cfp.c (14730B)
1/* 2 * NXP Wireless LAN device driver: Channel, Frequence and Power 3 * 4 * Copyright 2011-2020 NXP 5 * 6 * This software file (the "File") is distributed by NXP 7 * under the terms of the GNU General Public License Version 2, June 1991 8 * (the "License"). You may use, redistribute and/or modify this File in 9 * accordance with the terms and conditions of the License, a copy of which 10 * is available by writing to the Free Software Foundation, Inc., 11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the 12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt. 13 * 14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE 16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about 17 * this warranty disclaimer. 18 */ 19 20#include "decl.h" 21#include "ioctl.h" 22#include "util.h" 23#include "fw.h" 24#include "main.h" 25#include "cfg80211.h" 26 27/* 100mW */ 28#define MWIFIEX_TX_PWR_DEFAULT 20 29/* 100mW */ 30#define MWIFIEX_TX_PWR_US_DEFAULT 20 31/* 50mW */ 32#define MWIFIEX_TX_PWR_JP_DEFAULT 16 33/* 100mW */ 34#define MWIFIEX_TX_PWR_FR_100MW 20 35/* 10mW */ 36#define MWIFIEX_TX_PWR_FR_10MW 10 37/* 100mW */ 38#define MWIFIEX_TX_PWR_EMEA_DEFAULT 20 39 40static u8 adhoc_rates_b[B_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96, 0 }; 41 42static u8 adhoc_rates_g[G_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24, 43 0xb0, 0x48, 0x60, 0x6c, 0 }; 44 45static u8 adhoc_rates_bg[BG_SUPPORTED_RATES] = { 0x82, 0x84, 0x8b, 0x96, 46 0x0c, 0x12, 0x18, 0x24, 47 0x30, 0x48, 0x60, 0x6c, 0 }; 48 49static u8 adhoc_rates_a[A_SUPPORTED_RATES] = { 0x8c, 0x12, 0x98, 0x24, 50 0xb0, 0x48, 0x60, 0x6c, 0 }; 51static u8 supported_rates_a[A_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24, 52 0xb0, 0x48, 0x60, 0x6c, 0 }; 53static u16 mwifiex_data_rates[MWIFIEX_SUPPORTED_RATES_EXT] = { 0x02, 0x04, 54 0x0B, 0x16, 0x00, 0x0C, 0x12, 0x18, 55 0x24, 0x30, 0x48, 0x60, 0x6C, 0x90, 56 0x0D, 0x1A, 0x27, 0x34, 0x4E, 0x68, 57 0x75, 0x82, 0x0C, 0x1B, 0x36, 0x51, 58 0x6C, 0xA2, 0xD8, 0xF3, 0x10E, 0x00 }; 59 60static u8 supported_rates_b[B_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x16, 0 }; 61 62static u8 supported_rates_g[G_SUPPORTED_RATES] = { 0x0c, 0x12, 0x18, 0x24, 63 0x30, 0x48, 0x60, 0x6c, 0 }; 64 65static u8 supported_rates_bg[BG_SUPPORTED_RATES] = { 0x02, 0x04, 0x0b, 0x0c, 66 0x12, 0x16, 0x18, 0x24, 0x30, 0x48, 67 0x60, 0x6c, 0 }; 68 69u16 region_code_index[MWIFIEX_MAX_REGION_CODE] = { 0x00, 0x10, 0x20, 0x30, 70 0x31, 0x32, 0x40, 0x41, 0x50 }; 71 72static u8 supported_rates_n[N_SUPPORTED_RATES] = { 0x02, 0x04, 0 }; 73 74/* For every mcs_rate line, the first 8 bytes are for stream 1x1, 75 * and all 16 bytes are for stream 2x2. 76 */ 77static const u16 mcs_rate[4][16] = { 78 /* LGI 40M */ 79 { 0x1b, 0x36, 0x51, 0x6c, 0xa2, 0xd8, 0xf3, 0x10e, 80 0x36, 0x6c, 0xa2, 0xd8, 0x144, 0x1b0, 0x1e6, 0x21c }, 81 82 /* SGI 40M */ 83 { 0x1e, 0x3c, 0x5a, 0x78, 0xb4, 0xf0, 0x10e, 0x12c, 84 0x3c, 0x78, 0xb4, 0xf0, 0x168, 0x1e0, 0x21c, 0x258 }, 85 86 /* LGI 20M */ 87 { 0x0d, 0x1a, 0x27, 0x34, 0x4e, 0x68, 0x75, 0x82, 88 0x1a, 0x34, 0x4e, 0x68, 0x9c, 0xd0, 0xea, 0x104 }, 89 90 /* SGI 20M */ 91 { 0x0e, 0x1c, 0x2b, 0x39, 0x56, 0x73, 0x82, 0x90, 92 0x1c, 0x39, 0x56, 0x73, 0xad, 0xe7, 0x104, 0x120 } 93}; 94 95/* AC rates */ 96static const u16 ac_mcs_rate_nss1[8][10] = { 97 /* LG 160M */ 98 { 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D, 99 0x492, 0x57C, 0x618 }, 100 101 /* SG 160M */ 102 { 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492, 103 0x514, 0x618, 0x6C6 }, 104 105 /* LG 80M */ 106 { 0x3B, 0x75, 0xB0, 0xEA, 0x15F, 0x1D4, 0x20F, 107 0x249, 0x2BE, 0x30C }, 108 109 /* SG 80M */ 110 { 0x41, 0x82, 0xC3, 0x104, 0x186, 0x208, 0x249, 111 0x28A, 0x30C, 0x363 }, 112 113 /* LG 40M */ 114 { 0x1B, 0x36, 0x51, 0x6C, 0xA2, 0xD8, 0xF3, 115 0x10E, 0x144, 0x168 }, 116 117 /* SG 40M */ 118 { 0x1E, 0x3C, 0x5A, 0x78, 0xB4, 0xF0, 0x10E, 119 0x12C, 0x168, 0x190 }, 120 121 /* LG 20M */ 122 { 0xD, 0x1A, 0x27, 0x34, 0x4E, 0x68, 0x75, 0x82, 0x9C, 0x00 }, 123 124 /* SG 20M */ 125 { 0xF, 0x1D, 0x2C, 0x3A, 0x57, 0x74, 0x82, 0x91, 0xAE, 0x00 }, 126}; 127 128/* NSS2 note: the value in the table is 2 multiplier of the actual rate */ 129static const u16 ac_mcs_rate_nss2[8][10] = { 130 /* LG 160M */ 131 { 0xEA, 0x1D4, 0x2BE, 0x3A8, 0x57C, 0x750, 0x83A, 132 0x924, 0xAF8, 0xC30 }, 133 134 /* SG 160M */ 135 { 0x104, 0x208, 0x30C, 0x410, 0x618, 0x820, 0x924, 136 0xA28, 0xC30, 0xD8B }, 137 138 /* LG 80M */ 139 { 0x75, 0xEA, 0x15F, 0x1D4, 0x2BE, 0x3A8, 0x41D, 140 0x492, 0x57C, 0x618 }, 141 142 /* SG 80M */ 143 { 0x82, 0x104, 0x186, 0x208, 0x30C, 0x410, 0x492, 144 0x514, 0x618, 0x6C6 }, 145 146 /* LG 40M */ 147 { 0x36, 0x6C, 0xA2, 0xD8, 0x144, 0x1B0, 0x1E6, 148 0x21C, 0x288, 0x2D0 }, 149 150 /* SG 40M */ 151 { 0x3C, 0x78, 0xB4, 0xF0, 0x168, 0x1E0, 0x21C, 152 0x258, 0x2D0, 0x320 }, 153 154 /* LG 20M */ 155 { 0x1A, 0x34, 0x4A, 0x68, 0x9C, 0xD0, 0xEA, 0x104, 156 0x138, 0x00 }, 157 158 /* SG 20M */ 159 { 0x1D, 0x3A, 0x57, 0x74, 0xAE, 0xE6, 0x104, 0x121, 160 0x15B, 0x00 }, 161}; 162 163struct region_code_mapping { 164 u8 code; 165 u8 region[IEEE80211_COUNTRY_STRING_LEN]; 166}; 167 168static struct region_code_mapping region_code_mapping_t[] = { 169 { 0x10, "US " }, /* US FCC */ 170 { 0x20, "CA " }, /* IC Canada */ 171 { 0x30, "FR " }, /* France */ 172 { 0x31, "ES " }, /* Spain */ 173 { 0x32, "FR " }, /* France */ 174 { 0x40, "JP " }, /* Japan */ 175 { 0x41, "JP " }, /* Japan */ 176 { 0x50, "CN " }, /* China */ 177}; 178 179/* This function converts integer code to region string */ 180u8 *mwifiex_11d_code_2_region(u8 code) 181{ 182 u8 i; 183 184 /* Look for code in mapping table */ 185 for (i = 0; i < ARRAY_SIZE(region_code_mapping_t); i++) 186 if (region_code_mapping_t[i].code == code) 187 return region_code_mapping_t[i].region; 188 189 return NULL; 190} 191 192/* 193 * This function maps an index in supported rates table into 194 * the corresponding data rate. 195 */ 196u32 mwifiex_index_to_acs_data_rate(struct mwifiex_private *priv, 197 u8 index, u8 ht_info) 198{ 199 u32 rate = 0; 200 u8 mcs_index = 0; 201 u8 bw = 0; 202 u8 gi = 0; 203 204 if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_VHT) { 205 mcs_index = min(index & 0xF, 9); 206 207 /* 20M: bw=0, 40M: bw=1, 80M: bw=2, 160M: bw=3 */ 208 bw = (ht_info & 0xC) >> 2; 209 210 /* LGI: gi =0, SGI: gi = 1 */ 211 gi = (ht_info & 0x10) >> 4; 212 213 if ((index >> 4) == 1) /* NSS = 2 */ 214 rate = ac_mcs_rate_nss2[2 * (3 - bw) + gi][mcs_index]; 215 else /* NSS = 1 */ 216 rate = ac_mcs_rate_nss1[2 * (3 - bw) + gi][mcs_index]; 217 } else if ((ht_info & 0x3) == MWIFIEX_RATE_FORMAT_HT) { 218 /* 20M: bw=0, 40M: bw=1 */ 219 bw = (ht_info & 0xC) >> 2; 220 221 /* LGI: gi =0, SGI: gi = 1 */ 222 gi = (ht_info & 0x10) >> 4; 223 224 if (index == MWIFIEX_RATE_BITMAP_MCS0) { 225 if (gi == 1) 226 rate = 0x0D; /* MCS 32 SGI rate */ 227 else 228 rate = 0x0C; /* MCS 32 LGI rate */ 229 } else if (index < 16) { 230 if ((bw == 1) || (bw == 0)) 231 rate = mcs_rate[2 * (1 - bw) + gi][index]; 232 else 233 rate = mwifiex_data_rates[0]; 234 } else { 235 rate = mwifiex_data_rates[0]; 236 } 237 } else { 238 /* 11n non-HT rates */ 239 if (index >= MWIFIEX_SUPPORTED_RATES_EXT) 240 index = 0; 241 rate = mwifiex_data_rates[index]; 242 } 243 244 return rate; 245} 246 247/* This function maps an index in supported rates table into 248 * the corresponding data rate. 249 */ 250u32 mwifiex_index_to_data_rate(struct mwifiex_private *priv, 251 u8 index, u8 ht_info) 252{ 253 u32 mcs_num_supp = 254 (priv->adapter->user_dev_mcs_support == HT_STREAM_2X2) ? 16 : 8; 255 u32 rate; 256 257 if (priv->adapter->is_hw_11ac_capable) 258 return mwifiex_index_to_acs_data_rate(priv, index, ht_info); 259 260 if (ht_info & BIT(0)) { 261 if (index == MWIFIEX_RATE_BITMAP_MCS0) { 262 if (ht_info & BIT(2)) 263 rate = 0x0D; /* MCS 32 SGI rate */ 264 else 265 rate = 0x0C; /* MCS 32 LGI rate */ 266 } else if (index < mcs_num_supp) { 267 if (ht_info & BIT(1)) { 268 if (ht_info & BIT(2)) 269 /* SGI, 40M */ 270 rate = mcs_rate[1][index]; 271 else 272 /* LGI, 40M */ 273 rate = mcs_rate[0][index]; 274 } else { 275 if (ht_info & BIT(2)) 276 /* SGI, 20M */ 277 rate = mcs_rate[3][index]; 278 else 279 /* LGI, 20M */ 280 rate = mcs_rate[2][index]; 281 } 282 } else 283 rate = mwifiex_data_rates[0]; 284 } else { 285 if (index >= MWIFIEX_SUPPORTED_RATES_EXT) 286 index = 0; 287 rate = mwifiex_data_rates[index]; 288 } 289 return rate; 290} 291 292/* 293 * This function returns the current active data rates. 294 * 295 * The result may vary depending upon connection status. 296 */ 297u32 mwifiex_get_active_data_rates(struct mwifiex_private *priv, u8 *rates) 298{ 299 if (!priv->media_connected) 300 return mwifiex_get_supported_rates(priv, rates); 301 else 302 return mwifiex_copy_rates(rates, 0, 303 priv->curr_bss_params.data_rates, 304 priv->curr_bss_params.num_of_rates); 305} 306 307/* 308 * This function locates the Channel-Frequency-Power triplet based upon 309 * band and channel/frequency parameters. 310 */ 311struct mwifiex_chan_freq_power * 312mwifiex_get_cfp(struct mwifiex_private *priv, u8 band, u16 channel, u32 freq) 313{ 314 struct mwifiex_chan_freq_power *cfp = NULL; 315 struct ieee80211_supported_band *sband; 316 struct ieee80211_channel *ch = NULL; 317 int i; 318 319 if (!channel && !freq) 320 return cfp; 321 322 if (mwifiex_band_to_radio_type(band) == HostCmd_SCAN_RADIO_TYPE_BG) 323 sband = priv->wdev.wiphy->bands[NL80211_BAND_2GHZ]; 324 else 325 sband = priv->wdev.wiphy->bands[NL80211_BAND_5GHZ]; 326 327 if (!sband) { 328 mwifiex_dbg(priv->adapter, ERROR, 329 "%s: cannot find cfp by band %d\n", 330 __func__, band); 331 return cfp; 332 } 333 334 for (i = 0; i < sband->n_channels; i++) { 335 ch = &sband->channels[i]; 336 337 if (ch->flags & IEEE80211_CHAN_DISABLED) 338 continue; 339 340 if (freq) { 341 if (ch->center_freq == freq) 342 break; 343 } else { 344 /* find by valid channel*/ 345 if (ch->hw_value == channel || 346 channel == FIRST_VALID_CHANNEL) 347 break; 348 } 349 } 350 if (i == sband->n_channels) { 351 mwifiex_dbg(priv->adapter, WARN, 352 "%s: cannot find cfp by band %d\t" 353 "& channel=%d freq=%d\n", 354 __func__, band, channel, freq); 355 } else { 356 if (!ch) 357 return cfp; 358 359 priv->cfp.channel = ch->hw_value; 360 priv->cfp.freq = ch->center_freq; 361 priv->cfp.max_tx_power = ch->max_power; 362 cfp = &priv->cfp; 363 } 364 365 return cfp; 366} 367 368/* 369 * This function checks if the data rate is set to auto. 370 */ 371u8 372mwifiex_is_rate_auto(struct mwifiex_private *priv) 373{ 374 u32 i; 375 int rate_num = 0; 376 377 for (i = 0; i < ARRAY_SIZE(priv->bitmap_rates); i++) 378 if (priv->bitmap_rates[i]) 379 rate_num++; 380 381 if (rate_num > 1) 382 return true; 383 else 384 return false; 385} 386 387/* This function gets the supported data rates from bitmask inside 388 * cfg80211_scan_request. 389 */ 390u32 mwifiex_get_rates_from_cfg80211(struct mwifiex_private *priv, 391 u8 *rates, u8 radio_type) 392{ 393 struct wiphy *wiphy = priv->adapter->wiphy; 394 struct cfg80211_scan_request *request = priv->scan_request; 395 u32 num_rates, rate_mask; 396 struct ieee80211_supported_band *sband; 397 int i; 398 399 if (radio_type) { 400 sband = wiphy->bands[NL80211_BAND_5GHZ]; 401 if (WARN_ON_ONCE(!sband)) 402 return 0; 403 rate_mask = request->rates[NL80211_BAND_5GHZ]; 404 } else { 405 sband = wiphy->bands[NL80211_BAND_2GHZ]; 406 if (WARN_ON_ONCE(!sband)) 407 return 0; 408 rate_mask = request->rates[NL80211_BAND_2GHZ]; 409 } 410 411 num_rates = 0; 412 for (i = 0; i < sband->n_bitrates; i++) { 413 if ((BIT(i) & rate_mask) == 0) 414 continue; /* skip rate */ 415 rates[num_rates++] = (u8)(sband->bitrates[i].bitrate / 5); 416 } 417 418 return num_rates; 419} 420 421/* This function gets the supported data rates. The function works in 422 * both Ad-Hoc and infra mode by printing the band and returning the 423 * data rates. 424 */ 425u32 mwifiex_get_supported_rates(struct mwifiex_private *priv, u8 *rates) 426{ 427 u32 k = 0; 428 struct mwifiex_adapter *adapter = priv->adapter; 429 430 if (priv->bss_mode == NL80211_IFTYPE_STATION || 431 priv->bss_mode == NL80211_IFTYPE_P2P_CLIENT) { 432 switch (adapter->config_bands) { 433 case BAND_B: 434 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t" 435 "supported_rates_b\n", 436 adapter->config_bands); 437 k = mwifiex_copy_rates(rates, k, supported_rates_b, 438 sizeof(supported_rates_b)); 439 break; 440 case BAND_G: 441 case BAND_G | BAND_GN: 442 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t" 443 "supported_rates_g\n", 444 adapter->config_bands); 445 k = mwifiex_copy_rates(rates, k, supported_rates_g, 446 sizeof(supported_rates_g)); 447 break; 448 case BAND_B | BAND_G: 449 case BAND_A | BAND_B | BAND_G: 450 case BAND_A | BAND_B: 451 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN: 452 case BAND_A | BAND_B | BAND_G | BAND_GN | BAND_AN | BAND_AAC: 453 case BAND_B | BAND_G | BAND_GN: 454 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t" 455 "supported_rates_bg\n", 456 adapter->config_bands); 457 k = mwifiex_copy_rates(rates, k, supported_rates_bg, 458 sizeof(supported_rates_bg)); 459 break; 460 case BAND_A: 461 case BAND_A | BAND_G: 462 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t" 463 "supported_rates_a\n", 464 adapter->config_bands); 465 k = mwifiex_copy_rates(rates, k, supported_rates_a, 466 sizeof(supported_rates_a)); 467 break; 468 case BAND_AN: 469 case BAND_A | BAND_AN: 470 case BAND_A | BAND_AN | BAND_AAC: 471 case BAND_A | BAND_G | BAND_AN | BAND_GN: 472 case BAND_A | BAND_G | BAND_AN | BAND_GN | BAND_AAC: 473 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t" 474 "supported_rates_a\n", 475 adapter->config_bands); 476 k = mwifiex_copy_rates(rates, k, supported_rates_a, 477 sizeof(supported_rates_a)); 478 break; 479 case BAND_GN: 480 mwifiex_dbg(adapter, INFO, "info: infra band=%d\t" 481 "supported_rates_n\n", 482 adapter->config_bands); 483 k = mwifiex_copy_rates(rates, k, supported_rates_n, 484 sizeof(supported_rates_n)); 485 break; 486 } 487 } else { 488 /* Ad-hoc mode */ 489 switch (adapter->adhoc_start_band) { 490 case BAND_B: 491 mwifiex_dbg(adapter, INFO, "info: adhoc B\n"); 492 k = mwifiex_copy_rates(rates, k, adhoc_rates_b, 493 sizeof(adhoc_rates_b)); 494 break; 495 case BAND_G: 496 case BAND_G | BAND_GN: 497 mwifiex_dbg(adapter, INFO, "info: adhoc G only\n"); 498 k = mwifiex_copy_rates(rates, k, adhoc_rates_g, 499 sizeof(adhoc_rates_g)); 500 break; 501 case BAND_B | BAND_G: 502 case BAND_B | BAND_G | BAND_GN: 503 mwifiex_dbg(adapter, INFO, "info: adhoc BG\n"); 504 k = mwifiex_copy_rates(rates, k, adhoc_rates_bg, 505 sizeof(adhoc_rates_bg)); 506 break; 507 case BAND_A: 508 case BAND_A | BAND_AN: 509 mwifiex_dbg(adapter, INFO, "info: adhoc A\n"); 510 k = mwifiex_copy_rates(rates, k, adhoc_rates_a, 511 sizeof(adhoc_rates_a)); 512 break; 513 } 514 } 515 516 return k; 517} 518 519u8 mwifiex_adjust_data_rate(struct mwifiex_private *priv, 520 u8 rx_rate, u8 rate_info) 521{ 522 u8 rate_index = 0; 523 524 /* HT40 */ 525 if ((rate_info & BIT(0)) && (rate_info & BIT(1))) 526 rate_index = MWIFIEX_RATE_INDEX_MCS0 + 527 MWIFIEX_BW20_MCS_NUM + rx_rate; 528 else if (rate_info & BIT(0)) /* HT20 */ 529 rate_index = MWIFIEX_RATE_INDEX_MCS0 + rx_rate; 530 else 531 rate_index = (rx_rate > MWIFIEX_RATE_INDEX_OFDM0) ? 532 rx_rate - 1 : rx_rate; 533 534 if (rate_index >= MWIFIEX_MAX_AC_RX_RATES) 535 rate_index = MWIFIEX_MAX_AC_RX_RATES - 1; 536 537 return rate_index; 538}