cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rt2500pci.c (66006B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
      4	<http://rt2x00.serialmonkey.com>
      5
      6 */
      7
      8/*
      9	Module: rt2500pci
     10	Abstract: rt2500pci device specific routines.
     11	Supported chipsets: RT2560.
     12 */
     13
     14#include <linux/delay.h>
     15#include <linux/etherdevice.h>
     16#include <linux/kernel.h>
     17#include <linux/module.h>
     18#include <linux/pci.h>
     19#include <linux/eeprom_93cx6.h>
     20#include <linux/slab.h>
     21
     22#include "rt2x00.h"
     23#include "rt2x00mmio.h"
     24#include "rt2x00pci.h"
     25#include "rt2500pci.h"
     26
     27/*
     28 * Register access.
     29 * All access to the CSR registers will go through the methods
     30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
     31 * BBP and RF register require indirect register access,
     32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
     33 * These indirect registers work with busy bits,
     34 * and we will try maximal REGISTER_BUSY_COUNT times to access
     35 * the register while taking a REGISTER_BUSY_DELAY us delay
     36 * between each attampt. When the busy bit is still set at that time,
     37 * the access attempt is considered to have failed,
     38 * and we will print an error.
     39 */
     40#define WAIT_FOR_BBP(__dev, __reg) \
     41	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
     42#define WAIT_FOR_RF(__dev, __reg) \
     43	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
     44
     45static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
     46				const unsigned int word, const u8 value)
     47{
     48	u32 reg;
     49
     50	mutex_lock(&rt2x00dev->csr_mutex);
     51
     52	/*
     53	 * Wait until the BBP becomes available, afterwards we
     54	 * can safely write the new data into the register.
     55	 */
     56	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
     57		reg = 0;
     58		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
     59		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
     60		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
     61		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
     62
     63		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
     64	}
     65
     66	mutex_unlock(&rt2x00dev->csr_mutex);
     67}
     68
     69static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
     70			     const unsigned int word)
     71{
     72	u32 reg;
     73	u8 value;
     74
     75	mutex_lock(&rt2x00dev->csr_mutex);
     76
     77	/*
     78	 * Wait until the BBP becomes available, afterwards we
     79	 * can safely write the read request into the register.
     80	 * After the data has been written, we wait until hardware
     81	 * returns the correct value, if at any time the register
     82	 * doesn't become available in time, reg will be 0xffffffff
     83	 * which means we return 0xff to the caller.
     84	 */
     85	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
     86		reg = 0;
     87		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
     88		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
     89		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
     90
     91		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
     92
     93		WAIT_FOR_BBP(rt2x00dev, &reg);
     94	}
     95
     96	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
     97
     98	mutex_unlock(&rt2x00dev->csr_mutex);
     99
    100	return value;
    101}
    102
    103static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
    104			       const unsigned int word, const u32 value)
    105{
    106	u32 reg;
    107
    108	mutex_lock(&rt2x00dev->csr_mutex);
    109
    110	/*
    111	 * Wait until the RF becomes available, afterwards we
    112	 * can safely write the new data into the register.
    113	 */
    114	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
    115		reg = 0;
    116		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
    117		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
    118		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
    119		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
    120
    121		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
    122		rt2x00_rf_write(rt2x00dev, word, value);
    123	}
    124
    125	mutex_unlock(&rt2x00dev->csr_mutex);
    126}
    127
    128static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
    129{
    130	struct rt2x00_dev *rt2x00dev = eeprom->data;
    131	u32 reg;
    132
    133	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
    134
    135	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
    136	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
    137	eeprom->reg_data_clock =
    138	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
    139	eeprom->reg_chip_select =
    140	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
    141}
    142
    143static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
    144{
    145	struct rt2x00_dev *rt2x00dev = eeprom->data;
    146	u32 reg = 0;
    147
    148	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
    149	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
    150	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
    151			   !!eeprom->reg_data_clock);
    152	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
    153			   !!eeprom->reg_chip_select);
    154
    155	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
    156}
    157
    158#ifdef CONFIG_RT2X00_LIB_DEBUGFS
    159static const struct rt2x00debug rt2500pci_rt2x00debug = {
    160	.owner	= THIS_MODULE,
    161	.csr	= {
    162		.read		= rt2x00mmio_register_read,
    163		.write		= rt2x00mmio_register_write,
    164		.flags		= RT2X00DEBUGFS_OFFSET,
    165		.word_base	= CSR_REG_BASE,
    166		.word_size	= sizeof(u32),
    167		.word_count	= CSR_REG_SIZE / sizeof(u32),
    168	},
    169	.eeprom	= {
    170		.read		= rt2x00_eeprom_read,
    171		.write		= rt2x00_eeprom_write,
    172		.word_base	= EEPROM_BASE,
    173		.word_size	= sizeof(u16),
    174		.word_count	= EEPROM_SIZE / sizeof(u16),
    175	},
    176	.bbp	= {
    177		.read		= rt2500pci_bbp_read,
    178		.write		= rt2500pci_bbp_write,
    179		.word_base	= BBP_BASE,
    180		.word_size	= sizeof(u8),
    181		.word_count	= BBP_SIZE / sizeof(u8),
    182	},
    183	.rf	= {
    184		.read		= rt2x00_rf_read,
    185		.write		= rt2500pci_rf_write,
    186		.word_base	= RF_BASE,
    187		.word_size	= sizeof(u32),
    188		.word_count	= RF_SIZE / sizeof(u32),
    189	},
    190};
    191#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
    192
    193static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
    194{
    195	u32 reg;
    196
    197	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
    198	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
    199}
    200
    201#ifdef CONFIG_RT2X00_LIB_LEDS
    202static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
    203				     enum led_brightness brightness)
    204{
    205	struct rt2x00_led *led =
    206	    container_of(led_cdev, struct rt2x00_led, led_dev);
    207	unsigned int enabled = brightness != LED_OFF;
    208	u32 reg;
    209
    210	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
    211
    212	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
    213		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
    214	else if (led->type == LED_TYPE_ACTIVITY)
    215		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
    216
    217	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
    218}
    219
    220static int rt2500pci_blink_set(struct led_classdev *led_cdev,
    221			       unsigned long *delay_on,
    222			       unsigned long *delay_off)
    223{
    224	struct rt2x00_led *led =
    225	    container_of(led_cdev, struct rt2x00_led, led_dev);
    226	u32 reg;
    227
    228	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
    229	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
    230	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
    231	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
    232
    233	return 0;
    234}
    235
    236static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
    237			       struct rt2x00_led *led,
    238			       enum led_type type)
    239{
    240	led->rt2x00dev = rt2x00dev;
    241	led->type = type;
    242	led->led_dev.brightness_set = rt2500pci_brightness_set;
    243	led->led_dev.blink_set = rt2500pci_blink_set;
    244	led->flags = LED_INITIALIZED;
    245}
    246#endif /* CONFIG_RT2X00_LIB_LEDS */
    247
    248/*
    249 * Configuration handlers.
    250 */
    251static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
    252				    const unsigned int filter_flags)
    253{
    254	u32 reg;
    255
    256	/*
    257	 * Start configuration steps.
    258	 * Note that the version error will always be dropped
    259	 * and broadcast frames will always be accepted since
    260	 * there is no filter for it at this time.
    261	 */
    262	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
    263	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
    264			   !(filter_flags & FIF_FCSFAIL));
    265	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
    266			   !(filter_flags & FIF_PLCPFAIL));
    267	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
    268			   !(filter_flags & FIF_CONTROL));
    269	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
    270			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
    271	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
    272			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
    273			   !rt2x00dev->intf_ap_count);
    274	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
    275	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
    276			   !(filter_flags & FIF_ALLMULTI));
    277	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
    278	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
    279}
    280
    281static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
    282				  struct rt2x00_intf *intf,
    283				  struct rt2x00intf_conf *conf,
    284				  const unsigned int flags)
    285{
    286	struct data_queue *queue = rt2x00dev->bcn;
    287	unsigned int bcn_preload;
    288	u32 reg;
    289
    290	if (flags & CONFIG_UPDATE_TYPE) {
    291		/*
    292		 * Enable beacon config
    293		 */
    294		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
    295		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
    296		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
    297		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
    298		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
    299
    300		/*
    301		 * Enable synchronisation.
    302		 */
    303		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
    304		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
    305		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
    306	}
    307
    308	if (flags & CONFIG_UPDATE_MAC)
    309		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
    310					      conf->mac, sizeof(conf->mac));
    311
    312	if (flags & CONFIG_UPDATE_BSSID)
    313		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
    314					      conf->bssid, sizeof(conf->bssid));
    315}
    316
    317static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
    318				 struct rt2x00lib_erp *erp,
    319				 u32 changed)
    320{
    321	int preamble_mask;
    322	u32 reg;
    323
    324	/*
    325	 * When short preamble is enabled, we should set bit 0x08
    326	 */
    327	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
    328		preamble_mask = erp->short_preamble << 3;
    329
    330		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
    331		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
    332		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
    333		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
    334		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
    335		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
    336
    337		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
    338		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
    339		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
    340		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
    341				   GET_DURATION(ACK_SIZE, 10));
    342		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
    343
    344		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
    345		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
    346		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
    347		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
    348				   GET_DURATION(ACK_SIZE, 20));
    349		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
    350
    351		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
    352		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
    353		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
    354		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
    355				   GET_DURATION(ACK_SIZE, 55));
    356		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
    357
    358		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
    359		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
    360		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
    361		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
    362				   GET_DURATION(ACK_SIZE, 110));
    363		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
    364	}
    365
    366	if (changed & BSS_CHANGED_BASIC_RATES)
    367		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
    368
    369	if (changed & BSS_CHANGED_ERP_SLOT) {
    370		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
    371		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
    372		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
    373
    374		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
    375		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
    376		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
    377		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
    378
    379		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
    380		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
    381		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
    382		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
    383	}
    384
    385	if (changed & BSS_CHANGED_BEACON_INT) {
    386		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
    387		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
    388				   erp->beacon_int * 16);
    389		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
    390				   erp->beacon_int * 16);
    391		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
    392	}
    393
    394}
    395
    396static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
    397				 struct antenna_setup *ant)
    398{
    399	u32 reg;
    400	u8 r14;
    401	u8 r2;
    402
    403	/*
    404	 * We should never come here because rt2x00lib is supposed
    405	 * to catch this and send us the correct antenna explicitely.
    406	 */
    407	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
    408	       ant->tx == ANTENNA_SW_DIVERSITY);
    409
    410	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
    411	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
    412	r2 = rt2500pci_bbp_read(rt2x00dev, 2);
    413
    414	/*
    415	 * Configure the TX antenna.
    416	 */
    417	switch (ant->tx) {
    418	case ANTENNA_A:
    419		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
    420		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
    421		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
    422		break;
    423	case ANTENNA_B:
    424	default:
    425		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
    426		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
    427		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
    428		break;
    429	}
    430
    431	/*
    432	 * Configure the RX antenna.
    433	 */
    434	switch (ant->rx) {
    435	case ANTENNA_A:
    436		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
    437		break;
    438	case ANTENNA_B:
    439	default:
    440		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
    441		break;
    442	}
    443
    444	/*
    445	 * RT2525E and RT5222 need to flip TX I/Q
    446	 */
    447	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
    448		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
    449		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
    450		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
    451
    452		/*
    453		 * RT2525E does not need RX I/Q Flip.
    454		 */
    455		if (rt2x00_rf(rt2x00dev, RF2525E))
    456			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
    457	} else {
    458		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
    459		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
    460	}
    461
    462	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
    463	rt2500pci_bbp_write(rt2x00dev, 14, r14);
    464	rt2500pci_bbp_write(rt2x00dev, 2, r2);
    465}
    466
    467static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
    468				     struct rf_channel *rf, const int txpower)
    469{
    470	u8 r70;
    471
    472	/*
    473	 * Set TXpower.
    474	 */
    475	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
    476
    477	/*
    478	 * Switch on tuning bits.
    479	 * For RT2523 devices we do not need to update the R1 register.
    480	 */
    481	if (!rt2x00_rf(rt2x00dev, RF2523))
    482		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
    483	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
    484
    485	/*
    486	 * For RT2525 we should first set the channel to half band higher.
    487	 */
    488	if (rt2x00_rf(rt2x00dev, RF2525)) {
    489		static const u32 vals[] = {
    490			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
    491			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
    492			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
    493			0x00080d2e, 0x00080d3a
    494		};
    495
    496		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
    497		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
    498		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
    499		if (rf->rf4)
    500			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
    501	}
    502
    503	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
    504	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
    505	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
    506	if (rf->rf4)
    507		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
    508
    509	/*
    510	 * Channel 14 requires the Japan filter bit to be set.
    511	 */
    512	r70 = 0x46;
    513	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
    514	rt2500pci_bbp_write(rt2x00dev, 70, r70);
    515
    516	msleep(1);
    517
    518	/*
    519	 * Switch off tuning bits.
    520	 * For RT2523 devices we do not need to update the R1 register.
    521	 */
    522	if (!rt2x00_rf(rt2x00dev, RF2523)) {
    523		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
    524		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
    525	}
    526
    527	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
    528	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
    529
    530	/*
    531	 * Clear false CRC during channel switch.
    532	 */
    533	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
    534}
    535
    536static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
    537				     const int txpower)
    538{
    539	u32 rf3;
    540
    541	rf3 = rt2x00_rf_read(rt2x00dev, 3);
    542	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
    543	rt2500pci_rf_write(rt2x00dev, 3, rf3);
    544}
    545
    546static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
    547					 struct rt2x00lib_conf *libconf)
    548{
    549	u32 reg;
    550
    551	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
    552	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
    553			   libconf->conf->long_frame_max_tx_count);
    554	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
    555			   libconf->conf->short_frame_max_tx_count);
    556	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
    557}
    558
    559static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
    560				struct rt2x00lib_conf *libconf)
    561{
    562	enum dev_state state =
    563	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
    564		STATE_SLEEP : STATE_AWAKE;
    565	u32 reg;
    566
    567	if (state == STATE_SLEEP) {
    568		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
    569		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
    570				   (rt2x00dev->beacon_int - 20) * 16);
    571		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
    572				   libconf->conf->listen_interval - 1);
    573
    574		/* We must first disable autowake before it can be enabled */
    575		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
    576		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
    577
    578		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
    579		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
    580	} else {
    581		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
    582		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
    583		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
    584	}
    585
    586	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
    587}
    588
    589static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
    590			     struct rt2x00lib_conf *libconf,
    591			     const unsigned int flags)
    592{
    593	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
    594		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
    595					 libconf->conf->power_level);
    596	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
    597	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
    598		rt2500pci_config_txpower(rt2x00dev,
    599					 libconf->conf->power_level);
    600	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
    601		rt2500pci_config_retry_limit(rt2x00dev, libconf);
    602	if (flags & IEEE80211_CONF_CHANGE_PS)
    603		rt2500pci_config_ps(rt2x00dev, libconf);
    604}
    605
    606/*
    607 * Link tuning
    608 */
    609static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
    610				 struct link_qual *qual)
    611{
    612	u32 reg;
    613
    614	/*
    615	 * Update FCS error count from register.
    616	 */
    617	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
    618	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
    619
    620	/*
    621	 * Update False CCA count from register.
    622	 */
    623	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
    624	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
    625}
    626
    627static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
    628				     struct link_qual *qual, u8 vgc_level)
    629{
    630	if (qual->vgc_level_reg != vgc_level) {
    631		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
    632		qual->vgc_level = vgc_level;
    633		qual->vgc_level_reg = vgc_level;
    634	}
    635}
    636
    637static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
    638				  struct link_qual *qual)
    639{
    640	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
    641}
    642
    643static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
    644				 struct link_qual *qual, const u32 count)
    645{
    646	/*
    647	 * To prevent collisions with MAC ASIC on chipsets
    648	 * up to version C the link tuning should halt after 20
    649	 * seconds while being associated.
    650	 */
    651	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
    652	    rt2x00dev->intf_associated && count > 20)
    653		return;
    654
    655	/*
    656	 * Chipset versions C and lower should directly continue
    657	 * to the dynamic CCA tuning. Chipset version D and higher
    658	 * should go straight to dynamic CCA tuning when they
    659	 * are not associated.
    660	 */
    661	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
    662	    !rt2x00dev->intf_associated)
    663		goto dynamic_cca_tune;
    664
    665	/*
    666	 * A too low RSSI will cause too much false CCA which will
    667	 * then corrupt the R17 tuning. To remidy this the tuning should
    668	 * be stopped (While making sure the R17 value will not exceed limits)
    669	 */
    670	if (qual->rssi < -80 && count > 20) {
    671		if (qual->vgc_level_reg >= 0x41)
    672			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
    673		return;
    674	}
    675
    676	/*
    677	 * Special big-R17 for short distance
    678	 */
    679	if (qual->rssi >= -58) {
    680		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
    681		return;
    682	}
    683
    684	/*
    685	 * Special mid-R17 for middle distance
    686	 */
    687	if (qual->rssi >= -74) {
    688		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
    689		return;
    690	}
    691
    692	/*
    693	 * Leave short or middle distance condition, restore r17
    694	 * to the dynamic tuning range.
    695	 */
    696	if (qual->vgc_level_reg >= 0x41) {
    697		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
    698		return;
    699	}
    700
    701dynamic_cca_tune:
    702
    703	/*
    704	 * R17 is inside the dynamic tuning range,
    705	 * start tuning the link based on the false cca counter.
    706	 */
    707	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
    708		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
    709	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
    710		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
    711}
    712
    713/*
    714 * Queue handlers.
    715 */
    716static void rt2500pci_start_queue(struct data_queue *queue)
    717{
    718	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    719	u32 reg;
    720
    721	switch (queue->qid) {
    722	case QID_RX:
    723		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
    724		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
    725		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
    726		break;
    727	case QID_BEACON:
    728		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
    729		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
    730		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
    731		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
    732		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
    733		break;
    734	default:
    735		break;
    736	}
    737}
    738
    739static void rt2500pci_kick_queue(struct data_queue *queue)
    740{
    741	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    742	u32 reg;
    743
    744	switch (queue->qid) {
    745	case QID_AC_VO:
    746		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
    747		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
    748		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
    749		break;
    750	case QID_AC_VI:
    751		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
    752		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
    753		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
    754		break;
    755	case QID_ATIM:
    756		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
    757		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
    758		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
    759		break;
    760	default:
    761		break;
    762	}
    763}
    764
    765static void rt2500pci_stop_queue(struct data_queue *queue)
    766{
    767	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    768	u32 reg;
    769
    770	switch (queue->qid) {
    771	case QID_AC_VO:
    772	case QID_AC_VI:
    773	case QID_ATIM:
    774		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
    775		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
    776		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
    777		break;
    778	case QID_RX:
    779		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
    780		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
    781		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
    782		break;
    783	case QID_BEACON:
    784		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
    785		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
    786		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
    787		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
    788		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
    789
    790		/*
    791		 * Wait for possibly running tbtt tasklets.
    792		 */
    793		tasklet_kill(&rt2x00dev->tbtt_tasklet);
    794		break;
    795	default:
    796		break;
    797	}
    798}
    799
    800/*
    801 * Initialization functions.
    802 */
    803static bool rt2500pci_get_entry_state(struct queue_entry *entry)
    804{
    805	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
    806	u32 word;
    807
    808	if (entry->queue->qid == QID_RX) {
    809		word = rt2x00_desc_read(entry_priv->desc, 0);
    810
    811		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
    812	} else {
    813		word = rt2x00_desc_read(entry_priv->desc, 0);
    814
    815		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
    816		        rt2x00_get_field32(word, TXD_W0_VALID));
    817	}
    818}
    819
    820static void rt2500pci_clear_entry(struct queue_entry *entry)
    821{
    822	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
    823	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
    824	u32 word;
    825
    826	if (entry->queue->qid == QID_RX) {
    827		word = rt2x00_desc_read(entry_priv->desc, 1);
    828		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
    829		rt2x00_desc_write(entry_priv->desc, 1, word);
    830
    831		word = rt2x00_desc_read(entry_priv->desc, 0);
    832		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
    833		rt2x00_desc_write(entry_priv->desc, 0, word);
    834	} else {
    835		word = rt2x00_desc_read(entry_priv->desc, 0);
    836		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
    837		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
    838		rt2x00_desc_write(entry_priv->desc, 0, word);
    839	}
    840}
    841
    842static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
    843{
    844	struct queue_entry_priv_mmio *entry_priv;
    845	u32 reg;
    846
    847	/*
    848	 * Initialize registers.
    849	 */
    850	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
    851	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
    852	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
    853	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
    854	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
    855	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
    856
    857	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
    858	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
    859	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
    860			   entry_priv->desc_dma);
    861	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
    862
    863	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
    864	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
    865	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
    866			   entry_priv->desc_dma);
    867	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
    868
    869	entry_priv = rt2x00dev->atim->entries[0].priv_data;
    870	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
    871	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
    872			   entry_priv->desc_dma);
    873	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
    874
    875	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
    876	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
    877	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
    878			   entry_priv->desc_dma);
    879	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
    880
    881	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
    882	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
    883	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
    884	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
    885
    886	entry_priv = rt2x00dev->rx->entries[0].priv_data;
    887	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
    888	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
    889			   entry_priv->desc_dma);
    890	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
    891
    892	return 0;
    893}
    894
    895static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
    896{
    897	u32 reg;
    898
    899	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
    900	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
    901	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
    902	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
    903
    904	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
    905	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
    906	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
    907	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
    908	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
    909
    910	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
    911	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
    912			   rt2x00dev->rx->data_size / 128);
    913	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
    914
    915	/*
    916	 * Always use CWmin and CWmax set in descriptor.
    917	 */
    918	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
    919	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
    920	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
    921
    922	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
    923	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
    924	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
    925	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
    926	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
    927	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
    928	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
    929	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
    930	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
    931	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
    932
    933	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
    934
    935	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
    936	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
    937	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
    938	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
    939	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
    940	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
    941	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
    942	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
    943	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
    944	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
    945
    946	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
    947	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
    948	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
    949	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
    950	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
    951	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
    952
    953	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
    954	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
    955	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
    956	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
    957	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
    958	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
    959
    960	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
    961	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
    962	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
    963	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
    964	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
    965	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
    966
    967	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
    968	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
    969	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
    970	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
    971	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
    972	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
    973	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
    974	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
    975	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
    976	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
    977
    978	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
    979	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
    980	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
    981	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
    982	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
    983	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
    984	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
    985	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
    986	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
    987
    988	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
    989
    990	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
    991	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
    992
    993	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
    994		return -EBUSY;
    995
    996	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
    997	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
    998
    999	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
   1000	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
   1001	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
   1002
   1003	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
   1004	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
   1005	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
   1006	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
   1007	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
   1008	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
   1009	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
   1010	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
   1011
   1012	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
   1013
   1014	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
   1015
   1016	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
   1017	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
   1018	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
   1019	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
   1020	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
   1021
   1022	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
   1023	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
   1024	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
   1025	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
   1026
   1027	/*
   1028	 * We must clear the FCS and FIFO error count.
   1029	 * These registers are cleared on read,
   1030	 * so we may pass a useless variable to store the value.
   1031	 */
   1032	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
   1033	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
   1034
   1035	return 0;
   1036}
   1037
   1038static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
   1039{
   1040	unsigned int i;
   1041	u8 value;
   1042
   1043	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
   1044		value = rt2500pci_bbp_read(rt2x00dev, 0);
   1045		if ((value != 0xff) && (value != 0x00))
   1046			return 0;
   1047		udelay(REGISTER_BUSY_DELAY);
   1048	}
   1049
   1050	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
   1051	return -EACCES;
   1052}
   1053
   1054static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
   1055{
   1056	unsigned int i;
   1057	u16 eeprom;
   1058	u8 reg_id;
   1059	u8 value;
   1060
   1061	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
   1062		return -EACCES;
   1063
   1064	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
   1065	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
   1066	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
   1067	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
   1068	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
   1069	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
   1070	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
   1071	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
   1072	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
   1073	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
   1074	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
   1075	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
   1076	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
   1077	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
   1078	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
   1079	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
   1080	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
   1081	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
   1082	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
   1083	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
   1084	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
   1085	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
   1086	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
   1087	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
   1088	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
   1089	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
   1090	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
   1091	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
   1092	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
   1093	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
   1094
   1095	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
   1096		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
   1097
   1098		if (eeprom != 0xffff && eeprom != 0x0000) {
   1099			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
   1100			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
   1101			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
   1102		}
   1103	}
   1104
   1105	return 0;
   1106}
   1107
   1108/*
   1109 * Device state switch handlers.
   1110 */
   1111static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
   1112				 enum dev_state state)
   1113{
   1114	int mask = (state == STATE_RADIO_IRQ_OFF);
   1115	u32 reg;
   1116	unsigned long flags;
   1117
   1118	/*
   1119	 * When interrupts are being enabled, the interrupt registers
   1120	 * should clear the register to assure a clean state.
   1121	 */
   1122	if (state == STATE_RADIO_IRQ_ON) {
   1123		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
   1124		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
   1125	}
   1126
   1127	/*
   1128	 * Only toggle the interrupts bits we are going to use.
   1129	 * Non-checked interrupt bits are disabled by default.
   1130	 */
   1131	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
   1132
   1133	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
   1134	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
   1135	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
   1136	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
   1137	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
   1138	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
   1139	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
   1140
   1141	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
   1142
   1143	if (state == STATE_RADIO_IRQ_OFF) {
   1144		/*
   1145		 * Ensure that all tasklets are finished.
   1146		 */
   1147		tasklet_kill(&rt2x00dev->txstatus_tasklet);
   1148		tasklet_kill(&rt2x00dev->rxdone_tasklet);
   1149		tasklet_kill(&rt2x00dev->tbtt_tasklet);
   1150	}
   1151}
   1152
   1153static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
   1154{
   1155	/*
   1156	 * Initialize all registers.
   1157	 */
   1158	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
   1159		     rt2500pci_init_registers(rt2x00dev) ||
   1160		     rt2500pci_init_bbp(rt2x00dev)))
   1161		return -EIO;
   1162
   1163	return 0;
   1164}
   1165
   1166static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
   1167{
   1168	/*
   1169	 * Disable power
   1170	 */
   1171	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
   1172}
   1173
   1174static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
   1175			       enum dev_state state)
   1176{
   1177	u32 reg, reg2;
   1178	unsigned int i;
   1179	char put_to_sleep;
   1180	char bbp_state;
   1181	char rf_state;
   1182
   1183	put_to_sleep = (state != STATE_AWAKE);
   1184
   1185	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
   1186	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
   1187	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
   1188	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
   1189	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
   1190	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
   1191
   1192	/*
   1193	 * Device is not guaranteed to be in the requested state yet.
   1194	 * We must wait until the register indicates that the
   1195	 * device has entered the correct state.
   1196	 */
   1197	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
   1198		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
   1199		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
   1200		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
   1201		if (bbp_state == state && rf_state == state)
   1202			return 0;
   1203		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
   1204		msleep(10);
   1205	}
   1206
   1207	return -EBUSY;
   1208}
   1209
   1210static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
   1211				      enum dev_state state)
   1212{
   1213	int retval = 0;
   1214
   1215	switch (state) {
   1216	case STATE_RADIO_ON:
   1217		retval = rt2500pci_enable_radio(rt2x00dev);
   1218		break;
   1219	case STATE_RADIO_OFF:
   1220		rt2500pci_disable_radio(rt2x00dev);
   1221		break;
   1222	case STATE_RADIO_IRQ_ON:
   1223	case STATE_RADIO_IRQ_OFF:
   1224		rt2500pci_toggle_irq(rt2x00dev, state);
   1225		break;
   1226	case STATE_DEEP_SLEEP:
   1227	case STATE_SLEEP:
   1228	case STATE_STANDBY:
   1229	case STATE_AWAKE:
   1230		retval = rt2500pci_set_state(rt2x00dev, state);
   1231		break;
   1232	default:
   1233		retval = -ENOTSUPP;
   1234		break;
   1235	}
   1236
   1237	if (unlikely(retval))
   1238		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
   1239			   state, retval);
   1240
   1241	return retval;
   1242}
   1243
   1244/*
   1245 * TX descriptor initialization
   1246 */
   1247static void rt2500pci_write_tx_desc(struct queue_entry *entry,
   1248				    struct txentry_desc *txdesc)
   1249{
   1250	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
   1251	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
   1252	__le32 *txd = entry_priv->desc;
   1253	u32 word;
   1254
   1255	/*
   1256	 * Start writing the descriptor words.
   1257	 */
   1258	word = rt2x00_desc_read(txd, 1);
   1259	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
   1260	rt2x00_desc_write(txd, 1, word);
   1261
   1262	word = rt2x00_desc_read(txd, 2);
   1263	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
   1264	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
   1265	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
   1266	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
   1267	rt2x00_desc_write(txd, 2, word);
   1268
   1269	word = rt2x00_desc_read(txd, 3);
   1270	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
   1271	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
   1272	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
   1273			   txdesc->u.plcp.length_low);
   1274	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
   1275			   txdesc->u.plcp.length_high);
   1276	rt2x00_desc_write(txd, 3, word);
   1277
   1278	word = rt2x00_desc_read(txd, 10);
   1279	rt2x00_set_field32(&word, TXD_W10_RTS,
   1280			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
   1281	rt2x00_desc_write(txd, 10, word);
   1282
   1283	/*
   1284	 * Writing TXD word 0 must the last to prevent a race condition with
   1285	 * the device, whereby the device may take hold of the TXD before we
   1286	 * finished updating it.
   1287	 */
   1288	word = rt2x00_desc_read(txd, 0);
   1289	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
   1290	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
   1291	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
   1292			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
   1293	rt2x00_set_field32(&word, TXD_W0_ACK,
   1294			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
   1295	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
   1296			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
   1297	rt2x00_set_field32(&word, TXD_W0_OFDM,
   1298			   (txdesc->rate_mode == RATE_MODE_OFDM));
   1299	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
   1300	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
   1301	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
   1302			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
   1303	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
   1304	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
   1305	rt2x00_desc_write(txd, 0, word);
   1306
   1307	/*
   1308	 * Register descriptor details in skb frame descriptor.
   1309	 */
   1310	skbdesc->desc = txd;
   1311	skbdesc->desc_len = TXD_DESC_SIZE;
   1312}
   1313
   1314/*
   1315 * TX data initialization
   1316 */
   1317static void rt2500pci_write_beacon(struct queue_entry *entry,
   1318				   struct txentry_desc *txdesc)
   1319{
   1320	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
   1321	u32 reg;
   1322
   1323	/*
   1324	 * Disable beaconing while we are reloading the beacon data,
   1325	 * otherwise we might be sending out invalid data.
   1326	 */
   1327	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
   1328	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
   1329	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
   1330
   1331	if (rt2x00queue_map_txskb(entry)) {
   1332		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
   1333		goto out;
   1334	}
   1335
   1336	/*
   1337	 * Write the TX descriptor for the beacon.
   1338	 */
   1339	rt2500pci_write_tx_desc(entry, txdesc);
   1340
   1341	/*
   1342	 * Dump beacon to userspace through debugfs.
   1343	 */
   1344	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
   1345out:
   1346	/*
   1347	 * Enable beaconing again.
   1348	 */
   1349	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
   1350	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
   1351}
   1352
   1353/*
   1354 * RX control handlers
   1355 */
   1356static void rt2500pci_fill_rxdone(struct queue_entry *entry,
   1357				  struct rxdone_entry_desc *rxdesc)
   1358{
   1359	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
   1360	u32 word0;
   1361	u32 word2;
   1362
   1363	word0 = rt2x00_desc_read(entry_priv->desc, 0);
   1364	word2 = rt2x00_desc_read(entry_priv->desc, 2);
   1365
   1366	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
   1367		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
   1368	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
   1369		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
   1370
   1371	/*
   1372	 * Obtain the status about this packet.
   1373	 * When frame was received with an OFDM bitrate,
   1374	 * the signal is the PLCP value. If it was received with
   1375	 * a CCK bitrate the signal is the rate in 100kbit/s.
   1376	 */
   1377	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
   1378	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
   1379	    entry->queue->rt2x00dev->rssi_offset;
   1380	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
   1381
   1382	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
   1383		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
   1384	else
   1385		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
   1386	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
   1387		rxdesc->dev_flags |= RXDONE_MY_BSS;
   1388}
   1389
   1390/*
   1391 * Interrupt functions.
   1392 */
   1393static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
   1394			     const enum data_queue_qid queue_idx)
   1395{
   1396	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
   1397	struct queue_entry_priv_mmio *entry_priv;
   1398	struct queue_entry *entry;
   1399	struct txdone_entry_desc txdesc;
   1400	u32 word;
   1401
   1402	while (!rt2x00queue_empty(queue)) {
   1403		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
   1404		entry_priv = entry->priv_data;
   1405		word = rt2x00_desc_read(entry_priv->desc, 0);
   1406
   1407		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
   1408		    !rt2x00_get_field32(word, TXD_W0_VALID))
   1409			break;
   1410
   1411		/*
   1412		 * Obtain the status about this packet.
   1413		 */
   1414		txdesc.flags = 0;
   1415		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
   1416		case 0: /* Success */
   1417		case 1: /* Success with retry */
   1418			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
   1419			break;
   1420		case 2: /* Failure, excessive retries */
   1421			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
   1422			fallthrough;	/* this is a failed frame! */
   1423		default: /* Failure */
   1424			__set_bit(TXDONE_FAILURE, &txdesc.flags);
   1425		}
   1426		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
   1427
   1428		rt2x00lib_txdone(entry, &txdesc);
   1429	}
   1430}
   1431
   1432static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
   1433					      struct rt2x00_field32 irq_field)
   1434{
   1435	u32 reg;
   1436
   1437	/*
   1438	 * Enable a single interrupt. The interrupt mask register
   1439	 * access needs locking.
   1440	 */
   1441	spin_lock_irq(&rt2x00dev->irqmask_lock);
   1442
   1443	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
   1444	rt2x00_set_field32(&reg, irq_field, 0);
   1445	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
   1446
   1447	spin_unlock_irq(&rt2x00dev->irqmask_lock);
   1448}
   1449
   1450static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
   1451{
   1452	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
   1453						    txstatus_tasklet);
   1454	u32 reg;
   1455
   1456	/*
   1457	 * Handle all tx queues.
   1458	 */
   1459	rt2500pci_txdone(rt2x00dev, QID_ATIM);
   1460	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
   1461	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
   1462
   1463	/*
   1464	 * Enable all TXDONE interrupts again.
   1465	 */
   1466	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
   1467		spin_lock_irq(&rt2x00dev->irqmask_lock);
   1468
   1469		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
   1470		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
   1471		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
   1472		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
   1473		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
   1474
   1475		spin_unlock_irq(&rt2x00dev->irqmask_lock);
   1476	}
   1477}
   1478
   1479static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
   1480{
   1481	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
   1482	rt2x00lib_beacondone(rt2x00dev);
   1483	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
   1484		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
   1485}
   1486
   1487static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
   1488{
   1489	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
   1490						    rxdone_tasklet);
   1491	if (rt2x00mmio_rxdone(rt2x00dev))
   1492		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
   1493	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
   1494		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
   1495}
   1496
   1497static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
   1498{
   1499	struct rt2x00_dev *rt2x00dev = dev_instance;
   1500	u32 reg, mask;
   1501
   1502	/*
   1503	 * Get the interrupt sources & saved to local variable.
   1504	 * Write register value back to clear pending interrupts.
   1505	 */
   1506	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
   1507	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
   1508
   1509	if (!reg)
   1510		return IRQ_NONE;
   1511
   1512	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
   1513		return IRQ_HANDLED;
   1514
   1515	mask = reg;
   1516
   1517	/*
   1518	 * Schedule tasklets for interrupt handling.
   1519	 */
   1520	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
   1521		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
   1522
   1523	if (rt2x00_get_field32(reg, CSR7_RXDONE))
   1524		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
   1525
   1526	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
   1527	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
   1528	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
   1529		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
   1530		/*
   1531		 * Mask out all txdone interrupts.
   1532		 */
   1533		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
   1534		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
   1535		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
   1536	}
   1537
   1538	/*
   1539	 * Disable all interrupts for which a tasklet was scheduled right now,
   1540	 * the tasklet will reenable the appropriate interrupts.
   1541	 */
   1542	spin_lock(&rt2x00dev->irqmask_lock);
   1543
   1544	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
   1545	reg |= mask;
   1546	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
   1547
   1548	spin_unlock(&rt2x00dev->irqmask_lock);
   1549
   1550	return IRQ_HANDLED;
   1551}
   1552
   1553/*
   1554 * Device probe functions.
   1555 */
   1556static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
   1557{
   1558	struct eeprom_93cx6 eeprom;
   1559	u32 reg;
   1560	u16 word;
   1561	u8 *mac;
   1562
   1563	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
   1564
   1565	eeprom.data = rt2x00dev;
   1566	eeprom.register_read = rt2500pci_eepromregister_read;
   1567	eeprom.register_write = rt2500pci_eepromregister_write;
   1568	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
   1569	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
   1570	eeprom.reg_data_in = 0;
   1571	eeprom.reg_data_out = 0;
   1572	eeprom.reg_data_clock = 0;
   1573	eeprom.reg_chip_select = 0;
   1574
   1575	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
   1576			       EEPROM_SIZE / sizeof(u16));
   1577
   1578	/*
   1579	 * Start validation of the data that has been read.
   1580	 */
   1581	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
   1582	rt2x00lib_set_mac_address(rt2x00dev, mac);
   1583
   1584	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
   1585	if (word == 0xffff) {
   1586		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
   1587		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
   1588				   ANTENNA_SW_DIVERSITY);
   1589		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
   1590				   ANTENNA_SW_DIVERSITY);
   1591		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
   1592				   LED_MODE_DEFAULT);
   1593		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
   1594		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
   1595		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
   1596		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
   1597		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
   1598	}
   1599
   1600	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
   1601	if (word == 0xffff) {
   1602		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
   1603		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
   1604		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
   1605		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
   1606		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
   1607	}
   1608
   1609	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
   1610	if (word == 0xffff) {
   1611		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
   1612				   DEFAULT_RSSI_OFFSET);
   1613		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
   1614		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
   1615				  word);
   1616	}
   1617
   1618	return 0;
   1619}
   1620
   1621static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
   1622{
   1623	u32 reg;
   1624	u16 value;
   1625	u16 eeprom;
   1626
   1627	/*
   1628	 * Read EEPROM word for configuration.
   1629	 */
   1630	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
   1631
   1632	/*
   1633	 * Identify RF chipset.
   1634	 */
   1635	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
   1636	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
   1637	rt2x00_set_chip(rt2x00dev, RT2560, value,
   1638			rt2x00_get_field32(reg, CSR0_REVISION));
   1639
   1640	if (!rt2x00_rf(rt2x00dev, RF2522) &&
   1641	    !rt2x00_rf(rt2x00dev, RF2523) &&
   1642	    !rt2x00_rf(rt2x00dev, RF2524) &&
   1643	    !rt2x00_rf(rt2x00dev, RF2525) &&
   1644	    !rt2x00_rf(rt2x00dev, RF2525E) &&
   1645	    !rt2x00_rf(rt2x00dev, RF5222)) {
   1646		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
   1647		return -ENODEV;
   1648	}
   1649
   1650	/*
   1651	 * Identify default antenna configuration.
   1652	 */
   1653	rt2x00dev->default_ant.tx =
   1654	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
   1655	rt2x00dev->default_ant.rx =
   1656	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
   1657
   1658	/*
   1659	 * Store led mode, for correct led behaviour.
   1660	 */
   1661#ifdef CONFIG_RT2X00_LIB_LEDS
   1662	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
   1663
   1664	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
   1665	if (value == LED_MODE_TXRX_ACTIVITY ||
   1666	    value == LED_MODE_DEFAULT ||
   1667	    value == LED_MODE_ASUS)
   1668		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
   1669				   LED_TYPE_ACTIVITY);
   1670#endif /* CONFIG_RT2X00_LIB_LEDS */
   1671
   1672	/*
   1673	 * Detect if this device has an hardware controlled radio.
   1674	 */
   1675	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
   1676		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
   1677		/*
   1678		 * On this device RFKILL initialized during probe does not work.
   1679		 */
   1680		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
   1681	}
   1682
   1683	/*
   1684	 * Check if the BBP tuning should be enabled.
   1685	 */
   1686	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
   1687	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
   1688		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
   1689
   1690	/*
   1691	 * Read the RSSI <-> dBm offset information.
   1692	 */
   1693	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
   1694	rt2x00dev->rssi_offset =
   1695	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
   1696
   1697	return 0;
   1698}
   1699
   1700/*
   1701 * RF value list for RF2522
   1702 * Supports: 2.4 GHz
   1703 */
   1704static const struct rf_channel rf_vals_bg_2522[] = {
   1705	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
   1706	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
   1707	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
   1708	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
   1709	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
   1710	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
   1711	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
   1712	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
   1713	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
   1714	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
   1715	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
   1716	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
   1717	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
   1718	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
   1719};
   1720
   1721/*
   1722 * RF value list for RF2523
   1723 * Supports: 2.4 GHz
   1724 */
   1725static const struct rf_channel rf_vals_bg_2523[] = {
   1726	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
   1727	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
   1728	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
   1729	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
   1730	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
   1731	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
   1732	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
   1733	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
   1734	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
   1735	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
   1736	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
   1737	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
   1738	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
   1739	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
   1740};
   1741
   1742/*
   1743 * RF value list for RF2524
   1744 * Supports: 2.4 GHz
   1745 */
   1746static const struct rf_channel rf_vals_bg_2524[] = {
   1747	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
   1748	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
   1749	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
   1750	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
   1751	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
   1752	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
   1753	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
   1754	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
   1755	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
   1756	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
   1757	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
   1758	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
   1759	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
   1760	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
   1761};
   1762
   1763/*
   1764 * RF value list for RF2525
   1765 * Supports: 2.4 GHz
   1766 */
   1767static const struct rf_channel rf_vals_bg_2525[] = {
   1768	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
   1769	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
   1770	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
   1771	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
   1772	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
   1773	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
   1774	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
   1775	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
   1776	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
   1777	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
   1778	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
   1779	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
   1780	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
   1781	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
   1782};
   1783
   1784/*
   1785 * RF value list for RF2525e
   1786 * Supports: 2.4 GHz
   1787 */
   1788static const struct rf_channel rf_vals_bg_2525e[] = {
   1789	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
   1790	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
   1791	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
   1792	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
   1793	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
   1794	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
   1795	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
   1796	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
   1797	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
   1798	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
   1799	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
   1800	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
   1801	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
   1802	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
   1803};
   1804
   1805/*
   1806 * RF value list for RF5222
   1807 * Supports: 2.4 GHz & 5.2 GHz
   1808 */
   1809static const struct rf_channel rf_vals_5222[] = {
   1810	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
   1811	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
   1812	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
   1813	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
   1814	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
   1815	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
   1816	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
   1817	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
   1818	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
   1819	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
   1820	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
   1821	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
   1822	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
   1823	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
   1824
   1825	/* 802.11 UNI / HyperLan 2 */
   1826	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
   1827	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
   1828	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
   1829	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
   1830	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
   1831	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
   1832	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
   1833	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
   1834
   1835	/* 802.11 HyperLan 2 */
   1836	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
   1837	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
   1838	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
   1839	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
   1840	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
   1841	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
   1842	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
   1843	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
   1844	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
   1845	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
   1846
   1847	/* 802.11 UNII */
   1848	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
   1849	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
   1850	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
   1851	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
   1852	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
   1853};
   1854
   1855static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
   1856{
   1857	struct hw_mode_spec *spec = &rt2x00dev->spec;
   1858	struct channel_info *info;
   1859	char *tx_power;
   1860	unsigned int i;
   1861
   1862	/*
   1863	 * Initialize all hw fields.
   1864	 */
   1865	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
   1866	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
   1867	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
   1868	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
   1869
   1870	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
   1871	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
   1872				rt2x00_eeprom_addr(rt2x00dev,
   1873						   EEPROM_MAC_ADDR_0));
   1874
   1875	/*
   1876	 * Disable powersaving as default.
   1877	 */
   1878	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
   1879
   1880	/*
   1881	 * Initialize hw_mode information.
   1882	 */
   1883	spec->supported_bands = SUPPORT_BAND_2GHZ;
   1884	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
   1885
   1886	if (rt2x00_rf(rt2x00dev, RF2522)) {
   1887		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
   1888		spec->channels = rf_vals_bg_2522;
   1889	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
   1890		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
   1891		spec->channels = rf_vals_bg_2523;
   1892	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
   1893		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
   1894		spec->channels = rf_vals_bg_2524;
   1895	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
   1896		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
   1897		spec->channels = rf_vals_bg_2525;
   1898	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
   1899		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
   1900		spec->channels = rf_vals_bg_2525e;
   1901	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
   1902		spec->supported_bands |= SUPPORT_BAND_5GHZ;
   1903		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
   1904		spec->channels = rf_vals_5222;
   1905	}
   1906
   1907	/*
   1908	 * Create channel information array
   1909	 */
   1910	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
   1911	if (!info)
   1912		return -ENOMEM;
   1913
   1914	spec->channels_info = info;
   1915
   1916	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
   1917	for (i = 0; i < 14; i++) {
   1918		info[i].max_power = MAX_TXPOWER;
   1919		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
   1920	}
   1921
   1922	if (spec->num_channels > 14) {
   1923		for (i = 14; i < spec->num_channels; i++) {
   1924			info[i].max_power = MAX_TXPOWER;
   1925			info[i].default_power1 = DEFAULT_TXPOWER;
   1926		}
   1927	}
   1928
   1929	return 0;
   1930}
   1931
   1932static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
   1933{
   1934	int retval;
   1935	u32 reg;
   1936
   1937	/*
   1938	 * Allocate eeprom data.
   1939	 */
   1940	retval = rt2500pci_validate_eeprom(rt2x00dev);
   1941	if (retval)
   1942		return retval;
   1943
   1944	retval = rt2500pci_init_eeprom(rt2x00dev);
   1945	if (retval)
   1946		return retval;
   1947
   1948	/*
   1949	 * Enable rfkill polling by setting GPIO direction of the
   1950	 * rfkill switch GPIO pin correctly.
   1951	 */
   1952	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
   1953	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
   1954	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
   1955
   1956	/*
   1957	 * Initialize hw specifications.
   1958	 */
   1959	retval = rt2500pci_probe_hw_mode(rt2x00dev);
   1960	if (retval)
   1961		return retval;
   1962
   1963	/*
   1964	 * This device requires the atim queue and DMA-mapped skbs.
   1965	 */
   1966	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
   1967	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
   1968	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
   1969
   1970	/*
   1971	 * Set the rssi offset.
   1972	 */
   1973	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
   1974
   1975	return 0;
   1976}
   1977
   1978/*
   1979 * IEEE80211 stack callback functions.
   1980 */
   1981static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
   1982			     struct ieee80211_vif *vif)
   1983{
   1984	struct rt2x00_dev *rt2x00dev = hw->priv;
   1985	u64 tsf;
   1986	u32 reg;
   1987
   1988	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
   1989	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
   1990	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
   1991	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
   1992
   1993	return tsf;
   1994}
   1995
   1996static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
   1997{
   1998	struct rt2x00_dev *rt2x00dev = hw->priv;
   1999	u32 reg;
   2000
   2001	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
   2002	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
   2003}
   2004
   2005static const struct ieee80211_ops rt2500pci_mac80211_ops = {
   2006	.tx			= rt2x00mac_tx,
   2007	.start			= rt2x00mac_start,
   2008	.stop			= rt2x00mac_stop,
   2009	.add_interface		= rt2x00mac_add_interface,
   2010	.remove_interface	= rt2x00mac_remove_interface,
   2011	.config			= rt2x00mac_config,
   2012	.configure_filter	= rt2x00mac_configure_filter,
   2013	.sw_scan_start		= rt2x00mac_sw_scan_start,
   2014	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
   2015	.get_stats		= rt2x00mac_get_stats,
   2016	.bss_info_changed	= rt2x00mac_bss_info_changed,
   2017	.conf_tx		= rt2x00mac_conf_tx,
   2018	.get_tsf		= rt2500pci_get_tsf,
   2019	.tx_last_beacon		= rt2500pci_tx_last_beacon,
   2020	.rfkill_poll		= rt2x00mac_rfkill_poll,
   2021	.flush			= rt2x00mac_flush,
   2022	.set_antenna		= rt2x00mac_set_antenna,
   2023	.get_antenna		= rt2x00mac_get_antenna,
   2024	.get_ringparam		= rt2x00mac_get_ringparam,
   2025	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
   2026};
   2027
   2028static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
   2029	.irq_handler		= rt2500pci_interrupt,
   2030	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
   2031	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
   2032	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
   2033	.probe_hw		= rt2500pci_probe_hw,
   2034	.initialize		= rt2x00mmio_initialize,
   2035	.uninitialize		= rt2x00mmio_uninitialize,
   2036	.get_entry_state	= rt2500pci_get_entry_state,
   2037	.clear_entry		= rt2500pci_clear_entry,
   2038	.set_device_state	= rt2500pci_set_device_state,
   2039	.rfkill_poll		= rt2500pci_rfkill_poll,
   2040	.link_stats		= rt2500pci_link_stats,
   2041	.reset_tuner		= rt2500pci_reset_tuner,
   2042	.link_tuner		= rt2500pci_link_tuner,
   2043	.start_queue		= rt2500pci_start_queue,
   2044	.kick_queue		= rt2500pci_kick_queue,
   2045	.stop_queue		= rt2500pci_stop_queue,
   2046	.flush_queue		= rt2x00mmio_flush_queue,
   2047	.write_tx_desc		= rt2500pci_write_tx_desc,
   2048	.write_beacon		= rt2500pci_write_beacon,
   2049	.fill_rxdone		= rt2500pci_fill_rxdone,
   2050	.config_filter		= rt2500pci_config_filter,
   2051	.config_intf		= rt2500pci_config_intf,
   2052	.config_erp		= rt2500pci_config_erp,
   2053	.config_ant		= rt2500pci_config_ant,
   2054	.config			= rt2500pci_config,
   2055};
   2056
   2057static void rt2500pci_queue_init(struct data_queue *queue)
   2058{
   2059	switch (queue->qid) {
   2060	case QID_RX:
   2061		queue->limit = 32;
   2062		queue->data_size = DATA_FRAME_SIZE;
   2063		queue->desc_size = RXD_DESC_SIZE;
   2064		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
   2065		break;
   2066
   2067	case QID_AC_VO:
   2068	case QID_AC_VI:
   2069	case QID_AC_BE:
   2070	case QID_AC_BK:
   2071		queue->limit = 32;
   2072		queue->data_size = DATA_FRAME_SIZE;
   2073		queue->desc_size = TXD_DESC_SIZE;
   2074		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
   2075		break;
   2076
   2077	case QID_BEACON:
   2078		queue->limit = 1;
   2079		queue->data_size = MGMT_FRAME_SIZE;
   2080		queue->desc_size = TXD_DESC_SIZE;
   2081		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
   2082		break;
   2083
   2084	case QID_ATIM:
   2085		queue->limit = 8;
   2086		queue->data_size = DATA_FRAME_SIZE;
   2087		queue->desc_size = TXD_DESC_SIZE;
   2088		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
   2089		break;
   2090
   2091	default:
   2092		BUG();
   2093		break;
   2094	}
   2095}
   2096
   2097static const struct rt2x00_ops rt2500pci_ops = {
   2098	.name			= KBUILD_MODNAME,
   2099	.max_ap_intf		= 1,
   2100	.eeprom_size		= EEPROM_SIZE,
   2101	.rf_size		= RF_SIZE,
   2102	.tx_queues		= NUM_TX_QUEUES,
   2103	.queue_init		= rt2500pci_queue_init,
   2104	.lib			= &rt2500pci_rt2x00_ops,
   2105	.hw			= &rt2500pci_mac80211_ops,
   2106#ifdef CONFIG_RT2X00_LIB_DEBUGFS
   2107	.debugfs		= &rt2500pci_rt2x00debug,
   2108#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
   2109};
   2110
   2111/*
   2112 * RT2500pci module information.
   2113 */
   2114static const struct pci_device_id rt2500pci_device_table[] = {
   2115	{ PCI_DEVICE(0x1814, 0x0201) },
   2116	{ 0, }
   2117};
   2118
   2119MODULE_AUTHOR(DRV_PROJECT);
   2120MODULE_VERSION(DRV_VERSION);
   2121MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
   2122MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
   2123MODULE_LICENSE("GPL");
   2124
   2125static int rt2500pci_probe(struct pci_dev *pci_dev,
   2126			   const struct pci_device_id *id)
   2127{
   2128	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
   2129}
   2130
   2131static struct pci_driver rt2500pci_driver = {
   2132	.name		= KBUILD_MODNAME,
   2133	.id_table	= rt2500pci_device_table,
   2134	.probe		= rt2500pci_probe,
   2135	.remove		= rt2x00pci_remove,
   2136	.driver.pm	= &rt2x00pci_pm_ops,
   2137};
   2138
   2139module_pci_driver(rt2500pci_driver);