cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rt2x00queue.c (33875B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
      4	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
      5	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
      6	<http://rt2x00.serialmonkey.com>
      7
      8 */
      9
     10/*
     11	Module: rt2x00lib
     12	Abstract: rt2x00 queue specific routines.
     13 */
     14
     15#include <linux/slab.h>
     16#include <linux/kernel.h>
     17#include <linux/module.h>
     18#include <linux/dma-mapping.h>
     19
     20#include "rt2x00.h"
     21#include "rt2x00lib.h"
     22
     23struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
     24{
     25	struct data_queue *queue = entry->queue;
     26	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
     27	struct sk_buff *skb;
     28	struct skb_frame_desc *skbdesc;
     29	unsigned int frame_size;
     30	unsigned int head_size = 0;
     31	unsigned int tail_size = 0;
     32
     33	/*
     34	 * The frame size includes descriptor size, because the
     35	 * hardware directly receive the frame into the skbuffer.
     36	 */
     37	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
     38
     39	/*
     40	 * The payload should be aligned to a 4-byte boundary,
     41	 * this means we need at least 3 bytes for moving the frame
     42	 * into the correct offset.
     43	 */
     44	head_size = 4;
     45
     46	/*
     47	 * For IV/EIV/ICV assembly we must make sure there is
     48	 * at least 8 bytes bytes available in headroom for IV/EIV
     49	 * and 8 bytes for ICV data as tailroon.
     50	 */
     51	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
     52		head_size += 8;
     53		tail_size += 8;
     54	}
     55
     56	/*
     57	 * Allocate skbuffer.
     58	 */
     59	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
     60	if (!skb)
     61		return NULL;
     62
     63	/*
     64	 * Make sure we not have a frame with the requested bytes
     65	 * available in the head and tail.
     66	 */
     67	skb_reserve(skb, head_size);
     68	skb_put(skb, frame_size);
     69
     70	/*
     71	 * Populate skbdesc.
     72	 */
     73	skbdesc = get_skb_frame_desc(skb);
     74	memset(skbdesc, 0, sizeof(*skbdesc));
     75
     76	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
     77		dma_addr_t skb_dma;
     78
     79		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
     80					 DMA_FROM_DEVICE);
     81		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
     82			dev_kfree_skb_any(skb);
     83			return NULL;
     84		}
     85
     86		skbdesc->skb_dma = skb_dma;
     87		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
     88	}
     89
     90	return skb;
     91}
     92
     93int rt2x00queue_map_txskb(struct queue_entry *entry)
     94{
     95	struct device *dev = entry->queue->rt2x00dev->dev;
     96	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
     97
     98	skbdesc->skb_dma =
     99	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
    100
    101	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
    102		return -ENOMEM;
    103
    104	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
    105	rt2x00lib_dmadone(entry);
    106	return 0;
    107}
    108EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
    109
    110void rt2x00queue_unmap_skb(struct queue_entry *entry)
    111{
    112	struct device *dev = entry->queue->rt2x00dev->dev;
    113	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
    114
    115	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
    116		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
    117				 DMA_FROM_DEVICE);
    118		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
    119	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
    120		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
    121				 DMA_TO_DEVICE);
    122		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
    123	}
    124}
    125EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
    126
    127void rt2x00queue_free_skb(struct queue_entry *entry)
    128{
    129	if (!entry->skb)
    130		return;
    131
    132	rt2x00queue_unmap_skb(entry);
    133	dev_kfree_skb_any(entry->skb);
    134	entry->skb = NULL;
    135}
    136
    137void rt2x00queue_align_frame(struct sk_buff *skb)
    138{
    139	unsigned int frame_length = skb->len;
    140	unsigned int align = ALIGN_SIZE(skb, 0);
    141
    142	if (!align)
    143		return;
    144
    145	skb_push(skb, align);
    146	memmove(skb->data, skb->data + align, frame_length);
    147	skb_trim(skb, frame_length);
    148}
    149
    150/*
    151 * H/W needs L2 padding between the header and the paylod if header size
    152 * is not 4 bytes aligned.
    153 */
    154void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
    155{
    156	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
    157
    158	if (!l2pad)
    159		return;
    160
    161	skb_push(skb, l2pad);
    162	memmove(skb->data, skb->data + l2pad, hdr_len);
    163}
    164
    165void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
    166{
    167	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
    168
    169	if (!l2pad)
    170		return;
    171
    172	memmove(skb->data + l2pad, skb->data, hdr_len);
    173	skb_pull(skb, l2pad);
    174}
    175
    176static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
    177						 struct sk_buff *skb,
    178						 struct txentry_desc *txdesc)
    179{
    180	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
    181	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
    182	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
    183	u16 seqno;
    184
    185	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
    186		return;
    187
    188	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
    189
    190	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
    191		/*
    192		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
    193		 * seqno on retransmitted data (non-QOS) and management frames.
    194		 * To workaround the problem let's generate seqno in software.
    195		 * Except for beacons which are transmitted periodically by H/W
    196		 * hence hardware has to assign seqno for them.
    197		 */
    198	    	if (ieee80211_is_beacon(hdr->frame_control)) {
    199			__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
    200			/* H/W will generate sequence number */
    201			return;
    202		}
    203
    204		__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
    205	}
    206
    207	/*
    208	 * The hardware is not able to insert a sequence number. Assign a
    209	 * software generated one here.
    210	 *
    211	 * This is wrong because beacons are not getting sequence
    212	 * numbers assigned properly.
    213	 *
    214	 * A secondary problem exists for drivers that cannot toggle
    215	 * sequence counting per-frame, since those will override the
    216	 * sequence counter given by mac80211.
    217	 */
    218	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
    219		seqno = atomic_add_return(0x10, &intf->seqno);
    220	else
    221		seqno = atomic_read(&intf->seqno);
    222
    223	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
    224	hdr->seq_ctrl |= cpu_to_le16(seqno);
    225}
    226
    227static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
    228						  struct sk_buff *skb,
    229						  struct txentry_desc *txdesc,
    230						  const struct rt2x00_rate *hwrate)
    231{
    232	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
    233	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
    234	unsigned int data_length;
    235	unsigned int duration;
    236	unsigned int residual;
    237
    238	/*
    239	 * Determine with what IFS priority this frame should be send.
    240	 * Set ifs to IFS_SIFS when the this is not the first fragment,
    241	 * or this fragment came after RTS/CTS.
    242	 */
    243	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
    244		txdesc->u.plcp.ifs = IFS_BACKOFF;
    245	else
    246		txdesc->u.plcp.ifs = IFS_SIFS;
    247
    248	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
    249	data_length = skb->len + 4;
    250	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
    251
    252	/*
    253	 * PLCP setup
    254	 * Length calculation depends on OFDM/CCK rate.
    255	 */
    256	txdesc->u.plcp.signal = hwrate->plcp;
    257	txdesc->u.plcp.service = 0x04;
    258
    259	if (hwrate->flags & DEV_RATE_OFDM) {
    260		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
    261		txdesc->u.plcp.length_low = data_length & 0x3f;
    262	} else {
    263		/*
    264		 * Convert length to microseconds.
    265		 */
    266		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
    267		duration = GET_DURATION(data_length, hwrate->bitrate);
    268
    269		if (residual != 0) {
    270			duration++;
    271
    272			/*
    273			 * Check if we need to set the Length Extension
    274			 */
    275			if (hwrate->bitrate == 110 && residual <= 30)
    276				txdesc->u.plcp.service |= 0x80;
    277		}
    278
    279		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
    280		txdesc->u.plcp.length_low = duration & 0xff;
    281
    282		/*
    283		 * When preamble is enabled we should set the
    284		 * preamble bit for the signal.
    285		 */
    286		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
    287			txdesc->u.plcp.signal |= 0x08;
    288	}
    289}
    290
    291static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
    292						struct sk_buff *skb,
    293						struct txentry_desc *txdesc,
    294						struct ieee80211_sta *sta,
    295						const struct rt2x00_rate *hwrate)
    296{
    297	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
    298	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
    299	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
    300	struct rt2x00_sta *sta_priv = NULL;
    301	u8 density = 0;
    302
    303	if (sta) {
    304		sta_priv = sta_to_rt2x00_sta(sta);
    305		txdesc->u.ht.wcid = sta_priv->wcid;
    306		density = sta->deflink.ht_cap.ampdu_density;
    307	}
    308
    309	/*
    310	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
    311	 * mcs rate to be used
    312	 */
    313	if (txrate->flags & IEEE80211_TX_RC_MCS) {
    314		txdesc->u.ht.mcs = txrate->idx;
    315
    316		/*
    317		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
    318		 * when using more then one tx stream (>MCS7).
    319		 */
    320		if (sta && txdesc->u.ht.mcs > 7 &&
    321		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
    322			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
    323	} else {
    324		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
    325		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
    326			txdesc->u.ht.mcs |= 0x08;
    327	}
    328
    329	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
    330		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
    331			txdesc->u.ht.txop = TXOP_SIFS;
    332		else
    333			txdesc->u.ht.txop = TXOP_BACKOFF;
    334
    335		/* Left zero on all other settings. */
    336		return;
    337	}
    338
    339	/*
    340	 * Only one STBC stream is supported for now.
    341	 */
    342	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
    343		txdesc->u.ht.stbc = 1;
    344
    345	/*
    346	 * This frame is eligible for an AMPDU, however, don't aggregate
    347	 * frames that are intended to probe a specific tx rate.
    348	 */
    349	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
    350	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
    351		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
    352		txdesc->u.ht.mpdu_density = density;
    353		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
    354	}
    355
    356	/*
    357	 * Set 40Mhz mode if necessary (for legacy rates this will
    358	 * duplicate the frame to both channels).
    359	 */
    360	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
    361	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
    362		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
    363	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
    364		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
    365
    366	/*
    367	 * Determine IFS values
    368	 * - Use TXOP_BACKOFF for management frames except beacons
    369	 * - Use TXOP_SIFS for fragment bursts
    370	 * - Use TXOP_HTTXOP for everything else
    371	 *
    372	 * Note: rt2800 devices won't use CTS protection (if used)
    373	 * for frames not transmitted with TXOP_HTTXOP
    374	 */
    375	if (ieee80211_is_mgmt(hdr->frame_control) &&
    376	    !ieee80211_is_beacon(hdr->frame_control))
    377		txdesc->u.ht.txop = TXOP_BACKOFF;
    378	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
    379		txdesc->u.ht.txop = TXOP_SIFS;
    380	else
    381		txdesc->u.ht.txop = TXOP_HTTXOP;
    382}
    383
    384static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
    385					     struct sk_buff *skb,
    386					     struct txentry_desc *txdesc,
    387					     struct ieee80211_sta *sta)
    388{
    389	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
    390	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
    391	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
    392	struct ieee80211_rate *rate;
    393	const struct rt2x00_rate *hwrate = NULL;
    394
    395	memset(txdesc, 0, sizeof(*txdesc));
    396
    397	/*
    398	 * Header and frame information.
    399	 */
    400	txdesc->length = skb->len;
    401	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
    402
    403	/*
    404	 * Check whether this frame is to be acked.
    405	 */
    406	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
    407		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
    408
    409	/*
    410	 * Check if this is a RTS/CTS frame
    411	 */
    412	if (ieee80211_is_rts(hdr->frame_control) ||
    413	    ieee80211_is_cts(hdr->frame_control)) {
    414		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
    415		if (ieee80211_is_rts(hdr->frame_control))
    416			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
    417		else
    418			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
    419		if (tx_info->control.rts_cts_rate_idx >= 0)
    420			rate =
    421			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
    422	}
    423
    424	/*
    425	 * Determine retry information.
    426	 */
    427	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
    428	if (txdesc->retry_limit >= rt2x00dev->long_retry)
    429		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
    430
    431	/*
    432	 * Check if more fragments are pending
    433	 */
    434	if (ieee80211_has_morefrags(hdr->frame_control)) {
    435		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
    436		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
    437	}
    438
    439	/*
    440	 * Check if more frames (!= fragments) are pending
    441	 */
    442	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
    443		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
    444
    445	/*
    446	 * Beacons and probe responses require the tsf timestamp
    447	 * to be inserted into the frame.
    448	 */
    449	if ((ieee80211_is_beacon(hdr->frame_control) ||
    450	     ieee80211_is_probe_resp(hdr->frame_control)) &&
    451	    !(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
    452		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
    453
    454	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
    455	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
    456		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
    457
    458	/*
    459	 * Determine rate modulation.
    460	 */
    461	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
    462		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
    463	else if (txrate->flags & IEEE80211_TX_RC_MCS)
    464		txdesc->rate_mode = RATE_MODE_HT_MIX;
    465	else {
    466		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
    467		hwrate = rt2x00_get_rate(rate->hw_value);
    468		if (hwrate->flags & DEV_RATE_OFDM)
    469			txdesc->rate_mode = RATE_MODE_OFDM;
    470		else
    471			txdesc->rate_mode = RATE_MODE_CCK;
    472	}
    473
    474	/*
    475	 * Apply TX descriptor handling by components
    476	 */
    477	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
    478	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
    479
    480	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
    481		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
    482						   sta, hwrate);
    483	else
    484		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
    485						      hwrate);
    486}
    487
    488static int rt2x00queue_write_tx_data(struct queue_entry *entry,
    489				     struct txentry_desc *txdesc)
    490{
    491	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    492
    493	/*
    494	 * This should not happen, we already checked the entry
    495	 * was ours. When the hardware disagrees there has been
    496	 * a queue corruption!
    497	 */
    498	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
    499		     rt2x00dev->ops->lib->get_entry_state(entry))) {
    500		rt2x00_err(rt2x00dev,
    501			   "Corrupt queue %d, accessing entry which is not ours\n"
    502			   "Please file bug report to %s\n",
    503			   entry->queue->qid, DRV_PROJECT);
    504		return -EINVAL;
    505	}
    506
    507	/*
    508	 * Add the requested extra tx headroom in front of the skb.
    509	 */
    510	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
    511	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
    512
    513	/*
    514	 * Call the driver's write_tx_data function, if it exists.
    515	 */
    516	if (rt2x00dev->ops->lib->write_tx_data)
    517		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
    518
    519	/*
    520	 * Map the skb to DMA.
    521	 */
    522	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
    523	    rt2x00queue_map_txskb(entry))
    524		return -ENOMEM;
    525
    526	return 0;
    527}
    528
    529static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
    530					    struct txentry_desc *txdesc)
    531{
    532	struct data_queue *queue = entry->queue;
    533
    534	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
    535
    536	/*
    537	 * All processing on the frame has been completed, this means
    538	 * it is now ready to be dumped to userspace through debugfs.
    539	 */
    540	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
    541}
    542
    543static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
    544				      struct txentry_desc *txdesc)
    545{
    546	/*
    547	 * Check if we need to kick the queue, there are however a few rules
    548	 *	1) Don't kick unless this is the last in frame in a burst.
    549	 *	   When the burst flag is set, this frame is always followed
    550	 *	   by another frame which in some way are related to eachother.
    551	 *	   This is true for fragments, RTS or CTS-to-self frames.
    552	 *	2) Rule 1 can be broken when the available entries
    553	 *	   in the queue are less then a certain threshold.
    554	 */
    555	if (rt2x00queue_threshold(queue) ||
    556	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
    557		queue->rt2x00dev->ops->lib->kick_queue(queue);
    558}
    559
    560static void rt2x00queue_bar_check(struct queue_entry *entry)
    561{
    562	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
    563	struct ieee80211_bar *bar = (void *) (entry->skb->data +
    564				    rt2x00dev->extra_tx_headroom);
    565	struct rt2x00_bar_list_entry *bar_entry;
    566
    567	if (likely(!ieee80211_is_back_req(bar->frame_control)))
    568		return;
    569
    570	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
    571
    572	/*
    573	 * If the alloc fails we still send the BAR out but just don't track
    574	 * it in our bar list. And as a result we will report it to mac80211
    575	 * back as failed.
    576	 */
    577	if (!bar_entry)
    578		return;
    579
    580	bar_entry->entry = entry;
    581	bar_entry->block_acked = 0;
    582
    583	/*
    584	 * Copy the relevant parts of the 802.11 BAR into out check list
    585	 * such that we can use RCU for less-overhead in the RX path since
    586	 * sending BARs and processing the according BlockAck should be
    587	 * the exception.
    588	 */
    589	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
    590	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
    591	bar_entry->control = bar->control;
    592	bar_entry->start_seq_num = bar->start_seq_num;
    593
    594	/*
    595	 * Insert BAR into our BAR check list.
    596	 */
    597	spin_lock_bh(&rt2x00dev->bar_list_lock);
    598	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
    599	spin_unlock_bh(&rt2x00dev->bar_list_lock);
    600}
    601
    602int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
    603			       struct ieee80211_sta *sta, bool local)
    604{
    605	struct ieee80211_tx_info *tx_info;
    606	struct queue_entry *entry;
    607	struct txentry_desc txdesc;
    608	struct skb_frame_desc *skbdesc;
    609	u8 rate_idx, rate_flags;
    610	int ret = 0;
    611
    612	/*
    613	 * Copy all TX descriptor information into txdesc,
    614	 * after that we are free to use the skb->cb array
    615	 * for our information.
    616	 */
    617	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
    618
    619	/*
    620	 * All information is retrieved from the skb->cb array,
    621	 * now we should claim ownership of the driver part of that
    622	 * array, preserving the bitrate index and flags.
    623	 */
    624	tx_info = IEEE80211_SKB_CB(skb);
    625	rate_idx = tx_info->control.rates[0].idx;
    626	rate_flags = tx_info->control.rates[0].flags;
    627	skbdesc = get_skb_frame_desc(skb);
    628	memset(skbdesc, 0, sizeof(*skbdesc));
    629	skbdesc->tx_rate_idx = rate_idx;
    630	skbdesc->tx_rate_flags = rate_flags;
    631
    632	if (local)
    633		skbdesc->flags |= SKBDESC_NOT_MAC80211;
    634
    635	/*
    636	 * When hardware encryption is supported, and this frame
    637	 * is to be encrypted, we should strip the IV/EIV data from
    638	 * the frame so we can provide it to the driver separately.
    639	 */
    640	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
    641	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
    642		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
    643			rt2x00crypto_tx_copy_iv(skb, &txdesc);
    644		else
    645			rt2x00crypto_tx_remove_iv(skb, &txdesc);
    646	}
    647
    648	/*
    649	 * When DMA allocation is required we should guarantee to the
    650	 * driver that the DMA is aligned to a 4-byte boundary.
    651	 * However some drivers require L2 padding to pad the payload
    652	 * rather then the header. This could be a requirement for
    653	 * PCI and USB devices, while header alignment only is valid
    654	 * for PCI devices.
    655	 */
    656	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
    657		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
    658	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
    659		rt2x00queue_align_frame(skb);
    660
    661	/*
    662	 * That function must be called with bh disabled.
    663	 */
    664	spin_lock(&queue->tx_lock);
    665
    666	if (unlikely(rt2x00queue_full(queue))) {
    667		rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
    668			   queue->qid);
    669		ret = -ENOBUFS;
    670		goto out;
    671	}
    672
    673	entry = rt2x00queue_get_entry(queue, Q_INDEX);
    674
    675	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
    676				      &entry->flags))) {
    677		rt2x00_err(queue->rt2x00dev,
    678			   "Arrived at non-free entry in the non-full queue %d\n"
    679			   "Please file bug report to %s\n",
    680			   queue->qid, DRV_PROJECT);
    681		ret = -EINVAL;
    682		goto out;
    683	}
    684
    685	entry->skb = skb;
    686
    687	/*
    688	 * It could be possible that the queue was corrupted and this
    689	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
    690	 * this frame will simply be dropped.
    691	 */
    692	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
    693		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
    694		entry->skb = NULL;
    695		ret = -EIO;
    696		goto out;
    697	}
    698
    699	/*
    700	 * Put BlockAckReqs into our check list for driver BA processing.
    701	 */
    702	rt2x00queue_bar_check(entry);
    703
    704	set_bit(ENTRY_DATA_PENDING, &entry->flags);
    705
    706	rt2x00queue_index_inc(entry, Q_INDEX);
    707	rt2x00queue_write_tx_descriptor(entry, &txdesc);
    708	rt2x00queue_kick_tx_queue(queue, &txdesc);
    709
    710out:
    711	/*
    712	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
    713	 * do this under queue->tx_lock. Bottom halve was already disabled
    714	 * before ieee80211_xmit() call.
    715	 */
    716	if (rt2x00queue_threshold(queue))
    717		rt2x00queue_pause_queue(queue);
    718
    719	spin_unlock(&queue->tx_lock);
    720	return ret;
    721}
    722
    723int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
    724			     struct ieee80211_vif *vif)
    725{
    726	struct rt2x00_intf *intf = vif_to_intf(vif);
    727
    728	if (unlikely(!intf->beacon))
    729		return -ENOBUFS;
    730
    731	/*
    732	 * Clean up the beacon skb.
    733	 */
    734	rt2x00queue_free_skb(intf->beacon);
    735
    736	/*
    737	 * Clear beacon (single bssid devices don't need to clear the beacon
    738	 * since the beacon queue will get stopped anyway).
    739	 */
    740	if (rt2x00dev->ops->lib->clear_beacon)
    741		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
    742
    743	return 0;
    744}
    745
    746int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
    747			      struct ieee80211_vif *vif)
    748{
    749	struct rt2x00_intf *intf = vif_to_intf(vif);
    750	struct skb_frame_desc *skbdesc;
    751	struct txentry_desc txdesc;
    752
    753	if (unlikely(!intf->beacon))
    754		return -ENOBUFS;
    755
    756	/*
    757	 * Clean up the beacon skb.
    758	 */
    759	rt2x00queue_free_skb(intf->beacon);
    760
    761	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
    762	if (!intf->beacon->skb)
    763		return -ENOMEM;
    764
    765	/*
    766	 * Copy all TX descriptor information into txdesc,
    767	 * after that we are free to use the skb->cb array
    768	 * for our information.
    769	 */
    770	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
    771
    772	/*
    773	 * Fill in skb descriptor
    774	 */
    775	skbdesc = get_skb_frame_desc(intf->beacon->skb);
    776	memset(skbdesc, 0, sizeof(*skbdesc));
    777
    778	/*
    779	 * Send beacon to hardware.
    780	 */
    781	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
    782
    783	return 0;
    784
    785}
    786
    787bool rt2x00queue_for_each_entry(struct data_queue *queue,
    788				enum queue_index start,
    789				enum queue_index end,
    790				void *data,
    791				bool (*fn)(struct queue_entry *entry,
    792					   void *data))
    793{
    794	unsigned long irqflags;
    795	unsigned int index_start;
    796	unsigned int index_end;
    797	unsigned int i;
    798
    799	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
    800		rt2x00_err(queue->rt2x00dev,
    801			   "Entry requested from invalid index range (%d - %d)\n",
    802			   start, end);
    803		return true;
    804	}
    805
    806	/*
    807	 * Only protect the range we are going to loop over,
    808	 * if during our loop a extra entry is set to pending
    809	 * it should not be kicked during this run, since it
    810	 * is part of another TX operation.
    811	 */
    812	spin_lock_irqsave(&queue->index_lock, irqflags);
    813	index_start = queue->index[start];
    814	index_end = queue->index[end];
    815	spin_unlock_irqrestore(&queue->index_lock, irqflags);
    816
    817	/*
    818	 * Start from the TX done pointer, this guarantees that we will
    819	 * send out all frames in the correct order.
    820	 */
    821	if (index_start < index_end) {
    822		for (i = index_start; i < index_end; i++) {
    823			if (fn(&queue->entries[i], data))
    824				return true;
    825		}
    826	} else {
    827		for (i = index_start; i < queue->limit; i++) {
    828			if (fn(&queue->entries[i], data))
    829				return true;
    830		}
    831
    832		for (i = 0; i < index_end; i++) {
    833			if (fn(&queue->entries[i], data))
    834				return true;
    835		}
    836	}
    837
    838	return false;
    839}
    840EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
    841
    842struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
    843					  enum queue_index index)
    844{
    845	struct queue_entry *entry;
    846	unsigned long irqflags;
    847
    848	if (unlikely(index >= Q_INDEX_MAX)) {
    849		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
    850			   index);
    851		return NULL;
    852	}
    853
    854	spin_lock_irqsave(&queue->index_lock, irqflags);
    855
    856	entry = &queue->entries[queue->index[index]];
    857
    858	spin_unlock_irqrestore(&queue->index_lock, irqflags);
    859
    860	return entry;
    861}
    862EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
    863
    864void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
    865{
    866	struct data_queue *queue = entry->queue;
    867	unsigned long irqflags;
    868
    869	if (unlikely(index >= Q_INDEX_MAX)) {
    870		rt2x00_err(queue->rt2x00dev,
    871			   "Index change on invalid index type (%d)\n", index);
    872		return;
    873	}
    874
    875	spin_lock_irqsave(&queue->index_lock, irqflags);
    876
    877	queue->index[index]++;
    878	if (queue->index[index] >= queue->limit)
    879		queue->index[index] = 0;
    880
    881	entry->last_action = jiffies;
    882
    883	if (index == Q_INDEX) {
    884		queue->length++;
    885	} else if (index == Q_INDEX_DONE) {
    886		queue->length--;
    887		queue->count++;
    888	}
    889
    890	spin_unlock_irqrestore(&queue->index_lock, irqflags);
    891}
    892
    893static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
    894{
    895	switch (queue->qid) {
    896	case QID_AC_VO:
    897	case QID_AC_VI:
    898	case QID_AC_BE:
    899	case QID_AC_BK:
    900		/*
    901		 * For TX queues, we have to disable the queue
    902		 * inside mac80211.
    903		 */
    904		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
    905		break;
    906	default:
    907		break;
    908	}
    909}
    910void rt2x00queue_pause_queue(struct data_queue *queue)
    911{
    912	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
    913	    !test_bit(QUEUE_STARTED, &queue->flags) ||
    914	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
    915		return;
    916
    917	rt2x00queue_pause_queue_nocheck(queue);
    918}
    919EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
    920
    921void rt2x00queue_unpause_queue(struct data_queue *queue)
    922{
    923	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
    924	    !test_bit(QUEUE_STARTED, &queue->flags) ||
    925	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
    926		return;
    927
    928	switch (queue->qid) {
    929	case QID_AC_VO:
    930	case QID_AC_VI:
    931	case QID_AC_BE:
    932	case QID_AC_BK:
    933		/*
    934		 * For TX queues, we have to enable the queue
    935		 * inside mac80211.
    936		 */
    937		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
    938		break;
    939	case QID_RX:
    940		/*
    941		 * For RX we need to kick the queue now in order to
    942		 * receive frames.
    943		 */
    944		queue->rt2x00dev->ops->lib->kick_queue(queue);
    945		break;
    946	default:
    947		break;
    948	}
    949}
    950EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
    951
    952void rt2x00queue_start_queue(struct data_queue *queue)
    953{
    954	mutex_lock(&queue->status_lock);
    955
    956	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
    957	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
    958		mutex_unlock(&queue->status_lock);
    959		return;
    960	}
    961
    962	set_bit(QUEUE_PAUSED, &queue->flags);
    963
    964	queue->rt2x00dev->ops->lib->start_queue(queue);
    965
    966	rt2x00queue_unpause_queue(queue);
    967
    968	mutex_unlock(&queue->status_lock);
    969}
    970EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
    971
    972void rt2x00queue_stop_queue(struct data_queue *queue)
    973{
    974	mutex_lock(&queue->status_lock);
    975
    976	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
    977		mutex_unlock(&queue->status_lock);
    978		return;
    979	}
    980
    981	rt2x00queue_pause_queue_nocheck(queue);
    982
    983	queue->rt2x00dev->ops->lib->stop_queue(queue);
    984
    985	mutex_unlock(&queue->status_lock);
    986}
    987EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
    988
    989void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
    990{
    991	bool tx_queue =
    992		(queue->qid == QID_AC_VO) ||
    993		(queue->qid == QID_AC_VI) ||
    994		(queue->qid == QID_AC_BE) ||
    995		(queue->qid == QID_AC_BK);
    996
    997	if (rt2x00queue_empty(queue))
    998		return;
    999
   1000	/*
   1001	 * If we are not supposed to drop any pending
   1002	 * frames, this means we must force a start (=kick)
   1003	 * to the queue to make sure the hardware will
   1004	 * start transmitting.
   1005	 */
   1006	if (!drop && tx_queue)
   1007		queue->rt2x00dev->ops->lib->kick_queue(queue);
   1008
   1009	/*
   1010	 * Check if driver supports flushing, if that is the case we can
   1011	 * defer the flushing to the driver. Otherwise we must use the
   1012	 * alternative which just waits for the queue to become empty.
   1013	 */
   1014	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
   1015		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
   1016
   1017	/*
   1018	 * The queue flush has failed...
   1019	 */
   1020	if (unlikely(!rt2x00queue_empty(queue)))
   1021		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
   1022			    queue->qid);
   1023}
   1024EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
   1025
   1026void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
   1027{
   1028	struct data_queue *queue;
   1029
   1030	/*
   1031	 * rt2x00queue_start_queue will call ieee80211_wake_queue
   1032	 * for each queue after is has been properly initialized.
   1033	 */
   1034	tx_queue_for_each(rt2x00dev, queue)
   1035		rt2x00queue_start_queue(queue);
   1036
   1037	rt2x00queue_start_queue(rt2x00dev->rx);
   1038}
   1039EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
   1040
   1041void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
   1042{
   1043	struct data_queue *queue;
   1044
   1045	/*
   1046	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
   1047	 * as well, but we are completely shutting doing everything
   1048	 * now, so it is much safer to stop all TX queues at once,
   1049	 * and use rt2x00queue_stop_queue for cleaning up.
   1050	 */
   1051	ieee80211_stop_queues(rt2x00dev->hw);
   1052
   1053	tx_queue_for_each(rt2x00dev, queue)
   1054		rt2x00queue_stop_queue(queue);
   1055
   1056	rt2x00queue_stop_queue(rt2x00dev->rx);
   1057}
   1058EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
   1059
   1060void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
   1061{
   1062	struct data_queue *queue;
   1063
   1064	tx_queue_for_each(rt2x00dev, queue)
   1065		rt2x00queue_flush_queue(queue, drop);
   1066
   1067	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
   1068}
   1069EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
   1070
   1071static void rt2x00queue_reset(struct data_queue *queue)
   1072{
   1073	unsigned long irqflags;
   1074	unsigned int i;
   1075
   1076	spin_lock_irqsave(&queue->index_lock, irqflags);
   1077
   1078	queue->count = 0;
   1079	queue->length = 0;
   1080
   1081	for (i = 0; i < Q_INDEX_MAX; i++)
   1082		queue->index[i] = 0;
   1083
   1084	spin_unlock_irqrestore(&queue->index_lock, irqflags);
   1085}
   1086
   1087void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
   1088{
   1089	struct data_queue *queue;
   1090	unsigned int i;
   1091
   1092	queue_for_each(rt2x00dev, queue) {
   1093		rt2x00queue_reset(queue);
   1094
   1095		for (i = 0; i < queue->limit; i++)
   1096			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
   1097	}
   1098}
   1099
   1100static int rt2x00queue_alloc_entries(struct data_queue *queue)
   1101{
   1102	struct queue_entry *entries;
   1103	unsigned int entry_size;
   1104	unsigned int i;
   1105
   1106	rt2x00queue_reset(queue);
   1107
   1108	/*
   1109	 * Allocate all queue entries.
   1110	 */
   1111	entry_size = sizeof(*entries) + queue->priv_size;
   1112	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
   1113	if (!entries)
   1114		return -ENOMEM;
   1115
   1116#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
   1117	(((char *)(__base)) + ((__limit) * (__esize)) + \
   1118	    ((__index) * (__psize)))
   1119
   1120	for (i = 0; i < queue->limit; i++) {
   1121		entries[i].flags = 0;
   1122		entries[i].queue = queue;
   1123		entries[i].skb = NULL;
   1124		entries[i].entry_idx = i;
   1125		entries[i].priv_data =
   1126		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
   1127					    sizeof(*entries), queue->priv_size);
   1128	}
   1129
   1130#undef QUEUE_ENTRY_PRIV_OFFSET
   1131
   1132	queue->entries = entries;
   1133
   1134	return 0;
   1135}
   1136
   1137static void rt2x00queue_free_skbs(struct data_queue *queue)
   1138{
   1139	unsigned int i;
   1140
   1141	if (!queue->entries)
   1142		return;
   1143
   1144	for (i = 0; i < queue->limit; i++) {
   1145		rt2x00queue_free_skb(&queue->entries[i]);
   1146	}
   1147}
   1148
   1149static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
   1150{
   1151	unsigned int i;
   1152	struct sk_buff *skb;
   1153
   1154	for (i = 0; i < queue->limit; i++) {
   1155		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
   1156		if (!skb)
   1157			return -ENOMEM;
   1158		queue->entries[i].skb = skb;
   1159	}
   1160
   1161	return 0;
   1162}
   1163
   1164int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
   1165{
   1166	struct data_queue *queue;
   1167	int status;
   1168
   1169	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
   1170	if (status)
   1171		goto exit;
   1172
   1173	tx_queue_for_each(rt2x00dev, queue) {
   1174		status = rt2x00queue_alloc_entries(queue);
   1175		if (status)
   1176			goto exit;
   1177	}
   1178
   1179	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
   1180	if (status)
   1181		goto exit;
   1182
   1183	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
   1184		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
   1185		if (status)
   1186			goto exit;
   1187	}
   1188
   1189	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
   1190	if (status)
   1191		goto exit;
   1192
   1193	return 0;
   1194
   1195exit:
   1196	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
   1197
   1198	rt2x00queue_uninitialize(rt2x00dev);
   1199
   1200	return status;
   1201}
   1202
   1203void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
   1204{
   1205	struct data_queue *queue;
   1206
   1207	rt2x00queue_free_skbs(rt2x00dev->rx);
   1208
   1209	queue_for_each(rt2x00dev, queue) {
   1210		kfree(queue->entries);
   1211		queue->entries = NULL;
   1212	}
   1213}
   1214
   1215static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
   1216			     struct data_queue *queue, enum data_queue_qid qid)
   1217{
   1218	mutex_init(&queue->status_lock);
   1219	spin_lock_init(&queue->tx_lock);
   1220	spin_lock_init(&queue->index_lock);
   1221
   1222	queue->rt2x00dev = rt2x00dev;
   1223	queue->qid = qid;
   1224	queue->txop = 0;
   1225	queue->aifs = 2;
   1226	queue->cw_min = 5;
   1227	queue->cw_max = 10;
   1228
   1229	rt2x00dev->ops->queue_init(queue);
   1230
   1231	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
   1232}
   1233
   1234int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
   1235{
   1236	struct data_queue *queue;
   1237	enum data_queue_qid qid;
   1238	unsigned int req_atim =
   1239	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
   1240
   1241	/*
   1242	 * We need the following queues:
   1243	 * RX: 1
   1244	 * TX: ops->tx_queues
   1245	 * Beacon: 1
   1246	 * Atim: 1 (if required)
   1247	 */
   1248	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
   1249
   1250	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
   1251	if (!queue)
   1252		return -ENOMEM;
   1253
   1254	/*
   1255	 * Initialize pointers
   1256	 */
   1257	rt2x00dev->rx = queue;
   1258	rt2x00dev->tx = &queue[1];
   1259	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
   1260	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
   1261
   1262	/*
   1263	 * Initialize queue parameters.
   1264	 * RX: qid = QID_RX
   1265	 * TX: qid = QID_AC_VO + index
   1266	 * TX: cw_min: 2^5 = 32.
   1267	 * TX: cw_max: 2^10 = 1024.
   1268	 * BCN: qid = QID_BEACON
   1269	 * ATIM: qid = QID_ATIM
   1270	 */
   1271	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
   1272
   1273	qid = QID_AC_VO;
   1274	tx_queue_for_each(rt2x00dev, queue)
   1275		rt2x00queue_init(rt2x00dev, queue, qid++);
   1276
   1277	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
   1278	if (req_atim)
   1279		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
   1280
   1281	return 0;
   1282}
   1283
   1284void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
   1285{
   1286	kfree(rt2x00dev->rx);
   1287	rt2x00dev->rx = NULL;
   1288	rt2x00dev->tx = NULL;
   1289	rt2x00dev->bcn = NULL;
   1290}