cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rt2x00queue.h (21283B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
      4	<http://rt2x00.serialmonkey.com>
      5
      6 */
      7
      8/*
      9	Module: rt2x00
     10	Abstract: rt2x00 queue datastructures and routines
     11 */
     12
     13#ifndef RT2X00QUEUE_H
     14#define RT2X00QUEUE_H
     15
     16#include <linux/prefetch.h>
     17
     18/**
     19 * DOC: Entry frame size
     20 *
     21 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
     22 * for USB devices this restriction does not apply, but the value of
     23 * 2432 makes sense since it is big enough to contain the maximum fragment
     24 * size according to the ieee802.11 specs.
     25 * The aggregation size depends on support from the driver, but should
     26 * be something around 3840 bytes.
     27 */
     28#define DATA_FRAME_SIZE		2432
     29#define MGMT_FRAME_SIZE		256
     30#define AGGREGATION_SIZE	3840
     31
     32/**
     33 * enum data_queue_qid: Queue identification
     34 *
     35 * @QID_AC_VO: AC VO queue
     36 * @QID_AC_VI: AC VI queue
     37 * @QID_AC_BE: AC BE queue
     38 * @QID_AC_BK: AC BK queue
     39 * @QID_HCCA: HCCA queue
     40 * @QID_MGMT: MGMT queue (prio queue)
     41 * @QID_RX: RX queue
     42 * @QID_OTHER: None of the above (don't use, only present for completeness)
     43 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
     44 * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
     45 */
     46enum data_queue_qid {
     47	QID_AC_VO = 0,
     48	QID_AC_VI = 1,
     49	QID_AC_BE = 2,
     50	QID_AC_BK = 3,
     51	QID_HCCA = 4,
     52	QID_MGMT = 13,
     53	QID_RX = 14,
     54	QID_OTHER = 15,
     55	QID_BEACON,
     56	QID_ATIM,
     57};
     58
     59/**
     60 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
     61 *
     62 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
     63 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
     64 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
     65 *	mac80211 but was stripped for processing by the driver.
     66 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
     67 *	don't try to pass it back.
     68 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
     69 *	skb, instead of in the desc field.
     70 */
     71enum skb_frame_desc_flags {
     72	SKBDESC_DMA_MAPPED_RX = 1 << 0,
     73	SKBDESC_DMA_MAPPED_TX = 1 << 1,
     74	SKBDESC_IV_STRIPPED = 1 << 2,
     75	SKBDESC_NOT_MAC80211 = 1 << 3,
     76	SKBDESC_DESC_IN_SKB = 1 << 4,
     77};
     78
     79/**
     80 * struct skb_frame_desc: Descriptor information for the skb buffer
     81 *
     82 * This structure is placed over the driver_data array, this means that
     83 * this structure should not exceed the size of that array (40 bytes).
     84 *
     85 * @flags: Frame flags, see &enum skb_frame_desc_flags.
     86 * @desc_len: Length of the frame descriptor.
     87 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
     88 * @tx_rate_flags: the TX rate flags, used for TX status reporting
     89 * @desc: Pointer to descriptor part of the frame.
     90 *	Note that this pointer could point to something outside
     91 *	of the scope of the skb->data pointer.
     92 * @iv: IV/EIV data used during encryption/decryption.
     93 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
     94 * @sta: The station where sk buffer was sent.
     95 */
     96struct skb_frame_desc {
     97	u8 flags;
     98
     99	u8 desc_len;
    100	u8 tx_rate_idx;
    101	u8 tx_rate_flags;
    102
    103	void *desc;
    104
    105	__le32 iv[2];
    106
    107	dma_addr_t skb_dma;
    108	struct ieee80211_sta *sta;
    109};
    110
    111/**
    112 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
    113 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
    114 */
    115static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb)
    116{
    117	BUILD_BUG_ON(sizeof(struct skb_frame_desc) >
    118		     IEEE80211_TX_INFO_DRIVER_DATA_SIZE);
    119	return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data;
    120}
    121
    122/**
    123 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
    124 *
    125 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
    126 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
    127 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
    128 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
    129 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
    130 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
    131 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
    132 */
    133enum rxdone_entry_desc_flags {
    134	RXDONE_SIGNAL_PLCP = BIT(0),
    135	RXDONE_SIGNAL_BITRATE = BIT(1),
    136	RXDONE_SIGNAL_MCS = BIT(2),
    137	RXDONE_MY_BSS = BIT(3),
    138	RXDONE_CRYPTO_IV = BIT(4),
    139	RXDONE_CRYPTO_ICV = BIT(5),
    140	RXDONE_L2PAD = BIT(6),
    141};
    142
    143/**
    144 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
    145 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
    146 * from &rxdone_entry_desc to a signal value type.
    147 */
    148#define RXDONE_SIGNAL_MASK \
    149	( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
    150
    151/**
    152 * struct rxdone_entry_desc: RX Entry descriptor
    153 *
    154 * Summary of information that has been read from the RX frame descriptor.
    155 *
    156 * @timestamp: RX Timestamp
    157 * @signal: Signal of the received frame.
    158 * @rssi: RSSI of the received frame.
    159 * @size: Data size of the received frame.
    160 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
    161 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
    162 * @rate_mode: Rate mode (See @enum rate_modulation).
    163 * @cipher: Cipher type used during decryption.
    164 * @cipher_status: Decryption status.
    165 * @iv: IV/EIV data used during decryption.
    166 * @icv: ICV data used during decryption.
    167 */
    168struct rxdone_entry_desc {
    169	u64 timestamp;
    170	int signal;
    171	int rssi;
    172	int size;
    173	int flags;
    174	int dev_flags;
    175	u16 rate_mode;
    176	u16 enc_flags;
    177	enum mac80211_rx_encoding encoding;
    178	enum rate_info_bw bw;
    179	u8 cipher;
    180	u8 cipher_status;
    181
    182	__le32 iv[2];
    183	__le32 icv;
    184};
    185
    186/**
    187 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
    188 *
    189 * Every txdone report has to contain the basic result of the
    190 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
    191 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
    192 * conjunction with all of these flags but should only be set
    193 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
    194 * in conjunction with &TXDONE_FAILURE.
    195 *
    196 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
    197 * @TXDONE_SUCCESS: Frame was successfully send
    198 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
    199 * @TXDONE_FAILURE: Frame was not successfully send
    200 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
    201 *	frame transmission failed due to excessive retries.
    202 */
    203enum txdone_entry_desc_flags {
    204	TXDONE_UNKNOWN,
    205	TXDONE_SUCCESS,
    206	TXDONE_FALLBACK,
    207	TXDONE_FAILURE,
    208	TXDONE_EXCESSIVE_RETRY,
    209	TXDONE_AMPDU,
    210	TXDONE_NO_ACK_REQ,
    211};
    212
    213/**
    214 * struct txdone_entry_desc: TX done entry descriptor
    215 *
    216 * Summary of information that has been read from the TX frame descriptor
    217 * after the device is done with transmission.
    218 *
    219 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
    220 * @retry: Retry count.
    221 */
    222struct txdone_entry_desc {
    223	unsigned long flags;
    224	int retry;
    225};
    226
    227/**
    228 * enum txentry_desc_flags: Status flags for TX entry descriptor
    229 *
    230 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
    231 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
    232 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
    233 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
    234 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
    235 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
    236 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
    237 * @ENTRY_TXD_ACK: An ACK is required for this frame.
    238 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
    239 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
    240 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
    241 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
    242 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
    243 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
    244 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
    245 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
    246 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
    247 */
    248enum txentry_desc_flags {
    249	ENTRY_TXD_RTS_FRAME,
    250	ENTRY_TXD_CTS_FRAME,
    251	ENTRY_TXD_GENERATE_SEQ,
    252	ENTRY_TXD_FIRST_FRAGMENT,
    253	ENTRY_TXD_MORE_FRAG,
    254	ENTRY_TXD_REQ_TIMESTAMP,
    255	ENTRY_TXD_BURST,
    256	ENTRY_TXD_ACK,
    257	ENTRY_TXD_RETRY_MODE,
    258	ENTRY_TXD_ENCRYPT,
    259	ENTRY_TXD_ENCRYPT_PAIRWISE,
    260	ENTRY_TXD_ENCRYPT_IV,
    261	ENTRY_TXD_ENCRYPT_MMIC,
    262	ENTRY_TXD_HT_AMPDU,
    263	ENTRY_TXD_HT_BW_40,
    264	ENTRY_TXD_HT_SHORT_GI,
    265	ENTRY_TXD_HT_MIMO_PS,
    266};
    267
    268/**
    269 * struct txentry_desc: TX Entry descriptor
    270 *
    271 * Summary of information for the frame descriptor before sending a TX frame.
    272 *
    273 * @flags: Descriptor flags (See &enum queue_entry_flags).
    274 * @length: Length of the entire frame.
    275 * @header_length: Length of 802.11 header.
    276 * @length_high: PLCP length high word.
    277 * @length_low: PLCP length low word.
    278 * @signal: PLCP signal.
    279 * @service: PLCP service.
    280 * @msc: MCS.
    281 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
    282 * @ba_size: Size of the recepients RX reorder buffer - 1.
    283 * @rate_mode: Rate mode (See @enum rate_modulation).
    284 * @mpdu_density: MDPU density.
    285 * @retry_limit: Max number of retries.
    286 * @ifs: IFS value.
    287 * @txop: IFS value for 11n capable chips.
    288 * @cipher: Cipher type used for encryption.
    289 * @key_idx: Key index used for encryption.
    290 * @iv_offset: Position where IV should be inserted by hardware.
    291 * @iv_len: Length of IV data.
    292 */
    293struct txentry_desc {
    294	unsigned long flags;
    295
    296	u16 length;
    297	u16 header_length;
    298
    299	union {
    300		struct {
    301			u16 length_high;
    302			u16 length_low;
    303			u16 signal;
    304			u16 service;
    305			enum ifs ifs;
    306		} plcp;
    307
    308		struct {
    309			u16 mcs;
    310			u8 stbc;
    311			u8 ba_size;
    312			u8 mpdu_density;
    313			enum txop txop;
    314			int wcid;
    315		} ht;
    316	} u;
    317
    318	enum rate_modulation rate_mode;
    319
    320	short retry_limit;
    321
    322	enum cipher cipher;
    323	u16 key_idx;
    324	u16 iv_offset;
    325	u16 iv_len;
    326};
    327
    328/**
    329 * enum queue_entry_flags: Status flags for queue entry
    330 *
    331 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
    332 *	As long as this bit is set, this entry may only be touched
    333 *	through the interface structure.
    334 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
    335 *	transfer (either TX or RX depending on the queue). The entry should
    336 *	only be touched after the device has signaled it is done with it.
    337 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
    338 *	for the signal to start sending.
    339 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
    340 *	while transferring the data to the hardware. No TX status report will
    341 *	be expected from the hardware.
    342 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
    343 *	returned. It is now waiting for the status reporting before the
    344 *	entry can be reused again.
    345 */
    346enum queue_entry_flags {
    347	ENTRY_BCN_ASSIGNED,
    348	ENTRY_BCN_ENABLED,
    349	ENTRY_OWNER_DEVICE_DATA,
    350	ENTRY_DATA_PENDING,
    351	ENTRY_DATA_IO_FAILED,
    352	ENTRY_DATA_STATUS_PENDING,
    353};
    354
    355/**
    356 * struct queue_entry: Entry inside the &struct data_queue
    357 *
    358 * @flags: Entry flags, see &enum queue_entry_flags.
    359 * @last_action: Timestamp of last change.
    360 * @queue: The data queue (&struct data_queue) to which this entry belongs.
    361 * @skb: The buffer which is currently being transmitted (for TX queue),
    362 *	or used to directly receive data in (for RX queue).
    363 * @entry_idx: The entry index number.
    364 * @priv_data: Private data belonging to this queue entry. The pointer
    365 *	points to data specific to a particular driver and queue type.
    366 * @status: Device specific status
    367 */
    368struct queue_entry {
    369	unsigned long flags;
    370	unsigned long last_action;
    371
    372	struct data_queue *queue;
    373
    374	struct sk_buff *skb;
    375
    376	unsigned int entry_idx;
    377
    378	void *priv_data;
    379};
    380
    381/**
    382 * enum queue_index: Queue index type
    383 *
    384 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
    385 *	owned by the hardware then the queue is considered to be full.
    386 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
    387 *	transferred to the hardware.
    388 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
    389 *	the hardware and for which we need to run the txdone handler. If this
    390 *	entry is not owned by the hardware the queue is considered to be empty.
    391 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
    392 *	of the index array.
    393 */
    394enum queue_index {
    395	Q_INDEX,
    396	Q_INDEX_DMA_DONE,
    397	Q_INDEX_DONE,
    398	Q_INDEX_MAX,
    399};
    400
    401/**
    402 * enum data_queue_flags: Status flags for data queues
    403 *
    404 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
    405 *	device might be DMA'ing skbuffers. TX queues will accept skbuffers to
    406 *	be transmitted and beacon queues will start beaconing the configured
    407 *	beacons.
    408 * @QUEUE_PAUSED: The queue has been started but is currently paused.
    409 *	When this bit is set, the queue has been stopped in mac80211,
    410 *	preventing new frames to be enqueued. However, a few frames
    411 *	might still appear shortly after the pausing...
    412 */
    413enum data_queue_flags {
    414	QUEUE_STARTED,
    415	QUEUE_PAUSED,
    416};
    417
    418/**
    419 * struct data_queue: Data queue
    420 *
    421 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
    422 * @entries: Base address of the &struct queue_entry which are
    423 *	part of this queue.
    424 * @qid: The queue identification, see &enum data_queue_qid.
    425 * @flags: Entry flags, see &enum queue_entry_flags.
    426 * @status_lock: The mutex for protecting the start/stop/flush
    427 *	handling on this queue.
    428 * @tx_lock: Spinlock to serialize tx operations on this queue.
    429 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
    430 *	@index_crypt needs to be changed this lock should be grabbed to prevent
    431 *	index corruption due to concurrency.
    432 * @count: Number of frames handled in the queue.
    433 * @limit: Maximum number of entries in the queue.
    434 * @threshold: Minimum number of free entries before queue is kicked by force.
    435 * @length: Number of frames in queue.
    436 * @index: Index pointers to entry positions in the queue,
    437 *	use &enum queue_index to get a specific index field.
    438 * @wd_count: watchdog counter number of times entry does change
    439 *      in the queue
    440 * @wd_idx: index of queue entry saved by watchdog
    441 * @txop: maximum burst time.
    442 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
    443 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
    444 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
    445 * @data_size: Maximum data size for the frames in this queue.
    446 * @desc_size: Hardware descriptor size for the data in this queue.
    447 * @priv_size: Size of per-queue_entry private data.
    448 * @usb_endpoint: Device endpoint used for communication (USB only)
    449 * @usb_maxpacket: Max packet size for given endpoint (USB only)
    450 */
    451struct data_queue {
    452	struct rt2x00_dev *rt2x00dev;
    453	struct queue_entry *entries;
    454
    455	enum data_queue_qid qid;
    456	unsigned long flags;
    457
    458	struct mutex status_lock;
    459	spinlock_t tx_lock;
    460	spinlock_t index_lock;
    461
    462	unsigned int count;
    463	unsigned short limit;
    464	unsigned short threshold;
    465	unsigned short length;
    466	unsigned short index[Q_INDEX_MAX];
    467
    468	unsigned short wd_count;
    469	unsigned int wd_idx;
    470
    471	unsigned short txop;
    472	unsigned short aifs;
    473	unsigned short cw_min;
    474	unsigned short cw_max;
    475
    476	unsigned short data_size;
    477	unsigned char  desc_size;
    478	unsigned char  winfo_size;
    479	unsigned short priv_size;
    480
    481	unsigned short usb_endpoint;
    482	unsigned short usb_maxpacket;
    483};
    484
    485/**
    486 * queue_end - Return pointer to the last queue (HELPER MACRO).
    487 * @__dev: Pointer to &struct rt2x00_dev
    488 *
    489 * Using the base rx pointer and the maximum number of available queues,
    490 * this macro will return the address of 1 position beyond  the end of the
    491 * queues array.
    492 */
    493#define queue_end(__dev) \
    494	&(__dev)->rx[(__dev)->data_queues]
    495
    496/**
    497 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
    498 * @__dev: Pointer to &struct rt2x00_dev
    499 *
    500 * Using the base tx pointer and the maximum number of available TX
    501 * queues, this macro will return the address of 1 position beyond
    502 * the end of the TX queue array.
    503 */
    504#define tx_queue_end(__dev) \
    505	&(__dev)->tx[(__dev)->ops->tx_queues]
    506
    507/**
    508 * queue_next - Return pointer to next queue in list (HELPER MACRO).
    509 * @__queue: Current queue for which we need the next queue
    510 *
    511 * Using the current queue address we take the address directly
    512 * after the queue to take the next queue. Note that this macro
    513 * should be used carefully since it does not protect against
    514 * moving past the end of the list. (See macros &queue_end and
    515 * &tx_queue_end for determining the end of the queue).
    516 */
    517#define queue_next(__queue) \
    518	&(__queue)[1]
    519
    520/**
    521 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
    522 * @__entry: Pointer where the current queue entry will be stored in.
    523 * @__start: Start queue pointer.
    524 * @__end: End queue pointer.
    525 *
    526 * This macro will loop through all queues between &__start and &__end.
    527 */
    528#define queue_loop(__entry, __start, __end)			\
    529	for ((__entry) = (__start);				\
    530	     prefetch(queue_next(__entry)), (__entry) != (__end);\
    531	     (__entry) = queue_next(__entry))
    532
    533/**
    534 * queue_for_each - Loop through all queues
    535 * @__dev: Pointer to &struct rt2x00_dev
    536 * @__entry: Pointer where the current queue entry will be stored in.
    537 *
    538 * This macro will loop through all available queues.
    539 */
    540#define queue_for_each(__dev, __entry) \
    541	queue_loop(__entry, (__dev)->rx, queue_end(__dev))
    542
    543/**
    544 * tx_queue_for_each - Loop through the TX queues
    545 * @__dev: Pointer to &struct rt2x00_dev
    546 * @__entry: Pointer where the current queue entry will be stored in.
    547 *
    548 * This macro will loop through all TX related queues excluding
    549 * the Beacon and Atim queues.
    550 */
    551#define tx_queue_for_each(__dev, __entry) \
    552	queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
    553
    554/**
    555 * txall_queue_for_each - Loop through all TX related queues
    556 * @__dev: Pointer to &struct rt2x00_dev
    557 * @__entry: Pointer where the current queue entry will be stored in.
    558 *
    559 * This macro will loop through all TX related queues including
    560 * the Beacon and Atim queues.
    561 */
    562#define txall_queue_for_each(__dev, __entry) \
    563	queue_loop(__entry, (__dev)->tx, queue_end(__dev))
    564
    565/**
    566 * rt2x00queue_for_each_entry - Loop through all entries in the queue
    567 * @queue: Pointer to @data_queue
    568 * @start: &enum queue_index Pointer to start index
    569 * @end: &enum queue_index Pointer to end index
    570 * @data: Data to pass to the callback function
    571 * @fn: The function to call for each &struct queue_entry
    572 *
    573 * This will walk through all entries in the queue, in chronological
    574 * order. This means it will start at the current @start pointer
    575 * and will walk through the queue until it reaches the @end pointer.
    576 *
    577 * If fn returns true for an entry rt2x00queue_for_each_entry will stop
    578 * processing and return true as well.
    579 */
    580bool rt2x00queue_for_each_entry(struct data_queue *queue,
    581				enum queue_index start,
    582				enum queue_index end,
    583				void *data,
    584				bool (*fn)(struct queue_entry *entry,
    585					   void *data));
    586
    587/**
    588 * rt2x00queue_empty - Check if the queue is empty.
    589 * @queue: Queue to check if empty.
    590 */
    591static inline int rt2x00queue_empty(struct data_queue *queue)
    592{
    593	return queue->length == 0;
    594}
    595
    596/**
    597 * rt2x00queue_full - Check if the queue is full.
    598 * @queue: Queue to check if full.
    599 */
    600static inline int rt2x00queue_full(struct data_queue *queue)
    601{
    602	return queue->length == queue->limit;
    603}
    604
    605/**
    606 * rt2x00queue_free - Check the number of available entries in queue.
    607 * @queue: Queue to check.
    608 */
    609static inline int rt2x00queue_available(struct data_queue *queue)
    610{
    611	return queue->limit - queue->length;
    612}
    613
    614/**
    615 * rt2x00queue_threshold - Check if the queue is below threshold
    616 * @queue: Queue to check.
    617 */
    618static inline int rt2x00queue_threshold(struct data_queue *queue)
    619{
    620	return rt2x00queue_available(queue) < queue->threshold;
    621}
    622/**
    623 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
    624 * @entry: Queue entry to check.
    625 */
    626static inline int rt2x00queue_dma_timeout(struct queue_entry *entry)
    627{
    628	if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
    629		return false;
    630	return time_after(jiffies, entry->last_action + msecs_to_jiffies(100));
    631}
    632
    633/**
    634 * _rt2x00_desc_read - Read a word from the hardware descriptor.
    635 * @desc: Base descriptor address
    636 * @word: Word index from where the descriptor should be read.
    637 */
    638static inline __le32 _rt2x00_desc_read(__le32 *desc, const u8 word)
    639{
    640	return desc[word];
    641}
    642
    643/**
    644 * rt2x00_desc_read - Read a word from the hardware descriptor, this
    645 * function will take care of the byte ordering.
    646 * @desc: Base descriptor address
    647 * @word: Word index from where the descriptor should be read.
    648 */
    649static inline u32 rt2x00_desc_read(__le32 *desc, const u8 word)
    650{
    651	return le32_to_cpu(_rt2x00_desc_read(desc, word));
    652}
    653
    654/**
    655 * rt2x00_desc_write - write a word to the hardware descriptor, this
    656 * function will take care of the byte ordering.
    657 * @desc: Base descriptor address
    658 * @word: Word index from where the descriptor should be written.
    659 * @value: Value that should be written into the descriptor.
    660 */
    661static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value)
    662{
    663	desc[word] = value;
    664}
    665
    666/**
    667 * rt2x00_desc_write - write a word to the hardware descriptor.
    668 * @desc: Base descriptor address
    669 * @word: Word index from where the descriptor should be written.
    670 * @value: Value that should be written into the descriptor.
    671 */
    672static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value)
    673{
    674	_rt2x00_desc_write(desc, word, cpu_to_le32(value));
    675}
    676
    677#endif /* RT2X00QUEUE_H */