cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rt2x00.h (37987B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
      4	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
      5	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
      6	<http://rt2x00.serialmonkey.com>
      7
      8 */
      9
     10/*
     11	Module: rt2x00
     12	Abstract: rt2x00 global information.
     13 */
     14
     15#ifndef RT2X00_H
     16#define RT2X00_H
     17
     18#include <linux/bitops.h>
     19#include <linux/interrupt.h>
     20#include <linux/skbuff.h>
     21#include <linux/workqueue.h>
     22#include <linux/firmware.h>
     23#include <linux/leds.h>
     24#include <linux/mutex.h>
     25#include <linux/etherdevice.h>
     26#include <linux/kfifo.h>
     27#include <linux/hrtimer.h>
     28#include <linux/average.h>
     29#include <linux/usb.h>
     30#include <linux/clk.h>
     31
     32#include <net/mac80211.h>
     33
     34#include "rt2x00debug.h"
     35#include "rt2x00dump.h"
     36#include "rt2x00leds.h"
     37#include "rt2x00reg.h"
     38#include "rt2x00queue.h"
     39
     40/*
     41 * Module information.
     42 */
     43#define DRV_VERSION	"2.3.0"
     44#define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
     45
     46/* Debug definitions.
     47 * Debug output has to be enabled during compile time.
     48 */
     49#ifdef CONFIG_RT2X00_DEBUG
     50#define DEBUG
     51#endif /* CONFIG_RT2X00_DEBUG */
     52
     53/* Utility printing macros
     54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
     55 */
     56#define rt2x00_probe_err(fmt, ...)					\
     57	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
     58	       __func__, ##__VA_ARGS__)
     59#define rt2x00_err(dev, fmt, ...)					\
     60	wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt,	\
     61		  __func__, ##__VA_ARGS__)
     62#define rt2x00_warn(dev, fmt, ...)					\
     63	wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt,	\
     64		   __func__, ##__VA_ARGS__)
     65#define rt2x00_info(dev, fmt, ...)					\
     66	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
     67		   __func__, ##__VA_ARGS__)
     68
     69/* Various debug levels */
     70#define rt2x00_dbg(dev, fmt, ...)					\
     71	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
     72		  __func__, ##__VA_ARGS__)
     73#define rt2x00_eeprom_dbg(dev, fmt, ...)				\
     74	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
     75		  __func__, ##__VA_ARGS__)
     76
     77/*
     78 * Duration calculations
     79 * The rate variable passed is: 100kbs.
     80 * To convert from bytes to bits we multiply size with 8,
     81 * then the size is multiplied with 10 to make the
     82 * real rate -> rate argument correction.
     83 */
     84#define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
     85#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
     86
     87/*
     88 * Determine the number of L2 padding bytes required between the header and
     89 * the payload.
     90 */
     91#define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
     92
     93/*
     94 * Determine the alignment requirement,
     95 * to make sure the 802.11 payload is padded to a 4-byte boundrary
     96 * we must determine the address of the payload and calculate the
     97 * amount of bytes needed to move the data.
     98 */
     99#define ALIGN_SIZE(__skb, __header) \
    100	(((unsigned long)((__skb)->data + (__header))) & 3)
    101
    102/*
    103 * Constants for extra TX headroom for alignment purposes.
    104 */
    105#define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
    106#define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
    107
    108/*
    109 * Standard timing and size defines.
    110 * These values should follow the ieee80211 specifications.
    111 */
    112#define ACK_SIZE		14
    113#define IEEE80211_HEADER	24
    114#define PLCP			48
    115#define BEACON			100
    116#define PREAMBLE		144
    117#define SHORT_PREAMBLE		72
    118#define SLOT_TIME		20
    119#define SHORT_SLOT_TIME		9
    120#define SIFS			10
    121#define PIFS			(SIFS + SLOT_TIME)
    122#define SHORT_PIFS		(SIFS + SHORT_SLOT_TIME)
    123#define DIFS			(PIFS + SLOT_TIME)
    124#define SHORT_DIFS		(SHORT_PIFS + SHORT_SLOT_TIME)
    125#define EIFS			(SIFS + DIFS + \
    126				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
    127#define SHORT_EIFS		(SIFS + SHORT_DIFS + \
    128				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
    129
    130enum rt2x00_chip_intf {
    131	RT2X00_CHIP_INTF_PCI,
    132	RT2X00_CHIP_INTF_PCIE,
    133	RT2X00_CHIP_INTF_USB,
    134	RT2X00_CHIP_INTF_SOC,
    135};
    136
    137/*
    138 * Chipset identification
    139 * The chipset on the device is composed of a RT and RF chip.
    140 * The chipset combination is important for determining device capabilities.
    141 */
    142struct rt2x00_chip {
    143	u16 rt;
    144#define RT2460		0x2460
    145#define RT2560		0x2560
    146#define RT2570		0x2570
    147#define RT2661		0x2661
    148#define RT2573		0x2573
    149#define RT2860		0x2860	/* 2.4GHz */
    150#define RT2872		0x2872	/* WSOC */
    151#define RT2883		0x2883	/* WSOC */
    152#define RT3070		0x3070
    153#define RT3071		0x3071
    154#define RT3090		0x3090	/* 2.4GHz PCIe */
    155#define RT3290		0x3290
    156#define RT3352		0x3352  /* WSOC */
    157#define RT3390		0x3390
    158#define RT3572		0x3572
    159#define RT3593		0x3593
    160#define RT3883		0x3883	/* WSOC */
    161#define RT5350		0x5350  /* WSOC 2.4GHz */
    162#define RT5390		0x5390  /* 2.4GHz */
    163#define RT5392		0x5392  /* 2.4GHz */
    164#define RT5592		0x5592
    165#define RT6352		0x6352  /* WSOC 2.4GHz */
    166
    167	u16 rf;
    168	u16 rev;
    169
    170	enum rt2x00_chip_intf intf;
    171};
    172
    173/*
    174 * RF register values that belong to a particular channel.
    175 */
    176struct rf_channel {
    177	int channel;
    178	u32 rf1;
    179	u32 rf2;
    180	u32 rf3;
    181	u32 rf4;
    182};
    183
    184/*
    185 * Information structure for channel survey.
    186 */
    187struct rt2x00_chan_survey {
    188	u64 time_idle;
    189	u64 time_busy;
    190	u64 time_ext_busy;
    191};
    192
    193/*
    194 * Channel information structure
    195 */
    196struct channel_info {
    197	unsigned int flags;
    198#define GEOGRAPHY_ALLOWED	0x00000001
    199
    200	short max_power;
    201	short default_power1;
    202	short default_power2;
    203	short default_power3;
    204};
    205
    206/*
    207 * Antenna setup values.
    208 */
    209struct antenna_setup {
    210	enum antenna rx;
    211	enum antenna tx;
    212	u8 rx_chain_num;
    213	u8 tx_chain_num;
    214};
    215
    216/*
    217 * Quality statistics about the currently active link.
    218 */
    219struct link_qual {
    220	/*
    221	 * Statistics required for Link tuning by driver
    222	 * The rssi value is provided by rt2x00lib during the
    223	 * link_tuner() callback function.
    224	 * The false_cca field is filled during the link_stats()
    225	 * callback function and could be used during the
    226	 * link_tuner() callback function.
    227	 */
    228	int rssi;
    229	int false_cca;
    230
    231	/*
    232	 * VGC levels
    233	 * Hardware driver will tune the VGC level during each call
    234	 * to the link_tuner() callback function. This vgc_level is
    235	 * is determined based on the link quality statistics like
    236	 * average RSSI and the false CCA count.
    237	 *
    238	 * In some cases the drivers need to differentiate between
    239	 * the currently "desired" VGC level and the level configured
    240	 * in the hardware. The latter is important to reduce the
    241	 * number of BBP register reads to reduce register access
    242	 * overhead. For this reason we store both values here.
    243	 */
    244	u8 vgc_level;
    245	u8 vgc_level_reg;
    246
    247	/*
    248	 * Statistics required for Signal quality calculation.
    249	 * These fields might be changed during the link_stats()
    250	 * callback function.
    251	 */
    252	int rx_success;
    253	int rx_failed;
    254	int tx_success;
    255	int tx_failed;
    256};
    257
    258DECLARE_EWMA(rssi, 10, 8)
    259
    260/*
    261 * Antenna settings about the currently active link.
    262 */
    263struct link_ant {
    264	/*
    265	 * Antenna flags
    266	 */
    267	unsigned int flags;
    268#define ANTENNA_RX_DIVERSITY	0x00000001
    269#define ANTENNA_TX_DIVERSITY	0x00000002
    270#define ANTENNA_MODE_SAMPLE	0x00000004
    271
    272	/*
    273	 * Currently active TX/RX antenna setup.
    274	 * When software diversity is used, this will indicate
    275	 * which antenna is actually used at this time.
    276	 */
    277	struct antenna_setup active;
    278
    279	/*
    280	 * RSSI history information for the antenna.
    281	 * Used to determine when to switch antenna
    282	 * when using software diversity.
    283	 */
    284	int rssi_history;
    285
    286	/*
    287	 * Current RSSI average of the currently active antenna.
    288	 * Similar to the avg_rssi in the link_qual structure
    289	 * this value is updated by using the walking average.
    290	 */
    291	struct ewma_rssi rssi_ant;
    292};
    293
    294/*
    295 * To optimize the quality of the link we need to store
    296 * the quality of received frames and periodically
    297 * optimize the link.
    298 */
    299struct link {
    300	/*
    301	 * Link tuner counter
    302	 * The number of times the link has been tuned
    303	 * since the radio has been switched on.
    304	 */
    305	u32 count;
    306
    307	/*
    308	 * Quality measurement values.
    309	 */
    310	struct link_qual qual;
    311
    312	/*
    313	 * TX/RX antenna setup.
    314	 */
    315	struct link_ant ant;
    316
    317	/*
    318	 * Currently active average RSSI value
    319	 */
    320	struct ewma_rssi avg_rssi;
    321
    322	/*
    323	 * Work structure for scheduling periodic link tuning.
    324	 */
    325	struct delayed_work work;
    326
    327	/*
    328	 * Work structure for scheduling periodic watchdog monitoring.
    329	 * This work must be scheduled on the kernel workqueue, while
    330	 * all other work structures must be queued on the mac80211
    331	 * workqueue. This guarantees that the watchdog can schedule
    332	 * other work structures and wait for their completion in order
    333	 * to bring the device/driver back into the desired state.
    334	 */
    335	struct delayed_work watchdog_work;
    336	unsigned int watchdog_interval;
    337	bool watchdog_disabled;
    338
    339	/*
    340	 * Work structure for scheduling periodic AGC adjustments.
    341	 */
    342	struct delayed_work agc_work;
    343
    344	/*
    345	 * Work structure for scheduling periodic VCO calibration.
    346	 */
    347	struct delayed_work vco_work;
    348};
    349
    350enum rt2x00_delayed_flags {
    351	DELAYED_UPDATE_BEACON,
    352};
    353
    354/*
    355 * Interface structure
    356 * Per interface configuration details, this structure
    357 * is allocated as the private data for ieee80211_vif.
    358 */
    359struct rt2x00_intf {
    360	/*
    361	 * beacon->skb must be protected with the mutex.
    362	 */
    363	struct mutex beacon_skb_mutex;
    364
    365	/*
    366	 * Entry in the beacon queue which belongs to
    367	 * this interface. Each interface has its own
    368	 * dedicated beacon entry.
    369	 */
    370	struct queue_entry *beacon;
    371	bool enable_beacon;
    372
    373	/*
    374	 * Actions that needed rescheduling.
    375	 */
    376	unsigned long delayed_flags;
    377
    378	/*
    379	 * Software sequence counter, this is only required
    380	 * for hardware which doesn't support hardware
    381	 * sequence counting.
    382	 */
    383	atomic_t seqno;
    384};
    385
    386static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
    387{
    388	return (struct rt2x00_intf *)vif->drv_priv;
    389}
    390
    391/**
    392 * struct hw_mode_spec: Hardware specifications structure
    393 *
    394 * Details about the supported modes, rates and channels
    395 * of a particular chipset. This is used by rt2x00lib
    396 * to build the ieee80211_hw_mode array for mac80211.
    397 *
    398 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
    399 * @supported_rates: Rate types which are supported (CCK, OFDM).
    400 * @num_channels: Number of supported channels. This is used as array size
    401 *	for @tx_power_a, @tx_power_bg and @channels.
    402 * @channels: Device/chipset specific channel values (See &struct rf_channel).
    403 * @channels_info: Additional information for channels (See &struct channel_info).
    404 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
    405 */
    406struct hw_mode_spec {
    407	unsigned int supported_bands;
    408#define SUPPORT_BAND_2GHZ	0x00000001
    409#define SUPPORT_BAND_5GHZ	0x00000002
    410
    411	unsigned int supported_rates;
    412#define SUPPORT_RATE_CCK	0x00000001
    413#define SUPPORT_RATE_OFDM	0x00000002
    414
    415	unsigned int num_channels;
    416	const struct rf_channel *channels;
    417	const struct channel_info *channels_info;
    418
    419	struct ieee80211_sta_ht_cap ht;
    420};
    421
    422/*
    423 * Configuration structure wrapper around the
    424 * mac80211 configuration structure.
    425 * When mac80211 configures the driver, rt2x00lib
    426 * can precalculate values which are equal for all
    427 * rt2x00 drivers. Those values can be stored in here.
    428 */
    429struct rt2x00lib_conf {
    430	struct ieee80211_conf *conf;
    431
    432	struct rf_channel rf;
    433	struct channel_info channel;
    434};
    435
    436/*
    437 * Configuration structure for erp settings.
    438 */
    439struct rt2x00lib_erp {
    440	int short_preamble;
    441	int cts_protection;
    442
    443	u32 basic_rates;
    444
    445	int slot_time;
    446
    447	short sifs;
    448	short pifs;
    449	short difs;
    450	short eifs;
    451
    452	u16 beacon_int;
    453	u16 ht_opmode;
    454};
    455
    456/*
    457 * Configuration structure for hardware encryption.
    458 */
    459struct rt2x00lib_crypto {
    460	enum cipher cipher;
    461
    462	enum set_key_cmd cmd;
    463	const u8 *address;
    464
    465	u32 bssidx;
    466
    467	u8 key[16];
    468	u8 tx_mic[8];
    469	u8 rx_mic[8];
    470
    471	int wcid;
    472};
    473
    474/*
    475 * Configuration structure wrapper around the
    476 * rt2x00 interface configuration handler.
    477 */
    478struct rt2x00intf_conf {
    479	/*
    480	 * Interface type
    481	 */
    482	enum nl80211_iftype type;
    483
    484	/*
    485	 * TSF sync value, this is dependent on the operation type.
    486	 */
    487	enum tsf_sync sync;
    488
    489	/*
    490	 * The MAC and BSSID addresses are simple array of bytes,
    491	 * these arrays are little endian, so when sending the addresses
    492	 * to the drivers, copy the it into a endian-signed variable.
    493	 *
    494	 * Note that all devices (except rt2500usb) have 32 bits
    495	 * register word sizes. This means that whatever variable we
    496	 * pass _must_ be a multiple of 32 bits. Otherwise the device
    497	 * might not accept what we are sending to it.
    498	 * This will also make it easier for the driver to write
    499	 * the data to the device.
    500	 */
    501	__le32 mac[2];
    502	__le32 bssid[2];
    503};
    504
    505/*
    506 * Private structure for storing STA details
    507 * wcid: Wireless Client ID
    508 */
    509struct rt2x00_sta {
    510	int wcid;
    511};
    512
    513static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
    514{
    515	return (struct rt2x00_sta *)sta->drv_priv;
    516}
    517
    518/*
    519 * rt2x00lib callback functions.
    520 */
    521struct rt2x00lib_ops {
    522	/*
    523	 * Interrupt handlers.
    524	 */
    525	irq_handler_t irq_handler;
    526
    527	/*
    528	 * TX status tasklet handler.
    529	 */
    530	void (*txstatus_tasklet) (struct tasklet_struct *t);
    531	void (*pretbtt_tasklet) (struct tasklet_struct *t);
    532	void (*tbtt_tasklet) (struct tasklet_struct *t);
    533	void (*rxdone_tasklet) (struct tasklet_struct *t);
    534	void (*autowake_tasklet) (struct tasklet_struct *t);
    535
    536	/*
    537	 * Device init handlers.
    538	 */
    539	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
    540	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
    541	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
    542			       const u8 *data, const size_t len);
    543	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
    544			      const u8 *data, const size_t len);
    545
    546	/*
    547	 * Device initialization/deinitialization handlers.
    548	 */
    549	int (*initialize) (struct rt2x00_dev *rt2x00dev);
    550	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
    551
    552	/*
    553	 * queue initialization handlers
    554	 */
    555	bool (*get_entry_state) (struct queue_entry *entry);
    556	void (*clear_entry) (struct queue_entry *entry);
    557
    558	/*
    559	 * Radio control handlers.
    560	 */
    561	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
    562				 enum dev_state state);
    563	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
    564	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
    565			    struct link_qual *qual);
    566	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
    567			     struct link_qual *qual);
    568	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
    569			    struct link_qual *qual, const u32 count);
    570	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
    571	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
    572
    573	/*
    574	 * Data queue handlers.
    575	 */
    576	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
    577	void (*start_queue) (struct data_queue *queue);
    578	void (*kick_queue) (struct data_queue *queue);
    579	void (*stop_queue) (struct data_queue *queue);
    580	void (*flush_queue) (struct data_queue *queue, bool drop);
    581	void (*tx_dma_done) (struct queue_entry *entry);
    582
    583	/*
    584	 * TX control handlers
    585	 */
    586	void (*write_tx_desc) (struct queue_entry *entry,
    587			       struct txentry_desc *txdesc);
    588	void (*write_tx_data) (struct queue_entry *entry,
    589			       struct txentry_desc *txdesc);
    590	void (*write_beacon) (struct queue_entry *entry,
    591			      struct txentry_desc *txdesc);
    592	void (*clear_beacon) (struct queue_entry *entry);
    593	int (*get_tx_data_len) (struct queue_entry *entry);
    594
    595	/*
    596	 * RX control handlers
    597	 */
    598	void (*fill_rxdone) (struct queue_entry *entry,
    599			     struct rxdone_entry_desc *rxdesc);
    600
    601	/*
    602	 * Configuration handlers.
    603	 */
    604	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
    605				  struct rt2x00lib_crypto *crypto,
    606				  struct ieee80211_key_conf *key);
    607	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
    608				    struct rt2x00lib_crypto *crypto,
    609				    struct ieee80211_key_conf *key);
    610	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
    611			       const unsigned int filter_flags);
    612	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
    613			     struct rt2x00_intf *intf,
    614			     struct rt2x00intf_conf *conf,
    615			     const unsigned int flags);
    616#define CONFIG_UPDATE_TYPE		( 1 << 1 )
    617#define CONFIG_UPDATE_MAC		( 1 << 2 )
    618#define CONFIG_UPDATE_BSSID		( 1 << 3 )
    619
    620	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
    621			    struct rt2x00lib_erp *erp,
    622			    u32 changed);
    623	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
    624			    struct antenna_setup *ant);
    625	void (*config) (struct rt2x00_dev *rt2x00dev,
    626			struct rt2x00lib_conf *libconf,
    627			const unsigned int changed_flags);
    628	void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
    629	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
    630			struct ieee80211_vif *vif,
    631			struct ieee80211_sta *sta);
    632	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
    633			   struct ieee80211_sta *sta);
    634};
    635
    636/*
    637 * rt2x00 driver callback operation structure.
    638 */
    639struct rt2x00_ops {
    640	const char *name;
    641	const unsigned int drv_data_size;
    642	const unsigned int max_ap_intf;
    643	const unsigned int eeprom_size;
    644	const unsigned int rf_size;
    645	const unsigned int tx_queues;
    646	void (*queue_init)(struct data_queue *queue);
    647	const struct rt2x00lib_ops *lib;
    648	const void *drv;
    649	const struct ieee80211_ops *hw;
    650#ifdef CONFIG_RT2X00_LIB_DEBUGFS
    651	const struct rt2x00debug *debugfs;
    652#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
    653};
    654
    655/*
    656 * rt2x00 state flags
    657 */
    658enum rt2x00_state_flags {
    659	/*
    660	 * Device flags
    661	 */
    662	DEVICE_STATE_PRESENT,
    663	DEVICE_STATE_REGISTERED_HW,
    664	DEVICE_STATE_INITIALIZED,
    665	DEVICE_STATE_STARTED,
    666	DEVICE_STATE_ENABLED_RADIO,
    667	DEVICE_STATE_SCANNING,
    668	DEVICE_STATE_FLUSHING,
    669	DEVICE_STATE_RESET,
    670
    671	/*
    672	 * Driver configuration
    673	 */
    674	CONFIG_CHANNEL_HT40,
    675	CONFIG_POWERSAVING,
    676	CONFIG_HT_DISABLED,
    677	CONFIG_MONITORING,
    678
    679	/*
    680	 * Mark we currently are sequentially reading TX_STA_FIFO register
    681	 * FIXME: this is for only rt2800usb, should go to private data
    682	 */
    683	TX_STATUS_READING,
    684};
    685
    686/*
    687 * rt2x00 capability flags
    688 */
    689enum rt2x00_capability_flags {
    690	/*
    691	 * Requirements
    692	 */
    693	REQUIRE_FIRMWARE,
    694	REQUIRE_BEACON_GUARD,
    695	REQUIRE_ATIM_QUEUE,
    696	REQUIRE_DMA,
    697	REQUIRE_COPY_IV,
    698	REQUIRE_L2PAD,
    699	REQUIRE_TXSTATUS_FIFO,
    700	REQUIRE_TASKLET_CONTEXT,
    701	REQUIRE_SW_SEQNO,
    702	REQUIRE_HT_TX_DESC,
    703	REQUIRE_PS_AUTOWAKE,
    704	REQUIRE_DELAYED_RFKILL,
    705
    706	/*
    707	 * Capabilities
    708	 */
    709	CAPABILITY_HW_BUTTON,
    710	CAPABILITY_HW_CRYPTO,
    711	CAPABILITY_POWER_LIMIT,
    712	CAPABILITY_CONTROL_FILTERS,
    713	CAPABILITY_CONTROL_FILTER_PSPOLL,
    714	CAPABILITY_PRE_TBTT_INTERRUPT,
    715	CAPABILITY_LINK_TUNING,
    716	CAPABILITY_FRAME_TYPE,
    717	CAPABILITY_RF_SEQUENCE,
    718	CAPABILITY_EXTERNAL_LNA_A,
    719	CAPABILITY_EXTERNAL_LNA_BG,
    720	CAPABILITY_DOUBLE_ANTENNA,
    721	CAPABILITY_BT_COEXIST,
    722	CAPABILITY_VCO_RECALIBRATION,
    723	CAPABILITY_EXTERNAL_PA_TX0,
    724	CAPABILITY_EXTERNAL_PA_TX1,
    725	CAPABILITY_RESTART_HW,
    726};
    727
    728/*
    729 * Interface combinations
    730 */
    731enum {
    732	IF_COMB_AP = 0,
    733	NUM_IF_COMB,
    734};
    735
    736/*
    737 * rt2x00 device structure.
    738 */
    739struct rt2x00_dev {
    740	/*
    741	 * Device structure.
    742	 * The structure stored in here depends on the
    743	 * system bus (PCI or USB).
    744	 * When accessing this variable, the rt2x00dev_{pci,usb}
    745	 * macros should be used for correct typecasting.
    746	 */
    747	struct device *dev;
    748
    749	/*
    750	 * Callback functions.
    751	 */
    752	const struct rt2x00_ops *ops;
    753
    754	/*
    755	 * Driver data.
    756	 */
    757	void *drv_data;
    758
    759	/*
    760	 * IEEE80211 control structure.
    761	 */
    762	struct ieee80211_hw *hw;
    763	struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
    764	struct rt2x00_chan_survey *chan_survey;
    765	enum nl80211_band curr_band;
    766	int curr_freq;
    767
    768	/*
    769	 * If enabled, the debugfs interface structures
    770	 * required for deregistration of debugfs.
    771	 */
    772#ifdef CONFIG_RT2X00_LIB_DEBUGFS
    773	struct rt2x00debug_intf *debugfs_intf;
    774#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
    775
    776	/*
    777	 * LED structure for changing the LED status
    778	 * by mac8011 or the kernel.
    779	 */
    780#ifdef CONFIG_RT2X00_LIB_LEDS
    781	struct rt2x00_led led_radio;
    782	struct rt2x00_led led_assoc;
    783	struct rt2x00_led led_qual;
    784	u16 led_mcu_reg;
    785#endif /* CONFIG_RT2X00_LIB_LEDS */
    786
    787	/*
    788	 * Device state flags.
    789	 * In these flags the current status is stored.
    790	 * Access to these flags should occur atomically.
    791	 */
    792	unsigned long flags;
    793
    794	/*
    795	 * Device capabiltiy flags.
    796	 * In these flags the device/driver capabilities are stored.
    797	 * Access to these flags should occur non-atomically.
    798	 */
    799	unsigned long cap_flags;
    800
    801	/*
    802	 * Device information, Bus IRQ and name (PCI, SoC)
    803	 */
    804	int irq;
    805	const char *name;
    806
    807	/*
    808	 * Chipset identification.
    809	 */
    810	struct rt2x00_chip chip;
    811
    812	/*
    813	 * hw capability specifications.
    814	 */
    815	struct hw_mode_spec spec;
    816
    817	/*
    818	 * This is the default TX/RX antenna setup as indicated
    819	 * by the device's EEPROM.
    820	 */
    821	struct antenna_setup default_ant;
    822
    823	/*
    824	 * Register pointers
    825	 * csr.base: CSR base register address. (PCI)
    826	 * csr.cache: CSR cache for usb_control_msg. (USB)
    827	 */
    828	union csr {
    829		void __iomem *base;
    830		void *cache;
    831	} csr;
    832
    833	/*
    834	 * Mutex to protect register accesses.
    835	 * For PCI and USB devices it protects against concurrent indirect
    836	 * register access (BBP, RF, MCU) since accessing those
    837	 * registers require multiple calls to the CSR registers.
    838	 * For USB devices it also protects the csr_cache since that
    839	 * field is used for normal CSR access and it cannot support
    840	 * multiple callers simultaneously.
    841	 */
    842	struct mutex csr_mutex;
    843
    844	/*
    845	 * Mutex to synchronize config and link tuner.
    846	 */
    847	struct mutex conf_mutex;
    848	/*
    849	 * Current packet filter configuration for the device.
    850	 * This contains all currently active FIF_* flags send
    851	 * to us by mac80211 during configure_filter().
    852	 */
    853	unsigned int packet_filter;
    854
    855	/*
    856	 * Interface details:
    857	 *  - Open ap interface count.
    858	 *  - Open sta interface count.
    859	 *  - Association count.
    860	 *  - Beaconing enabled count.
    861	 */
    862	unsigned int intf_ap_count;
    863	unsigned int intf_sta_count;
    864	unsigned int intf_associated;
    865	unsigned int intf_beaconing;
    866
    867	/*
    868	 * Interface combinations
    869	 */
    870	struct ieee80211_iface_limit if_limits_ap;
    871	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
    872
    873	/*
    874	 * Link quality
    875	 */
    876	struct link link;
    877
    878	/*
    879	 * EEPROM data.
    880	 */
    881	__le16 *eeprom;
    882
    883	/*
    884	 * Active RF register values.
    885	 * These are stored here so we don't need
    886	 * to read the rf registers and can directly
    887	 * use this value instead.
    888	 * This field should be accessed by using
    889	 * rt2x00_rf_read() and rt2x00_rf_write().
    890	 */
    891	u32 *rf;
    892
    893	/*
    894	 * LNA gain
    895	 */
    896	short lna_gain;
    897
    898	/*
    899	 * Current TX power value.
    900	 */
    901	u16 tx_power;
    902
    903	/*
    904	 * Current retry values.
    905	 */
    906	u8 short_retry;
    907	u8 long_retry;
    908
    909	/*
    910	 * Rssi <-> Dbm offset
    911	 */
    912	u8 rssi_offset;
    913
    914	/*
    915	 * Frequency offset.
    916	 */
    917	u8 freq_offset;
    918
    919	/*
    920	 * Association id.
    921	 */
    922	u16 aid;
    923
    924	/*
    925	 * Beacon interval.
    926	 */
    927	u16 beacon_int;
    928
    929	/**
    930	 * Timestamp of last received beacon
    931	 */
    932	unsigned long last_beacon;
    933
    934	/*
    935	 * Low level statistics which will have
    936	 * to be kept up to date while device is running.
    937	 */
    938	struct ieee80211_low_level_stats low_level_stats;
    939
    940	/**
    941	 * Work queue for all work which should not be placed
    942	 * on the mac80211 workqueue (because of dependencies
    943	 * between various work structures).
    944	 */
    945	struct workqueue_struct *workqueue;
    946
    947	/*
    948	 * Scheduled work.
    949	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
    950	 * which means it cannot be placed on the hw->workqueue
    951	 * due to RTNL locking requirements.
    952	 */
    953	struct work_struct intf_work;
    954
    955	/**
    956	 * Scheduled work for TX/RX done handling (USB devices)
    957	 */
    958	struct work_struct rxdone_work;
    959	struct work_struct txdone_work;
    960
    961	/*
    962	 * Powersaving work
    963	 */
    964	struct delayed_work autowakeup_work;
    965	struct work_struct sleep_work;
    966
    967	/*
    968	 * Data queue arrays for RX, TX, Beacon and ATIM.
    969	 */
    970	unsigned int data_queues;
    971	struct data_queue *rx;
    972	struct data_queue *tx;
    973	struct data_queue *bcn;
    974	struct data_queue *atim;
    975
    976	/*
    977	 * Firmware image.
    978	 */
    979	const struct firmware *fw;
    980
    981	/*
    982	 * FIFO for storing tx status reports between isr and tasklet.
    983	 */
    984	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
    985
    986	/*
    987	 * Timer to ensure tx status reports are read (rt2800usb).
    988	 */
    989	struct hrtimer txstatus_timer;
    990
    991	/*
    992	 * Tasklet for processing tx status reports (rt2800pci).
    993	 */
    994	struct tasklet_struct txstatus_tasklet;
    995	struct tasklet_struct pretbtt_tasklet;
    996	struct tasklet_struct tbtt_tasklet;
    997	struct tasklet_struct rxdone_tasklet;
    998	struct tasklet_struct autowake_tasklet;
    999
   1000	/*
   1001	 * Used for VCO periodic calibration.
   1002	 */
   1003	int rf_channel;
   1004
   1005	/*
   1006	 * Protect the interrupt mask register.
   1007	 */
   1008	spinlock_t irqmask_lock;
   1009
   1010	/*
   1011	 * List of BlockAckReq TX entries that need driver BlockAck processing.
   1012	 */
   1013	struct list_head bar_list;
   1014	spinlock_t bar_list_lock;
   1015
   1016	/* Extra TX headroom required for alignment purposes. */
   1017	unsigned int extra_tx_headroom;
   1018
   1019	struct usb_anchor *anchor;
   1020	unsigned int num_proto_errs;
   1021
   1022	/* Clock for System On Chip devices. */
   1023	struct clk *clk;
   1024};
   1025
   1026struct rt2x00_bar_list_entry {
   1027	struct list_head list;
   1028	struct rcu_head head;
   1029
   1030	struct queue_entry *entry;
   1031	int block_acked;
   1032
   1033	/* Relevant parts of the IEEE80211 BAR header */
   1034	__u8 ra[6];
   1035	__u8 ta[6];
   1036	__le16 control;
   1037	__le16 start_seq_num;
   1038};
   1039
   1040/*
   1041 * Register defines.
   1042 * Some registers require multiple attempts before success,
   1043 * in those cases REGISTER_BUSY_COUNT attempts should be
   1044 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
   1045 * bus delays, we do not have to loop so many times to wait
   1046 * for valid register value on that bus.
   1047 */
   1048#define REGISTER_BUSY_COUNT	100
   1049#define REGISTER_USB_BUSY_COUNT 20
   1050#define REGISTER_BUSY_DELAY	100
   1051
   1052/*
   1053 * Generic RF access.
   1054 * The RF is being accessed by word index.
   1055 */
   1056static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
   1057				 const unsigned int word)
   1058{
   1059	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
   1060	return rt2x00dev->rf[word - 1];
   1061}
   1062
   1063static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
   1064				   const unsigned int word, u32 data)
   1065{
   1066	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
   1067	rt2x00dev->rf[word - 1] = data;
   1068}
   1069
   1070/*
   1071 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
   1072 */
   1073static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
   1074				       const unsigned int word)
   1075{
   1076	return (void *)&rt2x00dev->eeprom[word];
   1077}
   1078
   1079static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
   1080				     const unsigned int word)
   1081{
   1082	return le16_to_cpu(rt2x00dev->eeprom[word]);
   1083}
   1084
   1085static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
   1086				       const unsigned int word, u16 data)
   1087{
   1088	rt2x00dev->eeprom[word] = cpu_to_le16(data);
   1089}
   1090
   1091static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
   1092				    const unsigned int byte)
   1093{
   1094	return *(((u8 *)rt2x00dev->eeprom) + byte);
   1095}
   1096
   1097/*
   1098 * Chipset handlers
   1099 */
   1100static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
   1101				   const u16 rt, const u16 rf, const u16 rev)
   1102{
   1103	rt2x00dev->chip.rt = rt;
   1104	rt2x00dev->chip.rf = rf;
   1105	rt2x00dev->chip.rev = rev;
   1106
   1107	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
   1108		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
   1109		    rt2x00dev->chip.rev);
   1110}
   1111
   1112static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
   1113				 const u16 rt, const u16 rev)
   1114{
   1115	rt2x00dev->chip.rt = rt;
   1116	rt2x00dev->chip.rev = rev;
   1117
   1118	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
   1119		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
   1120}
   1121
   1122static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
   1123{
   1124	rt2x00dev->chip.rf = rf;
   1125
   1126	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
   1127		    rt2x00dev->chip.rf);
   1128}
   1129
   1130static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
   1131{
   1132	return (rt2x00dev->chip.rt == rt);
   1133}
   1134
   1135static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
   1136{
   1137	return (rt2x00dev->chip.rf == rf);
   1138}
   1139
   1140static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
   1141{
   1142	return rt2x00dev->chip.rev;
   1143}
   1144
   1145static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
   1146				 const u16 rt, const u16 rev)
   1147{
   1148	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
   1149}
   1150
   1151static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
   1152				    const u16 rt, const u16 rev)
   1153{
   1154	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
   1155}
   1156
   1157static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
   1158				     const u16 rt, const u16 rev)
   1159{
   1160	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
   1161}
   1162
   1163static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
   1164					enum rt2x00_chip_intf intf)
   1165{
   1166	rt2x00dev->chip.intf = intf;
   1167}
   1168
   1169static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
   1170			       enum rt2x00_chip_intf intf)
   1171{
   1172	return (rt2x00dev->chip.intf == intf);
   1173}
   1174
   1175static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
   1176{
   1177	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
   1178	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
   1179}
   1180
   1181static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
   1182{
   1183	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
   1184}
   1185
   1186static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
   1187{
   1188	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
   1189}
   1190
   1191static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
   1192{
   1193	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
   1194}
   1195
   1196/* Helpers for capability flags */
   1197
   1198static inline bool
   1199rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
   1200		    enum rt2x00_capability_flags cap_flag)
   1201{
   1202	return test_bit(cap_flag, &rt2x00dev->cap_flags);
   1203}
   1204
   1205static inline bool
   1206rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
   1207{
   1208	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
   1209}
   1210
   1211static inline bool
   1212rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
   1213{
   1214	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
   1215}
   1216
   1217static inline bool
   1218rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
   1219{
   1220	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
   1221}
   1222
   1223static inline bool
   1224rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
   1225{
   1226	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
   1227}
   1228
   1229static inline bool
   1230rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
   1231{
   1232	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
   1233}
   1234
   1235static inline bool
   1236rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
   1237{
   1238	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
   1239}
   1240
   1241static inline bool
   1242rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
   1243{
   1244	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
   1245}
   1246
   1247static inline bool
   1248rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
   1249{
   1250	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
   1251}
   1252
   1253static inline bool
   1254rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
   1255{
   1256	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
   1257}
   1258
   1259static inline bool
   1260rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
   1261{
   1262	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
   1263}
   1264
   1265static inline bool
   1266rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
   1267{
   1268	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
   1269}
   1270
   1271static inline bool
   1272rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
   1273{
   1274	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
   1275}
   1276
   1277static inline bool
   1278rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
   1279{
   1280	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
   1281}
   1282
   1283static inline bool
   1284rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
   1285{
   1286	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
   1287}
   1288
   1289/**
   1290 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
   1291 * @entry: Pointer to &struct queue_entry
   1292 *
   1293 * Returns -ENOMEM if mapping fail, 0 otherwise.
   1294 */
   1295int rt2x00queue_map_txskb(struct queue_entry *entry);
   1296
   1297/**
   1298 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
   1299 * @entry: Pointer to &struct queue_entry
   1300 */
   1301void rt2x00queue_unmap_skb(struct queue_entry *entry);
   1302
   1303/**
   1304 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
   1305 * @rt2x00dev: Pointer to &struct rt2x00_dev.
   1306 * @queue: rt2x00 queue index (see &enum data_queue_qid).
   1307 *
   1308 * Returns NULL for non tx queues.
   1309 */
   1310static inline struct data_queue *
   1311rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
   1312			 const enum data_queue_qid queue)
   1313{
   1314	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
   1315		return &rt2x00dev->tx[queue];
   1316
   1317	if (queue == QID_ATIM)
   1318		return rt2x00dev->atim;
   1319
   1320	return NULL;
   1321}
   1322
   1323/**
   1324 * rt2x00queue_get_entry - Get queue entry where the given index points to.
   1325 * @queue: Pointer to &struct data_queue from where we obtain the entry.
   1326 * @index: Index identifier for obtaining the correct index.
   1327 */
   1328struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
   1329					  enum queue_index index);
   1330
   1331/**
   1332 * rt2x00queue_pause_queue - Pause a data queue
   1333 * @queue: Pointer to &struct data_queue.
   1334 *
   1335 * This function will pause the data queue locally, preventing
   1336 * new frames to be added to the queue (while the hardware is
   1337 * still allowed to run).
   1338 */
   1339void rt2x00queue_pause_queue(struct data_queue *queue);
   1340
   1341/**
   1342 * rt2x00queue_unpause_queue - unpause a data queue
   1343 * @queue: Pointer to &struct data_queue.
   1344 *
   1345 * This function will unpause the data queue locally, allowing
   1346 * new frames to be added to the queue again.
   1347 */
   1348void rt2x00queue_unpause_queue(struct data_queue *queue);
   1349
   1350/**
   1351 * rt2x00queue_start_queue - Start a data queue
   1352 * @queue: Pointer to &struct data_queue.
   1353 *
   1354 * This function will start handling all pending frames in the queue.
   1355 */
   1356void rt2x00queue_start_queue(struct data_queue *queue);
   1357
   1358/**
   1359 * rt2x00queue_stop_queue - Halt a data queue
   1360 * @queue: Pointer to &struct data_queue.
   1361 *
   1362 * This function will stop all pending frames in the queue.
   1363 */
   1364void rt2x00queue_stop_queue(struct data_queue *queue);
   1365
   1366/**
   1367 * rt2x00queue_flush_queue - Flush a data queue
   1368 * @queue: Pointer to &struct data_queue.
   1369 * @drop: True to drop all pending frames.
   1370 *
   1371 * This function will flush the queue. After this call
   1372 * the queue is guaranteed to be empty.
   1373 */
   1374void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
   1375
   1376/**
   1377 * rt2x00queue_start_queues - Start all data queues
   1378 * @rt2x00dev: Pointer to &struct rt2x00_dev.
   1379 *
   1380 * This function will loop through all available queues to start them
   1381 */
   1382void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
   1383
   1384/**
   1385 * rt2x00queue_stop_queues - Halt all data queues
   1386 * @rt2x00dev: Pointer to &struct rt2x00_dev.
   1387 *
   1388 * This function will loop through all available queues to stop
   1389 * any pending frames.
   1390 */
   1391void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
   1392
   1393/**
   1394 * rt2x00queue_flush_queues - Flush all data queues
   1395 * @rt2x00dev: Pointer to &struct rt2x00_dev.
   1396 * @drop: True to drop all pending frames.
   1397 *
   1398 * This function will loop through all available queues to flush
   1399 * any pending frames.
   1400 */
   1401void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
   1402
   1403/*
   1404 * Debugfs handlers.
   1405 */
   1406/**
   1407 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
   1408 * @rt2x00dev: Pointer to &struct rt2x00_dev.
   1409 * @type: The type of frame that is being dumped.
   1410 * @entry: The queue entry containing the frame to be dumped.
   1411 */
   1412#ifdef CONFIG_RT2X00_LIB_DEBUGFS
   1413void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
   1414			    enum rt2x00_dump_type type, struct queue_entry *entry);
   1415#else
   1416static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
   1417					  enum rt2x00_dump_type type,
   1418					  struct queue_entry *entry)
   1419{
   1420}
   1421#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
   1422
   1423/*
   1424 * Utility functions.
   1425 */
   1426u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
   1427			 struct ieee80211_vif *vif);
   1428void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
   1429
   1430/*
   1431 * Interrupt context handlers.
   1432 */
   1433void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
   1434void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
   1435void rt2x00lib_dmastart(struct queue_entry *entry);
   1436void rt2x00lib_dmadone(struct queue_entry *entry);
   1437void rt2x00lib_txdone(struct queue_entry *entry,
   1438		      struct txdone_entry_desc *txdesc);
   1439void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
   1440			      struct txdone_entry_desc *txdesc);
   1441void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
   1442void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
   1443
   1444/*
   1445 * mac80211 handlers.
   1446 */
   1447void rt2x00mac_tx(struct ieee80211_hw *hw,
   1448		  struct ieee80211_tx_control *control,
   1449		  struct sk_buff *skb);
   1450int rt2x00mac_start(struct ieee80211_hw *hw);
   1451void rt2x00mac_stop(struct ieee80211_hw *hw);
   1452void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
   1453				 enum ieee80211_reconfig_type reconfig_type);
   1454int rt2x00mac_add_interface(struct ieee80211_hw *hw,
   1455			    struct ieee80211_vif *vif);
   1456void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
   1457				struct ieee80211_vif *vif);
   1458int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
   1459void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
   1460				unsigned int changed_flags,
   1461				unsigned int *total_flags,
   1462				u64 multicast);
   1463int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
   1464		      bool set);
   1465#ifdef CONFIG_RT2X00_LIB_CRYPTO
   1466int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
   1467		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
   1468		      struct ieee80211_key_conf *key);
   1469#else
   1470#define rt2x00mac_set_key	NULL
   1471#endif /* CONFIG_RT2X00_LIB_CRYPTO */
   1472void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
   1473			     struct ieee80211_vif *vif,
   1474			     const u8 *mac_addr);
   1475void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
   1476				struct ieee80211_vif *vif);
   1477int rt2x00mac_get_stats(struct ieee80211_hw *hw,
   1478			struct ieee80211_low_level_stats *stats);
   1479void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
   1480				struct ieee80211_vif *vif,
   1481				struct ieee80211_bss_conf *bss_conf,
   1482				u32 changes);
   1483int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
   1484		      struct ieee80211_vif *vif, u16 queue,
   1485		      const struct ieee80211_tx_queue_params *params);
   1486void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
   1487void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
   1488		     u32 queues, bool drop);
   1489int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
   1490int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
   1491void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
   1492			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
   1493bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
   1494
   1495/*
   1496 * Driver allocation handlers.
   1497 */
   1498int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
   1499void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
   1500
   1501int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
   1502int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
   1503
   1504#endif /* RT2X00_H */