself */
   1936	if (inta & CSR_INT_BIT_CT_KILL) {
   1937		IWL_ERR(trans, "Microcode CT kill error detected.\n");
   1938		isr_stats->ctkill++;
   1939		handled |= CSR_INT_BIT_CT_KILL;
   1940	}
   1941
   1942	/* Error detected by uCode */
   1943	if (inta & CSR_INT_BIT_SW_ERR) {
   1944		IWL_ERR(trans, "Microcode SW error detected. "
   1945			" Restarting 0x%X.\n", inta);
   1946		isr_stats->sw++;
   1947		iwl_pcie_irq_handle_error(trans);
   1948		handled |= CSR_INT_BIT_SW_ERR;
   1949	}
   1950
   1951	/* uCode wakes up after power-down sleep */
   1952	if (inta & CSR_INT_BIT_WAKEUP) {
   1953		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
   1954		iwl_pcie_rxq_check_wrptr(trans);
   1955		iwl_pcie_txq_check_wrptrs(trans);
   1956
   1957		isr_stats->wakeup++;
   1958
   1959		handled |= CSR_INT_BIT_WAKEUP;
   1960	}
   1961
   1962	/* All uCode command responses, including Tx command responses,
   1963	 * Rx "responses" (frame-received notification), and other
   1964	 * notifications from uCode come through here*/
   1965	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
   1966		    CSR_INT_BIT_RX_PERIODIC)) {
   1967		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
   1968		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
   1969			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
   1970			iwl_write32(trans, CSR_FH_INT_STATUS,
   1971					CSR_FH_INT_RX_MASK);
   1972		}
   1973		if (inta & CSR_INT_BIT_RX_PERIODIC) {
   1974			handled |= CSR_INT_BIT_RX_PERIODIC;
   1975			iwl_write32(trans,
   1976				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
   1977		}
   1978		/* Sending RX interrupt require many steps to be done in the
   1979		 * device:
   1980		 * 1- write interrupt to current index in ICT table.
   1981		 * 2- dma RX frame.
   1982		 * 3- update RX shared data to indicate last write index.
   1983		 * 4- send interrupt.
   1984		 * This could lead to RX race, driver could receive RX interrupt
   1985		 * but the shared data changes does not reflect this;
   1986		 * periodic interrupt will detect any dangling Rx activity.
   1987		 */
   1988
   1989		/* Disable periodic interrupt; we use it as just a one-shot. */
   1990		iwl_write8(trans, CSR_INT_PERIODIC_REG,
   1991			    CSR_INT_PERIODIC_DIS);
   1992
   1993		/*
   1994		 * Enable periodic interrupt in 8 msec only if we received
   1995		 * real RX interrupt (instead of just periodic int), to catch
   1996		 * any dangling Rx interrupt.  If it was just the periodic
   1997		 * interrupt, there was no dangling Rx activity, and no need
   1998		 * to extend the periodic interrupt; one-shot is enough.
   1999		 */
   2000		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
   2001			iwl_write8(trans, CSR_INT_PERIODIC_REG,
   2002				   CSR_INT_PERIODIC_ENA);
   2003
   2004		isr_stats->rx++;
   2005
   2006		local_bh_disable();
   2007		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
   2008			polling = true;
   2009			__napi_schedule(&trans_pcie->rxq[0].napi);
   2010		}
   2011		local_bh_enable();
   2012	}
   2013
   2014	/* This "Tx" DMA channel is used only for loading uCode */
   2015	if (inta & CSR_INT_BIT_FH_TX) {
   2016		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
   2017		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
   2018		isr_stats->tx++;
   2019		handled |= CSR_INT_BIT_FH_TX;
   2020		/* Wake up uCode load routine, now that load is complete */
   2021		trans_pcie->ucode_write_complete = true;
   2022		wake_up(&trans_pcie->ucode_write_waitq);
   2023		/* Wake up IMR write routine, now that write to SRAM is complete */
   2024		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
   2025			trans_pcie->imr_status = IMR_D2S_COMPLETED;
   2026			wake_up(&trans_pcie->ucode_write_waitq);
   2027		}
   2028	}
   2029
   2030	if (inta & ~handled) {
   2031		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
   2032		isr_stats->unhandled++;
   2033	}
   2034
   2035	if (inta & ~(trans_pcie->inta_mask)) {
   2036		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
   2037			 inta & ~trans_pcie->inta_mask);
   2038	}
   2039
   2040	if (!polling) {
   2041		spin_lock_bh(&trans_pcie->irq_lock);
   2042		/* only Re-enable all interrupt if disabled by irq */
   2043		if (test_bit(STATUS_INT_ENABLED, &trans->status))
   2044			_iwl_enable_interrupts(trans);
   2045		/* we are loading the firmware, enable FH_TX interrupt only */
   2046		else if (handled & CSR_INT_BIT_FH_TX)
   2047			iwl_enable_fw_load_int(trans);
   2048		/* Re-enable RF_KILL if it occurred */
   2049		else if (handled & CSR_INT_BIT_RF_KILL)
   2050			iwl_enable_rfkill_int(trans);
   2051		/* Re-enable the ALIVE / Rx interrupt if it occurred */
   2052		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
   2053			iwl_enable_fw_load_int_ctx_info(trans);
   2054		spin_unlock_bh(&trans_pcie->irq_lock);
   2055	}
   2056
   2057out:
   2058	lock_map_release(&trans->sync_cmd_lockdep_map);
   2059	return IRQ_HANDLED;
   2060}
   2061
   2062/******************************************************************************
   2063 *
   2064 * ICT functions
   2065 *
   2066 ******************************************************************************/
   2067
   2068/* Free dram table */
   2069void iwl_pcie_free_ict(struct iwl_trans *trans)
   2070{
   2071	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   2072
   2073	if (trans_pcie->ict_tbl) {
   2074		dma_free_coherent(trans->dev, ICT_SIZE,
   2075				  trans_pcie->ict_tbl,
   2076				  trans_pcie->ict_tbl_dma);
   2077		trans_pcie->ict_tbl = NULL;
   2078		trans_pcie->ict_tbl_dma = 0;
   2079	}
   2080}
   2081
   2082/*
   2083 * allocate dram shared table, it is an aligned memory
   2084 * block of ICT_SIZE.
   2085 * also reset all data related to ICT table interrupt.
   2086 */
   2087int iwl_pcie_alloc_ict(struct iwl_trans *trans)
   2088{
   2089	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   2090
   2091	trans_pcie->ict_tbl =
   2092		dma_alloc_coherent(trans->dev, ICT_SIZE,
   2093				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
   2094	if (!trans_pcie->ict_tbl)
   2095		return -ENOMEM;
   2096
   2097	/* just an API sanity check ... it is guaranteed to be aligned */
   2098	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
   2099		iwl_pcie_free_ict(trans);
   2100		return -EINVAL;
   2101	}
   2102
   2103	return 0;
   2104}
   2105
   2106/* Device is going up inform it about using ICT interrupt table,
   2107 * also we need to tell the driver to start using ICT interrupt.
   2108 */
   2109void iwl_pcie_reset_ict(struct iwl_trans *trans)
   2110{
   2111	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   2112	u32 val;
   2113
   2114	if (!trans_pcie->ict_tbl)
   2115		return;
   2116
   2117	spin_lock_bh(&trans_pcie->irq_lock);
   2118	_iwl_disable_interrupts(trans);
   2119
   2120	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
   2121
   2122	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
   2123
   2124	val |= CSR_DRAM_INT_TBL_ENABLE |
   2125	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
   2126	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
   2127
   2128	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
   2129
   2130	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
   2131	trans_pcie->use_ict = true;
   2132	trans_pcie->ict_index = 0;
   2133	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
   2134	_iwl_enable_interrupts(trans);
   2135	spin_unlock_bh(&trans_pcie->irq_lock);
   2136}
   2137
   2138/* Device is going down disable ict interrupt usage */
   2139void iwl_pcie_disable_ict(struct iwl_trans *trans)
   2140{
   2141	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
   2142
   2143	spin_lock_bh(&trans_pcie->irq_lock);
   2144	trans_pcie->use_ict = false;
   2145	spin_unlock_bh(&trans_pcie->irq_lock);
   2146}
   2147
   2148irqreturn_t iwl_pcie_isr(int irq, void *data)
   2149{
   2150	struct iwl_trans *trans = data;
   2151
   2152	if (!trans)
   2153		return IRQ_NONE;
   2154
   2155	/* Disable (but don't clear!) interrupts here to avoid
   2156	 * back-to-back ISRs and sporadic interrupts from our NIC.
   2157	 * If we have something to service, the tasklet will re-enable ints.
   2158	 * If we *don't* have something, we'll re-enable before leaving here.
   2159	 */
   2160	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
   2161
   2162	return IRQ_WAKE_THREAD;
   2163}
   2164
   2165irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
   2166{
   2167	return IRQ_WAKE_THREAD;
   2168}
   2169
   2170irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
   2171{
   2172	struct msix_entry *entry = dev_id;
   2173	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
   2174	struct iwl_trans *trans = trans_pcie->trans;
   2175	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
   2176	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
   2177	u32 inta_fh, inta_hw;
   2178	bool polling = false;
   2179	bool sw_err;
   2180
   2181	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
   2182		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
   2183
   2184	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
   2185		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
   2186
   2187	lock_map_acquire(&trans->sync_cmd_lockdep_map);
   2188
   2189	spin_lock_bh(&trans_pcie->irq_lock);
   2190	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
   2191	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
   2192	/*
   2193	 * Clear causes registers to avoid being handling the same cause.
   2194	 */
   2195	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
   2196	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
   2197	spin_unlock_bh(&trans_pcie->irq_lock);
   2198
   2199	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
   2200
   2201	if (unlikely(!(inta_fh | inta_hw))) {
   2202		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
   2203		lock_map_release(&trans->sync_cmd_lockdep_map);
   2204		return IRQ_NONE;
   2205	}
   2206
   2207	if (iwl_have_debug_level(IWL_DL_ISR)) {
   2208		IWL_DEBUG_ISR(trans,
   2209			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
   2210			      entry->entry, inta_fh, trans_pcie->fh_mask,
   2211			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
   2212		if (inta_fh & ~trans_pcie->fh_mask)
   2213			IWL_DEBUG_ISR(trans,
   2214				      "We got a masked interrupt (0x%08x)\n",
   2215				      inta_fh & ~trans_pcie->fh_mask);
   2216	}
   2217
   2218	inta_fh &= trans_pcie->fh_mask;
   2219
   2220	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
   2221	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
   2222		local_bh_disable();
   2223		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
   2224			polling = true;
   2225			__napi_schedule(&trans_pcie->rxq[0].napi);
   2226		}
   2227		local_bh_enable();
   2228	}
   2229
   2230	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
   2231	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
   2232		local_bh_disable();
   2233		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
   2234			polling = true;
   2235			__napi_schedule(&trans_pcie->rxq[1].napi);
   2236		}
   2237		local_bh_enable();
   2238	}
   2239
   2240	/* This "Tx" DMA channel is used only for loading uCode */
   2241	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
   2242	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
   2243		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
   2244		isr_stats->tx++;
   2245
   2246		/* Wake up IMR routine once write to SRAM is complete */
   2247		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
   2248			trans_pcie->imr_status = IMR_D2S_COMPLETED;
   2249			wake_up(&trans_pcie->ucode_write_waitq);
   2250		}
   2251	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
   2252		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
   2253		isr_stats->tx++;
   2254		/*
   2255		 * Wake up uCode load routine,
   2256		 * now that load is complete
   2257		 */
   2258		trans_pcie->ucode_write_complete = true;
   2259		wake_up(&trans_pcie->ucode_write_waitq);
   2260
   2261		/* Wake up IMR routine once write to SRAM is complete */
   2262		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
   2263			trans_pcie->imr_status = IMR_D2S_COMPLETED;
   2264			wake_up(&trans_pcie->ucode_write_waitq);
   2265		}
   2266	}
   2267
   2268	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
   2269		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
   2270	else
   2271		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
   2272
   2273	/* Error detected by uCode */
   2274	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
   2275		IWL_ERR(trans,
   2276			"Microcode SW error detected. Restarting 0x%X.\n",
   2277			inta_fh);
   2278		isr_stats->sw++;
   2279		/* during FW reset flow report errors from there */
   2280		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
   2281			trans_pcie->imr_status = IMR_D2S_ERROR;
   2282			wake_up(&trans_pcie->imr_waitq);
   2283		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
   2284			trans_pcie->fw_reset_state = FW_RESET_ERROR;
   2285			wake_up(&trans_pcie->fw_reset_waitq);
   2286		} else {
   2287			iwl_pcie_irq_handle_error(trans);
   2288		}
   2289	}
   2290
   2291	/* After checking FH register check HW register */
   2292	if (iwl_have_debug_level(IWL_DL_ISR)) {
   2293		IWL_DEBUG_ISR(trans,
   2294			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
   2295			      entry->entry, inta_hw, trans_pcie->hw_mask,
   2296			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
   2297		if (inta_hw & ~trans_pcie->hw_mask)
   2298			IWL_DEBUG_ISR(trans,
   2299				      "We got a masked interrupt 0x%08x\n",
   2300				      inta_hw & ~trans_pcie->hw_mask);
   2301	}
   2302
   2303	inta_hw &= trans_pcie->hw_mask;
   2304
   2305	/* Alive notification via Rx interrupt will do the real work */
   2306	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
   2307		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
   2308		isr_stats->alive++;
   2309		if (trans->trans_cfg->gen2) {
   2310			/* We can restock, since firmware configured the RFH */
   2311			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
   2312		}
   2313	}
   2314
   2315	/*
   2316	 * In some rare cases when the HW is in a bad state, we may
   2317	 * get this interrupt too early, when prph_info is still NULL.
   2318	 * So make sure that it's not NULL to prevent crashing.
   2319	 */
   2320	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
   2321		u32 sleep_notif =
   2322			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
   2323		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
   2324		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
   2325			IWL_DEBUG_ISR(trans,
   2326				      "Sx interrupt: sleep notification = 0x%x\n",
   2327				      sleep_notif);
   2328			trans_pcie->sx_complete = true;
   2329			wake_up(&trans_pcie->sx_waitq);
   2330		} else {
   2331			/* uCode wakes up after power-down sleep */
   2332			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
   2333			iwl_pcie_rxq_check_wrptr(trans);
   2334			iwl_pcie_txq_check_wrptrs(trans);
   2335
   2336			isr_stats->wakeup++;
   2337		}
   2338	}
   2339
   2340	/* Chip got too hot and stopped itself */
   2341	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
   2342		IWL_ERR(trans, "Microcode CT kill error detected.\n");
   2343		isr_stats->ctkill++;
   2344	}
   2345
   2346	/* HW RF KILL switch toggled */
   2347	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
   2348		iwl_pcie_handle_rfkill_irq(trans);
   2349
   2350	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
   2351		IWL_ERR(trans,
   2352			"Hardware error detected. Restarting.\n");
   2353
   2354		isr_stats->hw++;
   2355		trans->dbg.hw_error = true;
   2356		iwl_pcie_irq_handle_error(trans);
   2357	}
   2358
   2359	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
   2360		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
   2361		trans_pcie->fw_reset_state = FW_RESET_OK;
   2362		wake_up(&trans_pcie->fw_reset_waitq);
   2363	}
   2364
   2365	if (!polling)
   2366		iwl_pcie_clear_irq(trans, entry->entry);
   2367
   2368	lock_map_release(&trans->sync_cmd_lockdep_map);
   2369
   2370	return IRQ_HANDLED;
   2371}