cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efuse.c (36286B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2009-2012  Realtek Corporation.*/
      3
      4#include "wifi.h"
      5#include "efuse.h"
      6#include "pci.h"
      7#include <linux/export.h>
      8
      9static const u8 PGPKT_DATA_SIZE = 8;
     10static const int EFUSE_MAX_SIZE = 512;
     11
     12#define START_ADDRESS		0x1000
     13#define REG_MCUFWDL		0x0080
     14
     15static const struct rtl_efuse_ops efuse_ops = {
     16	.efuse_onebyte_read = efuse_one_byte_read,
     17	.efuse_logical_map_read = efuse_shadow_read,
     18};
     19
     20static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
     21				    u8 *value);
     22static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
     23				    u16 *value);
     24static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
     25				    u32 *value);
     26static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
     27				     u8 value);
     28static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
     29				     u16 value);
     30static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
     31				     u32 value);
     32static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
     33				u8 data);
     34static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
     35static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
     36				u8 *data);
     37static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
     38				 u8 word_en, u8 *data);
     39static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
     40					u8 *targetdata);
     41static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
     42				  u16 efuse_addr, u8 word_en, u8 *data);
     43static u16 efuse_get_current_size(struct ieee80211_hw *hw);
     44static u8 efuse_calculate_word_cnts(u8 word_en);
     45
     46void efuse_initialize(struct ieee80211_hw *hw)
     47{
     48	struct rtl_priv *rtlpriv = rtl_priv(hw);
     49	u8 bytetemp;
     50	u8 temp;
     51
     52	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
     53	temp = bytetemp | 0x20;
     54	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
     55
     56	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
     57	temp = bytetemp & 0xFE;
     58	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
     59
     60	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
     61	temp = bytetemp | 0x80;
     62	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
     63
     64	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
     65
     66	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
     67
     68}
     69
     70u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
     71{
     72	struct rtl_priv *rtlpriv = rtl_priv(hw);
     73	u8 data;
     74	u8 bytetemp;
     75	u8 temp;
     76	u32 k = 0;
     77	const u32 efuse_len =
     78		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
     79
     80	if (address < efuse_len) {
     81		temp = address & 0xFF;
     82		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
     83			       temp);
     84		bytetemp = rtl_read_byte(rtlpriv,
     85					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
     86		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
     87		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
     88			       temp);
     89
     90		bytetemp = rtl_read_byte(rtlpriv,
     91					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
     92		temp = bytetemp & 0x7F;
     93		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
     94			       temp);
     95
     96		bytetemp = rtl_read_byte(rtlpriv,
     97					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
     98		while (!(bytetemp & 0x80)) {
     99			bytetemp = rtl_read_byte(rtlpriv,
    100						 rtlpriv->cfg->
    101						 maps[EFUSE_CTRL] + 3);
    102			k++;
    103			if (k == 1000)
    104				break;
    105		}
    106		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
    107		return data;
    108	} else
    109		return 0xFF;
    110
    111}
    112EXPORT_SYMBOL(efuse_read_1byte);
    113
    114void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
    115{
    116	struct rtl_priv *rtlpriv = rtl_priv(hw);
    117	u8 bytetemp;
    118	u8 temp;
    119	u32 k = 0;
    120	const u32 efuse_len =
    121		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
    122
    123	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
    124		address, value);
    125
    126	if (address < efuse_len) {
    127		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
    128
    129		temp = address & 0xFF;
    130		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
    131			       temp);
    132		bytetemp = rtl_read_byte(rtlpriv,
    133					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
    134
    135		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
    136		rtl_write_byte(rtlpriv,
    137			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
    138
    139		bytetemp = rtl_read_byte(rtlpriv,
    140					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
    141		temp = bytetemp | 0x80;
    142		rtl_write_byte(rtlpriv,
    143			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
    144
    145		bytetemp = rtl_read_byte(rtlpriv,
    146					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
    147
    148		while (bytetemp & 0x80) {
    149			bytetemp = rtl_read_byte(rtlpriv,
    150						 rtlpriv->cfg->
    151						 maps[EFUSE_CTRL] + 3);
    152			k++;
    153			if (k == 100) {
    154				k = 0;
    155				break;
    156			}
    157		}
    158	}
    159
    160}
    161
    162void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
    163{
    164	struct rtl_priv *rtlpriv = rtl_priv(hw);
    165	u32 value32;
    166	u8 readbyte;
    167	u16 retry;
    168
    169	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
    170		       (_offset & 0xff));
    171	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
    172	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
    173		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
    174
    175	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
    176	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
    177		       (readbyte & 0x7f));
    178
    179	retry = 0;
    180	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
    181	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
    182		value32 = rtl_read_dword(rtlpriv,
    183					 rtlpriv->cfg->maps[EFUSE_CTRL]);
    184		retry++;
    185	}
    186
    187	udelay(50);
    188	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
    189
    190	*pbuf = (u8) (value32 & 0xff);
    191}
    192EXPORT_SYMBOL_GPL(read_efuse_byte);
    193
    194void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
    195{
    196	struct rtl_priv *rtlpriv = rtl_priv(hw);
    197	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    198	u8 *efuse_tbl;
    199	u8 rtemp8[1];
    200	u16 efuse_addr = 0;
    201	u8 offset, wren;
    202	u8 u1temp = 0;
    203	u16 i;
    204	u16 j;
    205	const u16 efuse_max_section =
    206		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
    207	const u32 efuse_len =
    208		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
    209	u16 **efuse_word;
    210	u16 efuse_utilized = 0;
    211	u8 efuse_usage;
    212
    213	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
    214		rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
    215			"%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
    216			__func__, _offset, _size_byte);
    217		return;
    218	}
    219
    220	/* allocate memory for efuse_tbl and efuse_word */
    221	efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
    222			    GFP_ATOMIC);
    223	if (!efuse_tbl)
    224		return;
    225	efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
    226	if (!efuse_word)
    227		goto out;
    228	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
    229		efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
    230					GFP_ATOMIC);
    231		if (!efuse_word[i])
    232			goto done;
    233	}
    234
    235	for (i = 0; i < efuse_max_section; i++)
    236		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
    237			efuse_word[j][i] = 0xFFFF;
    238
    239	read_efuse_byte(hw, efuse_addr, rtemp8);
    240	if (*rtemp8 != 0xFF) {
    241		efuse_utilized++;
    242		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
    243			"Addr=%d\n", efuse_addr);
    244		efuse_addr++;
    245	}
    246
    247	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
    248		/*  Check PG header for section num.  */
    249		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
    250			u1temp = ((*rtemp8 & 0xE0) >> 5);
    251			read_efuse_byte(hw, efuse_addr, rtemp8);
    252
    253			if ((*rtemp8 & 0x0F) == 0x0F) {
    254				efuse_addr++;
    255				read_efuse_byte(hw, efuse_addr, rtemp8);
    256
    257				if (*rtemp8 != 0xFF &&
    258				    (efuse_addr < efuse_len)) {
    259					efuse_addr++;
    260				}
    261				continue;
    262			} else {
    263				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
    264				wren = (*rtemp8 & 0x0F);
    265				efuse_addr++;
    266			}
    267		} else {
    268			offset = ((*rtemp8 >> 4) & 0x0f);
    269			wren = (*rtemp8 & 0x0f);
    270		}
    271
    272		if (offset < efuse_max_section) {
    273			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
    274				"offset-%d Worden=%x\n", offset, wren);
    275
    276			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
    277				if (!(wren & 0x01)) {
    278					RTPRINT(rtlpriv, FEEPROM,
    279						EFUSE_READ_ALL,
    280						"Addr=%d\n", efuse_addr);
    281
    282					read_efuse_byte(hw, efuse_addr, rtemp8);
    283					efuse_addr++;
    284					efuse_utilized++;
    285					efuse_word[i][offset] =
    286							 (*rtemp8 & 0xff);
    287
    288					if (efuse_addr >= efuse_len)
    289						break;
    290
    291					RTPRINT(rtlpriv, FEEPROM,
    292						EFUSE_READ_ALL,
    293						"Addr=%d\n", efuse_addr);
    294
    295					read_efuse_byte(hw, efuse_addr, rtemp8);
    296					efuse_addr++;
    297					efuse_utilized++;
    298					efuse_word[i][offset] |=
    299					    (((u16)*rtemp8 << 8) & 0xff00);
    300
    301					if (efuse_addr >= efuse_len)
    302						break;
    303				}
    304
    305				wren >>= 1;
    306			}
    307		}
    308
    309		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
    310			"Addr=%d\n", efuse_addr);
    311		read_efuse_byte(hw, efuse_addr, rtemp8);
    312		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
    313			efuse_utilized++;
    314			efuse_addr++;
    315		}
    316	}
    317
    318	for (i = 0; i < efuse_max_section; i++) {
    319		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
    320			efuse_tbl[(i * 8) + (j * 2)] =
    321			    (efuse_word[j][i] & 0xff);
    322			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
    323			    ((efuse_word[j][i] >> 8) & 0xff);
    324		}
    325	}
    326
    327	for (i = 0; i < _size_byte; i++)
    328		pbuf[i] = efuse_tbl[_offset + i];
    329
    330	rtlefuse->efuse_usedbytes = efuse_utilized;
    331	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
    332	rtlefuse->efuse_usedpercentage = efuse_usage;
    333	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
    334				      (u8 *)&efuse_utilized);
    335	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
    336				      &efuse_usage);
    337done:
    338	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
    339		kfree(efuse_word[i]);
    340	kfree(efuse_word);
    341out:
    342	kfree(efuse_tbl);
    343}
    344
    345bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
    346{
    347	struct rtl_priv *rtlpriv = rtl_priv(hw);
    348	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    349	u8 section_idx, i, base;
    350	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
    351	bool wordchanged, result = true;
    352
    353	for (section_idx = 0; section_idx < 16; section_idx++) {
    354		base = section_idx * 8;
    355		wordchanged = false;
    356
    357		for (i = 0; i < 8; i = i + 2) {
    358			if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
    359			    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i] ||
    360			    rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
    361			    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
    362								   1]) {
    363				words_need++;
    364				wordchanged = true;
    365			}
    366		}
    367
    368		if (wordchanged)
    369			hdr_num++;
    370	}
    371
    372	totalbytes = hdr_num + words_need * 2;
    373	efuse_used = rtlefuse->efuse_usedbytes;
    374
    375	if ((totalbytes + efuse_used) >=
    376	    (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
    377		result = false;
    378
    379	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
    380		"%s: totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
    381		__func__, totalbytes, hdr_num, words_need, efuse_used);
    382
    383	return result;
    384}
    385
    386void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
    387		       u16 offset, u32 *value)
    388{
    389	if (type == 1)
    390		efuse_shadow_read_1byte(hw, offset, (u8 *)value);
    391	else if (type == 2)
    392		efuse_shadow_read_2byte(hw, offset, (u16 *)value);
    393	else if (type == 4)
    394		efuse_shadow_read_4byte(hw, offset, value);
    395
    396}
    397EXPORT_SYMBOL(efuse_shadow_read);
    398
    399void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
    400				u32 value)
    401{
    402	if (type == 1)
    403		efuse_shadow_write_1byte(hw, offset, (u8) value);
    404	else if (type == 2)
    405		efuse_shadow_write_2byte(hw, offset, (u16) value);
    406	else if (type == 4)
    407		efuse_shadow_write_4byte(hw, offset, value);
    408
    409}
    410
    411bool efuse_shadow_update(struct ieee80211_hw *hw)
    412{
    413	struct rtl_priv *rtlpriv = rtl_priv(hw);
    414	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    415	u16 i, offset, base;
    416	u8 word_en = 0x0F;
    417	u8 first_pg = false;
    418
    419	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
    420
    421	if (!efuse_shadow_update_chk(hw)) {
    422		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
    423		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
    424		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
    425		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
    426
    427		rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
    428			"efuse out of capacity!!\n");
    429		return false;
    430	}
    431	efuse_power_switch(hw, true, true);
    432
    433	for (offset = 0; offset < 16; offset++) {
    434
    435		word_en = 0x0F;
    436		base = offset * 8;
    437
    438		for (i = 0; i < 8; i++) {
    439			if (first_pg) {
    440				word_en &= ~(BIT(i / 2));
    441
    442				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
    443				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
    444			} else {
    445
    446				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
    447				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
    448					word_en &= ~(BIT(i / 2));
    449
    450					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
    451					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
    452				}
    453			}
    454		}
    455
    456		if (word_en != 0x0F) {
    457			u8 tmpdata[8];
    458
    459			memcpy(tmpdata,
    460			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
    461			       8);
    462			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
    463				      "U-efuse\n", tmpdata, 8);
    464
    465			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
    466						   tmpdata)) {
    467				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
    468					"PG section(%#x) fail!!\n", offset);
    469				break;
    470			}
    471		}
    472	}
    473
    474	efuse_power_switch(hw, true, false);
    475	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
    476
    477	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
    478	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
    479	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
    480
    481	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
    482	return true;
    483}
    484
    485void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
    486{
    487	struct rtl_priv *rtlpriv = rtl_priv(hw);
    488	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    489
    490	if (rtlefuse->autoload_failflag)
    491		memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
    492		       0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
    493	else
    494		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
    495
    496	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
    497			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
    498			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
    499
    500}
    501EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
    502
    503void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
    504{
    505	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
    506
    507	efuse_power_switch(hw, true, true);
    508
    509	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
    510
    511	efuse_power_switch(hw, true, false);
    512
    513}
    514
    515void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
    516{
    517}
    518
    519static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
    520				    u16 offset, u8 *value)
    521{
    522	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    523	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
    524}
    525
    526static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
    527				    u16 offset, u16 *value)
    528{
    529	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    530
    531	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
    532	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
    533
    534}
    535
    536static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
    537				    u16 offset, u32 *value)
    538{
    539	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    540
    541	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
    542	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
    543	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
    544	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
    545}
    546
    547static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
    548				     u16 offset, u8 value)
    549{
    550	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    551
    552	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
    553}
    554
    555static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
    556				     u16 offset, u16 value)
    557{
    558	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    559
    560	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
    561	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
    562
    563}
    564
    565static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
    566				     u16 offset, u32 value)
    567{
    568	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
    569
    570	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
    571	    (u8) (value & 0x000000FF);
    572	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
    573	    (u8) ((value >> 8) & 0x0000FF);
    574	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
    575	    (u8) ((value >> 16) & 0x00FF);
    576	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
    577	    (u8) ((value >> 24) & 0xFF);
    578
    579}
    580
    581int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
    582{
    583	struct rtl_priv *rtlpriv = rtl_priv(hw);
    584	u8 tmpidx = 0;
    585	int result;
    586
    587	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
    588		       (u8) (addr & 0xff));
    589	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
    590		       ((u8) ((addr >> 8) & 0x03)) |
    591		       (rtl_read_byte(rtlpriv,
    592				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
    593			0xFC));
    594
    595	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
    596
    597	while (!(0x80 & rtl_read_byte(rtlpriv,
    598				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
    599	       && (tmpidx < 100)) {
    600		tmpidx++;
    601	}
    602
    603	if (tmpidx < 100) {
    604		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
    605		result = true;
    606	} else {
    607		*data = 0xff;
    608		result = false;
    609	}
    610	return result;
    611}
    612EXPORT_SYMBOL(efuse_one_byte_read);
    613
    614static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
    615{
    616	struct rtl_priv *rtlpriv = rtl_priv(hw);
    617	u8 tmpidx = 0;
    618
    619	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
    620		"Addr = %x Data=%x\n", addr, data);
    621
    622	rtl_write_byte(rtlpriv,
    623		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
    624	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
    625		       (rtl_read_byte(rtlpriv,
    626			 rtlpriv->cfg->maps[EFUSE_CTRL] +
    627			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
    628
    629	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
    630	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
    631
    632	while ((0x80 & rtl_read_byte(rtlpriv,
    633				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
    634	       && (tmpidx < 100)) {
    635		tmpidx++;
    636	}
    637
    638	if (tmpidx < 100)
    639		return true;
    640	return false;
    641}
    642
    643static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
    644{
    645	struct rtl_priv *rtlpriv = rtl_priv(hw);
    646
    647	efuse_power_switch(hw, false, true);
    648	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
    649	efuse_power_switch(hw, false, false);
    650}
    651
    652static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
    653				u8 efuse_data, u8 offset, u8 *tmpdata,
    654				u8 *readstate)
    655{
    656	bool dataempty = true;
    657	u8 hoffset;
    658	u8 tmpidx;
    659	u8 hworden;
    660	u8 word_cnts;
    661
    662	hoffset = (efuse_data >> 4) & 0x0F;
    663	hworden = efuse_data & 0x0F;
    664	word_cnts = efuse_calculate_word_cnts(hworden);
    665
    666	if (hoffset == offset) {
    667		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
    668			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
    669						&efuse_data)) {
    670				tmpdata[tmpidx] = efuse_data;
    671				if (efuse_data != 0xff)
    672					dataempty = false;
    673			}
    674		}
    675
    676		if (!dataempty) {
    677			*readstate = PG_STATE_DATA;
    678		} else {
    679			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
    680			*readstate = PG_STATE_HEADER;
    681		}
    682
    683	} else {
    684		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
    685		*readstate = PG_STATE_HEADER;
    686	}
    687}
    688
    689static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
    690{
    691	u8 readstate = PG_STATE_HEADER;
    692
    693	bool continual = true;
    694
    695	u8 efuse_data, word_cnts = 0;
    696	u16 efuse_addr = 0;
    697	u8 tmpdata[8];
    698
    699	if (data == NULL)
    700		return false;
    701	if (offset > 15)
    702		return false;
    703
    704	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
    705	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
    706
    707	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
    708		if (readstate & PG_STATE_HEADER) {
    709			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
    710			    && (efuse_data != 0xFF))
    711				efuse_read_data_case1(hw, &efuse_addr,
    712						      efuse_data, offset,
    713						      tmpdata, &readstate);
    714			else
    715				continual = false;
    716		} else if (readstate & PG_STATE_DATA) {
    717			efuse_word_enable_data_read(0, tmpdata, data);
    718			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
    719			readstate = PG_STATE_HEADER;
    720		}
    721
    722	}
    723
    724	if ((data[0] == 0xff) && (data[1] == 0xff) &&
    725	    (data[2] == 0xff) && (data[3] == 0xff) &&
    726	    (data[4] == 0xff) && (data[5] == 0xff) &&
    727	    (data[6] == 0xff) && (data[7] == 0xff))
    728		return false;
    729	else
    730		return true;
    731
    732}
    733
    734static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
    735				   u8 efuse_data, u8 offset,
    736				   int *continual, u8 *write_state,
    737				   struct pgpkt_struct *target_pkt,
    738				   int *repeat_times, int *result, u8 word_en)
    739{
    740	struct rtl_priv *rtlpriv = rtl_priv(hw);
    741	struct pgpkt_struct tmp_pkt;
    742	int dataempty = true;
    743	u8 originaldata[8 * sizeof(u8)];
    744	u8 badworden = 0x0F;
    745	u8 match_word_en, tmp_word_en;
    746	u8 tmpindex;
    747	u8 tmp_header = efuse_data;
    748	u8 tmp_word_cnts;
    749
    750	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
    751	tmp_pkt.word_en = tmp_header & 0x0F;
    752	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
    753
    754	if (tmp_pkt.offset != target_pkt->offset) {
    755		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
    756		*write_state = PG_STATE_HEADER;
    757	} else {
    758		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
    759			if (efuse_one_byte_read(hw,
    760						(*efuse_addr + 1 + tmpindex),
    761						&efuse_data) &&
    762			    (efuse_data != 0xFF))
    763				dataempty = false;
    764		}
    765
    766		if (!dataempty) {
    767			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
    768			*write_state = PG_STATE_HEADER;
    769		} else {
    770			match_word_en = 0x0F;
    771			if (!((target_pkt->word_en & BIT(0)) |
    772			    (tmp_pkt.word_en & BIT(0))))
    773				match_word_en &= (~BIT(0));
    774
    775			if (!((target_pkt->word_en & BIT(1)) |
    776			    (tmp_pkt.word_en & BIT(1))))
    777				match_word_en &= (~BIT(1));
    778
    779			if (!((target_pkt->word_en & BIT(2)) |
    780			    (tmp_pkt.word_en & BIT(2))))
    781				match_word_en &= (~BIT(2));
    782
    783			if (!((target_pkt->word_en & BIT(3)) |
    784			    (tmp_pkt.word_en & BIT(3))))
    785				match_word_en &= (~BIT(3));
    786
    787			if ((match_word_en & 0x0F) != 0x0F) {
    788				badworden =
    789				  enable_efuse_data_write(hw,
    790							  *efuse_addr + 1,
    791							  tmp_pkt.word_en,
    792							  target_pkt->data);
    793
    794				if (0x0F != (badworden & 0x0F))	{
    795					u8 reorg_offset = offset;
    796					u8 reorg_worden = badworden;
    797
    798					efuse_pg_packet_write(hw, reorg_offset,
    799							      reorg_worden,
    800							      originaldata);
    801				}
    802
    803				tmp_word_en = 0x0F;
    804				if ((target_pkt->word_en & BIT(0)) ^
    805				    (match_word_en & BIT(0)))
    806					tmp_word_en &= (~BIT(0));
    807
    808				if ((target_pkt->word_en & BIT(1)) ^
    809				    (match_word_en & BIT(1)))
    810					tmp_word_en &= (~BIT(1));
    811
    812				if ((target_pkt->word_en & BIT(2)) ^
    813				    (match_word_en & BIT(2)))
    814					tmp_word_en &= (~BIT(2));
    815
    816				if ((target_pkt->word_en & BIT(3)) ^
    817				    (match_word_en & BIT(3)))
    818					tmp_word_en &= (~BIT(3));
    819
    820				if ((tmp_word_en & 0x0F) != 0x0F) {
    821					*efuse_addr = efuse_get_current_size(hw);
    822					target_pkt->offset = offset;
    823					target_pkt->word_en = tmp_word_en;
    824				} else {
    825					*continual = false;
    826				}
    827				*write_state = PG_STATE_HEADER;
    828				*repeat_times += 1;
    829				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
    830					*continual = false;
    831					*result = false;
    832				}
    833			} else {
    834				*efuse_addr += (2 * tmp_word_cnts) + 1;
    835				target_pkt->offset = offset;
    836				target_pkt->word_en = word_en;
    837				*write_state = PG_STATE_HEADER;
    838			}
    839		}
    840	}
    841	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
    842}
    843
    844static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
    845				   int *continual, u8 *write_state,
    846				   struct pgpkt_struct target_pkt,
    847				   int *repeat_times, int *result)
    848{
    849	struct rtl_priv *rtlpriv = rtl_priv(hw);
    850	struct pgpkt_struct tmp_pkt;
    851	u8 pg_header;
    852	u8 tmp_header;
    853	u8 originaldata[8 * sizeof(u8)];
    854	u8 tmp_word_cnts;
    855	u8 badworden = 0x0F;
    856
    857	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
    858	efuse_one_byte_write(hw, *efuse_addr, pg_header);
    859	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
    860
    861	if (tmp_header == pg_header) {
    862		*write_state = PG_STATE_DATA;
    863	} else if (tmp_header == 0xFF) {
    864		*write_state = PG_STATE_HEADER;
    865		*repeat_times += 1;
    866		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
    867			*continual = false;
    868			*result = false;
    869		}
    870	} else {
    871		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
    872		tmp_pkt.word_en = tmp_header & 0x0F;
    873
    874		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
    875
    876		memset(originaldata, 0xff,  8 * sizeof(u8));
    877
    878		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
    879			badworden = enable_efuse_data_write(hw,
    880							    *efuse_addr + 1,
    881							    tmp_pkt.word_en,
    882							    originaldata);
    883
    884			if (0x0F != (badworden & 0x0F)) {
    885				u8 reorg_offset = tmp_pkt.offset;
    886				u8 reorg_worden = badworden;
    887
    888				efuse_pg_packet_write(hw, reorg_offset,
    889						      reorg_worden,
    890						      originaldata);
    891				*efuse_addr = efuse_get_current_size(hw);
    892			} else {
    893				*efuse_addr = *efuse_addr +
    894					      (tmp_word_cnts * 2) + 1;
    895			}
    896		} else {
    897			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
    898		}
    899
    900		*write_state = PG_STATE_HEADER;
    901		*repeat_times += 1;
    902		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
    903			*continual = false;
    904			*result = false;
    905		}
    906
    907		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
    908			"efuse PG_STATE_HEADER-2\n");
    909	}
    910}
    911
    912static int efuse_pg_packet_write(struct ieee80211_hw *hw,
    913				 u8 offset, u8 word_en, u8 *data)
    914{
    915	struct rtl_priv *rtlpriv = rtl_priv(hw);
    916	struct pgpkt_struct target_pkt;
    917	u8 write_state = PG_STATE_HEADER;
    918	int continual = true, result = true;
    919	u16 efuse_addr = 0;
    920	u8 efuse_data;
    921	u8 target_word_cnts = 0;
    922	u8 badworden = 0x0F;
    923	static int repeat_times;
    924
    925	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
    926		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
    927		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
    928			"efuse_pg_packet_write error\n");
    929		return false;
    930	}
    931
    932	target_pkt.offset = offset;
    933	target_pkt.word_en = word_en;
    934
    935	memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
    936
    937	efuse_word_enable_data_read(word_en, data, target_pkt.data);
    938	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
    939
    940	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
    941
    942	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
    943		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
    944		if (write_state == PG_STATE_HEADER) {
    945			badworden = 0x0F;
    946			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
    947				"efuse PG_STATE_HEADER\n");
    948
    949			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
    950			    (efuse_data != 0xFF))
    951				efuse_write_data_case1(hw, &efuse_addr,
    952						       efuse_data, offset,
    953						       &continual,
    954						       &write_state,
    955						       &target_pkt,
    956						       &repeat_times, &result,
    957						       word_en);
    958			else
    959				efuse_write_data_case2(hw, &efuse_addr,
    960						       &continual,
    961						       &write_state,
    962						       target_pkt,
    963						       &repeat_times,
    964						       &result);
    965
    966		} else if (write_state == PG_STATE_DATA) {
    967			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
    968				"efuse PG_STATE_DATA\n");
    969			badworden =
    970			    enable_efuse_data_write(hw, efuse_addr + 1,
    971						    target_pkt.word_en,
    972						    target_pkt.data);
    973
    974			if ((badworden & 0x0F) == 0x0F) {
    975				continual = false;
    976			} else {
    977				efuse_addr =
    978				    efuse_addr + (2 * target_word_cnts) + 1;
    979
    980				target_pkt.offset = offset;
    981				target_pkt.word_en = badworden;
    982				target_word_cnts =
    983				    efuse_calculate_word_cnts(target_pkt.
    984							      word_en);
    985				write_state = PG_STATE_HEADER;
    986				repeat_times++;
    987				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
    988					continual = false;
    989					result = false;
    990				}
    991				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
    992					"efuse PG_STATE_HEADER-3\n");
    993			}
    994		}
    995	}
    996
    997	if (efuse_addr >= (EFUSE_MAX_SIZE -
    998		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
    999		rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
   1000			"efuse_addr(%#x) Out of size!!\n", efuse_addr);
   1001	}
   1002
   1003	return true;
   1004}
   1005
   1006static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
   1007					u8 *targetdata)
   1008{
   1009	if (!(word_en & BIT(0))) {
   1010		targetdata[0] = sourdata[0];
   1011		targetdata[1] = sourdata[1];
   1012	}
   1013
   1014	if (!(word_en & BIT(1))) {
   1015		targetdata[2] = sourdata[2];
   1016		targetdata[3] = sourdata[3];
   1017	}
   1018
   1019	if (!(word_en & BIT(2))) {
   1020		targetdata[4] = sourdata[4];
   1021		targetdata[5] = sourdata[5];
   1022	}
   1023
   1024	if (!(word_en & BIT(3))) {
   1025		targetdata[6] = sourdata[6];
   1026		targetdata[7] = sourdata[7];
   1027	}
   1028}
   1029
   1030static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
   1031				  u16 efuse_addr, u8 word_en, u8 *data)
   1032{
   1033	struct rtl_priv *rtlpriv = rtl_priv(hw);
   1034	u16 tmpaddr;
   1035	u16 start_addr = efuse_addr;
   1036	u8 badworden = 0x0F;
   1037	u8 tmpdata[8];
   1038
   1039	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
   1040	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
   1041		"word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
   1042
   1043	if (!(word_en & BIT(0))) {
   1044		tmpaddr = start_addr;
   1045		efuse_one_byte_write(hw, start_addr++, data[0]);
   1046		efuse_one_byte_write(hw, start_addr++, data[1]);
   1047
   1048		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
   1049		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
   1050		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
   1051			badworden &= (~BIT(0));
   1052	}
   1053
   1054	if (!(word_en & BIT(1))) {
   1055		tmpaddr = start_addr;
   1056		efuse_one_byte_write(hw, start_addr++, data[2]);
   1057		efuse_one_byte_write(hw, start_addr++, data[3]);
   1058
   1059		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
   1060		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
   1061		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
   1062			badworden &= (~BIT(1));
   1063	}
   1064
   1065	if (!(word_en & BIT(2))) {
   1066		tmpaddr = start_addr;
   1067		efuse_one_byte_write(hw, start_addr++, data[4]);
   1068		efuse_one_byte_write(hw, start_addr++, data[5]);
   1069
   1070		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
   1071		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
   1072		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
   1073			badworden &= (~BIT(2));
   1074	}
   1075
   1076	if (!(word_en & BIT(3))) {
   1077		tmpaddr = start_addr;
   1078		efuse_one_byte_write(hw, start_addr++, data[6]);
   1079		efuse_one_byte_write(hw, start_addr++, data[7]);
   1080
   1081		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
   1082		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
   1083		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
   1084			badworden &= (~BIT(3));
   1085	}
   1086
   1087	return badworden;
   1088}
   1089
   1090void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
   1091{
   1092	struct rtl_priv *rtlpriv = rtl_priv(hw);
   1093	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
   1094	u8 tempval;
   1095	u16 tmpv16;
   1096
   1097	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
   1098		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
   1099		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
   1100			rtl_write_byte(rtlpriv,
   1101				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
   1102		} else {
   1103			tmpv16 =
   1104			  rtl_read_word(rtlpriv,
   1105					rtlpriv->cfg->maps[SYS_ISO_CTRL]);
   1106			if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
   1107				tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
   1108				rtl_write_word(rtlpriv,
   1109					       rtlpriv->cfg->maps[SYS_ISO_CTRL],
   1110					       tmpv16);
   1111			}
   1112		}
   1113		tmpv16 = rtl_read_word(rtlpriv,
   1114				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
   1115		if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
   1116			tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
   1117			rtl_write_word(rtlpriv,
   1118				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
   1119		}
   1120
   1121		tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
   1122		if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
   1123		    (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
   1124			tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
   1125				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
   1126			rtl_write_word(rtlpriv,
   1127				       rtlpriv->cfg->maps[SYS_CLK], tmpv16);
   1128		}
   1129	}
   1130
   1131	if (pwrstate) {
   1132		if (write) {
   1133			tempval = rtl_read_byte(rtlpriv,
   1134						rtlpriv->cfg->maps[EFUSE_TEST] +
   1135						3);
   1136
   1137			if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
   1138				tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
   1139				tempval |= (VOLTAGE_V25 << 3);
   1140			} else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
   1141				tempval &= 0x0F;
   1142				tempval |= (VOLTAGE_V25 << 4);
   1143			}
   1144
   1145			rtl_write_byte(rtlpriv,
   1146				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
   1147				       (tempval | 0x80));
   1148		}
   1149
   1150		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
   1151			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
   1152				       0x03);
   1153		}
   1154	} else {
   1155		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
   1156		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
   1157			rtl_write_byte(rtlpriv,
   1158				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
   1159
   1160		if (write) {
   1161			tempval = rtl_read_byte(rtlpriv,
   1162						rtlpriv->cfg->maps[EFUSE_TEST] +
   1163						3);
   1164			rtl_write_byte(rtlpriv,
   1165				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
   1166				       (tempval & 0x7F));
   1167		}
   1168
   1169		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
   1170			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
   1171				       0x02);
   1172		}
   1173	}
   1174}
   1175EXPORT_SYMBOL(efuse_power_switch);
   1176
   1177static u16 efuse_get_current_size(struct ieee80211_hw *hw)
   1178{
   1179	int continual = true;
   1180	u16 efuse_addr = 0;
   1181	u8 hworden;
   1182	u8 efuse_data, word_cnts;
   1183
   1184	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
   1185	       (efuse_addr < EFUSE_MAX_SIZE)) {
   1186		if (efuse_data != 0xFF) {
   1187			hworden = efuse_data & 0x0F;
   1188			word_cnts = efuse_calculate_word_cnts(hworden);
   1189			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
   1190		} else {
   1191			continual = false;
   1192		}
   1193	}
   1194
   1195	return efuse_addr;
   1196}
   1197
   1198static u8 efuse_calculate_word_cnts(u8 word_en)
   1199{
   1200	u8 word_cnts = 0;
   1201
   1202	if (!(word_en & BIT(0)))
   1203		word_cnts++;
   1204	if (!(word_en & BIT(1)))
   1205		word_cnts++;
   1206	if (!(word_en & BIT(2)))
   1207		word_cnts++;
   1208	if (!(word_en & BIT(3)))
   1209		word_cnts++;
   1210	return word_cnts;
   1211}
   1212
   1213int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
   1214		   int max_size, u8 *hwinfo, int *params)
   1215{
   1216	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
   1217	struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
   1218	struct device *dev = &rtlpcipriv->dev.pdev->dev;
   1219	u16 eeprom_id;
   1220	u16 i, usvalue;
   1221
   1222	switch (rtlefuse->epromtype) {
   1223	case EEPROM_BOOT_EFUSE:
   1224		rtl_efuse_shadow_map_update(hw);
   1225		break;
   1226
   1227	case EEPROM_93C46:
   1228		pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
   1229		return 1;
   1230
   1231	default:
   1232		dev_warn(dev, "no efuse data\n");
   1233		return 1;
   1234	}
   1235
   1236	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
   1237
   1238	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
   1239		      hwinfo, max_size);
   1240
   1241	eeprom_id = *((u16 *)&hwinfo[0]);
   1242	if (eeprom_id != params[0]) {
   1243		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
   1244			"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
   1245		rtlefuse->autoload_failflag = true;
   1246	} else {
   1247		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
   1248		rtlefuse->autoload_failflag = false;
   1249	}
   1250
   1251	if (rtlefuse->autoload_failflag)
   1252		return 1;
   1253
   1254	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
   1255	rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
   1256	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
   1257	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
   1258	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
   1259		"EEPROMId = 0x%4x\n", eeprom_id);
   1260	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
   1261		"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
   1262	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
   1263		"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
   1264	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
   1265		"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
   1266	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
   1267		"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
   1268
   1269	for (i = 0; i < 6; i += 2) {
   1270		usvalue = *(u16 *)&hwinfo[params[5] + i];
   1271		*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
   1272	}
   1273	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
   1274
   1275	rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
   1276	rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
   1277	rtlefuse->txpwr_fromeprom = true;
   1278	rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
   1279
   1280	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
   1281		"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
   1282
   1283	/* set channel plan to world wide 13 */
   1284	rtlefuse->channel_plan = params[9];
   1285
   1286	return 0;
   1287}
   1288EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
   1289
   1290void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
   1291{
   1292	struct rtl_priv *rtlpriv = rtl_priv(hw);
   1293	u8 *pu4byteptr = (u8 *)buffer;
   1294	u32 i;
   1295
   1296	for (i = 0; i < size; i++)
   1297		rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
   1298}
   1299EXPORT_SYMBOL_GPL(rtl_fw_block_write);
   1300
   1301void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
   1302		       u32 size)
   1303{
   1304	struct rtl_priv *rtlpriv = rtl_priv(hw);
   1305	u8 value8;
   1306	u8 u8page = (u8)(page & 0x07);
   1307
   1308	value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
   1309
   1310	rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
   1311	rtl_fw_block_write(hw, buffer, size);
   1312}
   1313EXPORT_SYMBOL_GPL(rtl_fw_page_write);
   1314
   1315void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
   1316{
   1317	u32 fwlen = *pfwlen;
   1318	u8 remain = (u8)(fwlen % 4);
   1319
   1320	remain = (remain == 0) ? 0 : (4 - remain);
   1321
   1322	while (remain > 0) {
   1323		pfwbuf[fwlen] = 0;
   1324		fwlen++;
   1325		remain--;
   1326	}
   1327
   1328	*pfwlen = fwlen;
   1329}
   1330EXPORT_SYMBOL_GPL(rtl_fill_dummy);
   1331
   1332void rtl_efuse_ops_init(struct ieee80211_hw *hw)
   1333{
   1334	struct rtl_priv *rtlpriv = rtl_priv(hw);
   1335
   1336	rtlpriv->efuse.efuse_ops = &efuse_ops;
   1337}
   1338EXPORT_SYMBOL_GPL(rtl_efuse_ops_init);