cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

zd_mac.c (40617B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* ZD1211 USB-WLAN driver for Linux
      3 *
      4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
      5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
      6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
      7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
      8 */
      9
     10#include <linux/netdevice.h>
     11#include <linux/etherdevice.h>
     12#include <linux/slab.h>
     13#include <linux/usb.h>
     14#include <linux/jiffies.h>
     15#include <net/ieee80211_radiotap.h>
     16
     17#include "zd_def.h"
     18#include "zd_chip.h"
     19#include "zd_mac.h"
     20#include "zd_rf.h"
     21
     22struct zd_reg_alpha2_map {
     23	u32 reg;
     24	char alpha2[2];
     25};
     26
     27static struct zd_reg_alpha2_map reg_alpha2_map[] = {
     28	{ ZD_REGDOMAIN_FCC, "US" },
     29	{ ZD_REGDOMAIN_IC, "CA" },
     30	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
     31	{ ZD_REGDOMAIN_JAPAN, "JP" },
     32	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
     33	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
     34	{ ZD_REGDOMAIN_SPAIN, "ES" },
     35	{ ZD_REGDOMAIN_FRANCE, "FR" },
     36};
     37
     38/* This table contains the hardware specific values for the modulation rates. */
     39static const struct ieee80211_rate zd_rates[] = {
     40	{ .bitrate = 10,
     41	  .hw_value = ZD_CCK_RATE_1M, },
     42	{ .bitrate = 20,
     43	  .hw_value = ZD_CCK_RATE_2M,
     44	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
     45	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
     46	{ .bitrate = 55,
     47	  .hw_value = ZD_CCK_RATE_5_5M,
     48	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
     49	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
     50	{ .bitrate = 110,
     51	  .hw_value = ZD_CCK_RATE_11M,
     52	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
     53	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
     54	{ .bitrate = 60,
     55	  .hw_value = ZD_OFDM_RATE_6M,
     56	  .flags = 0 },
     57	{ .bitrate = 90,
     58	  .hw_value = ZD_OFDM_RATE_9M,
     59	  .flags = 0 },
     60	{ .bitrate = 120,
     61	  .hw_value = ZD_OFDM_RATE_12M,
     62	  .flags = 0 },
     63	{ .bitrate = 180,
     64	  .hw_value = ZD_OFDM_RATE_18M,
     65	  .flags = 0 },
     66	{ .bitrate = 240,
     67	  .hw_value = ZD_OFDM_RATE_24M,
     68	  .flags = 0 },
     69	{ .bitrate = 360,
     70	  .hw_value = ZD_OFDM_RATE_36M,
     71	  .flags = 0 },
     72	{ .bitrate = 480,
     73	  .hw_value = ZD_OFDM_RATE_48M,
     74	  .flags = 0 },
     75	{ .bitrate = 540,
     76	  .hw_value = ZD_OFDM_RATE_54M,
     77	  .flags = 0 },
     78};
     79
     80/*
     81 * Zydas retry rates table. Each line is listed in the same order as
     82 * in zd_rates[] and contains all the rate used when a packet is sent
     83 * starting with a given rates. Let's consider an example :
     84 *
     85 * "11 Mbits : 4, 3, 2, 1, 0" means :
     86 * - packet is sent using 4 different rates
     87 * - 1st rate is index 3 (ie 11 Mbits)
     88 * - 2nd rate is index 2 (ie 5.5 Mbits)
     89 * - 3rd rate is index 1 (ie 2 Mbits)
     90 * - 4th rate is index 0 (ie 1 Mbits)
     91 */
     92
     93static const struct tx_retry_rate zd_retry_rates[] = {
     94	{ /*  1 Mbits */	1, { 0 }},
     95	{ /*  2 Mbits */	2, { 1,  0 }},
     96	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
     97	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
     98	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
     99	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
    100	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
    101	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
    102	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
    103	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
    104	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
    105	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
    106};
    107
    108static const struct ieee80211_channel zd_channels[] = {
    109	{ .center_freq = 2412, .hw_value = 1 },
    110	{ .center_freq = 2417, .hw_value = 2 },
    111	{ .center_freq = 2422, .hw_value = 3 },
    112	{ .center_freq = 2427, .hw_value = 4 },
    113	{ .center_freq = 2432, .hw_value = 5 },
    114	{ .center_freq = 2437, .hw_value = 6 },
    115	{ .center_freq = 2442, .hw_value = 7 },
    116	{ .center_freq = 2447, .hw_value = 8 },
    117	{ .center_freq = 2452, .hw_value = 9 },
    118	{ .center_freq = 2457, .hw_value = 10 },
    119	{ .center_freq = 2462, .hw_value = 11 },
    120	{ .center_freq = 2467, .hw_value = 12 },
    121	{ .center_freq = 2472, .hw_value = 13 },
    122	{ .center_freq = 2484, .hw_value = 14 },
    123};
    124
    125static void housekeeping_init(struct zd_mac *mac);
    126static void housekeeping_enable(struct zd_mac *mac);
    127static void housekeeping_disable(struct zd_mac *mac);
    128static void beacon_init(struct zd_mac *mac);
    129static void beacon_enable(struct zd_mac *mac);
    130static void beacon_disable(struct zd_mac *mac);
    131static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
    132static int zd_mac_config_beacon(struct ieee80211_hw *hw,
    133				struct sk_buff *beacon, bool in_intr);
    134
    135static int zd_reg2alpha2(u8 regdomain, char *alpha2)
    136{
    137	unsigned int i;
    138	struct zd_reg_alpha2_map *reg_map;
    139	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
    140		reg_map = &reg_alpha2_map[i];
    141		if (regdomain == reg_map->reg) {
    142			alpha2[0] = reg_map->alpha2[0];
    143			alpha2[1] = reg_map->alpha2[1];
    144			return 0;
    145		}
    146	}
    147	return 1;
    148}
    149
    150static int zd_check_signal(struct ieee80211_hw *hw, int signal)
    151{
    152	struct zd_mac *mac = zd_hw_mac(hw);
    153
    154	dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
    155			"%s: signal value from device not in range 0..100, "
    156			"but %d.\n", __func__, signal);
    157
    158	if (signal < 0)
    159		signal = 0;
    160	else if (signal > 100)
    161		signal = 100;
    162
    163	return signal;
    164}
    165
    166int zd_mac_preinit_hw(struct ieee80211_hw *hw)
    167{
    168	int r;
    169	u8 addr[ETH_ALEN];
    170	struct zd_mac *mac = zd_hw_mac(hw);
    171
    172	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
    173	if (r)
    174		return r;
    175
    176	SET_IEEE80211_PERM_ADDR(hw, addr);
    177
    178	return 0;
    179}
    180
    181int zd_mac_init_hw(struct ieee80211_hw *hw)
    182{
    183	int r;
    184	struct zd_mac *mac = zd_hw_mac(hw);
    185	struct zd_chip *chip = &mac->chip;
    186	char alpha2[2];
    187	u8 default_regdomain;
    188
    189	r = zd_chip_enable_int(chip);
    190	if (r)
    191		goto out;
    192	r = zd_chip_init_hw(chip);
    193	if (r)
    194		goto disable_int;
    195
    196	ZD_ASSERT(!irqs_disabled());
    197
    198	r = zd_read_regdomain(chip, &default_regdomain);
    199	if (r)
    200		goto disable_int;
    201	spin_lock_irq(&mac->lock);
    202	mac->regdomain = mac->default_regdomain = default_regdomain;
    203	spin_unlock_irq(&mac->lock);
    204
    205	/* We must inform the device that we are doing encryption/decryption in
    206	 * software at the moment. */
    207	r = zd_set_encryption_type(chip, ENC_SNIFFER);
    208	if (r)
    209		goto disable_int;
    210
    211	r = zd_reg2alpha2(mac->regdomain, alpha2);
    212	if (r)
    213		goto disable_int;
    214
    215	r = regulatory_hint(hw->wiphy, alpha2);
    216disable_int:
    217	zd_chip_disable_int(chip);
    218out:
    219	return r;
    220}
    221
    222void zd_mac_clear(struct zd_mac *mac)
    223{
    224	flush_workqueue(zd_workqueue);
    225	zd_chip_clear(&mac->chip);
    226	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
    227}
    228
    229static int set_rx_filter(struct zd_mac *mac)
    230{
    231	unsigned long flags;
    232	u32 filter = STA_RX_FILTER;
    233
    234	spin_lock_irqsave(&mac->lock, flags);
    235	if (mac->pass_ctrl)
    236		filter |= RX_FILTER_CTRL;
    237	spin_unlock_irqrestore(&mac->lock, flags);
    238
    239	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
    240}
    241
    242static int set_mac_and_bssid(struct zd_mac *mac)
    243{
    244	int r;
    245
    246	if (!mac->vif)
    247		return -1;
    248
    249	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
    250	if (r)
    251		return r;
    252
    253	/* Vendor driver after setting MAC either sets BSSID for AP or
    254	 * filter for other modes.
    255	 */
    256	if (mac->type != NL80211_IFTYPE_AP)
    257		return set_rx_filter(mac);
    258	else
    259		return zd_write_bssid(&mac->chip, mac->vif->addr);
    260}
    261
    262static int set_mc_hash(struct zd_mac *mac)
    263{
    264	struct zd_mc_hash hash;
    265	zd_mc_clear(&hash);
    266	return zd_chip_set_multicast_hash(&mac->chip, &hash);
    267}
    268
    269int zd_op_start(struct ieee80211_hw *hw)
    270{
    271	struct zd_mac *mac = zd_hw_mac(hw);
    272	struct zd_chip *chip = &mac->chip;
    273	struct zd_usb *usb = &chip->usb;
    274	int r;
    275
    276	if (!usb->initialized) {
    277		r = zd_usb_init_hw(usb);
    278		if (r)
    279			goto out;
    280	}
    281
    282	r = zd_chip_enable_int(chip);
    283	if (r < 0)
    284		goto out;
    285
    286	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
    287	if (r < 0)
    288		goto disable_int;
    289	r = set_rx_filter(mac);
    290	if (r)
    291		goto disable_int;
    292	r = set_mc_hash(mac);
    293	if (r)
    294		goto disable_int;
    295
    296	/* Wait after setting the multicast hash table and powering on
    297	 * the radio otherwise interface bring up will fail. This matches
    298	 * what the vendor driver did.
    299	 */
    300	msleep(10);
    301
    302	r = zd_chip_switch_radio_on(chip);
    303	if (r < 0) {
    304		dev_err(zd_chip_dev(chip),
    305			"%s: failed to set radio on\n", __func__);
    306		goto disable_int;
    307	}
    308	r = zd_chip_enable_rxtx(chip);
    309	if (r < 0)
    310		goto disable_radio;
    311	r = zd_chip_enable_hwint(chip);
    312	if (r < 0)
    313		goto disable_rxtx;
    314
    315	housekeeping_enable(mac);
    316	beacon_enable(mac);
    317	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
    318	return 0;
    319disable_rxtx:
    320	zd_chip_disable_rxtx(chip);
    321disable_radio:
    322	zd_chip_switch_radio_off(chip);
    323disable_int:
    324	zd_chip_disable_int(chip);
    325out:
    326	return r;
    327}
    328
    329void zd_op_stop(struct ieee80211_hw *hw)
    330{
    331	struct zd_mac *mac = zd_hw_mac(hw);
    332	struct zd_chip *chip = &mac->chip;
    333	struct sk_buff *skb;
    334	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
    335
    336	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
    337
    338	/* The order here deliberately is a little different from the open()
    339	 * method, since we need to make sure there is no opportunity for RX
    340	 * frames to be processed by mac80211 after we have stopped it.
    341	 */
    342
    343	zd_chip_disable_rxtx(chip);
    344	beacon_disable(mac);
    345	housekeeping_disable(mac);
    346	flush_workqueue(zd_workqueue);
    347
    348	zd_chip_disable_hwint(chip);
    349	zd_chip_switch_radio_off(chip);
    350	zd_chip_disable_int(chip);
    351
    352
    353	while ((skb = skb_dequeue(ack_wait_queue)))
    354		dev_kfree_skb_any(skb);
    355}
    356
    357int zd_restore_settings(struct zd_mac *mac)
    358{
    359	struct sk_buff *beacon;
    360	struct zd_mc_hash multicast_hash;
    361	unsigned int short_preamble;
    362	int r, beacon_interval, beacon_period;
    363	u8 channel;
    364
    365	dev_dbg_f(zd_mac_dev(mac), "\n");
    366
    367	spin_lock_irq(&mac->lock);
    368	multicast_hash = mac->multicast_hash;
    369	short_preamble = mac->short_preamble;
    370	beacon_interval = mac->beacon.interval;
    371	beacon_period = mac->beacon.period;
    372	channel = mac->channel;
    373	spin_unlock_irq(&mac->lock);
    374
    375	r = set_mac_and_bssid(mac);
    376	if (r < 0) {
    377		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
    378		return r;
    379	}
    380
    381	r = zd_chip_set_channel(&mac->chip, channel);
    382	if (r < 0) {
    383		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
    384			  r);
    385		return r;
    386	}
    387
    388	set_rts_cts(mac, short_preamble);
    389
    390	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
    391	if (r < 0) {
    392		dev_dbg_f(zd_mac_dev(mac),
    393			  "zd_chip_set_multicast_hash failed, %d\n", r);
    394		return r;
    395	}
    396
    397	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
    398	    mac->type == NL80211_IFTYPE_ADHOC ||
    399	    mac->type == NL80211_IFTYPE_AP) {
    400		if (mac->vif != NULL) {
    401			beacon = ieee80211_beacon_get(mac->hw, mac->vif);
    402			if (beacon)
    403				zd_mac_config_beacon(mac->hw, beacon, false);
    404		}
    405
    406		zd_set_beacon_interval(&mac->chip, beacon_interval,
    407					beacon_period, mac->type);
    408
    409		spin_lock_irq(&mac->lock);
    410		mac->beacon.last_update = jiffies;
    411		spin_unlock_irq(&mac->lock);
    412	}
    413
    414	return 0;
    415}
    416
    417/**
    418 * zd_mac_tx_status - reports tx status of a packet if required
    419 * @hw: a &struct ieee80211_hw pointer
    420 * @skb: a sk-buffer
    421 * @ackssi: ACK signal strength
    422 * @tx_status: success and/or retry
    423 *
    424 * This information calls ieee80211_tx_status_irqsafe() if required by the
    425 * control information. It copies the control information into the status
    426 * information.
    427 *
    428 * If no status information has been requested, the skb is freed.
    429 */
    430static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
    431		      int ackssi, struct tx_status *tx_status)
    432{
    433	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
    434	int i;
    435	int success = 1, retry = 1;
    436	int first_idx;
    437	const struct tx_retry_rate *retries;
    438
    439	ieee80211_tx_info_clear_status(info);
    440
    441	if (tx_status) {
    442		success = !tx_status->failure;
    443		retry = tx_status->retry + success;
    444	}
    445
    446	if (success) {
    447		/* success */
    448		info->flags |= IEEE80211_TX_STAT_ACK;
    449	} else {
    450		/* failure */
    451		info->flags &= ~IEEE80211_TX_STAT_ACK;
    452	}
    453
    454	first_idx = info->status.rates[0].idx;
    455	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
    456	retries = &zd_retry_rates[first_idx];
    457	ZD_ASSERT(1 <= retry && retry <= retries->count);
    458
    459	info->status.rates[0].idx = retries->rate[0];
    460	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
    461
    462	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
    463		info->status.rates[i].idx = retries->rate[i];
    464		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
    465	}
    466	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
    467		info->status.rates[i].idx = retries->rate[retry - 1];
    468		info->status.rates[i].count = 1; // (success ? 1:2);
    469	}
    470	if (i<IEEE80211_TX_MAX_RATES)
    471		info->status.rates[i].idx = -1; /* terminate */
    472
    473	info->status.ack_signal = zd_check_signal(hw, ackssi);
    474	ieee80211_tx_status_irqsafe(hw, skb);
    475}
    476
    477/**
    478 * zd_mac_tx_failed - callback for failed frames
    479 * @urb: pointer to the urb structure
    480 *
    481 * This function is called if a frame couldn't be successfully
    482 * transferred. The first frame from the tx queue, will be selected and
    483 * reported as error to the upper layers.
    484 */
    485void zd_mac_tx_failed(struct urb *urb)
    486{
    487	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
    488	struct zd_mac *mac = zd_hw_mac(hw);
    489	struct sk_buff_head *q = &mac->ack_wait_queue;
    490	struct sk_buff *skb;
    491	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
    492	unsigned long flags;
    493	int success = !tx_status->failure;
    494	int retry = tx_status->retry + success;
    495	int found = 0;
    496	int i, position = 0;
    497
    498	spin_lock_irqsave(&q->lock, flags);
    499
    500	skb_queue_walk(q, skb) {
    501		struct ieee80211_hdr *tx_hdr;
    502		struct ieee80211_tx_info *info;
    503		int first_idx, final_idx;
    504		const struct tx_retry_rate *retries;
    505		u8 final_rate;
    506
    507		position ++;
    508
    509		/* if the hardware reports a failure and we had a 802.11 ACK
    510		 * pending, then we skip the first skb when searching for a
    511		 * matching frame */
    512		if (tx_status->failure && mac->ack_pending &&
    513		    skb_queue_is_first(q, skb)) {
    514			continue;
    515		}
    516
    517		tx_hdr = (struct ieee80211_hdr *)skb->data;
    518
    519		/* we skip all frames not matching the reported destination */
    520		if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
    521			continue;
    522
    523		/* we skip all frames not matching the reported final rate */
    524
    525		info = IEEE80211_SKB_CB(skb);
    526		first_idx = info->status.rates[0].idx;
    527		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
    528		retries = &zd_retry_rates[first_idx];
    529		if (retry <= 0 || retry > retries->count)
    530			continue;
    531
    532		final_idx = retries->rate[retry - 1];
    533		final_rate = zd_rates[final_idx].hw_value;
    534
    535		if (final_rate != tx_status->rate) {
    536			continue;
    537		}
    538
    539		found = 1;
    540		break;
    541	}
    542
    543	if (found) {
    544		for (i=1; i<=position; i++) {
    545			skb = __skb_dequeue(q);
    546			zd_mac_tx_status(hw, skb,
    547					 mac->ack_pending ? mac->ack_signal : 0,
    548					 i == position ? tx_status : NULL);
    549			mac->ack_pending = 0;
    550		}
    551	}
    552
    553	spin_unlock_irqrestore(&q->lock, flags);
    554}
    555
    556/**
    557 * zd_mac_tx_to_dev - callback for USB layer
    558 * @skb: a &sk_buff pointer
    559 * @error: error value, 0 if transmission successful
    560 *
    561 * Informs the MAC layer that the frame has successfully transferred to the
    562 * device. If an ACK is required and the transfer to the device has been
    563 * successful, the packets are put on the @ack_wait_queue with
    564 * the control set removed.
    565 */
    566void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
    567{
    568	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
    569	struct ieee80211_hw *hw = info->rate_driver_data[0];
    570	struct zd_mac *mac = zd_hw_mac(hw);
    571
    572	ieee80211_tx_info_clear_status(info);
    573
    574	skb_pull(skb, sizeof(struct zd_ctrlset));
    575	if (unlikely(error ||
    576	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
    577		/*
    578		 * FIXME : do we need to fill in anything ?
    579		 */
    580		ieee80211_tx_status_irqsafe(hw, skb);
    581	} else {
    582		struct sk_buff_head *q = &mac->ack_wait_queue;
    583
    584		skb_queue_tail(q, skb);
    585		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
    586			zd_mac_tx_status(hw, skb_dequeue(q),
    587					 mac->ack_pending ? mac->ack_signal : 0,
    588					 NULL);
    589			mac->ack_pending = 0;
    590		}
    591	}
    592}
    593
    594static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
    595{
    596	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
    597	 * the zd-rate values.
    598	 */
    599	static const u8 rate_divisor[] = {
    600		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
    601		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
    602		/* Bits must be doubled. */
    603		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
    604		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
    605		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
    606		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
    607		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
    608		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
    609		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
    610		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
    611		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
    612		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
    613	};
    614
    615	u32 bits = (u32)tx_length * 8;
    616	u32 divisor;
    617
    618	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
    619	if (divisor == 0)
    620		return -EINVAL;
    621
    622	switch (zd_rate) {
    623	case ZD_CCK_RATE_5_5M:
    624		bits = (2*bits) + 10; /* round up to the next integer */
    625		break;
    626	case ZD_CCK_RATE_11M:
    627		if (service) {
    628			u32 t = bits % 11;
    629			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
    630			if (0 < t && t <= 3) {
    631				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
    632			}
    633		}
    634		bits += 10; /* round up to the next integer */
    635		break;
    636	}
    637
    638	return bits/divisor;
    639}
    640
    641static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
    642	                   struct ieee80211_hdr *header,
    643	                   struct ieee80211_tx_info *info)
    644{
    645	/*
    646	 * CONTROL TODO:
    647	 * - if backoff needed, enable bit 0
    648	 * - if burst (backoff not needed) disable bit 0
    649	 */
    650
    651	cs->control = 0;
    652
    653	/* First fragment */
    654	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
    655		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
    656
    657	/* No ACK expected (multicast, etc.) */
    658	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
    659		cs->control |= ZD_CS_NO_ACK;
    660
    661	/* PS-POLL */
    662	if (ieee80211_is_pspoll(header->frame_control))
    663		cs->control |= ZD_CS_PS_POLL_FRAME;
    664
    665	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
    666		cs->control |= ZD_CS_RTS;
    667
    668	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
    669		cs->control |= ZD_CS_SELF_CTS;
    670
    671	/* FIXME: Management frame? */
    672}
    673
    674static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
    675{
    676	if (!mac->beacon.cur_beacon)
    677		return false;
    678
    679	if (mac->beacon.cur_beacon->len != beacon->len)
    680		return false;
    681
    682	return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
    683}
    684
    685static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
    686{
    687	ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
    688
    689	kfree_skb(mac->beacon.cur_beacon);
    690	mac->beacon.cur_beacon = NULL;
    691}
    692
    693static void zd_mac_free_cur_beacon(struct zd_mac *mac)
    694{
    695	mutex_lock(&mac->chip.mutex);
    696	zd_mac_free_cur_beacon_locked(mac);
    697	mutex_unlock(&mac->chip.mutex);
    698}
    699
    700static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
    701				bool in_intr)
    702{
    703	struct zd_mac *mac = zd_hw_mac(hw);
    704	int r, ret, num_cmds, req_pos = 0;
    705	u32 tmp, j = 0;
    706	/* 4 more bytes for tail CRC */
    707	u32 full_len = beacon->len + 4;
    708	unsigned long end_jiffies, message_jiffies;
    709	struct zd_ioreq32 *ioreqs;
    710
    711	mutex_lock(&mac->chip.mutex);
    712
    713	/* Check if hw already has this beacon. */
    714	if (zd_mac_match_cur_beacon(mac, beacon)) {
    715		r = 0;
    716		goto out_nofree;
    717	}
    718
    719	/* Alloc memory for full beacon write at once. */
    720	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
    721	ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
    722			       GFP_KERNEL);
    723	if (!ioreqs) {
    724		r = -ENOMEM;
    725		goto out_nofree;
    726	}
    727
    728	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
    729	if (r < 0)
    730		goto out;
    731	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
    732	if (r < 0)
    733		goto release_sema;
    734	if (in_intr && tmp & 0x2) {
    735		r = -EBUSY;
    736		goto release_sema;
    737	}
    738
    739	end_jiffies = jiffies + HZ / 2; /*~500ms*/
    740	message_jiffies = jiffies + HZ / 10; /*~100ms*/
    741	while (tmp & 0x2) {
    742		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
    743		if (r < 0)
    744			goto release_sema;
    745		if (time_is_before_eq_jiffies(message_jiffies)) {
    746			message_jiffies = jiffies + HZ / 10;
    747			dev_err(zd_mac_dev(mac),
    748					"CR_BCN_FIFO_SEMAPHORE not ready\n");
    749			if (time_is_before_eq_jiffies(end_jiffies))  {
    750				dev_err(zd_mac_dev(mac),
    751						"Giving up beacon config.\n");
    752				r = -ETIMEDOUT;
    753				goto reset_device;
    754			}
    755		}
    756		msleep(20);
    757	}
    758
    759	ioreqs[req_pos].addr = CR_BCN_FIFO;
    760	ioreqs[req_pos].value = full_len - 1;
    761	req_pos++;
    762	if (zd_chip_is_zd1211b(&mac->chip)) {
    763		ioreqs[req_pos].addr = CR_BCN_LENGTH;
    764		ioreqs[req_pos].value = full_len - 1;
    765		req_pos++;
    766	}
    767
    768	for (j = 0 ; j < beacon->len; j++) {
    769		ioreqs[req_pos].addr = CR_BCN_FIFO;
    770		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
    771		req_pos++;
    772	}
    773
    774	for (j = 0; j < 4; j++) {
    775		ioreqs[req_pos].addr = CR_BCN_FIFO;
    776		ioreqs[req_pos].value = 0x0;
    777		req_pos++;
    778	}
    779
    780	BUG_ON(req_pos != num_cmds);
    781
    782	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
    783
    784release_sema:
    785	/*
    786	 * Try very hard to release device beacon semaphore, as otherwise
    787	 * device/driver can be left in unusable state.
    788	 */
    789	end_jiffies = jiffies + HZ / 2; /*~500ms*/
    790	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
    791	while (ret < 0) {
    792		if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
    793			ret = -ETIMEDOUT;
    794			break;
    795		}
    796
    797		msleep(20);
    798		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
    799	}
    800
    801	if (ret < 0)
    802		dev_err(zd_mac_dev(mac), "Could not release "
    803					 "CR_BCN_FIFO_SEMAPHORE!\n");
    804	if (r < 0 || ret < 0) {
    805		if (r >= 0)
    806			r = ret;
    807
    808		/* We don't know if beacon was written successfully or not,
    809		 * so clear current. */
    810		zd_mac_free_cur_beacon_locked(mac);
    811
    812		goto out;
    813	}
    814
    815	/* Beacon has now been written successfully, update current. */
    816	zd_mac_free_cur_beacon_locked(mac);
    817	mac->beacon.cur_beacon = beacon;
    818	beacon = NULL;
    819
    820	/* 802.11b/g 2.4G CCK 1Mb
    821	 * 802.11a, not yet implemented, uses different values (see GPL vendor
    822	 * driver)
    823	 */
    824	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
    825				CR_BCN_PLCP_CFG);
    826out:
    827	kfree(ioreqs);
    828out_nofree:
    829	kfree_skb(beacon);
    830	mutex_unlock(&mac->chip.mutex);
    831
    832	return r;
    833
    834reset_device:
    835	zd_mac_free_cur_beacon_locked(mac);
    836	kfree_skb(beacon);
    837
    838	mutex_unlock(&mac->chip.mutex);
    839	kfree(ioreqs);
    840
    841	/* semaphore stuck, reset device to avoid fw freeze later */
    842	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
    843				  "resetting device...");
    844	usb_queue_reset_device(mac->chip.usb.intf);
    845
    846	return r;
    847}
    848
    849static int fill_ctrlset(struct zd_mac *mac,
    850			struct sk_buff *skb)
    851{
    852	int r;
    853	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
    854	unsigned int frag_len = skb->len + FCS_LEN;
    855	unsigned int packet_length;
    856	struct ieee80211_rate *txrate;
    857	struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
    858	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
    859
    860	ZD_ASSERT(frag_len <= 0xffff);
    861
    862	/*
    863	 * Firmware computes the duration itself (for all frames except PSPoll)
    864	 * and needs the field set to 0 at input, otherwise firmware messes up
    865	 * duration_id and sets bits 14 and 15 on.
    866	 */
    867	if (!ieee80211_is_pspoll(hdr->frame_control))
    868		hdr->duration_id = 0;
    869
    870	txrate = ieee80211_get_tx_rate(mac->hw, info);
    871
    872	cs->modulation = txrate->hw_value;
    873	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
    874		cs->modulation = txrate->hw_value_short;
    875
    876	cs->tx_length = cpu_to_le16(frag_len);
    877
    878	cs_set_control(mac, cs, hdr, info);
    879
    880	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
    881	ZD_ASSERT(packet_length <= 0xffff);
    882	/* ZD1211B: Computing the length difference this way, gives us
    883	 * flexibility to compute the packet length.
    884	 */
    885	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
    886			packet_length - frag_len : packet_length);
    887
    888	/*
    889	 * CURRENT LENGTH:
    890	 * - transmit frame length in microseconds
    891	 * - seems to be derived from frame length
    892	 * - see Cal_Us_Service() in zdinlinef.h
    893	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
    894	 *  - bTxBurstEnable is never set in the vendor driver
    895	 *
    896	 * SERVICE:
    897	 * - "for PLCP configuration"
    898	 * - always 0 except in some situations at 802.11b 11M
    899	 * - see line 53 of zdinlinef.h
    900	 */
    901	cs->service = 0;
    902	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
    903		                 le16_to_cpu(cs->tx_length));
    904	if (r < 0)
    905		return r;
    906	cs->current_length = cpu_to_le16(r);
    907	cs->next_frame_length = 0;
    908
    909	return 0;
    910}
    911
    912/**
    913 * zd_op_tx - transmits a network frame to the device
    914 *
    915 * @hw: a &struct ieee80211_hw pointer
    916 * @control: the control structure
    917 * @skb: socket buffer
    918 *
    919 * This function transmit an IEEE 802.11 network frame to the device. The
    920 * control block of the skbuff will be initialized. If necessary the incoming
    921 * mac80211 queues will be stopped.
    922 */
    923static void zd_op_tx(struct ieee80211_hw *hw,
    924		     struct ieee80211_tx_control *control,
    925		     struct sk_buff *skb)
    926{
    927	struct zd_mac *mac = zd_hw_mac(hw);
    928	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
    929	int r;
    930
    931	r = fill_ctrlset(mac, skb);
    932	if (r)
    933		goto fail;
    934
    935	info->rate_driver_data[0] = hw;
    936
    937	r = zd_usb_tx(&mac->chip.usb, skb);
    938	if (r)
    939		goto fail;
    940	return;
    941
    942fail:
    943	dev_kfree_skb(skb);
    944}
    945
    946/**
    947 * filter_ack - filters incoming packets for acknowledgements
    948 * @hw: a &struct ieee80211_hw pointer
    949 * @rx_hdr: received header
    950 * @stats: the status for the received packet
    951 *
    952 * This functions looks for ACK packets and tries to match them with the
    953 * frames in the tx queue. If a match is found the frame will be dequeued and
    954 * the upper layers is informed about the successful transmission. If
    955 * mac80211 queues have been stopped and the number of frames still to be
    956 * transmitted is low the queues will be opened again.
    957 *
    958 * Returns 1 if the frame was an ACK, 0 if it was ignored.
    959 */
    960static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
    961		      struct ieee80211_rx_status *stats)
    962{
    963	struct zd_mac *mac = zd_hw_mac(hw);
    964	struct sk_buff *skb;
    965	struct sk_buff_head *q;
    966	unsigned long flags;
    967	int found = 0;
    968	int i, position = 0;
    969
    970	if (!ieee80211_is_ack(rx_hdr->frame_control))
    971		return 0;
    972
    973	q = &mac->ack_wait_queue;
    974	spin_lock_irqsave(&q->lock, flags);
    975	skb_queue_walk(q, skb) {
    976		struct ieee80211_hdr *tx_hdr;
    977
    978		position ++;
    979
    980		if (mac->ack_pending && skb_queue_is_first(q, skb))
    981		    continue;
    982
    983		tx_hdr = (struct ieee80211_hdr *)skb->data;
    984		if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
    985		{
    986			found = 1;
    987			break;
    988		}
    989	}
    990
    991	if (found) {
    992		for (i=1; i<position; i++) {
    993			skb = __skb_dequeue(q);
    994			zd_mac_tx_status(hw, skb,
    995					 mac->ack_pending ? mac->ack_signal : 0,
    996					 NULL);
    997			mac->ack_pending = 0;
    998		}
    999
   1000		mac->ack_pending = 1;
   1001		mac->ack_signal = stats->signal;
   1002
   1003		/* Prevent pending tx-packet on AP-mode */
   1004		if (mac->type == NL80211_IFTYPE_AP) {
   1005			skb = __skb_dequeue(q);
   1006			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
   1007			mac->ack_pending = 0;
   1008		}
   1009	}
   1010
   1011	spin_unlock_irqrestore(&q->lock, flags);
   1012	return 1;
   1013}
   1014
   1015int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
   1016{
   1017	struct zd_mac *mac = zd_hw_mac(hw);
   1018	struct ieee80211_rx_status stats;
   1019	const struct rx_status *status;
   1020	struct sk_buff *skb;
   1021	int bad_frame = 0;
   1022	__le16 fc;
   1023	int need_padding;
   1024	int i;
   1025	u8 rate;
   1026
   1027	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
   1028	             FCS_LEN + sizeof(struct rx_status))
   1029		return -EINVAL;
   1030
   1031	memset(&stats, 0, sizeof(stats));
   1032
   1033	/* Note about pass_failed_fcs and pass_ctrl access below:
   1034	 * mac locking intentionally omitted here, as this is the only unlocked
   1035	 * reader and the only writer is configure_filter. Plus, if there were
   1036	 * any races accessing these variables, it wouldn't really matter.
   1037	 * If mac80211 ever provides a way for us to access filter flags
   1038	 * from outside configure_filter, we could improve on this. Also, this
   1039	 * situation may change once we implement some kind of DMA-into-skb
   1040	 * RX path. */
   1041
   1042	/* Caller has to ensure that length >= sizeof(struct rx_status). */
   1043	status = (struct rx_status *)
   1044		(buffer + (length - sizeof(struct rx_status)));
   1045	if (status->frame_status & ZD_RX_ERROR) {
   1046		if (mac->pass_failed_fcs &&
   1047				(status->frame_status & ZD_RX_CRC32_ERROR)) {
   1048			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
   1049			bad_frame = 1;
   1050		} else {
   1051			return -EINVAL;
   1052		}
   1053	}
   1054
   1055	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
   1056	stats.band = NL80211_BAND_2GHZ;
   1057	stats.signal = zd_check_signal(hw, status->signal_strength);
   1058
   1059	rate = zd_rx_rate(buffer, status);
   1060
   1061	/* todo: return index in the big switches in zd_rx_rate instead */
   1062	for (i = 0; i < mac->band.n_bitrates; i++)
   1063		if (rate == mac->band.bitrates[i].hw_value)
   1064			stats.rate_idx = i;
   1065
   1066	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
   1067	buffer += ZD_PLCP_HEADER_SIZE;
   1068
   1069	/* Except for bad frames, filter each frame to see if it is an ACK, in
   1070	 * which case our internal TX tracking is updated. Normally we then
   1071	 * bail here as there's no need to pass ACKs on up to the stack, but
   1072	 * there is also the case where the stack has requested us to pass
   1073	 * control frames on up (pass_ctrl) which we must consider. */
   1074	if (!bad_frame &&
   1075			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
   1076			&& !mac->pass_ctrl)
   1077		return 0;
   1078
   1079	fc = get_unaligned((__le16*)buffer);
   1080	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
   1081
   1082	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
   1083	if (skb == NULL)
   1084		return -ENOMEM;
   1085	if (need_padding) {
   1086		/* Make sure the payload data is 4 byte aligned. */
   1087		skb_reserve(skb, 2);
   1088	}
   1089
   1090	/* FIXME : could we avoid this big memcpy ? */
   1091	skb_put_data(skb, buffer, length);
   1092
   1093	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
   1094	ieee80211_rx_irqsafe(hw, skb);
   1095	return 0;
   1096}
   1097
   1098static int zd_op_add_interface(struct ieee80211_hw *hw,
   1099				struct ieee80211_vif *vif)
   1100{
   1101	struct zd_mac *mac = zd_hw_mac(hw);
   1102
   1103	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
   1104	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
   1105		return -EOPNOTSUPP;
   1106
   1107	switch (vif->type) {
   1108	case NL80211_IFTYPE_MONITOR:
   1109	case NL80211_IFTYPE_MESH_POINT:
   1110	case NL80211_IFTYPE_STATION:
   1111	case NL80211_IFTYPE_ADHOC:
   1112	case NL80211_IFTYPE_AP:
   1113		mac->type = vif->type;
   1114		break;
   1115	default:
   1116		return -EOPNOTSUPP;
   1117	}
   1118
   1119	mac->vif = vif;
   1120
   1121	return set_mac_and_bssid(mac);
   1122}
   1123
   1124static void zd_op_remove_interface(struct ieee80211_hw *hw,
   1125				    struct ieee80211_vif *vif)
   1126{
   1127	struct zd_mac *mac = zd_hw_mac(hw);
   1128	mac->type = NL80211_IFTYPE_UNSPECIFIED;
   1129	mac->vif = NULL;
   1130	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
   1131	zd_write_mac_addr(&mac->chip, NULL);
   1132
   1133	zd_mac_free_cur_beacon(mac);
   1134}
   1135
   1136static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
   1137{
   1138	struct zd_mac *mac = zd_hw_mac(hw);
   1139	struct ieee80211_conf *conf = &hw->conf;
   1140
   1141	spin_lock_irq(&mac->lock);
   1142	mac->channel = conf->chandef.chan->hw_value;
   1143	spin_unlock_irq(&mac->lock);
   1144
   1145	return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
   1146}
   1147
   1148static void zd_beacon_done(struct zd_mac *mac)
   1149{
   1150	struct sk_buff *skb, *beacon;
   1151
   1152	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
   1153		return;
   1154	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
   1155		return;
   1156
   1157	/*
   1158	 * Send out buffered broad- and multicast frames.
   1159	 */
   1160	while (!ieee80211_queue_stopped(mac->hw, 0)) {
   1161		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
   1162		if (!skb)
   1163			break;
   1164		zd_op_tx(mac->hw, NULL, skb);
   1165	}
   1166
   1167	/*
   1168	 * Fetch next beacon so that tim_count is updated.
   1169	 */
   1170	beacon = ieee80211_beacon_get(mac->hw, mac->vif);
   1171	if (beacon)
   1172		zd_mac_config_beacon(mac->hw, beacon, true);
   1173
   1174	spin_lock_irq(&mac->lock);
   1175	mac->beacon.last_update = jiffies;
   1176	spin_unlock_irq(&mac->lock);
   1177}
   1178
   1179static void zd_process_intr(struct work_struct *work)
   1180{
   1181	u16 int_status;
   1182	unsigned long flags;
   1183	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
   1184
   1185	spin_lock_irqsave(&mac->lock, flags);
   1186	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
   1187	spin_unlock_irqrestore(&mac->lock, flags);
   1188
   1189	if (int_status & INT_CFG_NEXT_BCN) {
   1190		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
   1191		zd_beacon_done(mac);
   1192	} else {
   1193		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
   1194	}
   1195
   1196	zd_chip_enable_hwint(&mac->chip);
   1197}
   1198
   1199
   1200static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
   1201				   struct netdev_hw_addr_list *mc_list)
   1202{
   1203	struct zd_mac *mac = zd_hw_mac(hw);
   1204	struct zd_mc_hash hash;
   1205	struct netdev_hw_addr *ha;
   1206
   1207	zd_mc_clear(&hash);
   1208
   1209	netdev_hw_addr_list_for_each(ha, mc_list) {
   1210		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
   1211		zd_mc_add_addr(&hash, ha->addr);
   1212	}
   1213
   1214	return hash.low | ((u64)hash.high << 32);
   1215}
   1216
   1217#define SUPPORTED_FIF_FLAGS \
   1218	(FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
   1219	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
   1220static void zd_op_configure_filter(struct ieee80211_hw *hw,
   1221			unsigned int changed_flags,
   1222			unsigned int *new_flags,
   1223			u64 multicast)
   1224{
   1225	struct zd_mc_hash hash = {
   1226		.low = multicast,
   1227		.high = multicast >> 32,
   1228	};
   1229	struct zd_mac *mac = zd_hw_mac(hw);
   1230	unsigned long flags;
   1231	int r;
   1232
   1233	/* Only deal with supported flags */
   1234	changed_flags &= SUPPORTED_FIF_FLAGS;
   1235	*new_flags &= SUPPORTED_FIF_FLAGS;
   1236
   1237	/*
   1238	 * If multicast parameter (as returned by zd_op_prepare_multicast)
   1239	 * has changed, no bit in changed_flags is set. To handle this
   1240	 * situation, we do not return if changed_flags is 0. If we do so,
   1241	 * we will have some issue with IPv6 which uses multicast for link
   1242	 * layer address resolution.
   1243	 */
   1244	if (*new_flags & FIF_ALLMULTI)
   1245		zd_mc_add_all(&hash);
   1246
   1247	spin_lock_irqsave(&mac->lock, flags);
   1248	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
   1249	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
   1250	mac->multicast_hash = hash;
   1251	spin_unlock_irqrestore(&mac->lock, flags);
   1252
   1253	zd_chip_set_multicast_hash(&mac->chip, &hash);
   1254
   1255	if (changed_flags & FIF_CONTROL) {
   1256		r = set_rx_filter(mac);
   1257		if (r)
   1258			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
   1259	}
   1260
   1261	/* no handling required for FIF_OTHER_BSS as we don't currently
   1262	 * do BSSID filtering */
   1263	/* FIXME: in future it would be nice to enable the probe response
   1264	 * filter (so that the driver doesn't see them) until
   1265	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
   1266	 * have to schedule work to enable prbresp reception, which might
   1267	 * happen too late. For now we'll just listen and forward them all the
   1268	 * time. */
   1269}
   1270
   1271static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
   1272{
   1273	mutex_lock(&mac->chip.mutex);
   1274	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
   1275	mutex_unlock(&mac->chip.mutex);
   1276}
   1277
   1278static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
   1279				   struct ieee80211_vif *vif,
   1280				   struct ieee80211_bss_conf *bss_conf,
   1281				   u32 changes)
   1282{
   1283	struct zd_mac *mac = zd_hw_mac(hw);
   1284	int associated;
   1285
   1286	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
   1287
   1288	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
   1289	    mac->type == NL80211_IFTYPE_ADHOC ||
   1290	    mac->type == NL80211_IFTYPE_AP) {
   1291		associated = true;
   1292		if (changes & BSS_CHANGED_BEACON) {
   1293			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
   1294
   1295			if (beacon) {
   1296				zd_chip_disable_hwint(&mac->chip);
   1297				zd_mac_config_beacon(hw, beacon, false);
   1298				zd_chip_enable_hwint(&mac->chip);
   1299			}
   1300		}
   1301
   1302		if (changes & BSS_CHANGED_BEACON_ENABLED) {
   1303			u16 interval = 0;
   1304			u8 period = 0;
   1305
   1306			if (bss_conf->enable_beacon) {
   1307				period = bss_conf->dtim_period;
   1308				interval = bss_conf->beacon_int;
   1309			}
   1310
   1311			spin_lock_irq(&mac->lock);
   1312			mac->beacon.period = period;
   1313			mac->beacon.interval = interval;
   1314			mac->beacon.last_update = jiffies;
   1315			spin_unlock_irq(&mac->lock);
   1316
   1317			zd_set_beacon_interval(&mac->chip, interval, period,
   1318					       mac->type);
   1319		}
   1320	} else
   1321		associated = is_valid_ether_addr(bss_conf->bssid);
   1322
   1323	spin_lock_irq(&mac->lock);
   1324	mac->associated = associated;
   1325	spin_unlock_irq(&mac->lock);
   1326
   1327	/* TODO: do hardware bssid filtering */
   1328
   1329	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
   1330		spin_lock_irq(&mac->lock);
   1331		mac->short_preamble = bss_conf->use_short_preamble;
   1332		spin_unlock_irq(&mac->lock);
   1333
   1334		set_rts_cts(mac, bss_conf->use_short_preamble);
   1335	}
   1336}
   1337
   1338static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
   1339{
   1340	struct zd_mac *mac = zd_hw_mac(hw);
   1341	return zd_chip_get_tsf(&mac->chip);
   1342}
   1343
   1344static const struct ieee80211_ops zd_ops = {
   1345	.tx			= zd_op_tx,
   1346	.start			= zd_op_start,
   1347	.stop			= zd_op_stop,
   1348	.add_interface		= zd_op_add_interface,
   1349	.remove_interface	= zd_op_remove_interface,
   1350	.config			= zd_op_config,
   1351	.prepare_multicast	= zd_op_prepare_multicast,
   1352	.configure_filter	= zd_op_configure_filter,
   1353	.bss_info_changed	= zd_op_bss_info_changed,
   1354	.get_tsf		= zd_op_get_tsf,
   1355};
   1356
   1357struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
   1358{
   1359	struct zd_mac *mac;
   1360	struct ieee80211_hw *hw;
   1361
   1362	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
   1363	if (!hw) {
   1364		dev_dbg_f(&intf->dev, "out of memory\n");
   1365		return NULL;
   1366	}
   1367
   1368	mac = zd_hw_mac(hw);
   1369
   1370	memset(mac, 0, sizeof(*mac));
   1371	spin_lock_init(&mac->lock);
   1372	mac->hw = hw;
   1373
   1374	mac->type = NL80211_IFTYPE_UNSPECIFIED;
   1375
   1376	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
   1377	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
   1378	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
   1379	mac->band.bitrates = mac->rates;
   1380	mac->band.n_channels = ARRAY_SIZE(zd_channels);
   1381	mac->band.channels = mac->channels;
   1382
   1383	hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
   1384
   1385	ieee80211_hw_set(hw, MFP_CAPABLE);
   1386	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
   1387	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
   1388	ieee80211_hw_set(hw, SIGNAL_UNSPEC);
   1389
   1390	hw->wiphy->interface_modes =
   1391		BIT(NL80211_IFTYPE_MESH_POINT) |
   1392		BIT(NL80211_IFTYPE_STATION) |
   1393		BIT(NL80211_IFTYPE_ADHOC) |
   1394		BIT(NL80211_IFTYPE_AP);
   1395
   1396	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
   1397
   1398	hw->max_signal = 100;
   1399	hw->queues = 1;
   1400	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
   1401
   1402	/*
   1403	 * Tell mac80211 that we support multi rate retries
   1404	 */
   1405	hw->max_rates = IEEE80211_TX_MAX_RATES;
   1406	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
   1407
   1408	skb_queue_head_init(&mac->ack_wait_queue);
   1409	mac->ack_pending = 0;
   1410
   1411	zd_chip_init(&mac->chip, hw, intf);
   1412	housekeeping_init(mac);
   1413	beacon_init(mac);
   1414	INIT_WORK(&mac->process_intr, zd_process_intr);
   1415
   1416	SET_IEEE80211_DEV(hw, &intf->dev);
   1417	return hw;
   1418}
   1419
   1420#define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
   1421
   1422static void beacon_watchdog_handler(struct work_struct *work)
   1423{
   1424	struct zd_mac *mac =
   1425		container_of(work, struct zd_mac, beacon.watchdog_work.work);
   1426	struct sk_buff *beacon;
   1427	unsigned long timeout;
   1428	int interval, period;
   1429
   1430	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
   1431		goto rearm;
   1432	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
   1433		goto rearm;
   1434
   1435	spin_lock_irq(&mac->lock);
   1436	interval = mac->beacon.interval;
   1437	period = mac->beacon.period;
   1438	timeout = mac->beacon.last_update +
   1439			msecs_to_jiffies(interval * 1024 / 1000) * 3;
   1440	spin_unlock_irq(&mac->lock);
   1441
   1442	if (interval > 0 && time_is_before_jiffies(timeout)) {
   1443		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
   1444					   "restarting. "
   1445					   "(interval: %d, dtim: %d)\n",
   1446					   interval, period);
   1447
   1448		zd_chip_disable_hwint(&mac->chip);
   1449
   1450		beacon = ieee80211_beacon_get(mac->hw, mac->vif);
   1451		if (beacon) {
   1452			zd_mac_free_cur_beacon(mac);
   1453
   1454			zd_mac_config_beacon(mac->hw, beacon, false);
   1455		}
   1456
   1457		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
   1458
   1459		zd_chip_enable_hwint(&mac->chip);
   1460
   1461		spin_lock_irq(&mac->lock);
   1462		mac->beacon.last_update = jiffies;
   1463		spin_unlock_irq(&mac->lock);
   1464	}
   1465
   1466rearm:
   1467	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
   1468			   BEACON_WATCHDOG_DELAY);
   1469}
   1470
   1471static void beacon_init(struct zd_mac *mac)
   1472{
   1473	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
   1474}
   1475
   1476static void beacon_enable(struct zd_mac *mac)
   1477{
   1478	dev_dbg_f(zd_mac_dev(mac), "\n");
   1479
   1480	mac->beacon.last_update = jiffies;
   1481	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
   1482			   BEACON_WATCHDOG_DELAY);
   1483}
   1484
   1485static void beacon_disable(struct zd_mac *mac)
   1486{
   1487	dev_dbg_f(zd_mac_dev(mac), "\n");
   1488	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
   1489
   1490	zd_mac_free_cur_beacon(mac);
   1491}
   1492
   1493#define LINK_LED_WORK_DELAY HZ
   1494
   1495static void link_led_handler(struct work_struct *work)
   1496{
   1497	struct zd_mac *mac =
   1498		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
   1499	struct zd_chip *chip = &mac->chip;
   1500	int is_associated;
   1501	int r;
   1502
   1503	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
   1504		goto requeue;
   1505
   1506	spin_lock_irq(&mac->lock);
   1507	is_associated = mac->associated;
   1508	spin_unlock_irq(&mac->lock);
   1509
   1510	r = zd_chip_control_leds(chip,
   1511		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
   1512	if (r)
   1513		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
   1514
   1515requeue:
   1516	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
   1517		           LINK_LED_WORK_DELAY);
   1518}
   1519
   1520static void housekeeping_init(struct zd_mac *mac)
   1521{
   1522	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
   1523}
   1524
   1525static void housekeeping_enable(struct zd_mac *mac)
   1526{
   1527	dev_dbg_f(zd_mac_dev(mac), "\n");
   1528	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
   1529			   0);
   1530}
   1531
   1532static void housekeeping_disable(struct zd_mac *mac)
   1533{
   1534	dev_dbg_f(zd_mac_dev(mac), "\n");
   1535	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
   1536	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
   1537}