spi.c (29898B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries. 4 * All rights reserved. 5 */ 6 7#include <linux/clk.h> 8#include <linux/spi/spi.h> 9#include <linux/crc7.h> 10#include <linux/crc-itu-t.h> 11#include <linux/gpio/consumer.h> 12 13#include "netdev.h" 14#include "cfg80211.h" 15 16#define SPI_MODALIAS "wilc1000_spi" 17 18static bool enable_crc7; /* protect SPI commands with CRC7 */ 19module_param(enable_crc7, bool, 0644); 20MODULE_PARM_DESC(enable_crc7, 21 "Enable CRC7 checksum to protect command transfers\n" 22 "\t\t\tagainst corruption during the SPI transfer.\n" 23 "\t\t\tCommand transfers are short and the CPU-cycle cost\n" 24 "\t\t\tof enabling this is small."); 25 26static bool enable_crc16; /* protect SPI data with CRC16 */ 27module_param(enable_crc16, bool, 0644); 28MODULE_PARM_DESC(enable_crc16, 29 "Enable CRC16 checksum to protect data transfers\n" 30 "\t\t\tagainst corruption during the SPI transfer.\n" 31 "\t\t\tData transfers can be large and the CPU-cycle cost\n" 32 "\t\t\tof enabling this may be substantial."); 33 34/* 35 * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or 36 * more zero bytes between the command response and the DATA Start tag 37 * (0xf3). This behavior appears to be undocumented in "ATWILC1000 38 * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4 39 * zero bytes when the SPI bus operates at 48MHz and none when it 40 * operates at 1MHz. 41 */ 42#define WILC_SPI_RSP_HDR_EXTRA_DATA 8 43 44struct wilc_spi { 45 bool isinit; /* true if SPI protocol has been configured */ 46 bool probing_crc; /* true if we're probing chip's CRC config */ 47 bool crc7_enabled; /* true if crc7 is currently enabled */ 48 bool crc16_enabled; /* true if crc16 is currently enabled */ 49 struct wilc_gpios { 50 struct gpio_desc *enable; /* ENABLE GPIO or NULL */ 51 struct gpio_desc *reset; /* RESET GPIO or NULL */ 52 } gpios; 53}; 54 55static const struct wilc_hif_func wilc_hif_spi; 56 57static int wilc_spi_reset(struct wilc *wilc); 58 59/******************************************** 60 * 61 * Spi protocol Function 62 * 63 ********************************************/ 64 65#define CMD_DMA_WRITE 0xc1 66#define CMD_DMA_READ 0xc2 67#define CMD_INTERNAL_WRITE 0xc3 68#define CMD_INTERNAL_READ 0xc4 69#define CMD_TERMINATE 0xc5 70#define CMD_REPEAT 0xc6 71#define CMD_DMA_EXT_WRITE 0xc7 72#define CMD_DMA_EXT_READ 0xc8 73#define CMD_SINGLE_WRITE 0xc9 74#define CMD_SINGLE_READ 0xca 75#define CMD_RESET 0xcf 76 77#define SPI_ENABLE_VMM_RETRY_LIMIT 2 78 79/* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */ 80#define RSP_START_FIELD GENMASK(7, 4) 81#define RSP_TYPE_FIELD GENMASK(3, 0) 82 83/* SPI response values for the response fields: */ 84#define RSP_START_TAG 0xc 85#define RSP_TYPE_FIRST_PACKET 0x1 86#define RSP_TYPE_INNER_PACKET 0x2 87#define RSP_TYPE_LAST_PACKET 0x3 88#define RSP_STATE_NO_ERROR 0x00 89 90#define PROTOCOL_REG_PKT_SZ_MASK GENMASK(6, 4) 91#define PROTOCOL_REG_CRC16_MASK GENMASK(3, 3) 92#define PROTOCOL_REG_CRC7_MASK GENMASK(2, 2) 93 94/* 95 * The SPI data packet size may be any integer power of two in the 96 * range from 256 to 8192 bytes. 97 */ 98#define DATA_PKT_LOG_SZ_MIN 8 /* 256 B */ 99#define DATA_PKT_LOG_SZ_MAX 13 /* 8 KiB */ 100 101/* 102 * Select the data packet size (log2 of number of bytes): Use the 103 * maximum data packet size. We only retransmit complete packets, so 104 * there is no benefit from using smaller data packets. 105 */ 106#define DATA_PKT_LOG_SZ DATA_PKT_LOG_SZ_MAX 107#define DATA_PKT_SZ (1 << DATA_PKT_LOG_SZ) 108 109#define WILC_SPI_COMMAND_STAT_SUCCESS 0 110#define WILC_GET_RESP_HDR_START(h) (((h) >> 4) & 0xf) 111 112struct wilc_spi_cmd { 113 u8 cmd_type; 114 union { 115 struct { 116 u8 addr[3]; 117 u8 crc[]; 118 } __packed simple_cmd; 119 struct { 120 u8 addr[3]; 121 u8 size[2]; 122 u8 crc[]; 123 } __packed dma_cmd; 124 struct { 125 u8 addr[3]; 126 u8 size[3]; 127 u8 crc[]; 128 } __packed dma_cmd_ext; 129 struct { 130 u8 addr[2]; 131 __be32 data; 132 u8 crc[]; 133 } __packed internal_w_cmd; 134 struct { 135 u8 addr[3]; 136 __be32 data; 137 u8 crc[]; 138 } __packed w_cmd; 139 } u; 140} __packed; 141 142struct wilc_spi_read_rsp_data { 143 u8 header; 144 u8 data[4]; 145 u8 crc[]; 146} __packed; 147 148struct wilc_spi_rsp_data { 149 u8 rsp_cmd_type; 150 u8 status; 151 u8 data[]; 152} __packed; 153 154struct wilc_spi_special_cmd_rsp { 155 u8 skip_byte; 156 u8 rsp_cmd_type; 157 u8 status; 158} __packed; 159 160static int wilc_parse_gpios(struct wilc *wilc) 161{ 162 struct spi_device *spi = to_spi_device(wilc->dev); 163 struct wilc_spi *spi_priv = wilc->bus_data; 164 struct wilc_gpios *gpios = &spi_priv->gpios; 165 166 /* get ENABLE pin and deassert it (if it is defined): */ 167 gpios->enable = devm_gpiod_get_optional(&spi->dev, 168 "enable", GPIOD_OUT_LOW); 169 /* get RESET pin and assert it (if it is defined): */ 170 if (gpios->enable) { 171 /* if enable pin exists, reset must exist as well */ 172 gpios->reset = devm_gpiod_get(&spi->dev, 173 "reset", GPIOD_OUT_HIGH); 174 if (IS_ERR(gpios->reset)) { 175 dev_err(&spi->dev, "missing reset gpio.\n"); 176 return PTR_ERR(gpios->reset); 177 } 178 } else { 179 gpios->reset = devm_gpiod_get_optional(&spi->dev, 180 "reset", GPIOD_OUT_HIGH); 181 } 182 return 0; 183} 184 185static void wilc_wlan_power(struct wilc *wilc, bool on) 186{ 187 struct wilc_spi *spi_priv = wilc->bus_data; 188 struct wilc_gpios *gpios = &spi_priv->gpios; 189 190 if (on) { 191 /* assert ENABLE: */ 192 gpiod_set_value(gpios->enable, 1); 193 mdelay(5); 194 /* deassert RESET: */ 195 gpiod_set_value(gpios->reset, 0); 196 } else { 197 /* assert RESET: */ 198 gpiod_set_value(gpios->reset, 1); 199 /* deassert ENABLE: */ 200 gpiod_set_value(gpios->enable, 0); 201 } 202} 203 204static int wilc_bus_probe(struct spi_device *spi) 205{ 206 int ret; 207 struct wilc *wilc; 208 struct wilc_spi *spi_priv; 209 210 spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL); 211 if (!spi_priv) 212 return -ENOMEM; 213 214 ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi); 215 if (ret) 216 goto free; 217 218 spi_set_drvdata(spi, wilc); 219 wilc->dev = &spi->dev; 220 wilc->bus_data = spi_priv; 221 wilc->dev_irq_num = spi->irq; 222 223 ret = wilc_parse_gpios(wilc); 224 if (ret < 0) 225 goto netdev_cleanup; 226 227 wilc->rtc_clk = devm_clk_get_optional(&spi->dev, "rtc"); 228 if (IS_ERR(wilc->rtc_clk)) { 229 ret = PTR_ERR(wilc->rtc_clk); 230 goto netdev_cleanup; 231 } 232 clk_prepare_enable(wilc->rtc_clk); 233 234 return 0; 235 236netdev_cleanup: 237 wilc_netdev_cleanup(wilc); 238free: 239 kfree(spi_priv); 240 return ret; 241} 242 243static void wilc_bus_remove(struct spi_device *spi) 244{ 245 struct wilc *wilc = spi_get_drvdata(spi); 246 struct wilc_spi *spi_priv = wilc->bus_data; 247 248 clk_disable_unprepare(wilc->rtc_clk); 249 wilc_netdev_cleanup(wilc); 250 kfree(spi_priv); 251} 252 253static const struct of_device_id wilc_of_match[] = { 254 { .compatible = "microchip,wilc1000", }, 255 { /* sentinel */ } 256}; 257MODULE_DEVICE_TABLE(of, wilc_of_match); 258 259static const struct spi_device_id wilc_spi_id[] = { 260 { "wilc1000", 0 }, 261 { /* sentinel */ } 262}; 263MODULE_DEVICE_TABLE(spi, wilc_spi_id); 264 265static struct spi_driver wilc_spi_driver = { 266 .driver = { 267 .name = SPI_MODALIAS, 268 .of_match_table = wilc_of_match, 269 }, 270 .id_table = wilc_spi_id, 271 .probe = wilc_bus_probe, 272 .remove = wilc_bus_remove, 273}; 274module_spi_driver(wilc_spi_driver); 275MODULE_LICENSE("GPL"); 276 277static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len) 278{ 279 struct spi_device *spi = to_spi_device(wilc->dev); 280 int ret; 281 struct spi_message msg; 282 283 if (len > 0 && b) { 284 struct spi_transfer tr = { 285 .tx_buf = b, 286 .len = len, 287 .delay = { 288 .value = 0, 289 .unit = SPI_DELAY_UNIT_USECS 290 }, 291 }; 292 char *r_buffer = kzalloc(len, GFP_KERNEL); 293 294 if (!r_buffer) 295 return -ENOMEM; 296 297 tr.rx_buf = r_buffer; 298 dev_dbg(&spi->dev, "Request writing %d bytes\n", len); 299 300 memset(&msg, 0, sizeof(msg)); 301 spi_message_init(&msg); 302 msg.spi = spi; 303 spi_message_add_tail(&tr, &msg); 304 305 ret = spi_sync(spi, &msg); 306 if (ret < 0) 307 dev_err(&spi->dev, "SPI transaction failed\n"); 308 309 kfree(r_buffer); 310 } else { 311 dev_err(&spi->dev, 312 "can't write data with the following length: %d\n", 313 len); 314 ret = -EINVAL; 315 } 316 317 return ret; 318} 319 320static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen) 321{ 322 struct spi_device *spi = to_spi_device(wilc->dev); 323 int ret; 324 325 if (rlen > 0) { 326 struct spi_message msg; 327 struct spi_transfer tr = { 328 .rx_buf = rb, 329 .len = rlen, 330 .delay = { 331 .value = 0, 332 .unit = SPI_DELAY_UNIT_USECS 333 }, 334 335 }; 336 char *t_buffer = kzalloc(rlen, GFP_KERNEL); 337 338 if (!t_buffer) 339 return -ENOMEM; 340 341 tr.tx_buf = t_buffer; 342 343 memset(&msg, 0, sizeof(msg)); 344 spi_message_init(&msg); 345 msg.spi = spi; 346 spi_message_add_tail(&tr, &msg); 347 348 ret = spi_sync(spi, &msg); 349 if (ret < 0) 350 dev_err(&spi->dev, "SPI transaction failed\n"); 351 kfree(t_buffer); 352 } else { 353 dev_err(&spi->dev, 354 "can't read data with the following length: %u\n", 355 rlen); 356 ret = -EINVAL; 357 } 358 359 return ret; 360} 361 362static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen) 363{ 364 struct spi_device *spi = to_spi_device(wilc->dev); 365 int ret; 366 367 if (rlen > 0) { 368 struct spi_message msg; 369 struct spi_transfer tr = { 370 .rx_buf = rb, 371 .tx_buf = wb, 372 .len = rlen, 373 .bits_per_word = 8, 374 .delay = { 375 .value = 0, 376 .unit = SPI_DELAY_UNIT_USECS 377 }, 378 379 }; 380 381 memset(&msg, 0, sizeof(msg)); 382 spi_message_init(&msg); 383 msg.spi = spi; 384 385 spi_message_add_tail(&tr, &msg); 386 ret = spi_sync(spi, &msg); 387 if (ret < 0) 388 dev_err(&spi->dev, "SPI transaction failed\n"); 389 } else { 390 dev_err(&spi->dev, 391 "can't read data with the following length: %u\n", 392 rlen); 393 ret = -EINVAL; 394 } 395 396 return ret; 397} 398 399static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz) 400{ 401 struct spi_device *spi = to_spi_device(wilc->dev); 402 struct wilc_spi *spi_priv = wilc->bus_data; 403 int ix, nbytes; 404 int result = 0; 405 u8 cmd, order, crc[2]; 406 u16 crc_calc; 407 408 /* 409 * Data 410 */ 411 ix = 0; 412 do { 413 if (sz <= DATA_PKT_SZ) { 414 nbytes = sz; 415 order = 0x3; 416 } else { 417 nbytes = DATA_PKT_SZ; 418 if (ix == 0) 419 order = 0x1; 420 else 421 order = 0x02; 422 } 423 424 /* 425 * Write command 426 */ 427 cmd = 0xf0; 428 cmd |= order; 429 430 if (wilc_spi_tx(wilc, &cmd, 1)) { 431 dev_err(&spi->dev, 432 "Failed data block cmd write, bus error...\n"); 433 result = -EINVAL; 434 break; 435 } 436 437 /* 438 * Write data 439 */ 440 if (wilc_spi_tx(wilc, &b[ix], nbytes)) { 441 dev_err(&spi->dev, 442 "Failed data block write, bus error...\n"); 443 result = -EINVAL; 444 break; 445 } 446 447 /* 448 * Write CRC 449 */ 450 if (spi_priv->crc16_enabled) { 451 crc_calc = crc_itu_t(0xffff, &b[ix], nbytes); 452 crc[0] = crc_calc >> 8; 453 crc[1] = crc_calc; 454 if (wilc_spi_tx(wilc, crc, 2)) { 455 dev_err(&spi->dev, "Failed data block crc write, bus error...\n"); 456 result = -EINVAL; 457 break; 458 } 459 } 460 461 /* 462 * No need to wait for response 463 */ 464 ix += nbytes; 465 sz -= nbytes; 466 } while (sz); 467 468 return result; 469} 470 471/******************************************** 472 * 473 * Spi Internal Read/Write Function 474 * 475 ********************************************/ 476static u8 wilc_get_crc7(u8 *buffer, u32 len) 477{ 478 return crc7_be(0xfe, buffer, len); 479} 480 481static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b, 482 u8 clockless) 483{ 484 struct spi_device *spi = to_spi_device(wilc->dev); 485 struct wilc_spi *spi_priv = wilc->bus_data; 486 u8 wb[32], rb[32]; 487 int cmd_len, resp_len, i; 488 u16 crc_calc, crc_recv; 489 struct wilc_spi_cmd *c; 490 struct wilc_spi_rsp_data *r; 491 struct wilc_spi_read_rsp_data *r_data; 492 493 memset(wb, 0x0, sizeof(wb)); 494 memset(rb, 0x0, sizeof(rb)); 495 c = (struct wilc_spi_cmd *)wb; 496 c->cmd_type = cmd; 497 if (cmd == CMD_SINGLE_READ) { 498 c->u.simple_cmd.addr[0] = adr >> 16; 499 c->u.simple_cmd.addr[1] = adr >> 8; 500 c->u.simple_cmd.addr[2] = adr; 501 } else if (cmd == CMD_INTERNAL_READ) { 502 c->u.simple_cmd.addr[0] = adr >> 8; 503 if (clockless == 1) 504 c->u.simple_cmd.addr[0] |= BIT(7); 505 c->u.simple_cmd.addr[1] = adr; 506 c->u.simple_cmd.addr[2] = 0x0; 507 } else { 508 dev_err(&spi->dev, "cmd [%x] not supported\n", cmd); 509 return -EINVAL; 510 } 511 512 cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc); 513 resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA; 514 515 if (spi_priv->crc7_enabled) { 516 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); 517 cmd_len += 1; 518 resp_len += 2; 519 } 520 521 if (cmd_len + resp_len > ARRAY_SIZE(wb)) { 522 dev_err(&spi->dev, 523 "spi buffer size too small (%d) (%d) (%zu)\n", 524 cmd_len, resp_len, ARRAY_SIZE(wb)); 525 return -EINVAL; 526 } 527 528 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { 529 dev_err(&spi->dev, "Failed cmd write, bus error...\n"); 530 return -EINVAL; 531 } 532 533 r = (struct wilc_spi_rsp_data *)&rb[cmd_len]; 534 if (r->rsp_cmd_type != cmd && !clockless) { 535 if (!spi_priv->probing_crc) 536 dev_err(&spi->dev, 537 "Failed cmd, cmd (%02x), resp (%02x)\n", 538 cmd, r->rsp_cmd_type); 539 return -EINVAL; 540 } 541 542 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) { 543 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", 544 r->status); 545 return -EINVAL; 546 } 547 548 for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i) 549 if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf) 550 break; 551 552 if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) { 553 dev_err(&spi->dev, "Error, data start missing\n"); 554 return -EINVAL; 555 } 556 557 r_data = (struct wilc_spi_read_rsp_data *)&r->data[i]; 558 559 if (b) 560 memcpy(b, r_data->data, 4); 561 562 if (!clockless && spi_priv->crc16_enabled) { 563 crc_recv = (r_data->crc[0] << 8) | r_data->crc[1]; 564 crc_calc = crc_itu_t(0xffff, r_data->data, 4); 565 if (crc_recv != crc_calc) { 566 dev_err(&spi->dev, "%s: bad CRC 0x%04x " 567 "(calculated 0x%04x)\n", __func__, 568 crc_recv, crc_calc); 569 return -EINVAL; 570 } 571 } 572 573 return 0; 574} 575 576static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data, 577 u8 clockless) 578{ 579 struct spi_device *spi = to_spi_device(wilc->dev); 580 struct wilc_spi *spi_priv = wilc->bus_data; 581 u8 wb[32], rb[32]; 582 int cmd_len, resp_len; 583 struct wilc_spi_cmd *c; 584 struct wilc_spi_rsp_data *r; 585 586 memset(wb, 0x0, sizeof(wb)); 587 memset(rb, 0x0, sizeof(rb)); 588 c = (struct wilc_spi_cmd *)wb; 589 c->cmd_type = cmd; 590 if (cmd == CMD_INTERNAL_WRITE) { 591 c->u.internal_w_cmd.addr[0] = adr >> 8; 592 if (clockless == 1) 593 c->u.internal_w_cmd.addr[0] |= BIT(7); 594 595 c->u.internal_w_cmd.addr[1] = adr; 596 c->u.internal_w_cmd.data = cpu_to_be32(data); 597 cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc); 598 if (spi_priv->crc7_enabled) 599 c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); 600 } else if (cmd == CMD_SINGLE_WRITE) { 601 c->u.w_cmd.addr[0] = adr >> 16; 602 c->u.w_cmd.addr[1] = adr >> 8; 603 c->u.w_cmd.addr[2] = adr; 604 c->u.w_cmd.data = cpu_to_be32(data); 605 cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc); 606 if (spi_priv->crc7_enabled) 607 c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); 608 } else { 609 dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd); 610 return -EINVAL; 611 } 612 613 if (spi_priv->crc7_enabled) 614 cmd_len += 1; 615 616 resp_len = sizeof(*r); 617 618 if (cmd_len + resp_len > ARRAY_SIZE(wb)) { 619 dev_err(&spi->dev, 620 "spi buffer size too small (%d) (%d) (%zu)\n", 621 cmd_len, resp_len, ARRAY_SIZE(wb)); 622 return -EINVAL; 623 } 624 625 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { 626 dev_err(&spi->dev, "Failed cmd write, bus error...\n"); 627 return -EINVAL; 628 } 629 630 r = (struct wilc_spi_rsp_data *)&rb[cmd_len]; 631 /* 632 * Clockless registers operations might return unexptected responses, 633 * even if successful. 634 */ 635 if (r->rsp_cmd_type != cmd && !clockless) { 636 dev_err(&spi->dev, 637 "Failed cmd response, cmd (%02x), resp (%02x)\n", 638 cmd, r->rsp_cmd_type); 639 return -EINVAL; 640 } 641 642 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) { 643 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", 644 r->status); 645 return -EINVAL; 646 } 647 648 return 0; 649} 650 651static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz) 652{ 653 struct spi_device *spi = to_spi_device(wilc->dev); 654 struct wilc_spi *spi_priv = wilc->bus_data; 655 u16 crc_recv, crc_calc; 656 u8 wb[32], rb[32]; 657 int cmd_len, resp_len; 658 int retry, ix = 0; 659 u8 crc[2]; 660 struct wilc_spi_cmd *c; 661 struct wilc_spi_rsp_data *r; 662 663 memset(wb, 0x0, sizeof(wb)); 664 memset(rb, 0x0, sizeof(rb)); 665 c = (struct wilc_spi_cmd *)wb; 666 c->cmd_type = cmd; 667 if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) { 668 c->u.dma_cmd.addr[0] = adr >> 16; 669 c->u.dma_cmd.addr[1] = adr >> 8; 670 c->u.dma_cmd.addr[2] = adr; 671 c->u.dma_cmd.size[0] = sz >> 8; 672 c->u.dma_cmd.size[1] = sz; 673 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc); 674 if (spi_priv->crc7_enabled) 675 c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); 676 } else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) { 677 c->u.dma_cmd_ext.addr[0] = adr >> 16; 678 c->u.dma_cmd_ext.addr[1] = adr >> 8; 679 c->u.dma_cmd_ext.addr[2] = adr; 680 c->u.dma_cmd_ext.size[0] = sz >> 16; 681 c->u.dma_cmd_ext.size[1] = sz >> 8; 682 c->u.dma_cmd_ext.size[2] = sz; 683 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc); 684 if (spi_priv->crc7_enabled) 685 c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len); 686 } else { 687 dev_err(&spi->dev, "dma read write cmd [%x] not supported\n", 688 cmd); 689 return -EINVAL; 690 } 691 if (spi_priv->crc7_enabled) 692 cmd_len += 1; 693 694 resp_len = sizeof(*r); 695 696 if (cmd_len + resp_len > ARRAY_SIZE(wb)) { 697 dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n", 698 cmd_len, resp_len, ARRAY_SIZE(wb)); 699 return -EINVAL; 700 } 701 702 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { 703 dev_err(&spi->dev, "Failed cmd write, bus error...\n"); 704 return -EINVAL; 705 } 706 707 r = (struct wilc_spi_rsp_data *)&rb[cmd_len]; 708 if (r->rsp_cmd_type != cmd) { 709 dev_err(&spi->dev, 710 "Failed cmd response, cmd (%02x), resp (%02x)\n", 711 cmd, r->rsp_cmd_type); 712 return -EINVAL; 713 } 714 715 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) { 716 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", 717 r->status); 718 return -EINVAL; 719 } 720 721 if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE) 722 return 0; 723 724 while (sz > 0) { 725 int nbytes; 726 u8 rsp; 727 728 nbytes = min_t(u32, sz, DATA_PKT_SZ); 729 730 /* 731 * Data Response header 732 */ 733 retry = 100; 734 do { 735 if (wilc_spi_rx(wilc, &rsp, 1)) { 736 dev_err(&spi->dev, 737 "Failed resp read, bus err\n"); 738 return -EINVAL; 739 } 740 if (WILC_GET_RESP_HDR_START(rsp) == 0xf) 741 break; 742 } while (retry--); 743 744 /* 745 * Read bytes 746 */ 747 if (wilc_spi_rx(wilc, &b[ix], nbytes)) { 748 dev_err(&spi->dev, 749 "Failed block read, bus err\n"); 750 return -EINVAL; 751 } 752 753 /* 754 * Read CRC 755 */ 756 if (spi_priv->crc16_enabled) { 757 if (wilc_spi_rx(wilc, crc, 2)) { 758 dev_err(&spi->dev, 759 "Failed block CRC read, bus err\n"); 760 return -EINVAL; 761 } 762 crc_recv = (crc[0] << 8) | crc[1]; 763 crc_calc = crc_itu_t(0xffff, &b[ix], nbytes); 764 if (crc_recv != crc_calc) { 765 dev_err(&spi->dev, "%s: bad CRC 0x%04x " 766 "(calculated 0x%04x)\n", __func__, 767 crc_recv, crc_calc); 768 return -EINVAL; 769 } 770 } 771 772 ix += nbytes; 773 sz -= nbytes; 774 } 775 return 0; 776} 777 778static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd) 779{ 780 struct spi_device *spi = to_spi_device(wilc->dev); 781 struct wilc_spi *spi_priv = wilc->bus_data; 782 u8 wb[32], rb[32]; 783 int cmd_len, resp_len = 0; 784 struct wilc_spi_cmd *c; 785 struct wilc_spi_special_cmd_rsp *r; 786 787 if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET) 788 return -EINVAL; 789 790 memset(wb, 0x0, sizeof(wb)); 791 memset(rb, 0x0, sizeof(rb)); 792 c = (struct wilc_spi_cmd *)wb; 793 c->cmd_type = cmd; 794 795 if (cmd == CMD_RESET) 796 memset(c->u.simple_cmd.addr, 0xFF, 3); 797 798 cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc); 799 resp_len = sizeof(*r); 800 801 if (spi_priv->crc7_enabled) { 802 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); 803 cmd_len += 1; 804 } 805 if (cmd_len + resp_len > ARRAY_SIZE(wb)) { 806 dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n", 807 cmd_len, resp_len, ARRAY_SIZE(wb)); 808 return -EINVAL; 809 } 810 811 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { 812 dev_err(&spi->dev, "Failed cmd write, bus error...\n"); 813 return -EINVAL; 814 } 815 816 r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len]; 817 if (r->rsp_cmd_type != cmd) { 818 if (!spi_priv->probing_crc) 819 dev_err(&spi->dev, 820 "Failed cmd response, cmd (%02x), resp (%02x)\n", 821 cmd, r->rsp_cmd_type); 822 return -EINVAL; 823 } 824 825 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) { 826 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", 827 r->status); 828 return -EINVAL; 829 } 830 return 0; 831} 832 833static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data) 834{ 835 struct spi_device *spi = to_spi_device(wilc->dev); 836 int result; 837 u8 cmd = CMD_SINGLE_READ; 838 u8 clockless = 0; 839 840 if (addr < WILC_SPI_CLOCKLESS_ADDR_LIMIT) { 841 /* Clockless register */ 842 cmd = CMD_INTERNAL_READ; 843 clockless = 1; 844 } 845 846 result = wilc_spi_single_read(wilc, cmd, addr, data, clockless); 847 if (result) { 848 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr); 849 return result; 850 } 851 852 le32_to_cpus(data); 853 854 return 0; 855} 856 857static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size) 858{ 859 struct spi_device *spi = to_spi_device(wilc->dev); 860 int result; 861 862 if (size <= 4) 863 return -EINVAL; 864 865 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr, buf, size); 866 if (result) { 867 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr); 868 return result; 869 } 870 871 return 0; 872} 873 874static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat) 875{ 876 struct spi_device *spi = to_spi_device(wilc->dev); 877 int result; 878 879 result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr, dat, 0); 880 if (result) { 881 dev_err(&spi->dev, "Failed internal write cmd...\n"); 882 return result; 883 } 884 885 return 0; 886} 887 888static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data) 889{ 890 struct spi_device *spi = to_spi_device(wilc->dev); 891 struct wilc_spi *spi_priv = wilc->bus_data; 892 int result; 893 894 result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr, data, 0); 895 if (result) { 896 if (!spi_priv->probing_crc) 897 dev_err(&spi->dev, "Failed internal read cmd...\n"); 898 return result; 899 } 900 901 le32_to_cpus(data); 902 903 return 0; 904} 905 906/******************************************** 907 * 908 * Spi interfaces 909 * 910 ********************************************/ 911 912static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data) 913{ 914 struct spi_device *spi = to_spi_device(wilc->dev); 915 int result; 916 u8 cmd = CMD_SINGLE_WRITE; 917 u8 clockless = 0; 918 919 if (addr < WILC_SPI_CLOCKLESS_ADDR_LIMIT) { 920 /* Clockless register */ 921 cmd = CMD_INTERNAL_WRITE; 922 clockless = 1; 923 } 924 925 result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless); 926 if (result) { 927 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr); 928 return result; 929 } 930 931 return 0; 932} 933 934static int spi_data_rsp(struct wilc *wilc, u8 cmd) 935{ 936 struct spi_device *spi = to_spi_device(wilc->dev); 937 int result, i; 938 u8 rsp[4]; 939 940 /* 941 * The response to data packets is two bytes long. For 942 * efficiency's sake, wilc_spi_write() wisely ignores the 943 * responses for all packets but the final one. The downside 944 * of that optimization is that when the final data packet is 945 * short, we may receive (part of) the response to the 946 * second-to-last packet before the one for the final packet. 947 * To handle this, we always read 4 bytes and then search for 948 * the last byte that contains the "Response Start" code (0xc 949 * in the top 4 bits). We then know that this byte is the 950 * first response byte of the final data packet. 951 */ 952 result = wilc_spi_rx(wilc, rsp, sizeof(rsp)); 953 if (result) { 954 dev_err(&spi->dev, "Failed bus error...\n"); 955 return result; 956 } 957 958 for (i = sizeof(rsp) - 2; i >= 0; --i) 959 if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG) 960 break; 961 962 if (i < 0) { 963 dev_err(&spi->dev, 964 "Data packet response missing (%02x %02x %02x %02x)\n", 965 rsp[0], rsp[1], rsp[2], rsp[3]); 966 return -1; 967 } 968 969 /* rsp[i] is the last response start byte */ 970 971 if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET 972 || rsp[i + 1] != RSP_STATE_NO_ERROR) { 973 dev_err(&spi->dev, "Data response error (%02x %02x)\n", 974 rsp[i], rsp[i + 1]); 975 return -1; 976 } 977 return 0; 978} 979 980static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size) 981{ 982 struct spi_device *spi = to_spi_device(wilc->dev); 983 int result; 984 985 /* 986 * has to be greated than 4 987 */ 988 if (size <= 4) 989 return -EINVAL; 990 991 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size); 992 if (result) { 993 dev_err(&spi->dev, 994 "Failed cmd, write block (%08x)...\n", addr); 995 return result; 996 } 997 998 /* 999 * Data 1000 */ 1001 result = spi_data_write(wilc, buf, size); 1002 if (result) { 1003 dev_err(&spi->dev, "Failed block data write...\n"); 1004 return result; 1005 } 1006 1007 /* 1008 * Data response 1009 */ 1010 return spi_data_rsp(wilc, CMD_DMA_EXT_WRITE); 1011} 1012 1013/******************************************** 1014 * 1015 * Bus interfaces 1016 * 1017 ********************************************/ 1018 1019static int wilc_spi_reset(struct wilc *wilc) 1020{ 1021 struct spi_device *spi = to_spi_device(wilc->dev); 1022 struct wilc_spi *spi_priv = wilc->bus_data; 1023 int result; 1024 1025 result = wilc_spi_special_cmd(wilc, CMD_RESET); 1026 if (result && !spi_priv->probing_crc) 1027 dev_err(&spi->dev, "Failed cmd reset\n"); 1028 1029 return result; 1030} 1031 1032static int wilc_spi_deinit(struct wilc *wilc) 1033{ 1034 struct wilc_spi *spi_priv = wilc->bus_data; 1035 1036 spi_priv->isinit = false; 1037 wilc_wlan_power(wilc, false); 1038 return 0; 1039} 1040 1041static int wilc_spi_init(struct wilc *wilc, bool resume) 1042{ 1043 struct spi_device *spi = to_spi_device(wilc->dev); 1044 struct wilc_spi *spi_priv = wilc->bus_data; 1045 u32 reg; 1046 u32 chipid; 1047 int ret, i; 1048 1049 if (spi_priv->isinit) { 1050 /* Confirm we can read chipid register without error: */ 1051 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid); 1052 if (ret == 0) 1053 return 0; 1054 1055 dev_err(&spi->dev, "Fail cmd read chip id...\n"); 1056 } 1057 1058 wilc_wlan_power(wilc, true); 1059 1060 /* 1061 * configure protocol 1062 */ 1063 1064 /* 1065 * Infer the CRC settings that are currently in effect. This 1066 * is necessary because we can't be sure that the chip has 1067 * been RESET (e.g, after module unload and reload). 1068 */ 1069 spi_priv->probing_crc = true; 1070 spi_priv->crc7_enabled = enable_crc7; 1071 spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */ 1072 for (i = 0; i < 2; ++i) { 1073 ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®); 1074 if (ret == 0) 1075 break; 1076 spi_priv->crc7_enabled = !enable_crc7; 1077 } 1078 if (ret) { 1079 dev_err(&spi->dev, "Failed with CRC7 on and off.\n"); 1080 return ret; 1081 } 1082 1083 /* set up the desired CRC configuration: */ 1084 reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK); 1085 if (enable_crc7) 1086 reg |= PROTOCOL_REG_CRC7_MASK; 1087 if (enable_crc16) 1088 reg |= PROTOCOL_REG_CRC16_MASK; 1089 1090 /* set up the data packet size: */ 1091 BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN 1092 || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX); 1093 reg &= ~PROTOCOL_REG_PKT_SZ_MASK; 1094 reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK, 1095 DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN); 1096 1097 /* establish the new setup: */ 1098 ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg); 1099 if (ret) { 1100 dev_err(&spi->dev, 1101 "[wilc spi %d]: Failed internal write reg\n", 1102 __LINE__); 1103 return ret; 1104 } 1105 /* update our state to match new protocol settings: */ 1106 spi_priv->crc7_enabled = enable_crc7; 1107 spi_priv->crc16_enabled = enable_crc16; 1108 1109 /* re-read to make sure new settings are in effect: */ 1110 spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®); 1111 1112 spi_priv->probing_crc = false; 1113 1114 /* 1115 * make sure can read chip id without protocol error 1116 */ 1117 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid); 1118 if (ret) { 1119 dev_err(&spi->dev, "Fail cmd read chip id...\n"); 1120 return ret; 1121 } 1122 1123 spi_priv->isinit = true; 1124 1125 return 0; 1126} 1127 1128static int wilc_spi_read_size(struct wilc *wilc, u32 *size) 1129{ 1130 int ret; 1131 1132 ret = spi_internal_read(wilc, 1133 WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size); 1134 *size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size); 1135 1136 return ret; 1137} 1138 1139static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status) 1140{ 1141 return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, 1142 int_status); 1143} 1144 1145static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val) 1146{ 1147 int ret; 1148 int retry = SPI_ENABLE_VMM_RETRY_LIMIT; 1149 u32 check; 1150 1151 while (retry) { 1152 ret = spi_internal_write(wilc, 1153 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE, 1154 val); 1155 if (ret) 1156 break; 1157 1158 ret = spi_internal_read(wilc, 1159 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE, 1160 &check); 1161 if (ret || ((check & EN_VMM) == (val & EN_VMM))) 1162 break; 1163 1164 retry--; 1165 } 1166 return ret; 1167} 1168 1169static int wilc_spi_sync_ext(struct wilc *wilc, int nint) 1170{ 1171 struct spi_device *spi = to_spi_device(wilc->dev); 1172 u32 reg; 1173 int ret, i; 1174 1175 if (nint > MAX_NUM_INT) { 1176 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint); 1177 return -EINVAL; 1178 } 1179 1180 /* 1181 * interrupt pin mux select 1182 */ 1183 ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, ®); 1184 if (ret) { 1185 dev_err(&spi->dev, "Failed read reg (%08x)...\n", 1186 WILC_PIN_MUX_0); 1187 return ret; 1188 } 1189 reg |= BIT(8); 1190 ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg); 1191 if (ret) { 1192 dev_err(&spi->dev, "Failed write reg (%08x)...\n", 1193 WILC_PIN_MUX_0); 1194 return ret; 1195 } 1196 1197 /* 1198 * interrupt enable 1199 */ 1200 ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, ®); 1201 if (ret) { 1202 dev_err(&spi->dev, "Failed read reg (%08x)...\n", 1203 WILC_INTR_ENABLE); 1204 return ret; 1205 } 1206 1207 for (i = 0; (i < 5) && (nint > 0); i++, nint--) 1208 reg |= (BIT((27 + i))); 1209 1210 ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg); 1211 if (ret) { 1212 dev_err(&spi->dev, "Failed write reg (%08x)...\n", 1213 WILC_INTR_ENABLE); 1214 return ret; 1215 } 1216 if (nint) { 1217 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®); 1218 if (ret) { 1219 dev_err(&spi->dev, "Failed read reg (%08x)...\n", 1220 WILC_INTR2_ENABLE); 1221 return ret; 1222 } 1223 1224 for (i = 0; (i < 3) && (nint > 0); i++, nint--) 1225 reg |= BIT(i); 1226 1227 ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg); 1228 if (ret) { 1229 dev_err(&spi->dev, "Failed write reg (%08x)...\n", 1230 WILC_INTR2_ENABLE); 1231 return ret; 1232 } 1233 } 1234 1235 return 0; 1236} 1237 1238/* Global spi HIF function table */ 1239static const struct wilc_hif_func wilc_hif_spi = { 1240 .hif_init = wilc_spi_init, 1241 .hif_deinit = wilc_spi_deinit, 1242 .hif_read_reg = wilc_spi_read_reg, 1243 .hif_write_reg = wilc_spi_write_reg, 1244 .hif_block_rx = wilc_spi_read, 1245 .hif_block_tx = wilc_spi_write, 1246 .hif_read_int = wilc_spi_read_int, 1247 .hif_clear_int_ext = wilc_spi_clear_int_ext, 1248 .hif_read_size = wilc_spi_read_size, 1249 .hif_block_tx_ext = wilc_spi_write, 1250 .hif_block_rx_ext = wilc_spi_read, 1251 .hif_sync_ext = wilc_spi_sync_ext, 1252 .hif_reset = wilc_spi_reset, 1253};