cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rt2x00dev.c (40915B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
      4	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
      5	<http://rt2x00.serialmonkey.com>
      6
      7 */
      8
      9/*
     10	Module: rt2x00lib
     11	Abstract: rt2x00 generic device routines.
     12 */
     13
     14#include <linux/kernel.h>
     15#include <linux/module.h>
     16#include <linux/slab.h>
     17#include <linux/log2.h>
     18#include <linux/of.h>
     19#include <linux/of_net.h>
     20
     21#include "rt2x00.h"
     22#include "rt2x00lib.h"
     23
     24/*
     25 * Utility functions.
     26 */
     27u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
     28			 struct ieee80211_vif *vif)
     29{
     30	/*
     31	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
     32	 * contains the bss number, see BSS_ID_MASK comments for details.
     33	 */
     34	if (rt2x00dev->intf_sta_count)
     35		return 0;
     36	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
     37}
     38EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
     39
     40/*
     41 * Radio control handlers.
     42 */
     43int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
     44{
     45	int status;
     46
     47	/*
     48	 * Don't enable the radio twice.
     49	 * And check if the hardware button has been disabled.
     50	 */
     51	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
     52		return 0;
     53
     54	/*
     55	 * Initialize all data queues.
     56	 */
     57	rt2x00queue_init_queues(rt2x00dev);
     58
     59	/*
     60	 * Enable radio.
     61	 */
     62	status =
     63	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
     64	if (status)
     65		return status;
     66
     67	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
     68
     69	rt2x00leds_led_radio(rt2x00dev, true);
     70	rt2x00led_led_activity(rt2x00dev, true);
     71
     72	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
     73
     74	/*
     75	 * Enable queues.
     76	 */
     77	rt2x00queue_start_queues(rt2x00dev);
     78	rt2x00link_start_tuner(rt2x00dev);
     79
     80	/*
     81	 * Start watchdog monitoring.
     82	 */
     83	rt2x00link_start_watchdog(rt2x00dev);
     84
     85	return 0;
     86}
     87
     88void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
     89{
     90	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
     91		return;
     92
     93	/*
     94	 * Stop watchdog monitoring.
     95	 */
     96	rt2x00link_stop_watchdog(rt2x00dev);
     97
     98	/*
     99	 * Stop all queues
    100	 */
    101	rt2x00link_stop_tuner(rt2x00dev);
    102	rt2x00queue_stop_queues(rt2x00dev);
    103	rt2x00queue_flush_queues(rt2x00dev, true);
    104
    105	/*
    106	 * Disable radio.
    107	 */
    108	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
    109	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
    110	rt2x00led_led_activity(rt2x00dev, false);
    111	rt2x00leds_led_radio(rt2x00dev, false);
    112}
    113
    114static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
    115					  struct ieee80211_vif *vif)
    116{
    117	struct rt2x00_dev *rt2x00dev = data;
    118	struct rt2x00_intf *intf = vif_to_intf(vif);
    119
    120	/*
    121	 * It is possible the radio was disabled while the work had been
    122	 * scheduled. If that happens we should return here immediately,
    123	 * note that in the spinlock protected area above the delayed_flags
    124	 * have been cleared correctly.
    125	 */
    126	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    127		return;
    128
    129	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
    130		mutex_lock(&intf->beacon_skb_mutex);
    131		rt2x00queue_update_beacon(rt2x00dev, vif);
    132		mutex_unlock(&intf->beacon_skb_mutex);
    133	}
    134}
    135
    136static void rt2x00lib_intf_scheduled(struct work_struct *work)
    137{
    138	struct rt2x00_dev *rt2x00dev =
    139	    container_of(work, struct rt2x00_dev, intf_work);
    140
    141	/*
    142	 * Iterate over each interface and perform the
    143	 * requested configurations.
    144	 */
    145	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
    146					    IEEE80211_IFACE_ITER_RESUME_ALL,
    147					    rt2x00lib_intf_scheduled_iter,
    148					    rt2x00dev);
    149}
    150
    151static void rt2x00lib_autowakeup(struct work_struct *work)
    152{
    153	struct rt2x00_dev *rt2x00dev =
    154	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
    155
    156	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
    157		return;
    158
    159	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
    160		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
    161	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
    162}
    163
    164/*
    165 * Interrupt context handlers.
    166 */
    167static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
    168				     struct ieee80211_vif *vif)
    169{
    170	struct ieee80211_tx_control control = {};
    171	struct rt2x00_dev *rt2x00dev = data;
    172	struct sk_buff *skb;
    173
    174	/*
    175	 * Only AP mode interfaces do broad- and multicast buffering
    176	 */
    177	if (vif->type != NL80211_IFTYPE_AP)
    178		return;
    179
    180	/*
    181	 * Send out buffered broad- and multicast frames
    182	 */
    183	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
    184	while (skb) {
    185		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
    186		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
    187	}
    188}
    189
    190static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
    191					struct ieee80211_vif *vif)
    192{
    193	struct rt2x00_dev *rt2x00dev = data;
    194
    195	if (vif->type != NL80211_IFTYPE_AP &&
    196	    vif->type != NL80211_IFTYPE_ADHOC &&
    197	    vif->type != NL80211_IFTYPE_MESH_POINT)
    198		return;
    199
    200	/*
    201	 * Update the beacon without locking. This is safe on PCI devices
    202	 * as they only update the beacon periodically here. This should
    203	 * never be called for USB devices.
    204	 */
    205	WARN_ON(rt2x00_is_usb(rt2x00dev));
    206	rt2x00queue_update_beacon(rt2x00dev, vif);
    207}
    208
    209void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
    210{
    211	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    212		return;
    213
    214	/* send buffered bc/mc frames out for every bssid */
    215	ieee80211_iterate_active_interfaces_atomic(
    216		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
    217		rt2x00lib_bc_buffer_iter, rt2x00dev);
    218	/*
    219	 * Devices with pre tbtt interrupt don't need to update the beacon
    220	 * here as they will fetch the next beacon directly prior to
    221	 * transmission.
    222	 */
    223	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
    224		return;
    225
    226	/* fetch next beacon */
    227	ieee80211_iterate_active_interfaces_atomic(
    228		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
    229		rt2x00lib_beaconupdate_iter, rt2x00dev);
    230}
    231EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
    232
    233void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
    234{
    235	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    236		return;
    237
    238	/* fetch next beacon */
    239	ieee80211_iterate_active_interfaces_atomic(
    240		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
    241		rt2x00lib_beaconupdate_iter, rt2x00dev);
    242}
    243EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
    244
    245void rt2x00lib_dmastart(struct queue_entry *entry)
    246{
    247	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
    248	rt2x00queue_index_inc(entry, Q_INDEX);
    249}
    250EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
    251
    252void rt2x00lib_dmadone(struct queue_entry *entry)
    253{
    254	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
    255	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
    256	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
    257}
    258EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
    259
    260static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
    261{
    262	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    263	struct ieee80211_bar *bar = (void *) entry->skb->data;
    264	struct rt2x00_bar_list_entry *bar_entry;
    265	int ret;
    266
    267	if (likely(!ieee80211_is_back_req(bar->frame_control)))
    268		return 0;
    269
    270	/*
    271	 * Unlike all other frames, the status report for BARs does
    272	 * not directly come from the hardware as it is incapable of
    273	 * matching a BA to a previously send BAR. The hardware will
    274	 * report all BARs as if they weren't acked at all.
    275	 *
    276	 * Instead the RX-path will scan for incoming BAs and set the
    277	 * block_acked flag if it sees one that was likely caused by
    278	 * a BAR from us.
    279	 *
    280	 * Remove remaining BARs here and return their status for
    281	 * TX done processing.
    282	 */
    283	ret = 0;
    284	rcu_read_lock();
    285	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
    286		if (bar_entry->entry != entry)
    287			continue;
    288
    289		spin_lock_bh(&rt2x00dev->bar_list_lock);
    290		/* Return whether this BAR was blockacked or not */
    291		ret = bar_entry->block_acked;
    292		/* Remove the BAR from our checklist */
    293		list_del_rcu(&bar_entry->list);
    294		spin_unlock_bh(&rt2x00dev->bar_list_lock);
    295		kfree_rcu(bar_entry, head);
    296
    297		break;
    298	}
    299	rcu_read_unlock();
    300
    301	return ret;
    302}
    303
    304static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
    305				     struct ieee80211_tx_info *tx_info,
    306				     struct skb_frame_desc *skbdesc,
    307				     struct txdone_entry_desc *txdesc,
    308				     bool success)
    309{
    310	u8 rate_idx, rate_flags, retry_rates;
    311	int i;
    312
    313	rate_idx = skbdesc->tx_rate_idx;
    314	rate_flags = skbdesc->tx_rate_flags;
    315	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
    316	    (txdesc->retry + 1) : 1;
    317
    318	/*
    319	 * Initialize TX status
    320	 */
    321	memset(&tx_info->status, 0, sizeof(tx_info->status));
    322	tx_info->status.ack_signal = 0;
    323
    324	/*
    325	 * Frame was send with retries, hardware tried
    326	 * different rates to send out the frame, at each
    327	 * retry it lowered the rate 1 step except when the
    328	 * lowest rate was used.
    329	 */
    330	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
    331		tx_info->status.rates[i].idx = rate_idx - i;
    332		tx_info->status.rates[i].flags = rate_flags;
    333
    334		if (rate_idx - i == 0) {
    335			/*
    336			 * The lowest rate (index 0) was used until the
    337			 * number of max retries was reached.
    338			 */
    339			tx_info->status.rates[i].count = retry_rates - i;
    340			i++;
    341			break;
    342		}
    343		tx_info->status.rates[i].count = 1;
    344	}
    345	if (i < (IEEE80211_TX_MAX_RATES - 1))
    346		tx_info->status.rates[i].idx = -1; /* terminate */
    347
    348	if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
    349		tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
    350
    351	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
    352		if (success)
    353			tx_info->flags |= IEEE80211_TX_STAT_ACK;
    354		else
    355			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
    356	}
    357
    358	/*
    359	 * Every single frame has it's own tx status, hence report
    360	 * every frame as ampdu of size 1.
    361	 *
    362	 * TODO: if we can find out how many frames were aggregated
    363	 * by the hw we could provide the real ampdu_len to mac80211
    364	 * which would allow the rc algorithm to better decide on
    365	 * which rates are suitable.
    366	 */
    367	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
    368	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
    369		tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
    370				  IEEE80211_TX_CTL_AMPDU;
    371		tx_info->status.ampdu_len = 1;
    372		tx_info->status.ampdu_ack_len = success ? 1 : 0;
    373	}
    374
    375	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
    376		if (success)
    377			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
    378		else
    379			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
    380	}
    381}
    382
    383static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
    384				  struct queue_entry *entry)
    385{
    386	/*
    387	 * Make this entry available for reuse.
    388	 */
    389	entry->skb = NULL;
    390	entry->flags = 0;
    391
    392	rt2x00dev->ops->lib->clear_entry(entry);
    393
    394	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
    395
    396	/*
    397	 * If the data queue was below the threshold before the txdone
    398	 * handler we must make sure the packet queue in the mac80211 stack
    399	 * is reenabled when the txdone handler has finished. This has to be
    400	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
    401	 * before it was stopped.
    402	 */
    403	spin_lock_bh(&entry->queue->tx_lock);
    404	if (!rt2x00queue_threshold(entry->queue))
    405		rt2x00queue_unpause_queue(entry->queue);
    406	spin_unlock_bh(&entry->queue->tx_lock);
    407}
    408
    409void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
    410			      struct txdone_entry_desc *txdesc)
    411{
    412	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    413	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
    414	struct ieee80211_tx_info txinfo = {};
    415	bool success;
    416
    417	/*
    418	 * Unmap the skb.
    419	 */
    420	rt2x00queue_unmap_skb(entry);
    421
    422	/*
    423	 * Signal that the TX descriptor is no longer in the skb.
    424	 */
    425	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
    426
    427	/*
    428	 * Send frame to debugfs immediately, after this call is completed
    429	 * we are going to overwrite the skb->cb array.
    430	 */
    431	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
    432
    433	/*
    434	 * Determine if the frame has been successfully transmitted and
    435	 * remove BARs from our check list while checking for their
    436	 * TX status.
    437	 */
    438	success =
    439	    rt2x00lib_txdone_bar_status(entry) ||
    440	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
    441
    442	if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
    443		/*
    444		 * Update TX statistics.
    445		 */
    446		rt2x00dev->link.qual.tx_success += success;
    447		rt2x00dev->link.qual.tx_failed += !success;
    448
    449		rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
    450					 success);
    451		ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
    452	}
    453
    454	dev_kfree_skb_any(entry->skb);
    455	rt2x00lib_clear_entry(rt2x00dev, entry);
    456}
    457EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
    458
    459void rt2x00lib_txdone(struct queue_entry *entry,
    460		      struct txdone_entry_desc *txdesc)
    461{
    462	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    463	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
    464	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
    465	u8 skbdesc_flags = skbdesc->flags;
    466	unsigned int header_length;
    467	bool success;
    468
    469	/*
    470	 * Unmap the skb.
    471	 */
    472	rt2x00queue_unmap_skb(entry);
    473
    474	/*
    475	 * Remove the extra tx headroom from the skb.
    476	 */
    477	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
    478
    479	/*
    480	 * Signal that the TX descriptor is no longer in the skb.
    481	 */
    482	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
    483
    484	/*
    485	 * Determine the length of 802.11 header.
    486	 */
    487	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
    488
    489	/*
    490	 * Remove L2 padding which was added during
    491	 */
    492	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
    493		rt2x00queue_remove_l2pad(entry->skb, header_length);
    494
    495	/*
    496	 * If the IV/EIV data was stripped from the frame before it was
    497	 * passed to the hardware, we should now reinsert it again because
    498	 * mac80211 will expect the same data to be present it the
    499	 * frame as it was passed to us.
    500	 */
    501	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
    502		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
    503
    504	/*
    505	 * Send frame to debugfs immediately, after this call is completed
    506	 * we are going to overwrite the skb->cb array.
    507	 */
    508	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
    509
    510	/*
    511	 * Determine if the frame has been successfully transmitted and
    512	 * remove BARs from our check list while checking for their
    513	 * TX status.
    514	 */
    515	success =
    516	    rt2x00lib_txdone_bar_status(entry) ||
    517	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
    518	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
    519
    520	/*
    521	 * Update TX statistics.
    522	 */
    523	rt2x00dev->link.qual.tx_success += success;
    524	rt2x00dev->link.qual.tx_failed += !success;
    525
    526	rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
    527
    528	/*
    529	 * Only send the status report to mac80211 when it's a frame
    530	 * that originated in mac80211. If this was a extra frame coming
    531	 * through a mac80211 library call (RTS/CTS) then we should not
    532	 * send the status report back.
    533	 */
    534	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
    535		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
    536			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
    537		else
    538			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
    539	} else {
    540		dev_kfree_skb_any(entry->skb);
    541	}
    542
    543	rt2x00lib_clear_entry(rt2x00dev, entry);
    544}
    545EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
    546
    547void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
    548{
    549	struct txdone_entry_desc txdesc;
    550
    551	txdesc.flags = 0;
    552	__set_bit(status, &txdesc.flags);
    553	txdesc.retry = 0;
    554
    555	rt2x00lib_txdone(entry, &txdesc);
    556}
    557EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
    558
    559static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
    560{
    561	struct ieee80211_mgmt *mgmt = (void *)data;
    562	u8 *pos, *end;
    563
    564	pos = (u8 *)mgmt->u.beacon.variable;
    565	end = data + len;
    566	while (pos < end) {
    567		if (pos + 2 + pos[1] > end)
    568			return NULL;
    569
    570		if (pos[0] == ie)
    571			return pos;
    572
    573		pos += 2 + pos[1];
    574	}
    575
    576	return NULL;
    577}
    578
    579static void rt2x00lib_sleep(struct work_struct *work)
    580{
    581	struct rt2x00_dev *rt2x00dev =
    582	    container_of(work, struct rt2x00_dev, sleep_work);
    583
    584	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
    585		return;
    586
    587	/*
    588	 * Check again is powersaving is enabled, to prevent races from delayed
    589	 * work execution.
    590	 */
    591	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
    592		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
    593				 IEEE80211_CONF_CHANGE_PS);
    594}
    595
    596static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
    597				      struct sk_buff *skb,
    598				      struct rxdone_entry_desc *rxdesc)
    599{
    600	struct rt2x00_bar_list_entry *entry;
    601	struct ieee80211_bar *ba = (void *)skb->data;
    602
    603	if (likely(!ieee80211_is_back(ba->frame_control)))
    604		return;
    605
    606	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
    607		return;
    608
    609	rcu_read_lock();
    610	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
    611
    612		if (ba->start_seq_num != entry->start_seq_num)
    613			continue;
    614
    615#define TID_CHECK(a, b) (						\
    616	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
    617	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
    618
    619		if (!TID_CHECK(ba->control, entry->control))
    620			continue;
    621
    622#undef TID_CHECK
    623
    624		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
    625			continue;
    626
    627		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
    628			continue;
    629
    630		/* Mark BAR since we received the according BA */
    631		spin_lock_bh(&rt2x00dev->bar_list_lock);
    632		entry->block_acked = 1;
    633		spin_unlock_bh(&rt2x00dev->bar_list_lock);
    634		break;
    635	}
    636	rcu_read_unlock();
    637
    638}
    639
    640static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
    641				      struct sk_buff *skb,
    642				      struct rxdone_entry_desc *rxdesc)
    643{
    644	struct ieee80211_hdr *hdr = (void *) skb->data;
    645	struct ieee80211_tim_ie *tim_ie;
    646	u8 *tim;
    647	u8 tim_len;
    648	bool cam;
    649
    650	/* If this is not a beacon, or if mac80211 has no powersaving
    651	 * configured, or if the device is already in powersaving mode
    652	 * we can exit now. */
    653	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
    654		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
    655		return;
    656
    657	/* min. beacon length + FCS_LEN */
    658	if (skb->len <= 40 + FCS_LEN)
    659		return;
    660
    661	/* and only beacons from the associated BSSID, please */
    662	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
    663	    !rt2x00dev->aid)
    664		return;
    665
    666	rt2x00dev->last_beacon = jiffies;
    667
    668	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
    669	if (!tim)
    670		return;
    671
    672	if (tim[1] < sizeof(*tim_ie))
    673		return;
    674
    675	tim_len = tim[1];
    676	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
    677
    678	/* Check whenever the PHY can be turned off again. */
    679
    680	/* 1. What about buffered unicast traffic for our AID? */
    681	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
    682
    683	/* 2. Maybe the AP wants to send multicast/broadcast data? */
    684	cam |= (tim_ie->bitmap_ctrl & 0x01);
    685
    686	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
    687		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
    688}
    689
    690static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
    691					struct rxdone_entry_desc *rxdesc)
    692{
    693	struct ieee80211_supported_band *sband;
    694	const struct rt2x00_rate *rate;
    695	unsigned int i;
    696	int signal = rxdesc->signal;
    697	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
    698
    699	switch (rxdesc->rate_mode) {
    700	case RATE_MODE_CCK:
    701	case RATE_MODE_OFDM:
    702		/*
    703		 * For non-HT rates the MCS value needs to contain the
    704		 * actually used rate modulation (CCK or OFDM).
    705		 */
    706		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
    707			signal = RATE_MCS(rxdesc->rate_mode, signal);
    708
    709		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
    710		for (i = 0; i < sband->n_bitrates; i++) {
    711			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
    712			if (((type == RXDONE_SIGNAL_PLCP) &&
    713			     (rate->plcp == signal)) ||
    714			    ((type == RXDONE_SIGNAL_BITRATE) &&
    715			      (rate->bitrate == signal)) ||
    716			    ((type == RXDONE_SIGNAL_MCS) &&
    717			      (rate->mcs == signal))) {
    718				return i;
    719			}
    720		}
    721		break;
    722	case RATE_MODE_HT_MIX:
    723	case RATE_MODE_HT_GREENFIELD:
    724		if (signal >= 0 && signal <= 76)
    725			return signal;
    726		break;
    727	default:
    728		break;
    729	}
    730
    731	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
    732		    rxdesc->rate_mode, signal, type);
    733	return 0;
    734}
    735
    736void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
    737{
    738	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    739	struct rxdone_entry_desc rxdesc;
    740	struct sk_buff *skb;
    741	struct ieee80211_rx_status *rx_status;
    742	unsigned int header_length;
    743	int rate_idx;
    744
    745	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
    746	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    747		goto submit_entry;
    748
    749	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
    750		goto submit_entry;
    751
    752	/*
    753	 * Allocate a new sk_buffer. If no new buffer available, drop the
    754	 * received frame and reuse the existing buffer.
    755	 */
    756	skb = rt2x00queue_alloc_rxskb(entry, gfp);
    757	if (!skb)
    758		goto submit_entry;
    759
    760	/*
    761	 * Unmap the skb.
    762	 */
    763	rt2x00queue_unmap_skb(entry);
    764
    765	/*
    766	 * Extract the RXD details.
    767	 */
    768	memset(&rxdesc, 0, sizeof(rxdesc));
    769	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
    770
    771	/*
    772	 * Check for valid size in case we get corrupted descriptor from
    773	 * hardware.
    774	 */
    775	if (unlikely(rxdesc.size == 0 ||
    776		     rxdesc.size > entry->queue->data_size)) {
    777		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
    778			   rxdesc.size, entry->queue->data_size);
    779		dev_kfree_skb(entry->skb);
    780		goto renew_skb;
    781	}
    782
    783	/*
    784	 * The data behind the ieee80211 header must be
    785	 * aligned on a 4 byte boundary.
    786	 */
    787	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
    788
    789	/*
    790	 * Hardware might have stripped the IV/EIV/ICV data,
    791	 * in that case it is possible that the data was
    792	 * provided separately (through hardware descriptor)
    793	 * in which case we should reinsert the data into the frame.
    794	 */
    795	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
    796	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
    797		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
    798					  &rxdesc);
    799	else if (header_length &&
    800		 (rxdesc.size > header_length) &&
    801		 (rxdesc.dev_flags & RXDONE_L2PAD))
    802		rt2x00queue_remove_l2pad(entry->skb, header_length);
    803
    804	/* Trim buffer to correct size */
    805	skb_trim(entry->skb, rxdesc.size);
    806
    807	/*
    808	 * Translate the signal to the correct bitrate index.
    809	 */
    810	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
    811	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
    812	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
    813		rxdesc.encoding = RX_ENC_HT;
    814
    815	/*
    816	 * Check if this is a beacon, and more frames have been
    817	 * buffered while we were in powersaving mode.
    818	 */
    819	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
    820
    821	/*
    822	 * Check for incoming BlockAcks to match to the BlockAckReqs
    823	 * we've send out.
    824	 */
    825	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
    826
    827	/*
    828	 * Update extra components
    829	 */
    830	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
    831	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
    832	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
    833
    834	/*
    835	 * Initialize RX status information, and send frame
    836	 * to mac80211.
    837	 */
    838	rx_status = IEEE80211_SKB_RXCB(entry->skb);
    839
    840	/* Ensure that all fields of rx_status are initialized
    841	 * properly. The skb->cb array was used for driver
    842	 * specific informations, so rx_status might contain
    843	 * garbage.
    844	 */
    845	memset(rx_status, 0, sizeof(*rx_status));
    846
    847	rx_status->mactime = rxdesc.timestamp;
    848	rx_status->band = rt2x00dev->curr_band;
    849	rx_status->freq = rt2x00dev->curr_freq;
    850	rx_status->rate_idx = rate_idx;
    851	rx_status->signal = rxdesc.rssi;
    852	rx_status->flag = rxdesc.flags;
    853	rx_status->enc_flags = rxdesc.enc_flags;
    854	rx_status->encoding = rxdesc.encoding;
    855	rx_status->bw = rxdesc.bw;
    856	rx_status->antenna = rt2x00dev->link.ant.active.rx;
    857
    858	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
    859
    860renew_skb:
    861	/*
    862	 * Replace the skb with the freshly allocated one.
    863	 */
    864	entry->skb = skb;
    865
    866submit_entry:
    867	entry->flags = 0;
    868	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
    869	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
    870	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
    871		rt2x00dev->ops->lib->clear_entry(entry);
    872}
    873EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
    874
    875/*
    876 * Driver initialization handlers.
    877 */
    878const struct rt2x00_rate rt2x00_supported_rates[12] = {
    879	{
    880		.flags = DEV_RATE_CCK,
    881		.bitrate = 10,
    882		.ratemask = BIT(0),
    883		.plcp = 0x00,
    884		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
    885	},
    886	{
    887		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
    888		.bitrate = 20,
    889		.ratemask = BIT(1),
    890		.plcp = 0x01,
    891		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
    892	},
    893	{
    894		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
    895		.bitrate = 55,
    896		.ratemask = BIT(2),
    897		.plcp = 0x02,
    898		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
    899	},
    900	{
    901		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
    902		.bitrate = 110,
    903		.ratemask = BIT(3),
    904		.plcp = 0x03,
    905		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
    906	},
    907	{
    908		.flags = DEV_RATE_OFDM,
    909		.bitrate = 60,
    910		.ratemask = BIT(4),
    911		.plcp = 0x0b,
    912		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
    913	},
    914	{
    915		.flags = DEV_RATE_OFDM,
    916		.bitrate = 90,
    917		.ratemask = BIT(5),
    918		.plcp = 0x0f,
    919		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
    920	},
    921	{
    922		.flags = DEV_RATE_OFDM,
    923		.bitrate = 120,
    924		.ratemask = BIT(6),
    925		.plcp = 0x0a,
    926		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
    927	},
    928	{
    929		.flags = DEV_RATE_OFDM,
    930		.bitrate = 180,
    931		.ratemask = BIT(7),
    932		.plcp = 0x0e,
    933		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
    934	},
    935	{
    936		.flags = DEV_RATE_OFDM,
    937		.bitrate = 240,
    938		.ratemask = BIT(8),
    939		.plcp = 0x09,
    940		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
    941	},
    942	{
    943		.flags = DEV_RATE_OFDM,
    944		.bitrate = 360,
    945		.ratemask = BIT(9),
    946		.plcp = 0x0d,
    947		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
    948	},
    949	{
    950		.flags = DEV_RATE_OFDM,
    951		.bitrate = 480,
    952		.ratemask = BIT(10),
    953		.plcp = 0x08,
    954		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
    955	},
    956	{
    957		.flags = DEV_RATE_OFDM,
    958		.bitrate = 540,
    959		.ratemask = BIT(11),
    960		.plcp = 0x0c,
    961		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
    962	},
    963};
    964
    965static void rt2x00lib_channel(struct ieee80211_channel *entry,
    966			      const int channel, const int tx_power,
    967			      const int value)
    968{
    969	/* XXX: this assumption about the band is wrong for 802.11j */
    970	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
    971	entry->center_freq = ieee80211_channel_to_frequency(channel,
    972							    entry->band);
    973	entry->hw_value = value;
    974	entry->max_power = tx_power;
    975	entry->max_antenna_gain = 0xff;
    976}
    977
    978static void rt2x00lib_rate(struct ieee80211_rate *entry,
    979			   const u16 index, const struct rt2x00_rate *rate)
    980{
    981	entry->flags = 0;
    982	entry->bitrate = rate->bitrate;
    983	entry->hw_value = index;
    984	entry->hw_value_short = index;
    985
    986	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
    987		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
    988}
    989
    990void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
    991{
    992	of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
    993
    994	if (!is_valid_ether_addr(eeprom_mac_addr)) {
    995		eth_random_addr(eeprom_mac_addr);
    996		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
    997	}
    998}
    999EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
   1000
   1001static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
   1002				    struct hw_mode_spec *spec)
   1003{
   1004	struct ieee80211_hw *hw = rt2x00dev->hw;
   1005	struct ieee80211_channel *channels;
   1006	struct ieee80211_rate *rates;
   1007	unsigned int num_rates;
   1008	unsigned int i;
   1009
   1010	num_rates = 0;
   1011	if (spec->supported_rates & SUPPORT_RATE_CCK)
   1012		num_rates += 4;
   1013	if (spec->supported_rates & SUPPORT_RATE_OFDM)
   1014		num_rates += 8;
   1015
   1016	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
   1017	if (!channels)
   1018		return -ENOMEM;
   1019
   1020	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
   1021	if (!rates)
   1022		goto exit_free_channels;
   1023
   1024	/*
   1025	 * Initialize Rate list.
   1026	 */
   1027	for (i = 0; i < num_rates; i++)
   1028		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
   1029
   1030	/*
   1031	 * Initialize Channel list.
   1032	 */
   1033	for (i = 0; i < spec->num_channels; i++) {
   1034		rt2x00lib_channel(&channels[i],
   1035				  spec->channels[i].channel,
   1036				  spec->channels_info[i].max_power, i);
   1037	}
   1038
   1039	/*
   1040	 * Intitialize 802.11b, 802.11g
   1041	 * Rates: CCK, OFDM.
   1042	 * Channels: 2.4 GHz
   1043	 */
   1044	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
   1045		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
   1046		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
   1047		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
   1048		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
   1049		hw->wiphy->bands[NL80211_BAND_2GHZ] =
   1050		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
   1051		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
   1052		       &spec->ht, sizeof(spec->ht));
   1053	}
   1054
   1055	/*
   1056	 * Intitialize 802.11a
   1057	 * Rates: OFDM.
   1058	 * Channels: OFDM, UNII, HiperLAN2.
   1059	 */
   1060	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
   1061		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
   1062		    spec->num_channels - 14;
   1063		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
   1064		    num_rates - 4;
   1065		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
   1066		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
   1067		hw->wiphy->bands[NL80211_BAND_5GHZ] =
   1068		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
   1069		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
   1070		       &spec->ht, sizeof(spec->ht));
   1071	}
   1072
   1073	return 0;
   1074
   1075 exit_free_channels:
   1076	kfree(channels);
   1077	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
   1078	return -ENOMEM;
   1079}
   1080
   1081static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
   1082{
   1083	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
   1084		ieee80211_unregister_hw(rt2x00dev->hw);
   1085
   1086	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
   1087		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
   1088		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
   1089		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
   1090		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
   1091	}
   1092
   1093	kfree(rt2x00dev->spec.channels_info);
   1094}
   1095
   1096static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
   1097{
   1098	struct hw_mode_spec *spec = &rt2x00dev->spec;
   1099	int status;
   1100
   1101	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
   1102		return 0;
   1103
   1104	/*
   1105	 * Initialize HW modes.
   1106	 */
   1107	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
   1108	if (status)
   1109		return status;
   1110
   1111	/*
   1112	 * Initialize HW fields.
   1113	 */
   1114	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
   1115
   1116	/*
   1117	 * Initialize extra TX headroom required.
   1118	 */
   1119	rt2x00dev->hw->extra_tx_headroom =
   1120		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
   1121		      rt2x00dev->extra_tx_headroom);
   1122
   1123	/*
   1124	 * Take TX headroom required for alignment into account.
   1125	 */
   1126	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
   1127		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
   1128	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
   1129		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
   1130
   1131	/*
   1132	 * Tell mac80211 about the size of our private STA structure.
   1133	 */
   1134	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
   1135
   1136	/*
   1137	 * Allocate tx status FIFO for driver use.
   1138	 */
   1139	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
   1140		/*
   1141		 * Allocate the txstatus fifo. In the worst case the tx
   1142		 * status fifo has to hold the tx status of all entries
   1143		 * in all tx queues. Hence, calculate the kfifo size as
   1144		 * tx_queues * entry_num and round up to the nearest
   1145		 * power of 2.
   1146		 */
   1147		int kfifo_size =
   1148			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
   1149					   rt2x00dev->tx->limit *
   1150					   sizeof(u32));
   1151
   1152		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
   1153				     GFP_KERNEL);
   1154		if (status)
   1155			return status;
   1156	}
   1157
   1158	/*
   1159	 * Initialize tasklets if used by the driver. Tasklets are
   1160	 * disabled until the interrupts are turned on. The driver
   1161	 * has to handle that.
   1162	 */
   1163#define RT2X00_TASKLET_INIT(taskletname) \
   1164	if (rt2x00dev->ops->lib->taskletname) { \
   1165		tasklet_setup(&rt2x00dev->taskletname, \
   1166			     rt2x00dev->ops->lib->taskletname); \
   1167	}
   1168
   1169	RT2X00_TASKLET_INIT(txstatus_tasklet);
   1170	RT2X00_TASKLET_INIT(pretbtt_tasklet);
   1171	RT2X00_TASKLET_INIT(tbtt_tasklet);
   1172	RT2X00_TASKLET_INIT(rxdone_tasklet);
   1173	RT2X00_TASKLET_INIT(autowake_tasklet);
   1174
   1175#undef RT2X00_TASKLET_INIT
   1176
   1177	/*
   1178	 * Register HW.
   1179	 */
   1180	status = ieee80211_register_hw(rt2x00dev->hw);
   1181	if (status)
   1182		return status;
   1183
   1184	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
   1185
   1186	return 0;
   1187}
   1188
   1189/*
   1190 * Initialization/uninitialization handlers.
   1191 */
   1192static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
   1193{
   1194	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
   1195		return;
   1196
   1197	/*
   1198	 * Stop rfkill polling.
   1199	 */
   1200	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
   1201		rt2x00rfkill_unregister(rt2x00dev);
   1202
   1203	/*
   1204	 * Allow the HW to uninitialize.
   1205	 */
   1206	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
   1207
   1208	/*
   1209	 * Free allocated queue entries.
   1210	 */
   1211	rt2x00queue_uninitialize(rt2x00dev);
   1212}
   1213
   1214static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
   1215{
   1216	int status;
   1217
   1218	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
   1219		return 0;
   1220
   1221	/*
   1222	 * Allocate all queue entries.
   1223	 */
   1224	status = rt2x00queue_initialize(rt2x00dev);
   1225	if (status)
   1226		return status;
   1227
   1228	/*
   1229	 * Initialize the device.
   1230	 */
   1231	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
   1232	if (status) {
   1233		rt2x00queue_uninitialize(rt2x00dev);
   1234		return status;
   1235	}
   1236
   1237	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
   1238
   1239	/*
   1240	 * Start rfkill polling.
   1241	 */
   1242	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
   1243		rt2x00rfkill_register(rt2x00dev);
   1244
   1245	return 0;
   1246}
   1247
   1248int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
   1249{
   1250	int retval = 0;
   1251
   1252	/*
   1253	 * If this is the first interface which is added,
   1254	 * we should load the firmware now.
   1255	 */
   1256	retval = rt2x00lib_load_firmware(rt2x00dev);
   1257	if (retval)
   1258		goto out;
   1259
   1260	/*
   1261	 * Initialize the device.
   1262	 */
   1263	retval = rt2x00lib_initialize(rt2x00dev);
   1264	if (retval)
   1265		goto out;
   1266
   1267	rt2x00dev->intf_ap_count = 0;
   1268	rt2x00dev->intf_sta_count = 0;
   1269	rt2x00dev->intf_associated = 0;
   1270
   1271	/* Enable the radio */
   1272	retval = rt2x00lib_enable_radio(rt2x00dev);
   1273	if (retval)
   1274		goto out;
   1275
   1276	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
   1277
   1278out:
   1279	return retval;
   1280}
   1281
   1282void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
   1283{
   1284	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
   1285		return;
   1286
   1287	/*
   1288	 * Perhaps we can add something smarter here,
   1289	 * but for now just disabling the radio should do.
   1290	 */
   1291	rt2x00lib_disable_radio(rt2x00dev);
   1292
   1293	rt2x00dev->intf_ap_count = 0;
   1294	rt2x00dev->intf_sta_count = 0;
   1295	rt2x00dev->intf_associated = 0;
   1296}
   1297
   1298static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
   1299{
   1300	struct ieee80211_iface_limit *if_limit;
   1301	struct ieee80211_iface_combination *if_combination;
   1302
   1303	if (rt2x00dev->ops->max_ap_intf < 2)
   1304		return;
   1305
   1306	/*
   1307	 * Build up AP interface limits structure.
   1308	 */
   1309	if_limit = &rt2x00dev->if_limits_ap;
   1310	if_limit->max = rt2x00dev->ops->max_ap_intf;
   1311	if_limit->types = BIT(NL80211_IFTYPE_AP);
   1312#ifdef CONFIG_MAC80211_MESH
   1313	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
   1314#endif
   1315
   1316	/*
   1317	 * Build up AP interface combinations structure.
   1318	 */
   1319	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
   1320	if_combination->limits = if_limit;
   1321	if_combination->n_limits = 1;
   1322	if_combination->max_interfaces = if_limit->max;
   1323	if_combination->num_different_channels = 1;
   1324
   1325	/*
   1326	 * Finally, specify the possible combinations to mac80211.
   1327	 */
   1328	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
   1329	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
   1330}
   1331
   1332static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
   1333{
   1334	if (WARN_ON(!rt2x00dev->tx))
   1335		return 0;
   1336
   1337	if (rt2x00_is_usb(rt2x00dev))
   1338		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
   1339
   1340	return rt2x00dev->tx[0].winfo_size;
   1341}
   1342
   1343/*
   1344 * driver allocation handlers.
   1345 */
   1346int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
   1347{
   1348	int retval = -ENOMEM;
   1349
   1350	/*
   1351	 * Set possible interface combinations.
   1352	 */
   1353	rt2x00lib_set_if_combinations(rt2x00dev);
   1354
   1355	/*
   1356	 * Allocate the driver data memory, if necessary.
   1357	 */
   1358	if (rt2x00dev->ops->drv_data_size > 0) {
   1359		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
   1360			                      GFP_KERNEL);
   1361		if (!rt2x00dev->drv_data) {
   1362			retval = -ENOMEM;
   1363			goto exit;
   1364		}
   1365	}
   1366
   1367	spin_lock_init(&rt2x00dev->irqmask_lock);
   1368	mutex_init(&rt2x00dev->csr_mutex);
   1369	mutex_init(&rt2x00dev->conf_mutex);
   1370	INIT_LIST_HEAD(&rt2x00dev->bar_list);
   1371	spin_lock_init(&rt2x00dev->bar_list_lock);
   1372	hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
   1373		     HRTIMER_MODE_REL);
   1374
   1375	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
   1376
   1377	/*
   1378	 * Make room for rt2x00_intf inside the per-interface
   1379	 * structure ieee80211_vif.
   1380	 */
   1381	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
   1382
   1383	/*
   1384	 * rt2x00 devices can only use the last n bits of the MAC address
   1385	 * for virtual interfaces.
   1386	 */
   1387	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
   1388		(rt2x00dev->ops->max_ap_intf - 1);
   1389
   1390	/*
   1391	 * Initialize work.
   1392	 */
   1393	rt2x00dev->workqueue =
   1394	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
   1395	if (!rt2x00dev->workqueue) {
   1396		retval = -ENOMEM;
   1397		goto exit;
   1398	}
   1399
   1400	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
   1401	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
   1402	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
   1403
   1404	/*
   1405	 * Let the driver probe the device to detect the capabilities.
   1406	 */
   1407	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
   1408	if (retval) {
   1409		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
   1410		goto exit;
   1411	}
   1412
   1413	/*
   1414	 * Allocate queue array.
   1415	 */
   1416	retval = rt2x00queue_allocate(rt2x00dev);
   1417	if (retval)
   1418		goto exit;
   1419
   1420	/* Cache TX headroom value */
   1421	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
   1422
   1423	/*
   1424	 * Determine which operating modes are supported, all modes
   1425	 * which require beaconing, depend on the availability of
   1426	 * beacon entries.
   1427	 */
   1428	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
   1429	if (rt2x00dev->bcn->limit > 0)
   1430		rt2x00dev->hw->wiphy->interface_modes |=
   1431		    BIT(NL80211_IFTYPE_ADHOC) |
   1432#ifdef CONFIG_MAC80211_MESH
   1433		    BIT(NL80211_IFTYPE_MESH_POINT) |
   1434#endif
   1435		    BIT(NL80211_IFTYPE_AP);
   1436
   1437	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
   1438
   1439	wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
   1440			      NL80211_EXT_FEATURE_CQM_RSSI_LIST);
   1441
   1442	/*
   1443	 * Initialize ieee80211 structure.
   1444	 */
   1445	retval = rt2x00lib_probe_hw(rt2x00dev);
   1446	if (retval) {
   1447		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
   1448		goto exit;
   1449	}
   1450
   1451	/*
   1452	 * Register extra components.
   1453	 */
   1454	rt2x00link_register(rt2x00dev);
   1455	rt2x00leds_register(rt2x00dev);
   1456	rt2x00debug_register(rt2x00dev);
   1457
   1458	/*
   1459	 * Start rfkill polling.
   1460	 */
   1461	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
   1462		rt2x00rfkill_register(rt2x00dev);
   1463
   1464	return 0;
   1465
   1466exit:
   1467	rt2x00lib_remove_dev(rt2x00dev);
   1468
   1469	return retval;
   1470}
   1471EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
   1472
   1473void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
   1474{
   1475	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
   1476
   1477	/*
   1478	 * Stop rfkill polling.
   1479	 */
   1480	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
   1481		rt2x00rfkill_unregister(rt2x00dev);
   1482
   1483	/*
   1484	 * Disable radio.
   1485	 */
   1486	rt2x00lib_disable_radio(rt2x00dev);
   1487
   1488	/*
   1489	 * Stop all work.
   1490	 */
   1491	cancel_work_sync(&rt2x00dev->intf_work);
   1492	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
   1493	cancel_work_sync(&rt2x00dev->sleep_work);
   1494
   1495	hrtimer_cancel(&rt2x00dev->txstatus_timer);
   1496
   1497	/*
   1498	 * Kill the tx status tasklet.
   1499	 */
   1500	tasklet_kill(&rt2x00dev->txstatus_tasklet);
   1501	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
   1502	tasklet_kill(&rt2x00dev->tbtt_tasklet);
   1503	tasklet_kill(&rt2x00dev->rxdone_tasklet);
   1504	tasklet_kill(&rt2x00dev->autowake_tasklet);
   1505
   1506	/*
   1507	 * Uninitialize device.
   1508	 */
   1509	rt2x00lib_uninitialize(rt2x00dev);
   1510
   1511	if (rt2x00dev->workqueue)
   1512		destroy_workqueue(rt2x00dev->workqueue);
   1513
   1514	/*
   1515	 * Free the tx status fifo.
   1516	 */
   1517	kfifo_free(&rt2x00dev->txstatus_fifo);
   1518
   1519	/*
   1520	 * Free extra components
   1521	 */
   1522	rt2x00debug_deregister(rt2x00dev);
   1523	rt2x00leds_unregister(rt2x00dev);
   1524
   1525	/*
   1526	 * Free ieee80211_hw memory.
   1527	 */
   1528	rt2x00lib_remove_hw(rt2x00dev);
   1529
   1530	/*
   1531	 * Free firmware image.
   1532	 */
   1533	rt2x00lib_free_firmware(rt2x00dev);
   1534
   1535	/*
   1536	 * Free queue structures.
   1537	 */
   1538	rt2x00queue_free(rt2x00dev);
   1539
   1540	/*
   1541	 * Free the driver data.
   1542	 */
   1543	kfree(rt2x00dev->drv_data);
   1544}
   1545EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
   1546
   1547/*
   1548 * Device state handlers
   1549 */
   1550int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
   1551{
   1552	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
   1553
   1554	/*
   1555	 * Prevent mac80211 from accessing driver while suspended.
   1556	 */
   1557	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
   1558		return 0;
   1559
   1560	/*
   1561	 * Cleanup as much as possible.
   1562	 */
   1563	rt2x00lib_uninitialize(rt2x00dev);
   1564
   1565	/*
   1566	 * Suspend/disable extra components.
   1567	 */
   1568	rt2x00leds_suspend(rt2x00dev);
   1569	rt2x00debug_deregister(rt2x00dev);
   1570
   1571	/*
   1572	 * Set device mode to sleep for power management,
   1573	 * on some hardware this call seems to consistently fail.
   1574	 * From the specifications it is hard to tell why it fails,
   1575	 * and if this is a "bad thing".
   1576	 * Overall it is safe to just ignore the failure and
   1577	 * continue suspending. The only downside is that the
   1578	 * device will not be in optimal power save mode, but with
   1579	 * the radio and the other components already disabled the
   1580	 * device is as good as disabled.
   1581	 */
   1582	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
   1583		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
   1584
   1585	return 0;
   1586}
   1587EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
   1588
   1589int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
   1590{
   1591	rt2x00_dbg(rt2x00dev, "Waking up\n");
   1592
   1593	/*
   1594	 * Restore/enable extra components.
   1595	 */
   1596	rt2x00debug_register(rt2x00dev);
   1597	rt2x00leds_resume(rt2x00dev);
   1598
   1599	/*
   1600	 * We are ready again to receive requests from mac80211.
   1601	 */
   1602	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
   1603
   1604	return 0;
   1605}
   1606EXPORT_SYMBOL_GPL(rt2x00lib_resume);
   1607
   1608/*
   1609 * rt2x00lib module information.
   1610 */
   1611MODULE_AUTHOR(DRV_PROJECT);
   1612MODULE_VERSION(DRV_VERSION);
   1613MODULE_DESCRIPTION("rt2x00 library");
   1614MODULE_LICENSE("GPL");