cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

zd_chip.c (39519B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* ZD1211 USB-WLAN driver for Linux
      3 *
      4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
      5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
      6 */
      7
      8/* This file implements all the hardware specific functions for the ZD1211
      9 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
     10 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
     11 */
     12
     13#include <linux/kernel.h>
     14#include <linux/errno.h>
     15#include <linux/slab.h>
     16
     17#include "zd_def.h"
     18#include "zd_chip.h"
     19#include "zd_mac.h"
     20#include "zd_rf.h"
     21
     22void zd_chip_init(struct zd_chip *chip,
     23	         struct ieee80211_hw *hw,
     24		 struct usb_interface *intf)
     25{
     26	memset(chip, 0, sizeof(*chip));
     27	mutex_init(&chip->mutex);
     28	zd_usb_init(&chip->usb, hw, intf);
     29	zd_rf_init(&chip->rf);
     30}
     31
     32void zd_chip_clear(struct zd_chip *chip)
     33{
     34	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
     35	zd_usb_clear(&chip->usb);
     36	zd_rf_clear(&chip->rf);
     37	mutex_destroy(&chip->mutex);
     38	ZD_MEMCLEAR(chip, sizeof(*chip));
     39}
     40
     41static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
     42{
     43	u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
     44	return scnprintf(buffer, size, "%3phD", addr);
     45}
     46
     47/* Prints an identifier line, which will support debugging. */
     48static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
     49{
     50	int i = 0;
     51
     52	i = scnprintf(buffer, size, "zd1211%s chip ",
     53		      zd_chip_is_zd1211b(chip) ? "b" : "");
     54	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
     55	i += scnprintf(buffer+i, size-i, " ");
     56	i += scnprint_mac_oui(chip, buffer+i, size-i);
     57	i += scnprintf(buffer+i, size-i, " ");
     58	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
     59	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
     60		chip->patch_cck_gain ? 'g' : '-',
     61		chip->patch_cr157 ? '7' : '-',
     62		chip->patch_6m_band_edge ? '6' : '-',
     63		chip->new_phy_layout ? 'N' : '-',
     64		chip->al2230s_bit ? 'S' : '-');
     65	return i;
     66}
     67
     68static void print_id(struct zd_chip *chip)
     69{
     70	char buffer[80];
     71
     72	scnprint_id(chip, buffer, sizeof(buffer));
     73	buffer[sizeof(buffer)-1] = 0;
     74	dev_info(zd_chip_dev(chip), "%s\n", buffer);
     75}
     76
     77static zd_addr_t inc_addr(zd_addr_t addr)
     78{
     79	u16 a = (u16)addr;
     80	/* Control registers use byte addressing, but everything else uses word
     81	 * addressing. */
     82	if ((a & 0xf000) == CR_START)
     83		a += 2;
     84	else
     85		a += 1;
     86	return (zd_addr_t)a;
     87}
     88
     89/* Read a variable number of 32-bit values. Parameter count is not allowed to
     90 * exceed USB_MAX_IOREAD32_COUNT.
     91 */
     92int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
     93		 unsigned int count)
     94{
     95	int r;
     96	int i;
     97	zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
     98	u16 v16[USB_MAX_IOREAD32_COUNT * 2];
     99	unsigned int count16;
    100
    101	if (count > USB_MAX_IOREAD32_COUNT)
    102		return -EINVAL;
    103
    104	/* Use stack for values and addresses. */
    105	count16 = 2 * count;
    106	BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
    107	BUG_ON(count16 * sizeof(u16) > sizeof(v16));
    108
    109	for (i = 0; i < count; i++) {
    110		int j = 2*i;
    111		/* We read the high word always first. */
    112		a16[j] = inc_addr(addr[i]);
    113		a16[j+1] = addr[i];
    114	}
    115
    116	r = zd_ioread16v_locked(chip, v16, a16, count16);
    117	if (r) {
    118		dev_dbg_f(zd_chip_dev(chip),
    119			  "error: %s. Error number %d\n", __func__, r);
    120		return r;
    121	}
    122
    123	for (i = 0; i < count; i++) {
    124		int j = 2*i;
    125		values[i] = (v16[j] << 16) | v16[j+1];
    126	}
    127
    128	return 0;
    129}
    130
    131static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
    132				       const struct zd_ioreq32 *ioreqs,
    133				       unsigned int count)
    134{
    135	int i, j, r;
    136	struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
    137	unsigned int count16;
    138
    139	/* Use stack for values and addresses. */
    140
    141	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    142
    143	if (count == 0)
    144		return 0;
    145	if (count > USB_MAX_IOWRITE32_COUNT)
    146		return -EINVAL;
    147
    148	count16 = 2 * count;
    149	BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
    150
    151	for (i = 0; i < count; i++) {
    152		j = 2*i;
    153		/* We write the high word always first. */
    154		ioreqs16[j].value   = ioreqs[i].value >> 16;
    155		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
    156		ioreqs16[j+1].value = ioreqs[i].value;
    157		ioreqs16[j+1].addr  = ioreqs[i].addr;
    158	}
    159
    160	r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
    161#ifdef DEBUG
    162	if (r) {
    163		dev_dbg_f(zd_chip_dev(chip),
    164			  "error %d in zd_usb_write16v\n", r);
    165	}
    166#endif /* DEBUG */
    167	return r;
    168}
    169
    170int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
    171			  unsigned int count)
    172{
    173	int r;
    174
    175	zd_usb_iowrite16v_async_start(&chip->usb);
    176	r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
    177	if (r) {
    178		zd_usb_iowrite16v_async_end(&chip->usb, 0);
    179		return r;
    180	}
    181	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
    182}
    183
    184int zd_iowrite16a_locked(struct zd_chip *chip,
    185                  const struct zd_ioreq16 *ioreqs, unsigned int count)
    186{
    187	int r;
    188	unsigned int i, j, t, max;
    189
    190	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    191	zd_usb_iowrite16v_async_start(&chip->usb);
    192
    193	for (i = 0; i < count; i += j + t) {
    194		t = 0;
    195		max = count-i;
    196		if (max > USB_MAX_IOWRITE16_COUNT)
    197			max = USB_MAX_IOWRITE16_COUNT;
    198		for (j = 0; j < max; j++) {
    199			if (!ioreqs[i+j].addr) {
    200				t = 1;
    201				break;
    202			}
    203		}
    204
    205		r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
    206		if (r) {
    207			zd_usb_iowrite16v_async_end(&chip->usb, 0);
    208			dev_dbg_f(zd_chip_dev(chip),
    209				  "error zd_usb_iowrite16v. Error number %d\n",
    210				  r);
    211			return r;
    212		}
    213	}
    214
    215	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
    216}
    217
    218/* Writes a variable number of 32 bit registers. The functions will split
    219 * that in several USB requests. A split can be forced by inserting an IO
    220 * request with an zero address field.
    221 */
    222int zd_iowrite32a_locked(struct zd_chip *chip,
    223	          const struct zd_ioreq32 *ioreqs, unsigned int count)
    224{
    225	int r;
    226	unsigned int i, j, t, max;
    227
    228	zd_usb_iowrite16v_async_start(&chip->usb);
    229
    230	for (i = 0; i < count; i += j + t) {
    231		t = 0;
    232		max = count-i;
    233		if (max > USB_MAX_IOWRITE32_COUNT)
    234			max = USB_MAX_IOWRITE32_COUNT;
    235		for (j = 0; j < max; j++) {
    236			if (!ioreqs[i+j].addr) {
    237				t = 1;
    238				break;
    239			}
    240		}
    241
    242		r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
    243		if (r) {
    244			zd_usb_iowrite16v_async_end(&chip->usb, 0);
    245			dev_dbg_f(zd_chip_dev(chip),
    246				"error _%s. Error number %d\n", __func__,
    247				r);
    248			return r;
    249		}
    250	}
    251
    252	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
    253}
    254
    255int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
    256{
    257	int r;
    258
    259	mutex_lock(&chip->mutex);
    260	r = zd_ioread16_locked(chip, value, addr);
    261	mutex_unlock(&chip->mutex);
    262	return r;
    263}
    264
    265int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
    266{
    267	int r;
    268
    269	mutex_lock(&chip->mutex);
    270	r = zd_ioread32_locked(chip, value, addr);
    271	mutex_unlock(&chip->mutex);
    272	return r;
    273}
    274
    275int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
    276{
    277	int r;
    278
    279	mutex_lock(&chip->mutex);
    280	r = zd_iowrite16_locked(chip, value, addr);
    281	mutex_unlock(&chip->mutex);
    282	return r;
    283}
    284
    285int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
    286{
    287	int r;
    288
    289	mutex_lock(&chip->mutex);
    290	r = zd_iowrite32_locked(chip, value, addr);
    291	mutex_unlock(&chip->mutex);
    292	return r;
    293}
    294
    295int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
    296	          u32 *values, unsigned int count)
    297{
    298	int r;
    299
    300	mutex_lock(&chip->mutex);
    301	r = zd_ioread32v_locked(chip, values, addresses, count);
    302	mutex_unlock(&chip->mutex);
    303	return r;
    304}
    305
    306int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
    307	          unsigned int count)
    308{
    309	int r;
    310
    311	mutex_lock(&chip->mutex);
    312	r = zd_iowrite32a_locked(chip, ioreqs, count);
    313	mutex_unlock(&chip->mutex);
    314	return r;
    315}
    316
    317static int read_pod(struct zd_chip *chip, u8 *rf_type)
    318{
    319	int r;
    320	u32 value;
    321
    322	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    323	r = zd_ioread32_locked(chip, &value, E2P_POD);
    324	if (r)
    325		goto error;
    326	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
    327
    328	/* FIXME: AL2230 handling (Bit 7 in POD) */
    329	*rf_type = value & 0x0f;
    330	chip->pa_type = (value >> 16) & 0x0f;
    331	chip->patch_cck_gain = (value >> 8) & 0x1;
    332	chip->patch_cr157 = (value >> 13) & 0x1;
    333	chip->patch_6m_band_edge = (value >> 21) & 0x1;
    334	chip->new_phy_layout = (value >> 31) & 0x1;
    335	chip->al2230s_bit = (value >> 7) & 0x1;
    336	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
    337	chip->supports_tx_led = 1;
    338	if (value & (1 << 24)) { /* LED scenario */
    339		if (value & (1 << 29))
    340			chip->supports_tx_led = 0;
    341	}
    342
    343	dev_dbg_f(zd_chip_dev(chip),
    344		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
    345		"patch 6M %d new PHY %d link LED%d tx led %d\n",
    346		zd_rf_name(*rf_type), *rf_type,
    347		chip->pa_type, chip->patch_cck_gain,
    348		chip->patch_cr157, chip->patch_6m_band_edge,
    349		chip->new_phy_layout,
    350		chip->link_led == LED1 ? 1 : 2,
    351		chip->supports_tx_led);
    352	return 0;
    353error:
    354	*rf_type = 0;
    355	chip->pa_type = 0;
    356	chip->patch_cck_gain = 0;
    357	chip->patch_cr157 = 0;
    358	chip->patch_6m_band_edge = 0;
    359	chip->new_phy_layout = 0;
    360	return r;
    361}
    362
    363static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
    364				    const struct zd_ioreq32 *in_reqs,
    365				    const char *type)
    366{
    367	int r;
    368	struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
    369
    370	if (mac_addr) {
    371		reqs[0].value = (mac_addr[3] << 24)
    372			      | (mac_addr[2] << 16)
    373			      | (mac_addr[1] <<  8)
    374			      |  mac_addr[0];
    375		reqs[1].value = (mac_addr[5] <<  8)
    376			      |  mac_addr[4];
    377		dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
    378	} else {
    379		dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
    380	}
    381
    382	mutex_lock(&chip->mutex);
    383	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
    384	mutex_unlock(&chip->mutex);
    385	return r;
    386}
    387
    388/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
    389 *              CR_MAC_ADDR_P2 must be overwritten
    390 */
    391int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
    392{
    393	static const struct zd_ioreq32 reqs[2] = {
    394		[0] = { .addr = CR_MAC_ADDR_P1 },
    395		[1] = { .addr = CR_MAC_ADDR_P2 },
    396	};
    397
    398	return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
    399}
    400
    401int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
    402{
    403	static const struct zd_ioreq32 reqs[2] = {
    404		[0] = { .addr = CR_BSSID_P1 },
    405		[1] = { .addr = CR_BSSID_P2 },
    406	};
    407
    408	return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
    409}
    410
    411int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
    412{
    413	int r;
    414	u32 value;
    415
    416	mutex_lock(&chip->mutex);
    417	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
    418	mutex_unlock(&chip->mutex);
    419	if (r)
    420		return r;
    421
    422	*regdomain = value >> 16;
    423	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
    424
    425	return 0;
    426}
    427
    428static int read_values(struct zd_chip *chip, u8 *values, size_t count,
    429	               zd_addr_t e2p_addr, u32 guard)
    430{
    431	int r;
    432	int i;
    433	u32 v;
    434
    435	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    436	for (i = 0;;) {
    437		r = zd_ioread32_locked(chip, &v,
    438			               (zd_addr_t)((u16)e2p_addr+i/2));
    439		if (r)
    440			return r;
    441		v -= guard;
    442		if (i+4 < count) {
    443			values[i++] = v;
    444			values[i++] = v >>  8;
    445			values[i++] = v >> 16;
    446			values[i++] = v >> 24;
    447			continue;
    448		}
    449		for (;i < count; i++)
    450			values[i] = v >> (8*(i%3));
    451		return 0;
    452	}
    453}
    454
    455static int read_pwr_cal_values(struct zd_chip *chip)
    456{
    457	return read_values(chip, chip->pwr_cal_values,
    458		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
    459			0);
    460}
    461
    462static int read_pwr_int_values(struct zd_chip *chip)
    463{
    464	return read_values(chip, chip->pwr_int_values,
    465		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
    466			E2P_PWR_INT_GUARD);
    467}
    468
    469static int read_ofdm_cal_values(struct zd_chip *chip)
    470{
    471	int r;
    472	int i;
    473	static const zd_addr_t addresses[] = {
    474		E2P_36M_CAL_VALUE1,
    475		E2P_48M_CAL_VALUE1,
    476		E2P_54M_CAL_VALUE1,
    477	};
    478
    479	for (i = 0; i < 3; i++) {
    480		r = read_values(chip, chip->ofdm_cal_values[i],
    481				E2P_CHANNEL_COUNT, addresses[i], 0);
    482		if (r)
    483			return r;
    484	}
    485	return 0;
    486}
    487
    488static int read_cal_int_tables(struct zd_chip *chip)
    489{
    490	int r;
    491
    492	r = read_pwr_cal_values(chip);
    493	if (r)
    494		return r;
    495	r = read_pwr_int_values(chip);
    496	if (r)
    497		return r;
    498	r = read_ofdm_cal_values(chip);
    499	if (r)
    500		return r;
    501	return 0;
    502}
    503
    504/* phy means physical registers */
    505int zd_chip_lock_phy_regs(struct zd_chip *chip)
    506{
    507	int r;
    508	u32 tmp;
    509
    510	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    511	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
    512	if (r) {
    513		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
    514		return r;
    515	}
    516
    517	tmp &= ~UNLOCK_PHY_REGS;
    518
    519	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
    520	if (r)
    521		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
    522	return r;
    523}
    524
    525int zd_chip_unlock_phy_regs(struct zd_chip *chip)
    526{
    527	int r;
    528	u32 tmp;
    529
    530	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    531	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
    532	if (r) {
    533		dev_err(zd_chip_dev(chip),
    534			"error ioread32(CR_REG1): %d\n", r);
    535		return r;
    536	}
    537
    538	tmp |= UNLOCK_PHY_REGS;
    539
    540	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
    541	if (r)
    542		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
    543	return r;
    544}
    545
    546/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
    547static int patch_cr157(struct zd_chip *chip)
    548{
    549	int r;
    550	u16 value;
    551
    552	if (!chip->patch_cr157)
    553		return 0;
    554
    555	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
    556	if (r)
    557		return r;
    558
    559	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
    560	return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
    561}
    562
    563/*
    564 * 6M band edge can be optionally overwritten for certain RF's
    565 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
    566 * bit (for AL2230, AL2230S)
    567 */
    568static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
    569{
    570	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    571	if (!chip->patch_6m_band_edge)
    572		return 0;
    573
    574	return zd_rf_patch_6m_band_edge(&chip->rf, channel);
    575}
    576
    577/* Generic implementation of 6M band edge patching, used by most RFs via
    578 * zd_rf_generic_patch_6m() */
    579int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
    580{
    581	struct zd_ioreq16 ioreqs[] = {
    582		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
    583		{ ZD_CR47,  0x1e },
    584	};
    585
    586	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
    587	if (channel == 1 || channel == 11)
    588		ioreqs[0].value = 0x12;
    589
    590	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
    591	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
    592}
    593
    594static int zd1211_hw_reset_phy(struct zd_chip *chip)
    595{
    596	static const struct zd_ioreq16 ioreqs[] = {
    597		{ ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
    598		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
    599		{ ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
    600		{ ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
    601		{ ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
    602		{ ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
    603		{ ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
    604		{ ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
    605		{ ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
    606		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
    607		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
    608		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
    609		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
    610		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
    611		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
    612		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
    613		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
    614		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
    615		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
    616		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
    617		{ ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
    618		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
    619		{ ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
    620		{ ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
    621		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
    622		{ ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
    623		{ ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
    624		{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
    625		{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
    626		{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
    627		{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
    628		{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
    629		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
    630		{ },
    631		{ ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
    632		{ ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
    633		{ ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
    634		{ ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
    635		{ ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
    636		{ ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
    637		{ ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
    638		{ ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
    639		{ ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
    640		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
    641		{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
    642		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
    643		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
    644		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
    645		{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
    646		{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
    647		{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
    648		{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
    649		{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
    650		{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
    651		{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
    652		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
    653		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
    654		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
    655		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
    656		/* Note: ZD_CR204 must lead the ZD_CR203 */
    657		{ ZD_CR204, 0x7d },
    658		{ },
    659		{ ZD_CR203, 0x30 },
    660	};
    661
    662	int r, t;
    663
    664	dev_dbg_f(zd_chip_dev(chip), "\n");
    665
    666	r = zd_chip_lock_phy_regs(chip);
    667	if (r)
    668		goto out;
    669
    670	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
    671	if (r)
    672		goto unlock;
    673
    674	r = patch_cr157(chip);
    675unlock:
    676	t = zd_chip_unlock_phy_regs(chip);
    677	if (t && !r)
    678		r = t;
    679out:
    680	return r;
    681}
    682
    683static int zd1211b_hw_reset_phy(struct zd_chip *chip)
    684{
    685	static const struct zd_ioreq16 ioreqs[] = {
    686		{ ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
    687		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
    688		{ ZD_CR10,  0x81 },
    689		/* power control { { ZD_CR11,  1 << 6 }, */
    690		{ ZD_CR11,  0x00 },
    691		{ ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
    692		{ ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
    693		{ ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
    694		{ ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
    695		{ ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
    696		{ ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
    697		{ ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
    698		{ ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
    699		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
    700		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
    701		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
    702		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
    703		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
    704		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
    705		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
    706		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
    707		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
    708		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
    709		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
    710		{ ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
    711		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
    712		{ ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
    713		{ ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
    714		{ ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
    715		{ ZD_CR94,  0x01 },
    716		{ ZD_CR95,  0x20 }, /* ZD1211B */
    717		{ ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
    718		{ ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
    719		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
    720		{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
    721		{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
    722		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
    723		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
    724		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
    725		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
    726		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
    727		{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
    728		{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
    729		{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
    730		{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
    731		{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
    732		{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
    733		{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
    734		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
    735		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
    736		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
    737		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
    738		/* Note: ZD_CR204 must lead the ZD_CR203 */
    739		{ ZD_CR204, 0x7d },
    740		{},
    741		{ ZD_CR203, 0x30 },
    742	};
    743
    744	int r, t;
    745
    746	dev_dbg_f(zd_chip_dev(chip), "\n");
    747
    748	r = zd_chip_lock_phy_regs(chip);
    749	if (r)
    750		goto out;
    751
    752	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
    753	t = zd_chip_unlock_phy_regs(chip);
    754	if (t && !r)
    755		r = t;
    756out:
    757	return r;
    758}
    759
    760static int hw_reset_phy(struct zd_chip *chip)
    761{
    762	return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
    763		                  zd1211_hw_reset_phy(chip);
    764}
    765
    766static int zd1211_hw_init_hmac(struct zd_chip *chip)
    767{
    768	static const struct zd_ioreq32 ioreqs[] = {
    769		{ CR_ZD1211_RETRY_MAX,		ZD1211_RETRY_COUNT },
    770		{ CR_RX_THRESHOLD,		0x000c0640 },
    771	};
    772
    773	dev_dbg_f(zd_chip_dev(chip), "\n");
    774	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    775	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
    776}
    777
    778static int zd1211b_hw_init_hmac(struct zd_chip *chip)
    779{
    780	static const struct zd_ioreq32 ioreqs[] = {
    781		{ CR_ZD1211B_RETRY_MAX,		ZD1211B_RETRY_COUNT },
    782		{ CR_ZD1211B_CWIN_MAX_MIN_AC0,	0x007f003f },
    783		{ CR_ZD1211B_CWIN_MAX_MIN_AC1,	0x007f003f },
    784		{ CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
    785		{ CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
    786		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
    787		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
    788		{ CR_ZD1211B_TXOP,		0x01800824 },
    789		{ CR_RX_THRESHOLD,		0x000c0eff, },
    790	};
    791
    792	dev_dbg_f(zd_chip_dev(chip), "\n");
    793	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    794	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
    795}
    796
    797static int hw_init_hmac(struct zd_chip *chip)
    798{
    799	int r;
    800	static const struct zd_ioreq32 ioreqs[] = {
    801		{ CR_ACK_TIMEOUT_EXT,		0x20 },
    802		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
    803		{ CR_SNIFFER_ON,		0 },
    804		{ CR_RX_FILTER,			STA_RX_FILTER },
    805		{ CR_GROUP_HASH_P1,		0x00 },
    806		{ CR_GROUP_HASH_P2,		0x80000000 },
    807		{ CR_REG1,			0xa4 },
    808		{ CR_ADDA_PWR_DWN,		0x7f },
    809		{ CR_BCN_PLCP_CFG,		0x00f00401 },
    810		{ CR_PHY_DELAY,			0x00 },
    811		{ CR_ACK_TIMEOUT_EXT,		0x80 },
    812		{ CR_ADDA_PWR_DWN,		0x00 },
    813		{ CR_ACK_TIME_80211,		0x100 },
    814		{ CR_RX_PE_DELAY,		0x70 },
    815		{ CR_PS_CTRL,			0x10000000 },
    816		{ CR_RTS_CTS_RATE,		0x02030203 },
    817		{ CR_AFTER_PNP,			0x1 },
    818		{ CR_WEP_PROTECT,		0x114 },
    819		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
    820		{ CR_CAM_MODE,			MODE_AP_WDS},
    821	};
    822
    823	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    824	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
    825	if (r)
    826		return r;
    827
    828	return zd_chip_is_zd1211b(chip) ?
    829		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
    830}
    831
    832struct aw_pt_bi {
    833	u32 atim_wnd_period;
    834	u32 pre_tbtt;
    835	u32 beacon_interval;
    836};
    837
    838static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
    839{
    840	int r;
    841	static const zd_addr_t aw_pt_bi_addr[] =
    842		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
    843	u32 values[3];
    844
    845	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
    846		         ARRAY_SIZE(aw_pt_bi_addr));
    847	if (r) {
    848		memset(s, 0, sizeof(*s));
    849		return r;
    850	}
    851
    852	s->atim_wnd_period = values[0];
    853	s->pre_tbtt = values[1];
    854	s->beacon_interval = values[2];
    855	return 0;
    856}
    857
    858static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
    859{
    860	struct zd_ioreq32 reqs[3];
    861	u16 b_interval = s->beacon_interval & 0xffff;
    862
    863	if (b_interval <= 5)
    864		b_interval = 5;
    865	if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
    866		s->pre_tbtt = b_interval - 1;
    867	if (s->atim_wnd_period >= s->pre_tbtt)
    868		s->atim_wnd_period = s->pre_tbtt - 1;
    869
    870	reqs[0].addr = CR_ATIM_WND_PERIOD;
    871	reqs[0].value = s->atim_wnd_period;
    872	reqs[1].addr = CR_PRE_TBTT;
    873	reqs[1].value = s->pre_tbtt;
    874	reqs[2].addr = CR_BCN_INTERVAL;
    875	reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
    876
    877	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
    878}
    879
    880
    881static int set_beacon_interval(struct zd_chip *chip, u16 interval,
    882			       u8 dtim_period, int type)
    883{
    884	int r;
    885	struct aw_pt_bi s;
    886	u32 b_interval, mode_flag;
    887
    888	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    889
    890	if (interval > 0) {
    891		switch (type) {
    892		case NL80211_IFTYPE_ADHOC:
    893		case NL80211_IFTYPE_MESH_POINT:
    894			mode_flag = BCN_MODE_IBSS;
    895			break;
    896		case NL80211_IFTYPE_AP:
    897			mode_flag = BCN_MODE_AP;
    898			break;
    899		default:
    900			mode_flag = 0;
    901			break;
    902		}
    903	} else {
    904		dtim_period = 0;
    905		mode_flag = 0;
    906	}
    907
    908	b_interval = mode_flag | (dtim_period << 16) | interval;
    909
    910	r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
    911	if (r)
    912		return r;
    913	r = get_aw_pt_bi(chip, &s);
    914	if (r)
    915		return r;
    916	return set_aw_pt_bi(chip, &s);
    917}
    918
    919int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
    920			   int type)
    921{
    922	int r;
    923
    924	mutex_lock(&chip->mutex);
    925	r = set_beacon_interval(chip, interval, dtim_period, type);
    926	mutex_unlock(&chip->mutex);
    927	return r;
    928}
    929
    930static int hw_init(struct zd_chip *chip)
    931{
    932	int r;
    933
    934	dev_dbg_f(zd_chip_dev(chip), "\n");
    935	ZD_ASSERT(mutex_is_locked(&chip->mutex));
    936	r = hw_reset_phy(chip);
    937	if (r)
    938		return r;
    939
    940	r = hw_init_hmac(chip);
    941	if (r)
    942		return r;
    943
    944	return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
    945}
    946
    947static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
    948{
    949	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
    950}
    951
    952#ifdef DEBUG
    953static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
    954	           const char *addr_string)
    955{
    956	int r;
    957	u32 value;
    958
    959	r = zd_ioread32_locked(chip, &value, addr);
    960	if (r) {
    961		dev_dbg_f(zd_chip_dev(chip),
    962			"error reading %s. Error number %d\n", addr_string, r);
    963		return r;
    964	}
    965
    966	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
    967		addr_string, (unsigned int)value);
    968	return 0;
    969}
    970
    971static int test_init(struct zd_chip *chip)
    972{
    973	int r;
    974
    975	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
    976	if (r)
    977		return r;
    978	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
    979	if (r)
    980		return r;
    981	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
    982}
    983
    984static void dump_fw_registers(struct zd_chip *chip)
    985{
    986	const zd_addr_t addr[4] = {
    987		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
    988		fw_reg_addr(chip, FW_REG_USB_SPEED),
    989		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
    990		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
    991	};
    992
    993	int r;
    994	u16 values[4];
    995
    996	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
    997		         ARRAY_SIZE(addr));
    998	if (r) {
    999		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
   1000			 r);
   1001		return;
   1002	}
   1003
   1004	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
   1005	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
   1006	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
   1007	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
   1008}
   1009#endif /* DEBUG */
   1010
   1011static int print_fw_version(struct zd_chip *chip)
   1012{
   1013	struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
   1014	int r;
   1015	u16 version;
   1016
   1017	r = zd_ioread16_locked(chip, &version,
   1018		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
   1019	if (r)
   1020		return r;
   1021
   1022	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
   1023
   1024	snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
   1025			"%04hx", version);
   1026
   1027	return 0;
   1028}
   1029
   1030static int set_mandatory_rates(struct zd_chip *chip, int gmode)
   1031{
   1032	u32 rates;
   1033	ZD_ASSERT(mutex_is_locked(&chip->mutex));
   1034	/* This sets the mandatory rates, which only depend from the standard
   1035	 * that the device is supporting. Until further notice we should try
   1036	 * to support 802.11g also for full speed USB.
   1037	 */
   1038	if (!gmode)
   1039		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
   1040	else
   1041		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
   1042			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
   1043
   1044	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
   1045}
   1046
   1047int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
   1048				    int preamble)
   1049{
   1050	u32 value = 0;
   1051
   1052	dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
   1053	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
   1054	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
   1055
   1056	/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
   1057	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
   1058	value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
   1059	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
   1060	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
   1061
   1062	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
   1063}
   1064
   1065int zd_chip_enable_hwint(struct zd_chip *chip)
   1066{
   1067	int r;
   1068
   1069	mutex_lock(&chip->mutex);
   1070	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
   1071	mutex_unlock(&chip->mutex);
   1072	return r;
   1073}
   1074
   1075static int disable_hwint(struct zd_chip *chip)
   1076{
   1077	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
   1078}
   1079
   1080int zd_chip_disable_hwint(struct zd_chip *chip)
   1081{
   1082	int r;
   1083
   1084	mutex_lock(&chip->mutex);
   1085	r = disable_hwint(chip);
   1086	mutex_unlock(&chip->mutex);
   1087	return r;
   1088}
   1089
   1090static int read_fw_regs_offset(struct zd_chip *chip)
   1091{
   1092	int r;
   1093
   1094	ZD_ASSERT(mutex_is_locked(&chip->mutex));
   1095	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
   1096		               FWRAW_REGS_ADDR);
   1097	if (r)
   1098		return r;
   1099	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
   1100		  (u16)chip->fw_regs_base);
   1101
   1102	return 0;
   1103}
   1104
   1105/* Read mac address using pre-firmware interface */
   1106int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
   1107{
   1108	dev_dbg_f(zd_chip_dev(chip), "\n");
   1109	return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
   1110		ETH_ALEN);
   1111}
   1112
   1113int zd_chip_init_hw(struct zd_chip *chip)
   1114{
   1115	int r;
   1116	u8 rf_type;
   1117
   1118	dev_dbg_f(zd_chip_dev(chip), "\n");
   1119
   1120	mutex_lock(&chip->mutex);
   1121
   1122#ifdef DEBUG
   1123	r = test_init(chip);
   1124	if (r)
   1125		goto out;
   1126#endif
   1127	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
   1128	if (r)
   1129		goto out;
   1130
   1131	r = read_fw_regs_offset(chip);
   1132	if (r)
   1133		goto out;
   1134
   1135	/* GPI is always disabled, also in the other driver.
   1136	 */
   1137	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
   1138	if (r)
   1139		goto out;
   1140	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
   1141	if (r)
   1142		goto out;
   1143	/* Currently we support IEEE 802.11g for full and high speed USB.
   1144	 * It might be discussed, whether we should support pure b mode for
   1145	 * full speed USB.
   1146	 */
   1147	r = set_mandatory_rates(chip, 1);
   1148	if (r)
   1149		goto out;
   1150	/* Disabling interrupts is certainly a smart thing here.
   1151	 */
   1152	r = disable_hwint(chip);
   1153	if (r)
   1154		goto out;
   1155	r = read_pod(chip, &rf_type);
   1156	if (r)
   1157		goto out;
   1158	r = hw_init(chip);
   1159	if (r)
   1160		goto out;
   1161	r = zd_rf_init_hw(&chip->rf, rf_type);
   1162	if (r)
   1163		goto out;
   1164
   1165	r = print_fw_version(chip);
   1166	if (r)
   1167		goto out;
   1168
   1169#ifdef DEBUG
   1170	dump_fw_registers(chip);
   1171	r = test_init(chip);
   1172	if (r)
   1173		goto out;
   1174#endif /* DEBUG */
   1175
   1176	r = read_cal_int_tables(chip);
   1177	if (r)
   1178		goto out;
   1179
   1180	print_id(chip);
   1181out:
   1182	mutex_unlock(&chip->mutex);
   1183	return r;
   1184}
   1185
   1186static int update_pwr_int(struct zd_chip *chip, u8 channel)
   1187{
   1188	u8 value = chip->pwr_int_values[channel - 1];
   1189	return zd_iowrite16_locked(chip, value, ZD_CR31);
   1190}
   1191
   1192static int update_pwr_cal(struct zd_chip *chip, u8 channel)
   1193{
   1194	u8 value = chip->pwr_cal_values[channel-1];
   1195	return zd_iowrite16_locked(chip, value, ZD_CR68);
   1196}
   1197
   1198static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
   1199{
   1200	struct zd_ioreq16 ioreqs[3];
   1201
   1202	ioreqs[0].addr = ZD_CR67;
   1203	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
   1204	ioreqs[1].addr = ZD_CR66;
   1205	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
   1206	ioreqs[2].addr = ZD_CR65;
   1207	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
   1208
   1209	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
   1210}
   1211
   1212static int update_channel_integration_and_calibration(struct zd_chip *chip,
   1213	                                              u8 channel)
   1214{
   1215	int r;
   1216
   1217	if (!zd_rf_should_update_pwr_int(&chip->rf))
   1218		return 0;
   1219
   1220	r = update_pwr_int(chip, channel);
   1221	if (r)
   1222		return r;
   1223	if (zd_chip_is_zd1211b(chip)) {
   1224		static const struct zd_ioreq16 ioreqs[] = {
   1225			{ ZD_CR69, 0x28 },
   1226			{},
   1227			{ ZD_CR69, 0x2a },
   1228		};
   1229
   1230		r = update_ofdm_cal(chip, channel);
   1231		if (r)
   1232			return r;
   1233		r = update_pwr_cal(chip, channel);
   1234		if (r)
   1235			return r;
   1236		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
   1237		if (r)
   1238			return r;
   1239	}
   1240
   1241	return 0;
   1242}
   1243
   1244/* The CCK baseband gain can be optionally patched by the EEPROM */
   1245static int patch_cck_gain(struct zd_chip *chip)
   1246{
   1247	int r;
   1248	u32 value;
   1249
   1250	if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
   1251		return 0;
   1252
   1253	ZD_ASSERT(mutex_is_locked(&chip->mutex));
   1254	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
   1255	if (r)
   1256		return r;
   1257	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
   1258	return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
   1259}
   1260
   1261int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
   1262{
   1263	int r, t;
   1264
   1265	mutex_lock(&chip->mutex);
   1266	r = zd_chip_lock_phy_regs(chip);
   1267	if (r)
   1268		goto out;
   1269	r = zd_rf_set_channel(&chip->rf, channel);
   1270	if (r)
   1271		goto unlock;
   1272	r = update_channel_integration_and_calibration(chip, channel);
   1273	if (r)
   1274		goto unlock;
   1275	r = patch_cck_gain(chip);
   1276	if (r)
   1277		goto unlock;
   1278	r = patch_6m_band_edge(chip, channel);
   1279	if (r)
   1280		goto unlock;
   1281	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
   1282unlock:
   1283	t = zd_chip_unlock_phy_regs(chip);
   1284	if (t && !r)
   1285		r = t;
   1286out:
   1287	mutex_unlock(&chip->mutex);
   1288	return r;
   1289}
   1290
   1291u8 zd_chip_get_channel(struct zd_chip *chip)
   1292{
   1293	u8 channel;
   1294
   1295	mutex_lock(&chip->mutex);
   1296	channel = chip->rf.channel;
   1297	mutex_unlock(&chip->mutex);
   1298	return channel;
   1299}
   1300
   1301int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
   1302{
   1303	const zd_addr_t a[] = {
   1304		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
   1305		CR_LED,
   1306	};
   1307
   1308	int r;
   1309	u16 v[ARRAY_SIZE(a)];
   1310	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
   1311		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
   1312		[1] = { CR_LED },
   1313	};
   1314	u16 other_led;
   1315
   1316	mutex_lock(&chip->mutex);
   1317	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
   1318	if (r)
   1319		goto out;
   1320
   1321	other_led = chip->link_led == LED1 ? LED2 : LED1;
   1322
   1323	switch (status) {
   1324	case ZD_LED_OFF:
   1325		ioreqs[0].value = FW_LINK_OFF;
   1326		ioreqs[1].value = v[1] & ~(LED1|LED2);
   1327		break;
   1328	case ZD_LED_SCANNING:
   1329		ioreqs[0].value = FW_LINK_OFF;
   1330		ioreqs[1].value = v[1] & ~other_led;
   1331		if ((u32)ktime_get_seconds() % 3 == 0) {
   1332			ioreqs[1].value &= ~chip->link_led;
   1333		} else {
   1334			ioreqs[1].value |= chip->link_led;
   1335		}
   1336		break;
   1337	case ZD_LED_ASSOCIATED:
   1338		ioreqs[0].value = FW_LINK_TX;
   1339		ioreqs[1].value = v[1] & ~other_led;
   1340		ioreqs[1].value |= chip->link_led;
   1341		break;
   1342	default:
   1343		r = -EINVAL;
   1344		goto out;
   1345	}
   1346
   1347	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
   1348		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
   1349		if (r)
   1350			goto out;
   1351	}
   1352	r = 0;
   1353out:
   1354	mutex_unlock(&chip->mutex);
   1355	return r;
   1356}
   1357
   1358int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
   1359{
   1360	int r;
   1361
   1362	if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
   1363		return -EINVAL;
   1364
   1365	mutex_lock(&chip->mutex);
   1366	r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
   1367	mutex_unlock(&chip->mutex);
   1368	return r;
   1369}
   1370
   1371static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
   1372{
   1373	return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
   1374}
   1375
   1376/**
   1377 * zd_rx_rate - report zd-rate
   1378 * @rx_frame: received frame
   1379 * @status: rx_status as given by the device
   1380 *
   1381 * This function converts the rate as encoded in the received packet to the
   1382 * zd-rate, we are using on other places in the driver.
   1383 */
   1384u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
   1385{
   1386	u8 zd_rate;
   1387	if (status->frame_status & ZD_RX_OFDM) {
   1388		zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
   1389	} else {
   1390		switch (zd_cck_plcp_header_signal(rx_frame)) {
   1391		case ZD_CCK_PLCP_SIGNAL_1M:
   1392			zd_rate = ZD_CCK_RATE_1M;
   1393			break;
   1394		case ZD_CCK_PLCP_SIGNAL_2M:
   1395			zd_rate = ZD_CCK_RATE_2M;
   1396			break;
   1397		case ZD_CCK_PLCP_SIGNAL_5M5:
   1398			zd_rate = ZD_CCK_RATE_5_5M;
   1399			break;
   1400		case ZD_CCK_PLCP_SIGNAL_11M:
   1401			zd_rate = ZD_CCK_RATE_11M;
   1402			break;
   1403		default:
   1404			zd_rate = 0;
   1405		}
   1406	}
   1407
   1408	return zd_rate;
   1409}
   1410
   1411int zd_chip_switch_radio_on(struct zd_chip *chip)
   1412{
   1413	int r;
   1414
   1415	mutex_lock(&chip->mutex);
   1416	r = zd_switch_radio_on(&chip->rf);
   1417	mutex_unlock(&chip->mutex);
   1418	return r;
   1419}
   1420
   1421int zd_chip_switch_radio_off(struct zd_chip *chip)
   1422{
   1423	int r;
   1424
   1425	mutex_lock(&chip->mutex);
   1426	r = zd_switch_radio_off(&chip->rf);
   1427	mutex_unlock(&chip->mutex);
   1428	return r;
   1429}
   1430
   1431int zd_chip_enable_int(struct zd_chip *chip)
   1432{
   1433	int r;
   1434
   1435	mutex_lock(&chip->mutex);
   1436	r = zd_usb_enable_int(&chip->usb);
   1437	mutex_unlock(&chip->mutex);
   1438	return r;
   1439}
   1440
   1441void zd_chip_disable_int(struct zd_chip *chip)
   1442{
   1443	mutex_lock(&chip->mutex);
   1444	zd_usb_disable_int(&chip->usb);
   1445	mutex_unlock(&chip->mutex);
   1446
   1447	/* cancel pending interrupt work */
   1448	cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
   1449}
   1450
   1451int zd_chip_enable_rxtx(struct zd_chip *chip)
   1452{
   1453	int r;
   1454
   1455	mutex_lock(&chip->mutex);
   1456	zd_usb_enable_tx(&chip->usb);
   1457	r = zd_usb_enable_rx(&chip->usb);
   1458	zd_tx_watchdog_enable(&chip->usb);
   1459	mutex_unlock(&chip->mutex);
   1460	return r;
   1461}
   1462
   1463void zd_chip_disable_rxtx(struct zd_chip *chip)
   1464{
   1465	mutex_lock(&chip->mutex);
   1466	zd_tx_watchdog_disable(&chip->usb);
   1467	zd_usb_disable_rx(&chip->usb);
   1468	zd_usb_disable_tx(&chip->usb);
   1469	mutex_unlock(&chip->mutex);
   1470}
   1471
   1472int zd_rfwritev_locked(struct zd_chip *chip,
   1473	               const u32* values, unsigned int count, u8 bits)
   1474{
   1475	int r;
   1476	unsigned int i;
   1477
   1478	for (i = 0; i < count; i++) {
   1479		r = zd_rfwrite_locked(chip, values[i], bits);
   1480		if (r)
   1481			return r;
   1482	}
   1483
   1484	return 0;
   1485}
   1486
   1487/*
   1488 * We can optionally program the RF directly through CR regs, if supported by
   1489 * the hardware. This is much faster than the older method.
   1490 */
   1491int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
   1492{
   1493	const struct zd_ioreq16 ioreqs[] = {
   1494		{ ZD_CR244, (value >> 16) & 0xff },
   1495		{ ZD_CR243, (value >>  8) & 0xff },
   1496		{ ZD_CR242,  value        & 0xff },
   1497	};
   1498	ZD_ASSERT(mutex_is_locked(&chip->mutex));
   1499	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
   1500}
   1501
   1502int zd_rfwritev_cr_locked(struct zd_chip *chip,
   1503	                  const u32 *values, unsigned int count)
   1504{
   1505	int r;
   1506	unsigned int i;
   1507
   1508	for (i = 0; i < count; i++) {
   1509		r = zd_rfwrite_cr_locked(chip, values[i]);
   1510		if (r)
   1511			return r;
   1512	}
   1513
   1514	return 0;
   1515}
   1516
   1517int zd_chip_set_multicast_hash(struct zd_chip *chip,
   1518	                       struct zd_mc_hash *hash)
   1519{
   1520	const struct zd_ioreq32 ioreqs[] = {
   1521		{ CR_GROUP_HASH_P1, hash->low },
   1522		{ CR_GROUP_HASH_P2, hash->high },
   1523	};
   1524
   1525	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
   1526}
   1527
   1528u64 zd_chip_get_tsf(struct zd_chip *chip)
   1529{
   1530	int r;
   1531	static const zd_addr_t aw_pt_bi_addr[] =
   1532		{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
   1533	u32 values[2];
   1534	u64 tsf;
   1535
   1536	mutex_lock(&chip->mutex);
   1537	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
   1538	                        ARRAY_SIZE(aw_pt_bi_addr));
   1539	mutex_unlock(&chip->mutex);
   1540	if (r)
   1541		return 0;
   1542
   1543	tsf = values[1];
   1544	tsf = (tsf << 32) | values[0];
   1545
   1546	return tsf;
   1547}