cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rt2800mmio.c (25357B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
      3 *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
      4 *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
      5 *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
      6 *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
      7 *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
      8 *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
      9 *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
     10 *	<http://rt2x00.serialmonkey.com>
     11 */
     12
     13/*	Module: rt2800mmio
     14 *	Abstract: rt2800 MMIO device routines.
     15 */
     16
     17#include <linux/kernel.h>
     18#include <linux/module.h>
     19#include <linux/export.h>
     20
     21#include "rt2x00.h"
     22#include "rt2x00mmio.h"
     23#include "rt2800.h"
     24#include "rt2800lib.h"
     25#include "rt2800mmio.h"
     26
     27unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
     28{
     29	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
     30	struct queue_entry *entry;
     31	int idx, qid;
     32
     33	switch (queue->qid) {
     34	case QID_AC_VO:
     35	case QID_AC_VI:
     36	case QID_AC_BE:
     37	case QID_AC_BK:
     38		qid = queue->qid;
     39		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
     40		break;
     41	case QID_MGMT:
     42		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
     43		break;
     44	case QID_RX:
     45		entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
     46		idx = entry->entry_idx;
     47		break;
     48	default:
     49		WARN_ON_ONCE(1);
     50		idx = 0;
     51		break;
     52	}
     53
     54	return idx;
     55}
     56EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
     57
     58/*
     59 * TX descriptor initialization
     60 */
     61__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
     62{
     63	return (__le32 *) entry->skb->data;
     64}
     65EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
     66
     67void rt2800mmio_write_tx_desc(struct queue_entry *entry,
     68			      struct txentry_desc *txdesc)
     69{
     70	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
     71	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
     72	__le32 *txd = entry_priv->desc;
     73	u32 word;
     74	const unsigned int txwi_size = entry->queue->winfo_size;
     75
     76	/*
     77	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
     78	 * must contains a TXWI structure + 802.11 header + padding + 802.11
     79	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
     80	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
     81	 * data. It means that LAST_SEC0 is always 0.
     82	 */
     83
     84	/*
     85	 * Initialize TX descriptor
     86	 */
     87	word = 0;
     88	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
     89	rt2x00_desc_write(txd, 0, word);
     90
     91	word = 0;
     92	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
     93	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
     94			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
     95	rt2x00_set_field32(&word, TXD_W1_BURST,
     96			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
     97	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
     98	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
     99	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
    100	rt2x00_desc_write(txd, 1, word);
    101
    102	word = 0;
    103	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
    104			   skbdesc->skb_dma + txwi_size);
    105	rt2x00_desc_write(txd, 2, word);
    106
    107	word = 0;
    108	rt2x00_set_field32(&word, TXD_W3_WIV,
    109			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
    110	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
    111	rt2x00_desc_write(txd, 3, word);
    112
    113	/*
    114	 * Register descriptor details in skb frame descriptor.
    115	 */
    116	skbdesc->desc = txd;
    117	skbdesc->desc_len = TXD_DESC_SIZE;
    118}
    119EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
    120
    121/*
    122 * RX control handlers
    123 */
    124void rt2800mmio_fill_rxdone(struct queue_entry *entry,
    125			    struct rxdone_entry_desc *rxdesc)
    126{
    127	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
    128	__le32 *rxd = entry_priv->desc;
    129	u32 word;
    130
    131	word = rt2x00_desc_read(rxd, 3);
    132
    133	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
    134		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
    135
    136	/*
    137	 * Unfortunately we don't know the cipher type used during
    138	 * decryption. This prevents us from correct providing
    139	 * correct statistics through debugfs.
    140	 */
    141	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
    142
    143	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
    144		/*
    145		 * Hardware has stripped IV/EIV data from 802.11 frame during
    146		 * decryption. Unfortunately the descriptor doesn't contain
    147		 * any fields with the EIV/IV data either, so they can't
    148		 * be restored by rt2x00lib.
    149		 */
    150		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
    151
    152		/*
    153		 * The hardware has already checked the Michael Mic and has
    154		 * stripped it from the frame. Signal this to mac80211.
    155		 */
    156		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
    157
    158		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
    159			rxdesc->flags |= RX_FLAG_DECRYPTED;
    160		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
    161			/*
    162			 * In order to check the Michael Mic, the packet must have
    163			 * been decrypted.  Mac80211 doesnt check the MMIC failure 
    164			 * flag to initiate MMIC countermeasures if the decoded flag
    165			 * has not been set.
    166			 */
    167			rxdesc->flags |= RX_FLAG_DECRYPTED;
    168
    169			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
    170		}
    171	}
    172
    173	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
    174		rxdesc->dev_flags |= RXDONE_MY_BSS;
    175
    176	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
    177		rxdesc->dev_flags |= RXDONE_L2PAD;
    178
    179	/*
    180	 * Process the RXWI structure that is at the start of the buffer.
    181	 */
    182	rt2800_process_rxwi(entry, rxdesc);
    183}
    184EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
    185
    186/*
    187 * Interrupt functions.
    188 */
    189static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
    190{
    191	struct ieee80211_conf conf = { .flags = 0 };
    192	struct rt2x00lib_conf libconf = { .conf = &conf };
    193
    194	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
    195}
    196
    197static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
    198					       struct rt2x00_field32 irq_field)
    199{
    200	u32 reg;
    201
    202	/*
    203	 * Enable a single interrupt. The interrupt mask register
    204	 * access needs locking.
    205	 */
    206	spin_lock_irq(&rt2x00dev->irqmask_lock);
    207	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
    208	rt2x00_set_field32(&reg, irq_field, 1);
    209	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
    210	spin_unlock_irq(&rt2x00dev->irqmask_lock);
    211}
    212
    213void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
    214{
    215	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
    216						    pretbtt_tasklet);
    217	rt2x00lib_pretbtt(rt2x00dev);
    218	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    219		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
    220}
    221EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
    222
    223void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
    224{
    225	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
    226	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
    227	u32 reg;
    228
    229	rt2x00lib_beacondone(rt2x00dev);
    230
    231	if (rt2x00dev->intf_ap_count) {
    232		/*
    233		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
    234		 * causing beacon skew and as a result causing problems with
    235		 * some powersaving clients over time. Shorten the beacon
    236		 * interval every 64 beacons by 64us to mitigate this effect.
    237		 */
    238		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
    239			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
    240			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
    241					   (rt2x00dev->beacon_int * 16) - 1);
    242			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
    243		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
    244			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
    245			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
    246					   (rt2x00dev->beacon_int * 16));
    247			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
    248		}
    249		drv_data->tbtt_tick++;
    250		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
    251	}
    252
    253	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    254		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
    255}
    256EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
    257
    258void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
    259{
    260	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
    261						    rxdone_tasklet);
    262	if (rt2x00mmio_rxdone(rt2x00dev))
    263		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
    264	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    265		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
    266}
    267EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
    268
    269void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
    270{
    271	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
    272						    autowake_tasklet);
    273	rt2800mmio_wakeup(rt2x00dev);
    274	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    275		rt2800mmio_enable_interrupt(rt2x00dev,
    276					    INT_MASK_CSR_AUTO_WAKEUP);
    277}
    278EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
    279
    280static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
    281{
    282	u32 status;
    283	unsigned long flags;
    284
    285	/*
    286	 * The TX_FIFO_STATUS interrupt needs special care. We should
    287	 * read TX_STA_FIFO but we should do it immediately as otherwise
    288	 * the register can overflow and we would lose status reports.
    289	 *
    290	 * Hence, read the TX_STA_FIFO register and copy all tx status
    291	 * reports into a kernel FIFO which is handled in the txstatus
    292	 * tasklet. We use a tasklet to process the tx status reports
    293	 * because we can schedule the tasklet multiple times (when the
    294	 * interrupt fires again during tx status processing).
    295	 *
    296	 * We also read statuses from tx status timeout timer, use
    297	 * lock to prevent concurent writes to fifo.
    298	 */
    299
    300	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
    301
    302	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
    303		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
    304		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
    305			break;
    306
    307		kfifo_put(&rt2x00dev->txstatus_fifo, status);
    308	}
    309
    310	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
    311}
    312
    313void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
    314{
    315	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
    316						    txstatus_tasklet);
    317
    318	rt2800_txdone(rt2x00dev, 16);
    319
    320	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
    321		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
    322
    323}
    324EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
    325
    326irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
    327{
    328	struct rt2x00_dev *rt2x00dev = dev_instance;
    329	u32 reg, mask;
    330
    331	/* Read status and ACK all interrupts */
    332	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
    333	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
    334
    335	if (!reg)
    336		return IRQ_NONE;
    337
    338	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    339		return IRQ_HANDLED;
    340
    341	/*
    342	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
    343	 * for interrupts and interrupt masks we can just use the value of
    344	 * INT_SOURCE_CSR to create the interrupt mask.
    345	 */
    346	mask = ~reg;
    347
    348	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
    349		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
    350		rt2800mmio_fetch_txstatus(rt2x00dev);
    351		if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
    352			tasklet_schedule(&rt2x00dev->txstatus_tasklet);
    353	}
    354
    355	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
    356		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
    357
    358	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
    359		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
    360
    361	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
    362		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
    363
    364	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
    365		tasklet_schedule(&rt2x00dev->autowake_tasklet);
    366
    367	/*
    368	 * Disable all interrupts for which a tasklet was scheduled right now,
    369	 * the tasklet will reenable the appropriate interrupts.
    370	 */
    371	spin_lock(&rt2x00dev->irqmask_lock);
    372	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
    373	reg &= mask;
    374	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
    375	spin_unlock(&rt2x00dev->irqmask_lock);
    376
    377	return IRQ_HANDLED;
    378}
    379EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
    380
    381void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
    382			   enum dev_state state)
    383{
    384	u32 reg;
    385	unsigned long flags;
    386
    387	/*
    388	 * When interrupts are being enabled, the interrupt registers
    389	 * should clear the register to assure a clean state.
    390	 */
    391	if (state == STATE_RADIO_IRQ_ON) {
    392		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
    393		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
    394	}
    395
    396	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
    397	reg = 0;
    398	if (state == STATE_RADIO_IRQ_ON) {
    399		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
    400		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
    401		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
    402		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
    403		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
    404	}
    405	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
    406	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
    407
    408	if (state == STATE_RADIO_IRQ_OFF) {
    409		/*
    410		 * Wait for possibly running tasklets to finish.
    411		 */
    412		tasklet_kill(&rt2x00dev->txstatus_tasklet);
    413		tasklet_kill(&rt2x00dev->rxdone_tasklet);
    414		tasklet_kill(&rt2x00dev->autowake_tasklet);
    415		tasklet_kill(&rt2x00dev->tbtt_tasklet);
    416		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
    417	}
    418}
    419EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
    420
    421/*
    422 * Queue handlers.
    423 */
    424void rt2800mmio_start_queue(struct data_queue *queue)
    425{
    426	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    427	u32 reg;
    428
    429	switch (queue->qid) {
    430	case QID_RX:
    431		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
    432		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
    433		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
    434		break;
    435	case QID_BEACON:
    436		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
    437		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
    438		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
    439		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
    440		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
    441
    442		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
    443		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
    444		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
    445		break;
    446	default:
    447		break;
    448	}
    449}
    450EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
    451
    452/* 200 ms */
    453#define TXSTATUS_TIMEOUT 200000000
    454
    455void rt2800mmio_kick_queue(struct data_queue *queue)
    456{
    457	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    458	struct queue_entry *entry;
    459
    460	switch (queue->qid) {
    461	case QID_AC_VO:
    462	case QID_AC_VI:
    463	case QID_AC_BE:
    464	case QID_AC_BK:
    465		WARN_ON_ONCE(rt2x00queue_empty(queue));
    466		entry = rt2x00queue_get_entry(queue, Q_INDEX);
    467		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
    468					  entry->entry_idx);
    469		hrtimer_start(&rt2x00dev->txstatus_timer,
    470			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
    471		break;
    472	case QID_MGMT:
    473		entry = rt2x00queue_get_entry(queue, Q_INDEX);
    474		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
    475					  entry->entry_idx);
    476		break;
    477	default:
    478		break;
    479	}
    480}
    481EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
    482
    483void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
    484{
    485	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    486	bool tx_queue = false;
    487	unsigned int i;
    488
    489	switch (queue->qid) {
    490	case QID_AC_VO:
    491	case QID_AC_VI:
    492	case QID_AC_BE:
    493	case QID_AC_BK:
    494		tx_queue = true;
    495		break;
    496	case QID_RX:
    497		break;
    498	default:
    499		return;
    500	}
    501
    502	for (i = 0; i < 5; i++) {
    503		/*
    504		 * Check if the driver is already done, otherwise we
    505		 * have to sleep a little while to give the driver/hw
    506		 * the oppurtunity to complete interrupt process itself.
    507		 */
    508		if (rt2x00queue_empty(queue))
    509			break;
    510
    511		/*
    512		 * For TX queues schedule completion tasklet to catch
    513		 * tx status timeouts, othewise just wait.
    514		 */
    515		if (tx_queue)
    516			queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
    517
    518		/*
    519		 * Wait for a little while to give the driver
    520		 * the oppurtunity to recover itself.
    521		 */
    522		msleep(50);
    523	}
    524}
    525EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
    526
    527void rt2800mmio_stop_queue(struct data_queue *queue)
    528{
    529	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    530	u32 reg;
    531
    532	switch (queue->qid) {
    533	case QID_RX:
    534		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
    535		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
    536		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
    537		break;
    538	case QID_BEACON:
    539		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
    540		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
    541		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
    542		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
    543		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
    544
    545		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
    546		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
    547		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
    548
    549		/*
    550		 * Wait for current invocation to finish. The tasklet
    551		 * won't be scheduled anymore afterwards since we disabled
    552		 * the TBTT and PRE TBTT timer.
    553		 */
    554		tasklet_kill(&rt2x00dev->tbtt_tasklet);
    555		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
    556
    557		break;
    558	default:
    559		break;
    560	}
    561}
    562EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
    563
    564void rt2800mmio_queue_init(struct data_queue *queue)
    565{
    566	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
    567	unsigned short txwi_size, rxwi_size;
    568
    569	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
    570
    571	switch (queue->qid) {
    572	case QID_RX:
    573		queue->limit = 128;
    574		queue->data_size = AGGREGATION_SIZE;
    575		queue->desc_size = RXD_DESC_SIZE;
    576		queue->winfo_size = rxwi_size;
    577		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
    578		break;
    579
    580	case QID_AC_VO:
    581	case QID_AC_VI:
    582	case QID_AC_BE:
    583	case QID_AC_BK:
    584		queue->limit = 64;
    585		queue->data_size = AGGREGATION_SIZE;
    586		queue->desc_size = TXD_DESC_SIZE;
    587		queue->winfo_size = txwi_size;
    588		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
    589		break;
    590
    591	case QID_BEACON:
    592		queue->limit = 8;
    593		queue->data_size = 0; /* No DMA required for beacons */
    594		queue->desc_size = TXD_DESC_SIZE;
    595		queue->winfo_size = txwi_size;
    596		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
    597		break;
    598
    599	case QID_ATIM:
    600	default:
    601		BUG();
    602		break;
    603	}
    604}
    605EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
    606
    607/*
    608 * Initialization functions.
    609 */
    610bool rt2800mmio_get_entry_state(struct queue_entry *entry)
    611{
    612	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
    613	u32 word;
    614
    615	if (entry->queue->qid == QID_RX) {
    616		word = rt2x00_desc_read(entry_priv->desc, 1);
    617
    618		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
    619	} else {
    620		word = rt2x00_desc_read(entry_priv->desc, 1);
    621
    622		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
    623	}
    624}
    625EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
    626
    627void rt2800mmio_clear_entry(struct queue_entry *entry)
    628{
    629	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
    630	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
    631	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    632	u32 word;
    633
    634	if (entry->queue->qid == QID_RX) {
    635		word = rt2x00_desc_read(entry_priv->desc, 0);
    636		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
    637		rt2x00_desc_write(entry_priv->desc, 0, word);
    638
    639		word = rt2x00_desc_read(entry_priv->desc, 1);
    640		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
    641		rt2x00_desc_write(entry_priv->desc, 1, word);
    642
    643		/*
    644		 * Set RX IDX in register to inform hardware that we have
    645		 * handled this entry and it is available for reuse again.
    646		 */
    647		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
    648					  entry->entry_idx);
    649	} else {
    650		word = rt2x00_desc_read(entry_priv->desc, 1);
    651		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
    652		rt2x00_desc_write(entry_priv->desc, 1, word);
    653
    654		/* If last entry stop txstatus timer */
    655		if (entry->queue->length == 1)
    656			hrtimer_cancel(&rt2x00dev->txstatus_timer);
    657	}
    658}
    659EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
    660
    661int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
    662{
    663	struct queue_entry_priv_mmio *entry_priv;
    664
    665	/*
    666	 * Initialize registers.
    667	 */
    668	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
    669	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
    670				  entry_priv->desc_dma);
    671	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
    672				  rt2x00dev->tx[0].limit);
    673	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
    674	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
    675
    676	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
    677	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
    678				  entry_priv->desc_dma);
    679	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
    680				  rt2x00dev->tx[1].limit);
    681	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
    682	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
    683
    684	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
    685	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
    686				  entry_priv->desc_dma);
    687	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
    688				  rt2x00dev->tx[2].limit);
    689	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
    690	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
    691
    692	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
    693	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
    694				  entry_priv->desc_dma);
    695	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
    696				  rt2x00dev->tx[3].limit);
    697	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
    698	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
    699
    700	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
    701	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
    702	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
    703	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
    704
    705	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
    706	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
    707	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
    708	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
    709
    710	entry_priv = rt2x00dev->rx->entries[0].priv_data;
    711	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
    712				  entry_priv->desc_dma);
    713	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
    714				  rt2x00dev->rx[0].limit);
    715	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
    716				  rt2x00dev->rx[0].limit - 1);
    717	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
    718
    719	rt2800_disable_wpdma(rt2x00dev);
    720
    721	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
    722
    723	return 0;
    724}
    725EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
    726
    727int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
    728{
    729	u32 reg;
    730
    731	/*
    732	 * Reset DMA indexes
    733	 */
    734	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
    735	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
    736	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
    737	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
    738	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
    739	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
    740	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
    741	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
    742	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
    743
    744	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
    745	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
    746
    747	if (rt2x00_is_pcie(rt2x00dev) &&
    748	    (rt2x00_rt(rt2x00dev, RT3090) ||
    749	     rt2x00_rt(rt2x00dev, RT3390) ||
    750	     rt2x00_rt(rt2x00dev, RT3572) ||
    751	     rt2x00_rt(rt2x00dev, RT3593) ||
    752	     rt2x00_rt(rt2x00dev, RT5390) ||
    753	     rt2x00_rt(rt2x00dev, RT5392) ||
    754	     rt2x00_rt(rt2x00dev, RT5592))) {
    755		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
    756		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
    757		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
    758		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
    759	}
    760
    761	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
    762
    763	reg = 0;
    764	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
    765	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
    766	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
    767
    768	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
    769
    770	return 0;
    771}
    772EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
    773
    774/*
    775 * Device state switch handlers.
    776 */
    777int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
    778{
    779	/* Wait for DMA, ignore error until we initialize queues. */
    780	rt2800_wait_wpdma_ready(rt2x00dev);
    781
    782	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
    783		return -EIO;
    784
    785	return rt2800_enable_radio(rt2x00dev);
    786}
    787EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
    788
    789static void rt2800mmio_work_txdone(struct work_struct *work)
    790{
    791	struct rt2x00_dev *rt2x00dev =
    792	    container_of(work, struct rt2x00_dev, txdone_work);
    793
    794	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    795		return;
    796
    797	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
    798	       rt2800_txstatus_timeout(rt2x00dev)) {
    799
    800		tasklet_disable(&rt2x00dev->txstatus_tasklet);
    801		rt2800_txdone(rt2x00dev, UINT_MAX);
    802		rt2800_txdone_nostatus(rt2x00dev);
    803		tasklet_enable(&rt2x00dev->txstatus_tasklet);
    804	}
    805
    806	if (rt2800_txstatus_pending(rt2x00dev))
    807		hrtimer_start(&rt2x00dev->txstatus_timer,
    808			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
    809}
    810
    811static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
    812{
    813	struct rt2x00_dev *rt2x00dev =
    814	    container_of(timer, struct rt2x00_dev, txstatus_timer);
    815
    816	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    817		goto out;
    818
    819	if (!rt2800_txstatus_pending(rt2x00dev))
    820		goto out;
    821
    822	rt2800mmio_fetch_txstatus(rt2x00dev);
    823	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
    824		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
    825	else
    826		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
    827out:
    828	return HRTIMER_NORESTART;
    829}
    830
    831int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
    832{
    833	int retval;
    834
    835	retval = rt2800_probe_hw(rt2x00dev);
    836	if (retval)
    837		return retval;
    838
    839	/*
    840	 * Set txstatus timer function.
    841	 */
    842	rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
    843
    844	/*
    845	 * Overwrite TX done handler
    846	 */
    847	INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
    848
    849	return 0;
    850}
    851EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
    852
    853MODULE_AUTHOR(DRV_PROJECT);
    854MODULE_VERSION(DRV_VERSION);
    855MODULE_DESCRIPTION("rt2800 MMIO library");
    856MODULE_LICENSE("GPL");