cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pmem.c (19930B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Persistent Memory Driver
      4 *
      5 * Copyright (c) 2014-2015, Intel Corporation.
      6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
      7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
      8 */
      9
     10#include <linux/blkdev.h>
     11#include <linux/pagemap.h>
     12#include <linux/hdreg.h>
     13#include <linux/init.h>
     14#include <linux/platform_device.h>
     15#include <linux/set_memory.h>
     16#include <linux/module.h>
     17#include <linux/moduleparam.h>
     18#include <linux/badblocks.h>
     19#include <linux/memremap.h>
     20#include <linux/vmalloc.h>
     21#include <linux/blk-mq.h>
     22#include <linux/pfn_t.h>
     23#include <linux/slab.h>
     24#include <linux/uio.h>
     25#include <linux/dax.h>
     26#include <linux/nd.h>
     27#include <linux/mm.h>
     28#include <asm/cacheflush.h>
     29#include "pmem.h"
     30#include "btt.h"
     31#include "pfn.h"
     32#include "nd.h"
     33
     34static struct device *to_dev(struct pmem_device *pmem)
     35{
     36	/*
     37	 * nvdimm bus services need a 'dev' parameter, and we record the device
     38	 * at init in bb.dev.
     39	 */
     40	return pmem->bb.dev;
     41}
     42
     43static struct nd_region *to_region(struct pmem_device *pmem)
     44{
     45	return to_nd_region(to_dev(pmem)->parent);
     46}
     47
     48static phys_addr_t to_phys(struct pmem_device *pmem, phys_addr_t offset)
     49{
     50	return pmem->phys_addr + offset;
     51}
     52
     53static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
     54{
     55	return (offset - pmem->data_offset) >> SECTOR_SHIFT;
     56}
     57
     58static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
     59{
     60	return (sector << SECTOR_SHIFT) + pmem->data_offset;
     61}
     62
     63static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
     64		unsigned int len)
     65{
     66	phys_addr_t phys = to_phys(pmem, offset);
     67	unsigned long pfn_start, pfn_end, pfn;
     68
     69	/* only pmem in the linear map supports HWPoison */
     70	if (is_vmalloc_addr(pmem->virt_addr))
     71		return;
     72
     73	pfn_start = PHYS_PFN(phys);
     74	pfn_end = pfn_start + PHYS_PFN(len);
     75	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
     76		struct page *page = pfn_to_page(pfn);
     77
     78		/*
     79		 * Note, no need to hold a get_dev_pagemap() reference
     80		 * here since we're in the driver I/O path and
     81		 * outstanding I/O requests pin the dev_pagemap.
     82		 */
     83		if (test_and_clear_pmem_poison(page))
     84			clear_mce_nospec(pfn);
     85	}
     86}
     87
     88static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
     89{
     90	if (blks == 0)
     91		return;
     92	badblocks_clear(&pmem->bb, sector, blks);
     93	if (pmem->bb_state)
     94		sysfs_notify_dirent(pmem->bb_state);
     95}
     96
     97static long __pmem_clear_poison(struct pmem_device *pmem,
     98		phys_addr_t offset, unsigned int len)
     99{
    100	phys_addr_t phys = to_phys(pmem, offset);
    101	long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
    102
    103	if (cleared > 0) {
    104		pmem_mkpage_present(pmem, offset, cleared);
    105		arch_invalidate_pmem(pmem->virt_addr + offset, len);
    106	}
    107	return cleared;
    108}
    109
    110static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
    111		phys_addr_t offset, unsigned int len)
    112{
    113	long cleared = __pmem_clear_poison(pmem, offset, len);
    114
    115	if (cleared < 0)
    116		return BLK_STS_IOERR;
    117
    118	pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
    119	if (cleared < len)
    120		return BLK_STS_IOERR;
    121	return BLK_STS_OK;
    122}
    123
    124static void write_pmem(void *pmem_addr, struct page *page,
    125		unsigned int off, unsigned int len)
    126{
    127	unsigned int chunk;
    128	void *mem;
    129
    130	while (len) {
    131		mem = kmap_atomic(page);
    132		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
    133		memcpy_flushcache(pmem_addr, mem + off, chunk);
    134		kunmap_atomic(mem);
    135		len -= chunk;
    136		off = 0;
    137		page++;
    138		pmem_addr += chunk;
    139	}
    140}
    141
    142static blk_status_t read_pmem(struct page *page, unsigned int off,
    143		void *pmem_addr, unsigned int len)
    144{
    145	unsigned int chunk;
    146	unsigned long rem;
    147	void *mem;
    148
    149	while (len) {
    150		mem = kmap_atomic(page);
    151		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
    152		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
    153		kunmap_atomic(mem);
    154		if (rem)
    155			return BLK_STS_IOERR;
    156		len -= chunk;
    157		off = 0;
    158		page++;
    159		pmem_addr += chunk;
    160	}
    161	return BLK_STS_OK;
    162}
    163
    164static blk_status_t pmem_do_read(struct pmem_device *pmem,
    165			struct page *page, unsigned int page_off,
    166			sector_t sector, unsigned int len)
    167{
    168	blk_status_t rc;
    169	phys_addr_t pmem_off = to_offset(pmem, sector);
    170	void *pmem_addr = pmem->virt_addr + pmem_off;
    171
    172	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
    173		return BLK_STS_IOERR;
    174
    175	rc = read_pmem(page, page_off, pmem_addr, len);
    176	flush_dcache_page(page);
    177	return rc;
    178}
    179
    180static blk_status_t pmem_do_write(struct pmem_device *pmem,
    181			struct page *page, unsigned int page_off,
    182			sector_t sector, unsigned int len)
    183{
    184	phys_addr_t pmem_off = to_offset(pmem, sector);
    185	void *pmem_addr = pmem->virt_addr + pmem_off;
    186
    187	if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
    188		blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
    189
    190		if (rc != BLK_STS_OK)
    191			return rc;
    192	}
    193
    194	flush_dcache_page(page);
    195	write_pmem(pmem_addr, page, page_off, len);
    196
    197	return BLK_STS_OK;
    198}
    199
    200static void pmem_submit_bio(struct bio *bio)
    201{
    202	int ret = 0;
    203	blk_status_t rc = 0;
    204	bool do_acct;
    205	unsigned long start;
    206	struct bio_vec bvec;
    207	struct bvec_iter iter;
    208	struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
    209	struct nd_region *nd_region = to_region(pmem);
    210
    211	if (bio->bi_opf & REQ_PREFLUSH)
    212		ret = nvdimm_flush(nd_region, bio);
    213
    214	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
    215	if (do_acct)
    216		start = bio_start_io_acct(bio);
    217	bio_for_each_segment(bvec, bio, iter) {
    218		if (op_is_write(bio_op(bio)))
    219			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
    220				iter.bi_sector, bvec.bv_len);
    221		else
    222			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
    223				iter.bi_sector, bvec.bv_len);
    224		if (rc) {
    225			bio->bi_status = rc;
    226			break;
    227		}
    228	}
    229	if (do_acct)
    230		bio_end_io_acct(bio, start);
    231
    232	if (bio->bi_opf & REQ_FUA)
    233		ret = nvdimm_flush(nd_region, bio);
    234
    235	if (ret)
    236		bio->bi_status = errno_to_blk_status(ret);
    237
    238	bio_endio(bio);
    239}
    240
    241static int pmem_rw_page(struct block_device *bdev, sector_t sector,
    242		       struct page *page, unsigned int op)
    243{
    244	struct pmem_device *pmem = bdev->bd_disk->private_data;
    245	blk_status_t rc;
    246
    247	if (op_is_write(op))
    248		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
    249	else
    250		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
    251	/*
    252	 * The ->rw_page interface is subtle and tricky.  The core
    253	 * retries on any error, so we can only invoke page_endio() in
    254	 * the successful completion case.  Otherwise, we'll see crashes
    255	 * caused by double completion.
    256	 */
    257	if (rc == 0)
    258		page_endio(page, op_is_write(op), 0);
    259
    260	return blk_status_to_errno(rc);
    261}
    262
    263/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
    264__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
    265		long nr_pages, enum dax_access_mode mode, void **kaddr,
    266		pfn_t *pfn)
    267{
    268	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
    269	sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
    270	unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
    271	struct badblocks *bb = &pmem->bb;
    272	sector_t first_bad;
    273	int num_bad;
    274
    275	if (kaddr)
    276		*kaddr = pmem->virt_addr + offset;
    277	if (pfn)
    278		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
    279
    280	if (bb->count &&
    281	    badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
    282		long actual_nr;
    283
    284		if (mode != DAX_RECOVERY_WRITE)
    285			return -EIO;
    286
    287		/*
    288		 * Set the recovery stride is set to kernel page size because
    289		 * the underlying driver and firmware clear poison functions
    290		 * don't appear to handle large chunk(such as 2MiB) reliably.
    291		 */
    292		actual_nr = PHYS_PFN(
    293			PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
    294		dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
    295				sector, nr_pages, first_bad, actual_nr);
    296		if (actual_nr)
    297			return actual_nr;
    298		return 1;
    299	}
    300
    301	/*
    302	 * If badblocks are present but not in the range, limit known good range
    303	 * to the requested range.
    304	 */
    305	if (bb->count)
    306		return nr_pages;
    307	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
    308}
    309
    310static const struct block_device_operations pmem_fops = {
    311	.owner =		THIS_MODULE,
    312	.submit_bio =		pmem_submit_bio,
    313	.rw_page =		pmem_rw_page,
    314};
    315
    316static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
    317				    size_t nr_pages)
    318{
    319	struct pmem_device *pmem = dax_get_private(dax_dev);
    320
    321	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
    322				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
    323				   PAGE_SIZE));
    324}
    325
    326static long pmem_dax_direct_access(struct dax_device *dax_dev,
    327		pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
    328		void **kaddr, pfn_t *pfn)
    329{
    330	struct pmem_device *pmem = dax_get_private(dax_dev);
    331
    332	return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
    333}
    334
    335/*
    336 * The recovery write thread started out as a normal pwrite thread and
    337 * when the filesystem was told about potential media error in the
    338 * range, filesystem turns the normal pwrite to a dax_recovery_write.
    339 *
    340 * The recovery write consists of clearing media poison, clearing page
    341 * HWPoison bit, reenable page-wide read-write permission, flush the
    342 * caches and finally write.  A competing pread thread will be held
    343 * off during the recovery process since data read back might not be
    344 * valid, and this is achieved by clearing the badblock records after
    345 * the recovery write is complete. Competing recovery write threads
    346 * are already serialized by writer lock held by dax_iomap_rw().
    347 */
    348static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
    349		void *addr, size_t bytes, struct iov_iter *i)
    350{
    351	struct pmem_device *pmem = dax_get_private(dax_dev);
    352	size_t olen, len, off;
    353	phys_addr_t pmem_off;
    354	struct device *dev = pmem->bb.dev;
    355	long cleared;
    356
    357	off = offset_in_page(addr);
    358	len = PFN_PHYS(PFN_UP(off + bytes));
    359	if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
    360		return _copy_from_iter_flushcache(addr, bytes, i);
    361
    362	/*
    363	 * Not page-aligned range cannot be recovered. This should not
    364	 * happen unless something else went wrong.
    365	 */
    366	if (off || !PAGE_ALIGNED(bytes)) {
    367		dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
    368			addr, bytes);
    369		return 0;
    370	}
    371
    372	pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
    373	cleared = __pmem_clear_poison(pmem, pmem_off, len);
    374	if (cleared > 0 && cleared < len) {
    375		dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
    376			cleared, len);
    377		return 0;
    378	}
    379	if (cleared < 0) {
    380		dev_dbg(dev, "poison clear failed: %ld\n", cleared);
    381		return 0;
    382	}
    383
    384	olen = _copy_from_iter_flushcache(addr, bytes, i);
    385	pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
    386
    387	return olen;
    388}
    389
    390static const struct dax_operations pmem_dax_ops = {
    391	.direct_access = pmem_dax_direct_access,
    392	.zero_page_range = pmem_dax_zero_page_range,
    393	.recovery_write = pmem_recovery_write,
    394};
    395
    396static ssize_t write_cache_show(struct device *dev,
    397		struct device_attribute *attr, char *buf)
    398{
    399	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
    400
    401	return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
    402}
    403
    404static ssize_t write_cache_store(struct device *dev,
    405		struct device_attribute *attr, const char *buf, size_t len)
    406{
    407	struct pmem_device *pmem = dev_to_disk(dev)->private_data;
    408	bool write_cache;
    409	int rc;
    410
    411	rc = strtobool(buf, &write_cache);
    412	if (rc)
    413		return rc;
    414	dax_write_cache(pmem->dax_dev, write_cache);
    415	return len;
    416}
    417static DEVICE_ATTR_RW(write_cache);
    418
    419static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
    420{
    421#ifndef CONFIG_ARCH_HAS_PMEM_API
    422	if (a == &dev_attr_write_cache.attr)
    423		return 0;
    424#endif
    425	return a->mode;
    426}
    427
    428static struct attribute *dax_attributes[] = {
    429	&dev_attr_write_cache.attr,
    430	NULL,
    431};
    432
    433static const struct attribute_group dax_attribute_group = {
    434	.name		= "dax",
    435	.attrs		= dax_attributes,
    436	.is_visible	= dax_visible,
    437};
    438
    439static const struct attribute_group *pmem_attribute_groups[] = {
    440	&dax_attribute_group,
    441	NULL,
    442};
    443
    444static void pmem_release_disk(void *__pmem)
    445{
    446	struct pmem_device *pmem = __pmem;
    447
    448	dax_remove_host(pmem->disk);
    449	kill_dax(pmem->dax_dev);
    450	put_dax(pmem->dax_dev);
    451	del_gendisk(pmem->disk);
    452
    453	blk_cleanup_disk(pmem->disk);
    454}
    455
    456static int pmem_attach_disk(struct device *dev,
    457		struct nd_namespace_common *ndns)
    458{
    459	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
    460	struct nd_region *nd_region = to_nd_region(dev->parent);
    461	int nid = dev_to_node(dev), fua;
    462	struct resource *res = &nsio->res;
    463	struct range bb_range;
    464	struct nd_pfn *nd_pfn = NULL;
    465	struct dax_device *dax_dev;
    466	struct nd_pfn_sb *pfn_sb;
    467	struct pmem_device *pmem;
    468	struct request_queue *q;
    469	struct gendisk *disk;
    470	void *addr;
    471	int rc;
    472
    473	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
    474	if (!pmem)
    475		return -ENOMEM;
    476
    477	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
    478	if (rc)
    479		return rc;
    480
    481	/* while nsio_rw_bytes is active, parse a pfn info block if present */
    482	if (is_nd_pfn(dev)) {
    483		nd_pfn = to_nd_pfn(dev);
    484		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
    485		if (rc)
    486			return rc;
    487	}
    488
    489	/* we're attaching a block device, disable raw namespace access */
    490	devm_namespace_disable(dev, ndns);
    491
    492	dev_set_drvdata(dev, pmem);
    493	pmem->phys_addr = res->start;
    494	pmem->size = resource_size(res);
    495	fua = nvdimm_has_flush(nd_region);
    496	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
    497		dev_warn(dev, "unable to guarantee persistence of writes\n");
    498		fua = 0;
    499	}
    500
    501	if (!devm_request_mem_region(dev, res->start, resource_size(res),
    502				dev_name(&ndns->dev))) {
    503		dev_warn(dev, "could not reserve region %pR\n", res);
    504		return -EBUSY;
    505	}
    506
    507	disk = blk_alloc_disk(nid);
    508	if (!disk)
    509		return -ENOMEM;
    510	q = disk->queue;
    511
    512	pmem->disk = disk;
    513	pmem->pgmap.owner = pmem;
    514	pmem->pfn_flags = PFN_DEV;
    515	if (is_nd_pfn(dev)) {
    516		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
    517		addr = devm_memremap_pages(dev, &pmem->pgmap);
    518		pfn_sb = nd_pfn->pfn_sb;
    519		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
    520		pmem->pfn_pad = resource_size(res) -
    521			range_len(&pmem->pgmap.range);
    522		pmem->pfn_flags |= PFN_MAP;
    523		bb_range = pmem->pgmap.range;
    524		bb_range.start += pmem->data_offset;
    525	} else if (pmem_should_map_pages(dev)) {
    526		pmem->pgmap.range.start = res->start;
    527		pmem->pgmap.range.end = res->end;
    528		pmem->pgmap.nr_range = 1;
    529		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
    530		addr = devm_memremap_pages(dev, &pmem->pgmap);
    531		pmem->pfn_flags |= PFN_MAP;
    532		bb_range = pmem->pgmap.range;
    533	} else {
    534		addr = devm_memremap(dev, pmem->phys_addr,
    535				pmem->size, ARCH_MEMREMAP_PMEM);
    536		bb_range.start =  res->start;
    537		bb_range.end = res->end;
    538	}
    539
    540	if (IS_ERR(addr)) {
    541		rc = PTR_ERR(addr);
    542		goto out;
    543	}
    544	pmem->virt_addr = addr;
    545
    546	blk_queue_write_cache(q, true, fua);
    547	blk_queue_physical_block_size(q, PAGE_SIZE);
    548	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
    549	blk_queue_max_hw_sectors(q, UINT_MAX);
    550	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
    551	if (pmem->pfn_flags & PFN_MAP)
    552		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
    553
    554	disk->fops		= &pmem_fops;
    555	disk->private_data	= pmem;
    556	nvdimm_namespace_disk_name(ndns, disk->disk_name);
    557	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
    558			/ 512);
    559	if (devm_init_badblocks(dev, &pmem->bb))
    560		return -ENOMEM;
    561	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
    562	disk->bb = &pmem->bb;
    563
    564	dax_dev = alloc_dax(pmem, &pmem_dax_ops);
    565	if (IS_ERR(dax_dev)) {
    566		rc = PTR_ERR(dax_dev);
    567		goto out;
    568	}
    569	set_dax_nocache(dax_dev);
    570	set_dax_nomc(dax_dev);
    571	if (is_nvdimm_sync(nd_region))
    572		set_dax_synchronous(dax_dev);
    573	rc = dax_add_host(dax_dev, disk);
    574	if (rc)
    575		goto out_cleanup_dax;
    576	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
    577	pmem->dax_dev = dax_dev;
    578
    579	rc = device_add_disk(dev, disk, pmem_attribute_groups);
    580	if (rc)
    581		goto out_remove_host;
    582	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
    583		return -ENOMEM;
    584
    585	nvdimm_check_and_set_ro(disk);
    586
    587	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
    588					  "badblocks");
    589	if (!pmem->bb_state)
    590		dev_warn(dev, "'badblocks' notification disabled\n");
    591	return 0;
    592
    593out_remove_host:
    594	dax_remove_host(pmem->disk);
    595out_cleanup_dax:
    596	kill_dax(pmem->dax_dev);
    597	put_dax(pmem->dax_dev);
    598out:
    599	blk_cleanup_disk(pmem->disk);
    600	return rc;
    601}
    602
    603static int nd_pmem_probe(struct device *dev)
    604{
    605	int ret;
    606	struct nd_namespace_common *ndns;
    607
    608	ndns = nvdimm_namespace_common_probe(dev);
    609	if (IS_ERR(ndns))
    610		return PTR_ERR(ndns);
    611
    612	if (is_nd_btt(dev))
    613		return nvdimm_namespace_attach_btt(ndns);
    614
    615	if (is_nd_pfn(dev))
    616		return pmem_attach_disk(dev, ndns);
    617
    618	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
    619	if (ret)
    620		return ret;
    621
    622	ret = nd_btt_probe(dev, ndns);
    623	if (ret == 0)
    624		return -ENXIO;
    625
    626	/*
    627	 * We have two failure conditions here, there is no
    628	 * info reserver block or we found a valid info reserve block
    629	 * but failed to initialize the pfn superblock.
    630	 *
    631	 * For the first case consider namespace as a raw pmem namespace
    632	 * and attach a disk.
    633	 *
    634	 * For the latter, consider this a success and advance the namespace
    635	 * seed.
    636	 */
    637	ret = nd_pfn_probe(dev, ndns);
    638	if (ret == 0)
    639		return -ENXIO;
    640	else if (ret == -EOPNOTSUPP)
    641		return ret;
    642
    643	ret = nd_dax_probe(dev, ndns);
    644	if (ret == 0)
    645		return -ENXIO;
    646	else if (ret == -EOPNOTSUPP)
    647		return ret;
    648
    649	/* probe complete, attach handles namespace enabling */
    650	devm_namespace_disable(dev, ndns);
    651
    652	return pmem_attach_disk(dev, ndns);
    653}
    654
    655static void nd_pmem_remove(struct device *dev)
    656{
    657	struct pmem_device *pmem = dev_get_drvdata(dev);
    658
    659	if (is_nd_btt(dev))
    660		nvdimm_namespace_detach_btt(to_nd_btt(dev));
    661	else {
    662		/*
    663		 * Note, this assumes device_lock() context to not
    664		 * race nd_pmem_notify()
    665		 */
    666		sysfs_put(pmem->bb_state);
    667		pmem->bb_state = NULL;
    668	}
    669	nvdimm_flush(to_nd_region(dev->parent), NULL);
    670}
    671
    672static void nd_pmem_shutdown(struct device *dev)
    673{
    674	nvdimm_flush(to_nd_region(dev->parent), NULL);
    675}
    676
    677static void pmem_revalidate_poison(struct device *dev)
    678{
    679	struct nd_region *nd_region;
    680	resource_size_t offset = 0, end_trunc = 0;
    681	struct nd_namespace_common *ndns;
    682	struct nd_namespace_io *nsio;
    683	struct badblocks *bb;
    684	struct range range;
    685	struct kernfs_node *bb_state;
    686
    687	if (is_nd_btt(dev)) {
    688		struct nd_btt *nd_btt = to_nd_btt(dev);
    689
    690		ndns = nd_btt->ndns;
    691		nd_region = to_nd_region(ndns->dev.parent);
    692		nsio = to_nd_namespace_io(&ndns->dev);
    693		bb = &nsio->bb;
    694		bb_state = NULL;
    695	} else {
    696		struct pmem_device *pmem = dev_get_drvdata(dev);
    697
    698		nd_region = to_region(pmem);
    699		bb = &pmem->bb;
    700		bb_state = pmem->bb_state;
    701
    702		if (is_nd_pfn(dev)) {
    703			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
    704			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
    705
    706			ndns = nd_pfn->ndns;
    707			offset = pmem->data_offset +
    708					__le32_to_cpu(pfn_sb->start_pad);
    709			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
    710		} else {
    711			ndns = to_ndns(dev);
    712		}
    713
    714		nsio = to_nd_namespace_io(&ndns->dev);
    715	}
    716
    717	range.start = nsio->res.start + offset;
    718	range.end = nsio->res.end - end_trunc;
    719	nvdimm_badblocks_populate(nd_region, bb, &range);
    720	if (bb_state)
    721		sysfs_notify_dirent(bb_state);
    722}
    723
    724static void pmem_revalidate_region(struct device *dev)
    725{
    726	struct pmem_device *pmem;
    727
    728	if (is_nd_btt(dev)) {
    729		struct nd_btt *nd_btt = to_nd_btt(dev);
    730		struct btt *btt = nd_btt->btt;
    731
    732		nvdimm_check_and_set_ro(btt->btt_disk);
    733		return;
    734	}
    735
    736	pmem = dev_get_drvdata(dev);
    737	nvdimm_check_and_set_ro(pmem->disk);
    738}
    739
    740static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
    741{
    742	switch (event) {
    743	case NVDIMM_REVALIDATE_POISON:
    744		pmem_revalidate_poison(dev);
    745		break;
    746	case NVDIMM_REVALIDATE_REGION:
    747		pmem_revalidate_region(dev);
    748		break;
    749	default:
    750		dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
    751		break;
    752	}
    753}
    754
    755MODULE_ALIAS("pmem");
    756MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
    757MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
    758static struct nd_device_driver nd_pmem_driver = {
    759	.probe = nd_pmem_probe,
    760	.remove = nd_pmem_remove,
    761	.notify = nd_pmem_notify,
    762	.shutdown = nd_pmem_shutdown,
    763	.drv = {
    764		.name = "nd_pmem",
    765	},
    766	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
    767};
    768
    769module_nd_driver(nd_pmem_driver);
    770
    771MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
    772MODULE_LICENSE("GPL v2");