rt2x00queue.h (21283B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 */ 7 8/* 9 Module: rt2x00 10 Abstract: rt2x00 queue datastructures and routines 11 */ 12 13#ifndef RT2X00QUEUE_H 14#define RT2X00QUEUE_H 15 16#include <linux/prefetch.h> 17 18/** 19 * DOC: Entry frame size 20 * 21 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes, 22 * for USB devices this restriction does not apply, but the value of 23 * 2432 makes sense since it is big enough to contain the maximum fragment 24 * size according to the ieee802.11 specs. 25 * The aggregation size depends on support from the driver, but should 26 * be something around 3840 bytes. 27 */ 28#define DATA_FRAME_SIZE 2432 29#define MGMT_FRAME_SIZE 256 30#define AGGREGATION_SIZE 3840 31 32/** 33 * enum data_queue_qid: Queue identification 34 * 35 * @QID_AC_VO: AC VO queue 36 * @QID_AC_VI: AC VI queue 37 * @QID_AC_BE: AC BE queue 38 * @QID_AC_BK: AC BK queue 39 * @QID_HCCA: HCCA queue 40 * @QID_MGMT: MGMT queue (prio queue) 41 * @QID_RX: RX queue 42 * @QID_OTHER: None of the above (don't use, only present for completeness) 43 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device) 44 * @QID_ATIM: Atim queue (value unspecified, don't send it to device) 45 */ 46enum data_queue_qid { 47 QID_AC_VO = 0, 48 QID_AC_VI = 1, 49 QID_AC_BE = 2, 50 QID_AC_BK = 3, 51 QID_HCCA = 4, 52 QID_MGMT = 13, 53 QID_RX = 14, 54 QID_OTHER = 15, 55 QID_BEACON, 56 QID_ATIM, 57}; 58 59/** 60 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc 61 * 62 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX 63 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX 64 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by 65 * mac80211 but was stripped for processing by the driver. 66 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211, 67 * don't try to pass it back. 68 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the 69 * skb, instead of in the desc field. 70 */ 71enum skb_frame_desc_flags { 72 SKBDESC_DMA_MAPPED_RX = 1 << 0, 73 SKBDESC_DMA_MAPPED_TX = 1 << 1, 74 SKBDESC_IV_STRIPPED = 1 << 2, 75 SKBDESC_NOT_MAC80211 = 1 << 3, 76 SKBDESC_DESC_IN_SKB = 1 << 4, 77}; 78 79/** 80 * struct skb_frame_desc: Descriptor information for the skb buffer 81 * 82 * This structure is placed over the driver_data array, this means that 83 * this structure should not exceed the size of that array (40 bytes). 84 * 85 * @flags: Frame flags, see &enum skb_frame_desc_flags. 86 * @desc_len: Length of the frame descriptor. 87 * @tx_rate_idx: the index of the TX rate, used for TX status reporting 88 * @tx_rate_flags: the TX rate flags, used for TX status reporting 89 * @desc: Pointer to descriptor part of the frame. 90 * Note that this pointer could point to something outside 91 * of the scope of the skb->data pointer. 92 * @iv: IV/EIV data used during encryption/decryption. 93 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer. 94 * @sta: The station where sk buffer was sent. 95 */ 96struct skb_frame_desc { 97 u8 flags; 98 99 u8 desc_len; 100 u8 tx_rate_idx; 101 u8 tx_rate_flags; 102 103 void *desc; 104 105 __le32 iv[2]; 106 107 dma_addr_t skb_dma; 108 struct ieee80211_sta *sta; 109}; 110 111/** 112 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff. 113 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc 114 */ 115static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb) 116{ 117 BUILD_BUG_ON(sizeof(struct skb_frame_desc) > 118 IEEE80211_TX_INFO_DRIVER_DATA_SIZE); 119 return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data; 120} 121 122/** 123 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc 124 * 125 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value. 126 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value. 127 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value. 128 * @RXDONE_MY_BSS: Does this frame originate from device's BSS. 129 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data. 130 * @RXDONE_CRYPTO_ICV: Driver provided ICV data. 131 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary. 132 */ 133enum rxdone_entry_desc_flags { 134 RXDONE_SIGNAL_PLCP = BIT(0), 135 RXDONE_SIGNAL_BITRATE = BIT(1), 136 RXDONE_SIGNAL_MCS = BIT(2), 137 RXDONE_MY_BSS = BIT(3), 138 RXDONE_CRYPTO_IV = BIT(4), 139 RXDONE_CRYPTO_ICV = BIT(5), 140 RXDONE_L2PAD = BIT(6), 141}; 142 143/** 144 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags 145 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags 146 * from &rxdone_entry_desc to a signal value type. 147 */ 148#define RXDONE_SIGNAL_MASK \ 149 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS ) 150 151/** 152 * struct rxdone_entry_desc: RX Entry descriptor 153 * 154 * Summary of information that has been read from the RX frame descriptor. 155 * 156 * @timestamp: RX Timestamp 157 * @signal: Signal of the received frame. 158 * @rssi: RSSI of the received frame. 159 * @size: Data size of the received frame. 160 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags). 161 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags). 162 * @rate_mode: Rate mode (See @enum rate_modulation). 163 * @cipher: Cipher type used during decryption. 164 * @cipher_status: Decryption status. 165 * @iv: IV/EIV data used during decryption. 166 * @icv: ICV data used during decryption. 167 */ 168struct rxdone_entry_desc { 169 u64 timestamp; 170 int signal; 171 int rssi; 172 int size; 173 int flags; 174 int dev_flags; 175 u16 rate_mode; 176 u16 enc_flags; 177 enum mac80211_rx_encoding encoding; 178 enum rate_info_bw bw; 179 u8 cipher; 180 u8 cipher_status; 181 182 __le32 iv[2]; 183 __le32 icv; 184}; 185 186/** 187 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc 188 * 189 * Every txdone report has to contain the basic result of the 190 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or 191 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in 192 * conjunction with all of these flags but should only be set 193 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used 194 * in conjunction with &TXDONE_FAILURE. 195 * 196 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission. 197 * @TXDONE_SUCCESS: Frame was successfully send 198 * @TXDONE_FALLBACK: Hardware used fallback rates for retries 199 * @TXDONE_FAILURE: Frame was not successfully send 200 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the 201 * frame transmission failed due to excessive retries. 202 */ 203enum txdone_entry_desc_flags { 204 TXDONE_UNKNOWN, 205 TXDONE_SUCCESS, 206 TXDONE_FALLBACK, 207 TXDONE_FAILURE, 208 TXDONE_EXCESSIVE_RETRY, 209 TXDONE_AMPDU, 210 TXDONE_NO_ACK_REQ, 211}; 212 213/** 214 * struct txdone_entry_desc: TX done entry descriptor 215 * 216 * Summary of information that has been read from the TX frame descriptor 217 * after the device is done with transmission. 218 * 219 * @flags: TX done flags (See &enum txdone_entry_desc_flags). 220 * @retry: Retry count. 221 */ 222struct txdone_entry_desc { 223 unsigned long flags; 224 int retry; 225}; 226 227/** 228 * enum txentry_desc_flags: Status flags for TX entry descriptor 229 * 230 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame. 231 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame. 232 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter. 233 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame. 234 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment. 235 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted. 236 * @ENTRY_TXD_BURST: This frame belongs to the same burst event. 237 * @ENTRY_TXD_ACK: An ACK is required for this frame. 238 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used. 239 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted. 240 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared). 241 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware. 242 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware. 243 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU. 244 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth. 245 * @ENTRY_TXD_HT_SHORT_GI: Use short GI. 246 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode. 247 */ 248enum txentry_desc_flags { 249 ENTRY_TXD_RTS_FRAME, 250 ENTRY_TXD_CTS_FRAME, 251 ENTRY_TXD_GENERATE_SEQ, 252 ENTRY_TXD_FIRST_FRAGMENT, 253 ENTRY_TXD_MORE_FRAG, 254 ENTRY_TXD_REQ_TIMESTAMP, 255 ENTRY_TXD_BURST, 256 ENTRY_TXD_ACK, 257 ENTRY_TXD_RETRY_MODE, 258 ENTRY_TXD_ENCRYPT, 259 ENTRY_TXD_ENCRYPT_PAIRWISE, 260 ENTRY_TXD_ENCRYPT_IV, 261 ENTRY_TXD_ENCRYPT_MMIC, 262 ENTRY_TXD_HT_AMPDU, 263 ENTRY_TXD_HT_BW_40, 264 ENTRY_TXD_HT_SHORT_GI, 265 ENTRY_TXD_HT_MIMO_PS, 266}; 267 268/** 269 * struct txentry_desc: TX Entry descriptor 270 * 271 * Summary of information for the frame descriptor before sending a TX frame. 272 * 273 * @flags: Descriptor flags (See &enum queue_entry_flags). 274 * @length: Length of the entire frame. 275 * @header_length: Length of 802.11 header. 276 * @length_high: PLCP length high word. 277 * @length_low: PLCP length low word. 278 * @signal: PLCP signal. 279 * @service: PLCP service. 280 * @msc: MCS. 281 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8). 282 * @ba_size: Size of the recepients RX reorder buffer - 1. 283 * @rate_mode: Rate mode (See @enum rate_modulation). 284 * @mpdu_density: MDPU density. 285 * @retry_limit: Max number of retries. 286 * @ifs: IFS value. 287 * @txop: IFS value for 11n capable chips. 288 * @cipher: Cipher type used for encryption. 289 * @key_idx: Key index used for encryption. 290 * @iv_offset: Position where IV should be inserted by hardware. 291 * @iv_len: Length of IV data. 292 */ 293struct txentry_desc { 294 unsigned long flags; 295 296 u16 length; 297 u16 header_length; 298 299 union { 300 struct { 301 u16 length_high; 302 u16 length_low; 303 u16 signal; 304 u16 service; 305 enum ifs ifs; 306 } plcp; 307 308 struct { 309 u16 mcs; 310 u8 stbc; 311 u8 ba_size; 312 u8 mpdu_density; 313 enum txop txop; 314 int wcid; 315 } ht; 316 } u; 317 318 enum rate_modulation rate_mode; 319 320 short retry_limit; 321 322 enum cipher cipher; 323 u16 key_idx; 324 u16 iv_offset; 325 u16 iv_len; 326}; 327 328/** 329 * enum queue_entry_flags: Status flags for queue entry 330 * 331 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface. 332 * As long as this bit is set, this entry may only be touched 333 * through the interface structure. 334 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data 335 * transfer (either TX or RX depending on the queue). The entry should 336 * only be touched after the device has signaled it is done with it. 337 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting 338 * for the signal to start sending. 339 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred 340 * while transferring the data to the hardware. No TX status report will 341 * be expected from the hardware. 342 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and 343 * returned. It is now waiting for the status reporting before the 344 * entry can be reused again. 345 */ 346enum queue_entry_flags { 347 ENTRY_BCN_ASSIGNED, 348 ENTRY_BCN_ENABLED, 349 ENTRY_OWNER_DEVICE_DATA, 350 ENTRY_DATA_PENDING, 351 ENTRY_DATA_IO_FAILED, 352 ENTRY_DATA_STATUS_PENDING, 353}; 354 355/** 356 * struct queue_entry: Entry inside the &struct data_queue 357 * 358 * @flags: Entry flags, see &enum queue_entry_flags. 359 * @last_action: Timestamp of last change. 360 * @queue: The data queue (&struct data_queue) to which this entry belongs. 361 * @skb: The buffer which is currently being transmitted (for TX queue), 362 * or used to directly receive data in (for RX queue). 363 * @entry_idx: The entry index number. 364 * @priv_data: Private data belonging to this queue entry. The pointer 365 * points to data specific to a particular driver and queue type. 366 * @status: Device specific status 367 */ 368struct queue_entry { 369 unsigned long flags; 370 unsigned long last_action; 371 372 struct data_queue *queue; 373 374 struct sk_buff *skb; 375 376 unsigned int entry_idx; 377 378 void *priv_data; 379}; 380 381/** 382 * enum queue_index: Queue index type 383 * 384 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is 385 * owned by the hardware then the queue is considered to be full. 386 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been 387 * transferred to the hardware. 388 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by 389 * the hardware and for which we need to run the txdone handler. If this 390 * entry is not owned by the hardware the queue is considered to be empty. 391 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size 392 * of the index array. 393 */ 394enum queue_index { 395 Q_INDEX, 396 Q_INDEX_DMA_DONE, 397 Q_INDEX_DONE, 398 Q_INDEX_MAX, 399}; 400 401/** 402 * enum data_queue_flags: Status flags for data queues 403 * 404 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the 405 * device might be DMA'ing skbuffers. TX queues will accept skbuffers to 406 * be transmitted and beacon queues will start beaconing the configured 407 * beacons. 408 * @QUEUE_PAUSED: The queue has been started but is currently paused. 409 * When this bit is set, the queue has been stopped in mac80211, 410 * preventing new frames to be enqueued. However, a few frames 411 * might still appear shortly after the pausing... 412 */ 413enum data_queue_flags { 414 QUEUE_STARTED, 415 QUEUE_PAUSED, 416}; 417 418/** 419 * struct data_queue: Data queue 420 * 421 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to. 422 * @entries: Base address of the &struct queue_entry which are 423 * part of this queue. 424 * @qid: The queue identification, see &enum data_queue_qid. 425 * @flags: Entry flags, see &enum queue_entry_flags. 426 * @status_lock: The mutex for protecting the start/stop/flush 427 * handling on this queue. 428 * @tx_lock: Spinlock to serialize tx operations on this queue. 429 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or 430 * @index_crypt needs to be changed this lock should be grabbed to prevent 431 * index corruption due to concurrency. 432 * @count: Number of frames handled in the queue. 433 * @limit: Maximum number of entries in the queue. 434 * @threshold: Minimum number of free entries before queue is kicked by force. 435 * @length: Number of frames in queue. 436 * @index: Index pointers to entry positions in the queue, 437 * use &enum queue_index to get a specific index field. 438 * @wd_count: watchdog counter number of times entry does change 439 * in the queue 440 * @wd_idx: index of queue entry saved by watchdog 441 * @txop: maximum burst time. 442 * @aifs: The aifs value for outgoing frames (field ignored in RX queue). 443 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue). 444 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue). 445 * @data_size: Maximum data size for the frames in this queue. 446 * @desc_size: Hardware descriptor size for the data in this queue. 447 * @priv_size: Size of per-queue_entry private data. 448 * @usb_endpoint: Device endpoint used for communication (USB only) 449 * @usb_maxpacket: Max packet size for given endpoint (USB only) 450 */ 451struct data_queue { 452 struct rt2x00_dev *rt2x00dev; 453 struct queue_entry *entries; 454 455 enum data_queue_qid qid; 456 unsigned long flags; 457 458 struct mutex status_lock; 459 spinlock_t tx_lock; 460 spinlock_t index_lock; 461 462 unsigned int count; 463 unsigned short limit; 464 unsigned short threshold; 465 unsigned short length; 466 unsigned short index[Q_INDEX_MAX]; 467 468 unsigned short wd_count; 469 unsigned int wd_idx; 470 471 unsigned short txop; 472 unsigned short aifs; 473 unsigned short cw_min; 474 unsigned short cw_max; 475 476 unsigned short data_size; 477 unsigned char desc_size; 478 unsigned char winfo_size; 479 unsigned short priv_size; 480 481 unsigned short usb_endpoint; 482 unsigned short usb_maxpacket; 483}; 484 485/** 486 * queue_end - Return pointer to the last queue (HELPER MACRO). 487 * @__dev: Pointer to &struct rt2x00_dev 488 * 489 * Using the base rx pointer and the maximum number of available queues, 490 * this macro will return the address of 1 position beyond the end of the 491 * queues array. 492 */ 493#define queue_end(__dev) \ 494 &(__dev)->rx[(__dev)->data_queues] 495 496/** 497 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO). 498 * @__dev: Pointer to &struct rt2x00_dev 499 * 500 * Using the base tx pointer and the maximum number of available TX 501 * queues, this macro will return the address of 1 position beyond 502 * the end of the TX queue array. 503 */ 504#define tx_queue_end(__dev) \ 505 &(__dev)->tx[(__dev)->ops->tx_queues] 506 507/** 508 * queue_next - Return pointer to next queue in list (HELPER MACRO). 509 * @__queue: Current queue for which we need the next queue 510 * 511 * Using the current queue address we take the address directly 512 * after the queue to take the next queue. Note that this macro 513 * should be used carefully since it does not protect against 514 * moving past the end of the list. (See macros &queue_end and 515 * &tx_queue_end for determining the end of the queue). 516 */ 517#define queue_next(__queue) \ 518 &(__queue)[1] 519 520/** 521 * queue_loop - Loop through the queues within a specific range (HELPER MACRO). 522 * @__entry: Pointer where the current queue entry will be stored in. 523 * @__start: Start queue pointer. 524 * @__end: End queue pointer. 525 * 526 * This macro will loop through all queues between &__start and &__end. 527 */ 528#define queue_loop(__entry, __start, __end) \ 529 for ((__entry) = (__start); \ 530 prefetch(queue_next(__entry)), (__entry) != (__end);\ 531 (__entry) = queue_next(__entry)) 532 533/** 534 * queue_for_each - Loop through all queues 535 * @__dev: Pointer to &struct rt2x00_dev 536 * @__entry: Pointer where the current queue entry will be stored in. 537 * 538 * This macro will loop through all available queues. 539 */ 540#define queue_for_each(__dev, __entry) \ 541 queue_loop(__entry, (__dev)->rx, queue_end(__dev)) 542 543/** 544 * tx_queue_for_each - Loop through the TX queues 545 * @__dev: Pointer to &struct rt2x00_dev 546 * @__entry: Pointer where the current queue entry will be stored in. 547 * 548 * This macro will loop through all TX related queues excluding 549 * the Beacon and Atim queues. 550 */ 551#define tx_queue_for_each(__dev, __entry) \ 552 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev)) 553 554/** 555 * txall_queue_for_each - Loop through all TX related queues 556 * @__dev: Pointer to &struct rt2x00_dev 557 * @__entry: Pointer where the current queue entry will be stored in. 558 * 559 * This macro will loop through all TX related queues including 560 * the Beacon and Atim queues. 561 */ 562#define txall_queue_for_each(__dev, __entry) \ 563 queue_loop(__entry, (__dev)->tx, queue_end(__dev)) 564 565/** 566 * rt2x00queue_for_each_entry - Loop through all entries in the queue 567 * @queue: Pointer to @data_queue 568 * @start: &enum queue_index Pointer to start index 569 * @end: &enum queue_index Pointer to end index 570 * @data: Data to pass to the callback function 571 * @fn: The function to call for each &struct queue_entry 572 * 573 * This will walk through all entries in the queue, in chronological 574 * order. This means it will start at the current @start pointer 575 * and will walk through the queue until it reaches the @end pointer. 576 * 577 * If fn returns true for an entry rt2x00queue_for_each_entry will stop 578 * processing and return true as well. 579 */ 580bool rt2x00queue_for_each_entry(struct data_queue *queue, 581 enum queue_index start, 582 enum queue_index end, 583 void *data, 584 bool (*fn)(struct queue_entry *entry, 585 void *data)); 586 587/** 588 * rt2x00queue_empty - Check if the queue is empty. 589 * @queue: Queue to check if empty. 590 */ 591static inline int rt2x00queue_empty(struct data_queue *queue) 592{ 593 return queue->length == 0; 594} 595 596/** 597 * rt2x00queue_full - Check if the queue is full. 598 * @queue: Queue to check if full. 599 */ 600static inline int rt2x00queue_full(struct data_queue *queue) 601{ 602 return queue->length == queue->limit; 603} 604 605/** 606 * rt2x00queue_free - Check the number of available entries in queue. 607 * @queue: Queue to check. 608 */ 609static inline int rt2x00queue_available(struct data_queue *queue) 610{ 611 return queue->limit - queue->length; 612} 613 614/** 615 * rt2x00queue_threshold - Check if the queue is below threshold 616 * @queue: Queue to check. 617 */ 618static inline int rt2x00queue_threshold(struct data_queue *queue) 619{ 620 return rt2x00queue_available(queue) < queue->threshold; 621} 622/** 623 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers 624 * @entry: Queue entry to check. 625 */ 626static inline int rt2x00queue_dma_timeout(struct queue_entry *entry) 627{ 628 if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) 629 return false; 630 return time_after(jiffies, entry->last_action + msecs_to_jiffies(100)); 631} 632 633/** 634 * _rt2x00_desc_read - Read a word from the hardware descriptor. 635 * @desc: Base descriptor address 636 * @word: Word index from where the descriptor should be read. 637 */ 638static inline __le32 _rt2x00_desc_read(__le32 *desc, const u8 word) 639{ 640 return desc[word]; 641} 642 643/** 644 * rt2x00_desc_read - Read a word from the hardware descriptor, this 645 * function will take care of the byte ordering. 646 * @desc: Base descriptor address 647 * @word: Word index from where the descriptor should be read. 648 */ 649static inline u32 rt2x00_desc_read(__le32 *desc, const u8 word) 650{ 651 return le32_to_cpu(_rt2x00_desc_read(desc, word)); 652} 653 654/** 655 * rt2x00_desc_write - write a word to the hardware descriptor, this 656 * function will take care of the byte ordering. 657 * @desc: Base descriptor address 658 * @word: Word index from where the descriptor should be written. 659 * @value: Value that should be written into the descriptor. 660 */ 661static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value) 662{ 663 desc[word] = value; 664} 665 666/** 667 * rt2x00_desc_write - write a word to the hardware descriptor. 668 * @desc: Base descriptor address 669 * @word: Word index from where the descriptor should be written. 670 * @value: Value that should be written into the descriptor. 671 */ 672static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value) 673{ 674 _rt2x00_desc_write(desc, word, cpu_to_le32(value)); 675} 676 677#endif /* RT2X00QUEUE_H */