cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rdma.c (52810B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * NVMe over Fabrics RDMA target.
      4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
      5 */
      6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      7#include <linux/atomic.h>
      8#include <linux/blk-integrity.h>
      9#include <linux/ctype.h>
     10#include <linux/delay.h>
     11#include <linux/err.h>
     12#include <linux/init.h>
     13#include <linux/module.h>
     14#include <linux/nvme.h>
     15#include <linux/slab.h>
     16#include <linux/string.h>
     17#include <linux/wait.h>
     18#include <linux/inet.h>
     19#include <asm/unaligned.h>
     20
     21#include <rdma/ib_verbs.h>
     22#include <rdma/rdma_cm.h>
     23#include <rdma/rw.h>
     24#include <rdma/ib_cm.h>
     25
     26#include <linux/nvme-rdma.h>
     27#include "nvmet.h"
     28
     29/*
     30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
     31 */
     32#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
     33#define NVMET_RDMA_MAX_INLINE_SGE		4
     34#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
     35
     36/* Assume mpsmin == device_page_size == 4KB */
     37#define NVMET_RDMA_MAX_MDTS			8
     38#define NVMET_RDMA_MAX_METADATA_MDTS		5
     39
     40struct nvmet_rdma_srq;
     41
     42struct nvmet_rdma_cmd {
     43	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
     44	struct ib_cqe		cqe;
     45	struct ib_recv_wr	wr;
     46	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
     47	struct nvme_command     *nvme_cmd;
     48	struct nvmet_rdma_queue	*queue;
     49	struct nvmet_rdma_srq   *nsrq;
     50};
     51
     52enum {
     53	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
     54	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
     55};
     56
     57struct nvmet_rdma_rsp {
     58	struct ib_sge		send_sge;
     59	struct ib_cqe		send_cqe;
     60	struct ib_send_wr	send_wr;
     61
     62	struct nvmet_rdma_cmd	*cmd;
     63	struct nvmet_rdma_queue	*queue;
     64
     65	struct ib_cqe		read_cqe;
     66	struct ib_cqe		write_cqe;
     67	struct rdma_rw_ctx	rw;
     68
     69	struct nvmet_req	req;
     70
     71	bool			allocated;
     72	u8			n_rdma;
     73	u32			flags;
     74	u32			invalidate_rkey;
     75
     76	struct list_head	wait_list;
     77	struct list_head	free_list;
     78};
     79
     80enum nvmet_rdma_queue_state {
     81	NVMET_RDMA_Q_CONNECTING,
     82	NVMET_RDMA_Q_LIVE,
     83	NVMET_RDMA_Q_DISCONNECTING,
     84};
     85
     86struct nvmet_rdma_queue {
     87	struct rdma_cm_id	*cm_id;
     88	struct ib_qp		*qp;
     89	struct nvmet_port	*port;
     90	struct ib_cq		*cq;
     91	atomic_t		sq_wr_avail;
     92	struct nvmet_rdma_device *dev;
     93	struct nvmet_rdma_srq   *nsrq;
     94	spinlock_t		state_lock;
     95	enum nvmet_rdma_queue_state state;
     96	struct nvmet_cq		nvme_cq;
     97	struct nvmet_sq		nvme_sq;
     98
     99	struct nvmet_rdma_rsp	*rsps;
    100	struct list_head	free_rsps;
    101	spinlock_t		rsps_lock;
    102	struct nvmet_rdma_cmd	*cmds;
    103
    104	struct work_struct	release_work;
    105	struct list_head	rsp_wait_list;
    106	struct list_head	rsp_wr_wait_list;
    107	spinlock_t		rsp_wr_wait_lock;
    108
    109	int			idx;
    110	int			host_qid;
    111	int			comp_vector;
    112	int			recv_queue_size;
    113	int			send_queue_size;
    114
    115	struct list_head	queue_list;
    116};
    117
    118struct nvmet_rdma_port {
    119	struct nvmet_port	*nport;
    120	struct sockaddr_storage addr;
    121	struct rdma_cm_id	*cm_id;
    122	struct delayed_work	repair_work;
    123};
    124
    125struct nvmet_rdma_srq {
    126	struct ib_srq            *srq;
    127	struct nvmet_rdma_cmd    *cmds;
    128	struct nvmet_rdma_device *ndev;
    129};
    130
    131struct nvmet_rdma_device {
    132	struct ib_device	*device;
    133	struct ib_pd		*pd;
    134	struct nvmet_rdma_srq	**srqs;
    135	int			srq_count;
    136	size_t			srq_size;
    137	struct kref		ref;
    138	struct list_head	entry;
    139	int			inline_data_size;
    140	int			inline_page_count;
    141};
    142
    143static bool nvmet_rdma_use_srq;
    144module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
    145MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
    146
    147static int srq_size_set(const char *val, const struct kernel_param *kp);
    148static const struct kernel_param_ops srq_size_ops = {
    149	.set = srq_size_set,
    150	.get = param_get_int,
    151};
    152
    153static int nvmet_rdma_srq_size = 1024;
    154module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
    155MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
    156
    157static DEFINE_IDA(nvmet_rdma_queue_ida);
    158static LIST_HEAD(nvmet_rdma_queue_list);
    159static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
    160
    161static LIST_HEAD(device_list);
    162static DEFINE_MUTEX(device_list_mutex);
    163
    164static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
    165static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
    166static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
    167static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
    168static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
    169static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
    170static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
    171static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
    172				struct nvmet_rdma_rsp *r);
    173static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
    174				struct nvmet_rdma_rsp *r);
    175
    176static const struct nvmet_fabrics_ops nvmet_rdma_ops;
    177
    178static int srq_size_set(const char *val, const struct kernel_param *kp)
    179{
    180	int n = 0, ret;
    181
    182	ret = kstrtoint(val, 10, &n);
    183	if (ret != 0 || n < 256)
    184		return -EINVAL;
    185
    186	return param_set_int(val, kp);
    187}
    188
    189static int num_pages(int len)
    190{
    191	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
    192}
    193
    194static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
    195{
    196	return nvme_is_write(rsp->req.cmd) &&
    197		rsp->req.transfer_len &&
    198		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
    199}
    200
    201static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
    202{
    203	return !nvme_is_write(rsp->req.cmd) &&
    204		rsp->req.transfer_len &&
    205		!rsp->req.cqe->status &&
    206		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
    207}
    208
    209static inline struct nvmet_rdma_rsp *
    210nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
    211{
    212	struct nvmet_rdma_rsp *rsp;
    213	unsigned long flags;
    214
    215	spin_lock_irqsave(&queue->rsps_lock, flags);
    216	rsp = list_first_entry_or_null(&queue->free_rsps,
    217				struct nvmet_rdma_rsp, free_list);
    218	if (likely(rsp))
    219		list_del(&rsp->free_list);
    220	spin_unlock_irqrestore(&queue->rsps_lock, flags);
    221
    222	if (unlikely(!rsp)) {
    223		int ret;
    224
    225		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
    226		if (unlikely(!rsp))
    227			return NULL;
    228		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
    229		if (unlikely(ret)) {
    230			kfree(rsp);
    231			return NULL;
    232		}
    233
    234		rsp->allocated = true;
    235	}
    236
    237	return rsp;
    238}
    239
    240static inline void
    241nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
    242{
    243	unsigned long flags;
    244
    245	if (unlikely(rsp->allocated)) {
    246		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
    247		kfree(rsp);
    248		return;
    249	}
    250
    251	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
    252	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
    253	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
    254}
    255
    256static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
    257				struct nvmet_rdma_cmd *c)
    258{
    259	struct scatterlist *sg;
    260	struct ib_sge *sge;
    261	int i;
    262
    263	if (!ndev->inline_data_size)
    264		return;
    265
    266	sg = c->inline_sg;
    267	sge = &c->sge[1];
    268
    269	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
    270		if (sge->length)
    271			ib_dma_unmap_page(ndev->device, sge->addr,
    272					sge->length, DMA_FROM_DEVICE);
    273		if (sg_page(sg))
    274			__free_page(sg_page(sg));
    275	}
    276}
    277
    278static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
    279				struct nvmet_rdma_cmd *c)
    280{
    281	struct scatterlist *sg;
    282	struct ib_sge *sge;
    283	struct page *pg;
    284	int len;
    285	int i;
    286
    287	if (!ndev->inline_data_size)
    288		return 0;
    289
    290	sg = c->inline_sg;
    291	sg_init_table(sg, ndev->inline_page_count);
    292	sge = &c->sge[1];
    293	len = ndev->inline_data_size;
    294
    295	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
    296		pg = alloc_page(GFP_KERNEL);
    297		if (!pg)
    298			goto out_err;
    299		sg_assign_page(sg, pg);
    300		sge->addr = ib_dma_map_page(ndev->device,
    301			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
    302		if (ib_dma_mapping_error(ndev->device, sge->addr))
    303			goto out_err;
    304		sge->length = min_t(int, len, PAGE_SIZE);
    305		sge->lkey = ndev->pd->local_dma_lkey;
    306		len -= sge->length;
    307	}
    308
    309	return 0;
    310out_err:
    311	for (; i >= 0; i--, sg--, sge--) {
    312		if (sge->length)
    313			ib_dma_unmap_page(ndev->device, sge->addr,
    314					sge->length, DMA_FROM_DEVICE);
    315		if (sg_page(sg))
    316			__free_page(sg_page(sg));
    317	}
    318	return -ENOMEM;
    319}
    320
    321static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
    322			struct nvmet_rdma_cmd *c, bool admin)
    323{
    324	/* NVMe command / RDMA RECV */
    325	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
    326	if (!c->nvme_cmd)
    327		goto out;
    328
    329	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
    330			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
    331	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
    332		goto out_free_cmd;
    333
    334	c->sge[0].length = sizeof(*c->nvme_cmd);
    335	c->sge[0].lkey = ndev->pd->local_dma_lkey;
    336
    337	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
    338		goto out_unmap_cmd;
    339
    340	c->cqe.done = nvmet_rdma_recv_done;
    341
    342	c->wr.wr_cqe = &c->cqe;
    343	c->wr.sg_list = c->sge;
    344	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
    345
    346	return 0;
    347
    348out_unmap_cmd:
    349	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
    350			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
    351out_free_cmd:
    352	kfree(c->nvme_cmd);
    353
    354out:
    355	return -ENOMEM;
    356}
    357
    358static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
    359		struct nvmet_rdma_cmd *c, bool admin)
    360{
    361	if (!admin)
    362		nvmet_rdma_free_inline_pages(ndev, c);
    363	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
    364				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
    365	kfree(c->nvme_cmd);
    366}
    367
    368static struct nvmet_rdma_cmd *
    369nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
    370		int nr_cmds, bool admin)
    371{
    372	struct nvmet_rdma_cmd *cmds;
    373	int ret = -EINVAL, i;
    374
    375	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
    376	if (!cmds)
    377		goto out;
    378
    379	for (i = 0; i < nr_cmds; i++) {
    380		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
    381		if (ret)
    382			goto out_free;
    383	}
    384
    385	return cmds;
    386
    387out_free:
    388	while (--i >= 0)
    389		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
    390	kfree(cmds);
    391out:
    392	return ERR_PTR(ret);
    393}
    394
    395static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
    396		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
    397{
    398	int i;
    399
    400	for (i = 0; i < nr_cmds; i++)
    401		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
    402	kfree(cmds);
    403}
    404
    405static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
    406		struct nvmet_rdma_rsp *r)
    407{
    408	/* NVMe CQE / RDMA SEND */
    409	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
    410	if (!r->req.cqe)
    411		goto out;
    412
    413	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
    414			sizeof(*r->req.cqe), DMA_TO_DEVICE);
    415	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
    416		goto out_free_rsp;
    417
    418	if (!ib_uses_virt_dma(ndev->device))
    419		r->req.p2p_client = &ndev->device->dev;
    420	r->send_sge.length = sizeof(*r->req.cqe);
    421	r->send_sge.lkey = ndev->pd->local_dma_lkey;
    422
    423	r->send_cqe.done = nvmet_rdma_send_done;
    424
    425	r->send_wr.wr_cqe = &r->send_cqe;
    426	r->send_wr.sg_list = &r->send_sge;
    427	r->send_wr.num_sge = 1;
    428	r->send_wr.send_flags = IB_SEND_SIGNALED;
    429
    430	/* Data In / RDMA READ */
    431	r->read_cqe.done = nvmet_rdma_read_data_done;
    432	/* Data Out / RDMA WRITE */
    433	r->write_cqe.done = nvmet_rdma_write_data_done;
    434
    435	return 0;
    436
    437out_free_rsp:
    438	kfree(r->req.cqe);
    439out:
    440	return -ENOMEM;
    441}
    442
    443static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
    444		struct nvmet_rdma_rsp *r)
    445{
    446	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
    447				sizeof(*r->req.cqe), DMA_TO_DEVICE);
    448	kfree(r->req.cqe);
    449}
    450
    451static int
    452nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
    453{
    454	struct nvmet_rdma_device *ndev = queue->dev;
    455	int nr_rsps = queue->recv_queue_size * 2;
    456	int ret = -EINVAL, i;
    457
    458	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
    459			GFP_KERNEL);
    460	if (!queue->rsps)
    461		goto out;
    462
    463	for (i = 0; i < nr_rsps; i++) {
    464		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
    465
    466		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
    467		if (ret)
    468			goto out_free;
    469
    470		list_add_tail(&rsp->free_list, &queue->free_rsps);
    471	}
    472
    473	return 0;
    474
    475out_free:
    476	while (--i >= 0) {
    477		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
    478
    479		list_del(&rsp->free_list);
    480		nvmet_rdma_free_rsp(ndev, rsp);
    481	}
    482	kfree(queue->rsps);
    483out:
    484	return ret;
    485}
    486
    487static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
    488{
    489	struct nvmet_rdma_device *ndev = queue->dev;
    490	int i, nr_rsps = queue->recv_queue_size * 2;
    491
    492	for (i = 0; i < nr_rsps; i++) {
    493		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
    494
    495		list_del(&rsp->free_list);
    496		nvmet_rdma_free_rsp(ndev, rsp);
    497	}
    498	kfree(queue->rsps);
    499}
    500
    501static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
    502		struct nvmet_rdma_cmd *cmd)
    503{
    504	int ret;
    505
    506	ib_dma_sync_single_for_device(ndev->device,
    507		cmd->sge[0].addr, cmd->sge[0].length,
    508		DMA_FROM_DEVICE);
    509
    510	if (cmd->nsrq)
    511		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
    512	else
    513		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
    514
    515	if (unlikely(ret))
    516		pr_err("post_recv cmd failed\n");
    517
    518	return ret;
    519}
    520
    521static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
    522{
    523	spin_lock(&queue->rsp_wr_wait_lock);
    524	while (!list_empty(&queue->rsp_wr_wait_list)) {
    525		struct nvmet_rdma_rsp *rsp;
    526		bool ret;
    527
    528		rsp = list_entry(queue->rsp_wr_wait_list.next,
    529				struct nvmet_rdma_rsp, wait_list);
    530		list_del(&rsp->wait_list);
    531
    532		spin_unlock(&queue->rsp_wr_wait_lock);
    533		ret = nvmet_rdma_execute_command(rsp);
    534		spin_lock(&queue->rsp_wr_wait_lock);
    535
    536		if (!ret) {
    537			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
    538			break;
    539		}
    540	}
    541	spin_unlock(&queue->rsp_wr_wait_lock);
    542}
    543
    544static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
    545{
    546	struct ib_mr_status mr_status;
    547	int ret;
    548	u16 status = 0;
    549
    550	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
    551	if (ret) {
    552		pr_err("ib_check_mr_status failed, ret %d\n", ret);
    553		return NVME_SC_INVALID_PI;
    554	}
    555
    556	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
    557		switch (mr_status.sig_err.err_type) {
    558		case IB_SIG_BAD_GUARD:
    559			status = NVME_SC_GUARD_CHECK;
    560			break;
    561		case IB_SIG_BAD_REFTAG:
    562			status = NVME_SC_REFTAG_CHECK;
    563			break;
    564		case IB_SIG_BAD_APPTAG:
    565			status = NVME_SC_APPTAG_CHECK;
    566			break;
    567		}
    568		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
    569		       mr_status.sig_err.err_type,
    570		       mr_status.sig_err.expected,
    571		       mr_status.sig_err.actual);
    572	}
    573
    574	return status;
    575}
    576
    577static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
    578		struct nvme_command *cmd, struct ib_sig_domain *domain,
    579		u16 control, u8 pi_type)
    580{
    581	domain->sig_type = IB_SIG_TYPE_T10_DIF;
    582	domain->sig.dif.bg_type = IB_T10DIF_CRC;
    583	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
    584	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
    585	if (control & NVME_RW_PRINFO_PRCHK_REF)
    586		domain->sig.dif.ref_remap = true;
    587
    588	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
    589	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
    590	domain->sig.dif.app_escape = true;
    591	if (pi_type == NVME_NS_DPS_PI_TYPE3)
    592		domain->sig.dif.ref_escape = true;
    593}
    594
    595static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
    596				     struct ib_sig_attrs *sig_attrs)
    597{
    598	struct nvme_command *cmd = req->cmd;
    599	u16 control = le16_to_cpu(cmd->rw.control);
    600	u8 pi_type = req->ns->pi_type;
    601	struct blk_integrity *bi;
    602
    603	bi = bdev_get_integrity(req->ns->bdev);
    604
    605	memset(sig_attrs, 0, sizeof(*sig_attrs));
    606
    607	if (control & NVME_RW_PRINFO_PRACT) {
    608		/* for WRITE_INSERT/READ_STRIP no wire domain */
    609		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
    610		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
    611					  pi_type);
    612		/* Clear the PRACT bit since HCA will generate/verify the PI */
    613		control &= ~NVME_RW_PRINFO_PRACT;
    614		cmd->rw.control = cpu_to_le16(control);
    615		/* PI is added by the HW */
    616		req->transfer_len += req->metadata_len;
    617	} else {
    618		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
    619		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
    620					  pi_type);
    621		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
    622					  pi_type);
    623	}
    624
    625	if (control & NVME_RW_PRINFO_PRCHK_REF)
    626		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
    627	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
    628		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
    629	if (control & NVME_RW_PRINFO_PRCHK_APP)
    630		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
    631}
    632
    633static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
    634				  struct ib_sig_attrs *sig_attrs)
    635{
    636	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
    637	struct nvmet_req *req = &rsp->req;
    638	int ret;
    639
    640	if (req->metadata_len)
    641		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
    642			cm_id->port_num, req->sg, req->sg_cnt,
    643			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
    644			addr, key, nvmet_data_dir(req));
    645	else
    646		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
    647				       req->sg, req->sg_cnt, 0, addr, key,
    648				       nvmet_data_dir(req));
    649
    650	return ret;
    651}
    652
    653static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
    654{
    655	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
    656	struct nvmet_req *req = &rsp->req;
    657
    658	if (req->metadata_len)
    659		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
    660			cm_id->port_num, req->sg, req->sg_cnt,
    661			req->metadata_sg, req->metadata_sg_cnt,
    662			nvmet_data_dir(req));
    663	else
    664		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
    665				    req->sg, req->sg_cnt, nvmet_data_dir(req));
    666}
    667
    668static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
    669{
    670	struct nvmet_rdma_queue *queue = rsp->queue;
    671
    672	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
    673
    674	if (rsp->n_rdma)
    675		nvmet_rdma_rw_ctx_destroy(rsp);
    676
    677	if (rsp->req.sg != rsp->cmd->inline_sg)
    678		nvmet_req_free_sgls(&rsp->req);
    679
    680	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
    681		nvmet_rdma_process_wr_wait_list(queue);
    682
    683	nvmet_rdma_put_rsp(rsp);
    684}
    685
    686static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
    687{
    688	if (queue->nvme_sq.ctrl) {
    689		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
    690	} else {
    691		/*
    692		 * we didn't setup the controller yet in case
    693		 * of admin connect error, just disconnect and
    694		 * cleanup the queue
    695		 */
    696		nvmet_rdma_queue_disconnect(queue);
    697	}
    698}
    699
    700static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
    701{
    702	struct nvmet_rdma_rsp *rsp =
    703		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
    704	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
    705
    706	nvmet_rdma_release_rsp(rsp);
    707
    708	if (unlikely(wc->status != IB_WC_SUCCESS &&
    709		     wc->status != IB_WC_WR_FLUSH_ERR)) {
    710		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
    711			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
    712		nvmet_rdma_error_comp(queue);
    713	}
    714}
    715
    716static void nvmet_rdma_queue_response(struct nvmet_req *req)
    717{
    718	struct nvmet_rdma_rsp *rsp =
    719		container_of(req, struct nvmet_rdma_rsp, req);
    720	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
    721	struct ib_send_wr *first_wr;
    722
    723	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
    724		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
    725		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
    726	} else {
    727		rsp->send_wr.opcode = IB_WR_SEND;
    728	}
    729
    730	if (nvmet_rdma_need_data_out(rsp)) {
    731		if (rsp->req.metadata_len)
    732			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
    733					cm_id->port_num, &rsp->write_cqe, NULL);
    734		else
    735			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
    736					cm_id->port_num, NULL, &rsp->send_wr);
    737	} else {
    738		first_wr = &rsp->send_wr;
    739	}
    740
    741	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
    742
    743	ib_dma_sync_single_for_device(rsp->queue->dev->device,
    744		rsp->send_sge.addr, rsp->send_sge.length,
    745		DMA_TO_DEVICE);
    746
    747	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
    748		pr_err("sending cmd response failed\n");
    749		nvmet_rdma_release_rsp(rsp);
    750	}
    751}
    752
    753static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
    754{
    755	struct nvmet_rdma_rsp *rsp =
    756		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
    757	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
    758	u16 status = 0;
    759
    760	WARN_ON(rsp->n_rdma <= 0);
    761	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
    762	rsp->n_rdma = 0;
    763
    764	if (unlikely(wc->status != IB_WC_SUCCESS)) {
    765		nvmet_rdma_rw_ctx_destroy(rsp);
    766		nvmet_req_uninit(&rsp->req);
    767		nvmet_rdma_release_rsp(rsp);
    768		if (wc->status != IB_WC_WR_FLUSH_ERR) {
    769			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
    770				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
    771			nvmet_rdma_error_comp(queue);
    772		}
    773		return;
    774	}
    775
    776	if (rsp->req.metadata_len)
    777		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
    778	nvmet_rdma_rw_ctx_destroy(rsp);
    779
    780	if (unlikely(status))
    781		nvmet_req_complete(&rsp->req, status);
    782	else
    783		rsp->req.execute(&rsp->req);
    784}
    785
    786static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
    787{
    788	struct nvmet_rdma_rsp *rsp =
    789		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
    790	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
    791	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
    792	u16 status;
    793
    794	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
    795		return;
    796
    797	WARN_ON(rsp->n_rdma <= 0);
    798	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
    799	rsp->n_rdma = 0;
    800
    801	if (unlikely(wc->status != IB_WC_SUCCESS)) {
    802		nvmet_rdma_rw_ctx_destroy(rsp);
    803		nvmet_req_uninit(&rsp->req);
    804		nvmet_rdma_release_rsp(rsp);
    805		if (wc->status != IB_WC_WR_FLUSH_ERR) {
    806			pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
    807				ib_wc_status_msg(wc->status), wc->status);
    808			nvmet_rdma_error_comp(queue);
    809		}
    810		return;
    811	}
    812
    813	/*
    814	 * Upon RDMA completion check the signature status
    815	 * - if succeeded send good NVMe response
    816	 * - if failed send bad NVMe response with appropriate error
    817	 */
    818	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
    819	if (unlikely(status))
    820		rsp->req.cqe->status = cpu_to_le16(status << 1);
    821	nvmet_rdma_rw_ctx_destroy(rsp);
    822
    823	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
    824		pr_err("sending cmd response failed\n");
    825		nvmet_rdma_release_rsp(rsp);
    826	}
    827}
    828
    829static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
    830		u64 off)
    831{
    832	int sg_count = num_pages(len);
    833	struct scatterlist *sg;
    834	int i;
    835
    836	sg = rsp->cmd->inline_sg;
    837	for (i = 0; i < sg_count; i++, sg++) {
    838		if (i < sg_count - 1)
    839			sg_unmark_end(sg);
    840		else
    841			sg_mark_end(sg);
    842		sg->offset = off;
    843		sg->length = min_t(int, len, PAGE_SIZE - off);
    844		len -= sg->length;
    845		if (!i)
    846			off = 0;
    847	}
    848
    849	rsp->req.sg = rsp->cmd->inline_sg;
    850	rsp->req.sg_cnt = sg_count;
    851}
    852
    853static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
    854{
    855	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
    856	u64 off = le64_to_cpu(sgl->addr);
    857	u32 len = le32_to_cpu(sgl->length);
    858
    859	if (!nvme_is_write(rsp->req.cmd)) {
    860		rsp->req.error_loc =
    861			offsetof(struct nvme_common_command, opcode);
    862		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
    863	}
    864
    865	if (off + len > rsp->queue->dev->inline_data_size) {
    866		pr_err("invalid inline data offset!\n");
    867		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
    868	}
    869
    870	/* no data command? */
    871	if (!len)
    872		return 0;
    873
    874	nvmet_rdma_use_inline_sg(rsp, len, off);
    875	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
    876	rsp->req.transfer_len += len;
    877	return 0;
    878}
    879
    880static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
    881		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
    882{
    883	u64 addr = le64_to_cpu(sgl->addr);
    884	u32 key = get_unaligned_le32(sgl->key);
    885	struct ib_sig_attrs sig_attrs;
    886	int ret;
    887
    888	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
    889
    890	/* no data command? */
    891	if (!rsp->req.transfer_len)
    892		return 0;
    893
    894	if (rsp->req.metadata_len)
    895		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
    896
    897	ret = nvmet_req_alloc_sgls(&rsp->req);
    898	if (unlikely(ret < 0))
    899		goto error_out;
    900
    901	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
    902	if (unlikely(ret < 0))
    903		goto error_out;
    904	rsp->n_rdma += ret;
    905
    906	if (invalidate) {
    907		rsp->invalidate_rkey = key;
    908		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
    909	}
    910
    911	return 0;
    912
    913error_out:
    914	rsp->req.transfer_len = 0;
    915	return NVME_SC_INTERNAL;
    916}
    917
    918static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
    919{
    920	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
    921
    922	switch (sgl->type >> 4) {
    923	case NVME_SGL_FMT_DATA_DESC:
    924		switch (sgl->type & 0xf) {
    925		case NVME_SGL_FMT_OFFSET:
    926			return nvmet_rdma_map_sgl_inline(rsp);
    927		default:
    928			pr_err("invalid SGL subtype: %#x\n", sgl->type);
    929			rsp->req.error_loc =
    930				offsetof(struct nvme_common_command, dptr);
    931			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
    932		}
    933	case NVME_KEY_SGL_FMT_DATA_DESC:
    934		switch (sgl->type & 0xf) {
    935		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
    936			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
    937		case NVME_SGL_FMT_ADDRESS:
    938			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
    939		default:
    940			pr_err("invalid SGL subtype: %#x\n", sgl->type);
    941			rsp->req.error_loc =
    942				offsetof(struct nvme_common_command, dptr);
    943			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
    944		}
    945	default:
    946		pr_err("invalid SGL type: %#x\n", sgl->type);
    947		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
    948		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
    949	}
    950}
    951
    952static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
    953{
    954	struct nvmet_rdma_queue *queue = rsp->queue;
    955
    956	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
    957			&queue->sq_wr_avail) < 0)) {
    958		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
    959				1 + rsp->n_rdma, queue->idx,
    960				queue->nvme_sq.ctrl->cntlid);
    961		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
    962		return false;
    963	}
    964
    965	if (nvmet_rdma_need_data_in(rsp)) {
    966		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
    967				queue->cm_id->port_num, &rsp->read_cqe, NULL))
    968			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
    969	} else {
    970		rsp->req.execute(&rsp->req);
    971	}
    972
    973	return true;
    974}
    975
    976static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
    977		struct nvmet_rdma_rsp *cmd)
    978{
    979	u16 status;
    980
    981	ib_dma_sync_single_for_cpu(queue->dev->device,
    982		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
    983		DMA_FROM_DEVICE);
    984	ib_dma_sync_single_for_cpu(queue->dev->device,
    985		cmd->send_sge.addr, cmd->send_sge.length,
    986		DMA_TO_DEVICE);
    987
    988	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
    989			&queue->nvme_sq, &nvmet_rdma_ops))
    990		return;
    991
    992	status = nvmet_rdma_map_sgl(cmd);
    993	if (status)
    994		goto out_err;
    995
    996	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
    997		spin_lock(&queue->rsp_wr_wait_lock);
    998		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
    999		spin_unlock(&queue->rsp_wr_wait_lock);
   1000	}
   1001
   1002	return;
   1003
   1004out_err:
   1005	nvmet_req_complete(&cmd->req, status);
   1006}
   1007
   1008static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
   1009{
   1010	struct nvmet_rdma_cmd *cmd =
   1011		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
   1012	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
   1013	struct nvmet_rdma_rsp *rsp;
   1014
   1015	if (unlikely(wc->status != IB_WC_SUCCESS)) {
   1016		if (wc->status != IB_WC_WR_FLUSH_ERR) {
   1017			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
   1018				wc->wr_cqe, ib_wc_status_msg(wc->status),
   1019				wc->status);
   1020			nvmet_rdma_error_comp(queue);
   1021		}
   1022		return;
   1023	}
   1024
   1025	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
   1026		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
   1027		nvmet_rdma_error_comp(queue);
   1028		return;
   1029	}
   1030
   1031	cmd->queue = queue;
   1032	rsp = nvmet_rdma_get_rsp(queue);
   1033	if (unlikely(!rsp)) {
   1034		/*
   1035		 * we get here only under memory pressure,
   1036		 * silently drop and have the host retry
   1037		 * as we can't even fail it.
   1038		 */
   1039		nvmet_rdma_post_recv(queue->dev, cmd);
   1040		return;
   1041	}
   1042	rsp->queue = queue;
   1043	rsp->cmd = cmd;
   1044	rsp->flags = 0;
   1045	rsp->req.cmd = cmd->nvme_cmd;
   1046	rsp->req.port = queue->port;
   1047	rsp->n_rdma = 0;
   1048
   1049	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
   1050		unsigned long flags;
   1051
   1052		spin_lock_irqsave(&queue->state_lock, flags);
   1053		if (queue->state == NVMET_RDMA_Q_CONNECTING)
   1054			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
   1055		else
   1056			nvmet_rdma_put_rsp(rsp);
   1057		spin_unlock_irqrestore(&queue->state_lock, flags);
   1058		return;
   1059	}
   1060
   1061	nvmet_rdma_handle_command(queue, rsp);
   1062}
   1063
   1064static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
   1065{
   1066	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
   1067			     false);
   1068	ib_destroy_srq(nsrq->srq);
   1069
   1070	kfree(nsrq);
   1071}
   1072
   1073static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
   1074{
   1075	int i;
   1076
   1077	if (!ndev->srqs)
   1078		return;
   1079
   1080	for (i = 0; i < ndev->srq_count; i++)
   1081		nvmet_rdma_destroy_srq(ndev->srqs[i]);
   1082
   1083	kfree(ndev->srqs);
   1084}
   1085
   1086static struct nvmet_rdma_srq *
   1087nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
   1088{
   1089	struct ib_srq_init_attr srq_attr = { NULL, };
   1090	size_t srq_size = ndev->srq_size;
   1091	struct nvmet_rdma_srq *nsrq;
   1092	struct ib_srq *srq;
   1093	int ret, i;
   1094
   1095	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
   1096	if (!nsrq)
   1097		return ERR_PTR(-ENOMEM);
   1098
   1099	srq_attr.attr.max_wr = srq_size;
   1100	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
   1101	srq_attr.attr.srq_limit = 0;
   1102	srq_attr.srq_type = IB_SRQT_BASIC;
   1103	srq = ib_create_srq(ndev->pd, &srq_attr);
   1104	if (IS_ERR(srq)) {
   1105		ret = PTR_ERR(srq);
   1106		goto out_free;
   1107	}
   1108
   1109	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
   1110	if (IS_ERR(nsrq->cmds)) {
   1111		ret = PTR_ERR(nsrq->cmds);
   1112		goto out_destroy_srq;
   1113	}
   1114
   1115	nsrq->srq = srq;
   1116	nsrq->ndev = ndev;
   1117
   1118	for (i = 0; i < srq_size; i++) {
   1119		nsrq->cmds[i].nsrq = nsrq;
   1120		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
   1121		if (ret)
   1122			goto out_free_cmds;
   1123	}
   1124
   1125	return nsrq;
   1126
   1127out_free_cmds:
   1128	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
   1129out_destroy_srq:
   1130	ib_destroy_srq(srq);
   1131out_free:
   1132	kfree(nsrq);
   1133	return ERR_PTR(ret);
   1134}
   1135
   1136static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
   1137{
   1138	int i, ret;
   1139
   1140	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
   1141		/*
   1142		 * If SRQs aren't supported we just go ahead and use normal
   1143		 * non-shared receive queues.
   1144		 */
   1145		pr_info("SRQ requested but not supported.\n");
   1146		return 0;
   1147	}
   1148
   1149	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
   1150			     nvmet_rdma_srq_size);
   1151	ndev->srq_count = min(ndev->device->num_comp_vectors,
   1152			      ndev->device->attrs.max_srq);
   1153
   1154	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
   1155	if (!ndev->srqs)
   1156		return -ENOMEM;
   1157
   1158	for (i = 0; i < ndev->srq_count; i++) {
   1159		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
   1160		if (IS_ERR(ndev->srqs[i])) {
   1161			ret = PTR_ERR(ndev->srqs[i]);
   1162			goto err_srq;
   1163		}
   1164	}
   1165
   1166	return 0;
   1167
   1168err_srq:
   1169	while (--i >= 0)
   1170		nvmet_rdma_destroy_srq(ndev->srqs[i]);
   1171	kfree(ndev->srqs);
   1172	return ret;
   1173}
   1174
   1175static void nvmet_rdma_free_dev(struct kref *ref)
   1176{
   1177	struct nvmet_rdma_device *ndev =
   1178		container_of(ref, struct nvmet_rdma_device, ref);
   1179
   1180	mutex_lock(&device_list_mutex);
   1181	list_del(&ndev->entry);
   1182	mutex_unlock(&device_list_mutex);
   1183
   1184	nvmet_rdma_destroy_srqs(ndev);
   1185	ib_dealloc_pd(ndev->pd);
   1186
   1187	kfree(ndev);
   1188}
   1189
   1190static struct nvmet_rdma_device *
   1191nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
   1192{
   1193	struct nvmet_rdma_port *port = cm_id->context;
   1194	struct nvmet_port *nport = port->nport;
   1195	struct nvmet_rdma_device *ndev;
   1196	int inline_page_count;
   1197	int inline_sge_count;
   1198	int ret;
   1199
   1200	mutex_lock(&device_list_mutex);
   1201	list_for_each_entry(ndev, &device_list, entry) {
   1202		if (ndev->device->node_guid == cm_id->device->node_guid &&
   1203		    kref_get_unless_zero(&ndev->ref))
   1204			goto out_unlock;
   1205	}
   1206
   1207	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
   1208	if (!ndev)
   1209		goto out_err;
   1210
   1211	inline_page_count = num_pages(nport->inline_data_size);
   1212	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
   1213				cm_id->device->attrs.max_recv_sge) - 1;
   1214	if (inline_page_count > inline_sge_count) {
   1215		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
   1216			nport->inline_data_size, cm_id->device->name,
   1217			inline_sge_count * PAGE_SIZE);
   1218		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
   1219		inline_page_count = inline_sge_count;
   1220	}
   1221	ndev->inline_data_size = nport->inline_data_size;
   1222	ndev->inline_page_count = inline_page_count;
   1223
   1224	if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
   1225				  IBK_INTEGRITY_HANDOVER)) {
   1226		pr_warn("T10-PI is not supported by device %s. Disabling it\n",
   1227			cm_id->device->name);
   1228		nport->pi_enable = false;
   1229	}
   1230
   1231	ndev->device = cm_id->device;
   1232	kref_init(&ndev->ref);
   1233
   1234	ndev->pd = ib_alloc_pd(ndev->device, 0);
   1235	if (IS_ERR(ndev->pd))
   1236		goto out_free_dev;
   1237
   1238	if (nvmet_rdma_use_srq) {
   1239		ret = nvmet_rdma_init_srqs(ndev);
   1240		if (ret)
   1241			goto out_free_pd;
   1242	}
   1243
   1244	list_add(&ndev->entry, &device_list);
   1245out_unlock:
   1246	mutex_unlock(&device_list_mutex);
   1247	pr_debug("added %s.\n", ndev->device->name);
   1248	return ndev;
   1249
   1250out_free_pd:
   1251	ib_dealloc_pd(ndev->pd);
   1252out_free_dev:
   1253	kfree(ndev);
   1254out_err:
   1255	mutex_unlock(&device_list_mutex);
   1256	return NULL;
   1257}
   1258
   1259static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
   1260{
   1261	struct ib_qp_init_attr qp_attr = { };
   1262	struct nvmet_rdma_device *ndev = queue->dev;
   1263	int nr_cqe, ret, i, factor;
   1264
   1265	/*
   1266	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
   1267	 */
   1268	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
   1269
   1270	queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
   1271				   queue->comp_vector, IB_POLL_WORKQUEUE);
   1272	if (IS_ERR(queue->cq)) {
   1273		ret = PTR_ERR(queue->cq);
   1274		pr_err("failed to create CQ cqe= %d ret= %d\n",
   1275		       nr_cqe + 1, ret);
   1276		goto out;
   1277	}
   1278
   1279	qp_attr.qp_context = queue;
   1280	qp_attr.event_handler = nvmet_rdma_qp_event;
   1281	qp_attr.send_cq = queue->cq;
   1282	qp_attr.recv_cq = queue->cq;
   1283	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
   1284	qp_attr.qp_type = IB_QPT_RC;
   1285	/* +1 for drain */
   1286	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
   1287	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
   1288				   1 << NVMET_RDMA_MAX_MDTS);
   1289	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
   1290	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
   1291					ndev->device->attrs.max_send_sge);
   1292
   1293	if (queue->nsrq) {
   1294		qp_attr.srq = queue->nsrq->srq;
   1295	} else {
   1296		/* +1 for drain */
   1297		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
   1298		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
   1299	}
   1300
   1301	if (queue->port->pi_enable && queue->host_qid)
   1302		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
   1303
   1304	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
   1305	if (ret) {
   1306		pr_err("failed to create_qp ret= %d\n", ret);
   1307		goto err_destroy_cq;
   1308	}
   1309	queue->qp = queue->cm_id->qp;
   1310
   1311	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
   1312
   1313	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
   1314		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
   1315		 qp_attr.cap.max_send_wr, queue->cm_id);
   1316
   1317	if (!queue->nsrq) {
   1318		for (i = 0; i < queue->recv_queue_size; i++) {
   1319			queue->cmds[i].queue = queue;
   1320			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
   1321			if (ret)
   1322				goto err_destroy_qp;
   1323		}
   1324	}
   1325
   1326out:
   1327	return ret;
   1328
   1329err_destroy_qp:
   1330	rdma_destroy_qp(queue->cm_id);
   1331err_destroy_cq:
   1332	ib_cq_pool_put(queue->cq, nr_cqe + 1);
   1333	goto out;
   1334}
   1335
   1336static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
   1337{
   1338	ib_drain_qp(queue->qp);
   1339	if (queue->cm_id)
   1340		rdma_destroy_id(queue->cm_id);
   1341	ib_destroy_qp(queue->qp);
   1342	ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
   1343		       queue->send_queue_size + 1);
   1344}
   1345
   1346static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
   1347{
   1348	pr_debug("freeing queue %d\n", queue->idx);
   1349
   1350	nvmet_sq_destroy(&queue->nvme_sq);
   1351
   1352	nvmet_rdma_destroy_queue_ib(queue);
   1353	if (!queue->nsrq) {
   1354		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
   1355				queue->recv_queue_size,
   1356				!queue->host_qid);
   1357	}
   1358	nvmet_rdma_free_rsps(queue);
   1359	ida_free(&nvmet_rdma_queue_ida, queue->idx);
   1360	kfree(queue);
   1361}
   1362
   1363static void nvmet_rdma_release_queue_work(struct work_struct *w)
   1364{
   1365	struct nvmet_rdma_queue *queue =
   1366		container_of(w, struct nvmet_rdma_queue, release_work);
   1367	struct nvmet_rdma_device *dev = queue->dev;
   1368
   1369	nvmet_rdma_free_queue(queue);
   1370
   1371	kref_put(&dev->ref, nvmet_rdma_free_dev);
   1372}
   1373
   1374static int
   1375nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
   1376				struct nvmet_rdma_queue *queue)
   1377{
   1378	struct nvme_rdma_cm_req *req;
   1379
   1380	req = (struct nvme_rdma_cm_req *)conn->private_data;
   1381	if (!req || conn->private_data_len == 0)
   1382		return NVME_RDMA_CM_INVALID_LEN;
   1383
   1384	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
   1385		return NVME_RDMA_CM_INVALID_RECFMT;
   1386
   1387	queue->host_qid = le16_to_cpu(req->qid);
   1388
   1389	/*
   1390	 * req->hsqsize corresponds to our recv queue size plus 1
   1391	 * req->hrqsize corresponds to our send queue size
   1392	 */
   1393	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
   1394	queue->send_queue_size = le16_to_cpu(req->hrqsize);
   1395
   1396	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
   1397		return NVME_RDMA_CM_INVALID_HSQSIZE;
   1398
   1399	/* XXX: Should we enforce some kind of max for IO queues? */
   1400
   1401	return 0;
   1402}
   1403
   1404static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
   1405				enum nvme_rdma_cm_status status)
   1406{
   1407	struct nvme_rdma_cm_rej rej;
   1408
   1409	pr_debug("rejecting connect request: status %d (%s)\n",
   1410		 status, nvme_rdma_cm_msg(status));
   1411
   1412	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
   1413	rej.sts = cpu_to_le16(status);
   1414
   1415	return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
   1416			   IB_CM_REJ_CONSUMER_DEFINED);
   1417}
   1418
   1419static struct nvmet_rdma_queue *
   1420nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
   1421		struct rdma_cm_id *cm_id,
   1422		struct rdma_cm_event *event)
   1423{
   1424	struct nvmet_rdma_port *port = cm_id->context;
   1425	struct nvmet_rdma_queue *queue;
   1426	int ret;
   1427
   1428	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
   1429	if (!queue) {
   1430		ret = NVME_RDMA_CM_NO_RSC;
   1431		goto out_reject;
   1432	}
   1433
   1434	ret = nvmet_sq_init(&queue->nvme_sq);
   1435	if (ret) {
   1436		ret = NVME_RDMA_CM_NO_RSC;
   1437		goto out_free_queue;
   1438	}
   1439
   1440	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
   1441	if (ret)
   1442		goto out_destroy_sq;
   1443
   1444	/*
   1445	 * Schedules the actual release because calling rdma_destroy_id from
   1446	 * inside a CM callback would trigger a deadlock. (great API design..)
   1447	 */
   1448	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
   1449	queue->dev = ndev;
   1450	queue->cm_id = cm_id;
   1451	queue->port = port->nport;
   1452
   1453	spin_lock_init(&queue->state_lock);
   1454	queue->state = NVMET_RDMA_Q_CONNECTING;
   1455	INIT_LIST_HEAD(&queue->rsp_wait_list);
   1456	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
   1457	spin_lock_init(&queue->rsp_wr_wait_lock);
   1458	INIT_LIST_HEAD(&queue->free_rsps);
   1459	spin_lock_init(&queue->rsps_lock);
   1460	INIT_LIST_HEAD(&queue->queue_list);
   1461
   1462	queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
   1463	if (queue->idx < 0) {
   1464		ret = NVME_RDMA_CM_NO_RSC;
   1465		goto out_destroy_sq;
   1466	}
   1467
   1468	/*
   1469	 * Spread the io queues across completion vectors,
   1470	 * but still keep all admin queues on vector 0.
   1471	 */
   1472	queue->comp_vector = !queue->host_qid ? 0 :
   1473		queue->idx % ndev->device->num_comp_vectors;
   1474
   1475
   1476	ret = nvmet_rdma_alloc_rsps(queue);
   1477	if (ret) {
   1478		ret = NVME_RDMA_CM_NO_RSC;
   1479		goto out_ida_remove;
   1480	}
   1481
   1482	if (ndev->srqs) {
   1483		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
   1484	} else {
   1485		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
   1486				queue->recv_queue_size,
   1487				!queue->host_qid);
   1488		if (IS_ERR(queue->cmds)) {
   1489			ret = NVME_RDMA_CM_NO_RSC;
   1490			goto out_free_responses;
   1491		}
   1492	}
   1493
   1494	ret = nvmet_rdma_create_queue_ib(queue);
   1495	if (ret) {
   1496		pr_err("%s: creating RDMA queue failed (%d).\n",
   1497			__func__, ret);
   1498		ret = NVME_RDMA_CM_NO_RSC;
   1499		goto out_free_cmds;
   1500	}
   1501
   1502	return queue;
   1503
   1504out_free_cmds:
   1505	if (!queue->nsrq) {
   1506		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
   1507				queue->recv_queue_size,
   1508				!queue->host_qid);
   1509	}
   1510out_free_responses:
   1511	nvmet_rdma_free_rsps(queue);
   1512out_ida_remove:
   1513	ida_free(&nvmet_rdma_queue_ida, queue->idx);
   1514out_destroy_sq:
   1515	nvmet_sq_destroy(&queue->nvme_sq);
   1516out_free_queue:
   1517	kfree(queue);
   1518out_reject:
   1519	nvmet_rdma_cm_reject(cm_id, ret);
   1520	return NULL;
   1521}
   1522
   1523static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
   1524{
   1525	struct nvmet_rdma_queue *queue = priv;
   1526
   1527	switch (event->event) {
   1528	case IB_EVENT_COMM_EST:
   1529		rdma_notify(queue->cm_id, event->event);
   1530		break;
   1531	case IB_EVENT_QP_LAST_WQE_REACHED:
   1532		pr_debug("received last WQE reached event for queue=0x%p\n",
   1533			 queue);
   1534		break;
   1535	default:
   1536		pr_err("received IB QP event: %s (%d)\n",
   1537		       ib_event_msg(event->event), event->event);
   1538		break;
   1539	}
   1540}
   1541
   1542static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
   1543		struct nvmet_rdma_queue *queue,
   1544		struct rdma_conn_param *p)
   1545{
   1546	struct rdma_conn_param  param = { };
   1547	struct nvme_rdma_cm_rep priv = { };
   1548	int ret = -ENOMEM;
   1549
   1550	param.rnr_retry_count = 7;
   1551	param.flow_control = 1;
   1552	param.initiator_depth = min_t(u8, p->initiator_depth,
   1553		queue->dev->device->attrs.max_qp_init_rd_atom);
   1554	param.private_data = &priv;
   1555	param.private_data_len = sizeof(priv);
   1556	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
   1557	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
   1558
   1559	ret = rdma_accept(cm_id, &param);
   1560	if (ret)
   1561		pr_err("rdma_accept failed (error code = %d)\n", ret);
   1562
   1563	return ret;
   1564}
   1565
   1566static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
   1567		struct rdma_cm_event *event)
   1568{
   1569	struct nvmet_rdma_device *ndev;
   1570	struct nvmet_rdma_queue *queue;
   1571	int ret = -EINVAL;
   1572
   1573	ndev = nvmet_rdma_find_get_device(cm_id);
   1574	if (!ndev) {
   1575		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
   1576		return -ECONNREFUSED;
   1577	}
   1578
   1579	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
   1580	if (!queue) {
   1581		ret = -ENOMEM;
   1582		goto put_device;
   1583	}
   1584
   1585	if (queue->host_qid == 0) {
   1586		/* Let inflight controller teardown complete */
   1587		flush_workqueue(nvmet_wq);
   1588	}
   1589
   1590	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
   1591	if (ret) {
   1592		/*
   1593		 * Don't destroy the cm_id in free path, as we implicitly
   1594		 * destroy the cm_id here with non-zero ret code.
   1595		 */
   1596		queue->cm_id = NULL;
   1597		goto free_queue;
   1598	}
   1599
   1600	mutex_lock(&nvmet_rdma_queue_mutex);
   1601	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
   1602	mutex_unlock(&nvmet_rdma_queue_mutex);
   1603
   1604	return 0;
   1605
   1606free_queue:
   1607	nvmet_rdma_free_queue(queue);
   1608put_device:
   1609	kref_put(&ndev->ref, nvmet_rdma_free_dev);
   1610
   1611	return ret;
   1612}
   1613
   1614static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
   1615{
   1616	unsigned long flags;
   1617
   1618	spin_lock_irqsave(&queue->state_lock, flags);
   1619	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
   1620		pr_warn("trying to establish a connected queue\n");
   1621		goto out_unlock;
   1622	}
   1623	queue->state = NVMET_RDMA_Q_LIVE;
   1624
   1625	while (!list_empty(&queue->rsp_wait_list)) {
   1626		struct nvmet_rdma_rsp *cmd;
   1627
   1628		cmd = list_first_entry(&queue->rsp_wait_list,
   1629					struct nvmet_rdma_rsp, wait_list);
   1630		list_del(&cmd->wait_list);
   1631
   1632		spin_unlock_irqrestore(&queue->state_lock, flags);
   1633		nvmet_rdma_handle_command(queue, cmd);
   1634		spin_lock_irqsave(&queue->state_lock, flags);
   1635	}
   1636
   1637out_unlock:
   1638	spin_unlock_irqrestore(&queue->state_lock, flags);
   1639}
   1640
   1641static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
   1642{
   1643	bool disconnect = false;
   1644	unsigned long flags;
   1645
   1646	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
   1647
   1648	spin_lock_irqsave(&queue->state_lock, flags);
   1649	switch (queue->state) {
   1650	case NVMET_RDMA_Q_CONNECTING:
   1651		while (!list_empty(&queue->rsp_wait_list)) {
   1652			struct nvmet_rdma_rsp *rsp;
   1653
   1654			rsp = list_first_entry(&queue->rsp_wait_list,
   1655					       struct nvmet_rdma_rsp,
   1656					       wait_list);
   1657			list_del(&rsp->wait_list);
   1658			nvmet_rdma_put_rsp(rsp);
   1659		}
   1660		fallthrough;
   1661	case NVMET_RDMA_Q_LIVE:
   1662		queue->state = NVMET_RDMA_Q_DISCONNECTING;
   1663		disconnect = true;
   1664		break;
   1665	case NVMET_RDMA_Q_DISCONNECTING:
   1666		break;
   1667	}
   1668	spin_unlock_irqrestore(&queue->state_lock, flags);
   1669
   1670	if (disconnect) {
   1671		rdma_disconnect(queue->cm_id);
   1672		queue_work(nvmet_wq, &queue->release_work);
   1673	}
   1674}
   1675
   1676static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
   1677{
   1678	bool disconnect = false;
   1679
   1680	mutex_lock(&nvmet_rdma_queue_mutex);
   1681	if (!list_empty(&queue->queue_list)) {
   1682		list_del_init(&queue->queue_list);
   1683		disconnect = true;
   1684	}
   1685	mutex_unlock(&nvmet_rdma_queue_mutex);
   1686
   1687	if (disconnect)
   1688		__nvmet_rdma_queue_disconnect(queue);
   1689}
   1690
   1691static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
   1692		struct nvmet_rdma_queue *queue)
   1693{
   1694	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
   1695
   1696	mutex_lock(&nvmet_rdma_queue_mutex);
   1697	if (!list_empty(&queue->queue_list))
   1698		list_del_init(&queue->queue_list);
   1699	mutex_unlock(&nvmet_rdma_queue_mutex);
   1700
   1701	pr_err("failed to connect queue %d\n", queue->idx);
   1702	queue_work(nvmet_wq, &queue->release_work);
   1703}
   1704
   1705/**
   1706 * nvmet_rdma_device_removal() - Handle RDMA device removal
   1707 * @cm_id:	rdma_cm id, used for nvmet port
   1708 * @queue:      nvmet rdma queue (cm id qp_context)
   1709 *
   1710 * DEVICE_REMOVAL event notifies us that the RDMA device is about
   1711 * to unplug. Note that this event can be generated on a normal
   1712 * queue cm_id and/or a device bound listener cm_id (where in this
   1713 * case queue will be null).
   1714 *
   1715 * We registered an ib_client to handle device removal for queues,
   1716 * so we only need to handle the listening port cm_ids. In this case
   1717 * we nullify the priv to prevent double cm_id destruction and destroying
   1718 * the cm_id implicitely by returning a non-zero rc to the callout.
   1719 */
   1720static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
   1721		struct nvmet_rdma_queue *queue)
   1722{
   1723	struct nvmet_rdma_port *port;
   1724
   1725	if (queue) {
   1726		/*
   1727		 * This is a queue cm_id. we have registered
   1728		 * an ib_client to handle queues removal
   1729		 * so don't interfear and just return.
   1730		 */
   1731		return 0;
   1732	}
   1733
   1734	port = cm_id->context;
   1735
   1736	/*
   1737	 * This is a listener cm_id. Make sure that
   1738	 * future remove_port won't invoke a double
   1739	 * cm_id destroy. use atomic xchg to make sure
   1740	 * we don't compete with remove_port.
   1741	 */
   1742	if (xchg(&port->cm_id, NULL) != cm_id)
   1743		return 0;
   1744
   1745	/*
   1746	 * We need to return 1 so that the core will destroy
   1747	 * it's own ID.  What a great API design..
   1748	 */
   1749	return 1;
   1750}
   1751
   1752static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
   1753		struct rdma_cm_event *event)
   1754{
   1755	struct nvmet_rdma_queue *queue = NULL;
   1756	int ret = 0;
   1757
   1758	if (cm_id->qp)
   1759		queue = cm_id->qp->qp_context;
   1760
   1761	pr_debug("%s (%d): status %d id %p\n",
   1762		rdma_event_msg(event->event), event->event,
   1763		event->status, cm_id);
   1764
   1765	switch (event->event) {
   1766	case RDMA_CM_EVENT_CONNECT_REQUEST:
   1767		ret = nvmet_rdma_queue_connect(cm_id, event);
   1768		break;
   1769	case RDMA_CM_EVENT_ESTABLISHED:
   1770		nvmet_rdma_queue_established(queue);
   1771		break;
   1772	case RDMA_CM_EVENT_ADDR_CHANGE:
   1773		if (!queue) {
   1774			struct nvmet_rdma_port *port = cm_id->context;
   1775
   1776			queue_delayed_work(nvmet_wq, &port->repair_work, 0);
   1777			break;
   1778		}
   1779		fallthrough;
   1780	case RDMA_CM_EVENT_DISCONNECTED:
   1781	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
   1782		nvmet_rdma_queue_disconnect(queue);
   1783		break;
   1784	case RDMA_CM_EVENT_DEVICE_REMOVAL:
   1785		ret = nvmet_rdma_device_removal(cm_id, queue);
   1786		break;
   1787	case RDMA_CM_EVENT_REJECTED:
   1788		pr_debug("Connection rejected: %s\n",
   1789			 rdma_reject_msg(cm_id, event->status));
   1790		fallthrough;
   1791	case RDMA_CM_EVENT_UNREACHABLE:
   1792	case RDMA_CM_EVENT_CONNECT_ERROR:
   1793		nvmet_rdma_queue_connect_fail(cm_id, queue);
   1794		break;
   1795	default:
   1796		pr_err("received unrecognized RDMA CM event %d\n",
   1797			event->event);
   1798		break;
   1799	}
   1800
   1801	return ret;
   1802}
   1803
   1804static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
   1805{
   1806	struct nvmet_rdma_queue *queue;
   1807
   1808restart:
   1809	mutex_lock(&nvmet_rdma_queue_mutex);
   1810	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
   1811		if (queue->nvme_sq.ctrl == ctrl) {
   1812			list_del_init(&queue->queue_list);
   1813			mutex_unlock(&nvmet_rdma_queue_mutex);
   1814
   1815			__nvmet_rdma_queue_disconnect(queue);
   1816			goto restart;
   1817		}
   1818	}
   1819	mutex_unlock(&nvmet_rdma_queue_mutex);
   1820}
   1821
   1822static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
   1823{
   1824	struct nvmet_rdma_queue *queue, *tmp;
   1825	struct nvmet_port *nport = port->nport;
   1826
   1827	mutex_lock(&nvmet_rdma_queue_mutex);
   1828	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
   1829				 queue_list) {
   1830		if (queue->port != nport)
   1831			continue;
   1832
   1833		list_del_init(&queue->queue_list);
   1834		__nvmet_rdma_queue_disconnect(queue);
   1835	}
   1836	mutex_unlock(&nvmet_rdma_queue_mutex);
   1837}
   1838
   1839static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
   1840{
   1841	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
   1842
   1843	if (cm_id)
   1844		rdma_destroy_id(cm_id);
   1845
   1846	/*
   1847	 * Destroy the remaining queues, which are not belong to any
   1848	 * controller yet. Do it here after the RDMA-CM was destroyed
   1849	 * guarantees that no new queue will be created.
   1850	 */
   1851	nvmet_rdma_destroy_port_queues(port);
   1852}
   1853
   1854static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
   1855{
   1856	struct sockaddr *addr = (struct sockaddr *)&port->addr;
   1857	struct rdma_cm_id *cm_id;
   1858	int ret;
   1859
   1860	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
   1861			RDMA_PS_TCP, IB_QPT_RC);
   1862	if (IS_ERR(cm_id)) {
   1863		pr_err("CM ID creation failed\n");
   1864		return PTR_ERR(cm_id);
   1865	}
   1866
   1867	/*
   1868	 * Allow both IPv4 and IPv6 sockets to bind a single port
   1869	 * at the same time.
   1870	 */
   1871	ret = rdma_set_afonly(cm_id, 1);
   1872	if (ret) {
   1873		pr_err("rdma_set_afonly failed (%d)\n", ret);
   1874		goto out_destroy_id;
   1875	}
   1876
   1877	ret = rdma_bind_addr(cm_id, addr);
   1878	if (ret) {
   1879		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
   1880		goto out_destroy_id;
   1881	}
   1882
   1883	ret = rdma_listen(cm_id, 128);
   1884	if (ret) {
   1885		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
   1886		goto out_destroy_id;
   1887	}
   1888
   1889	port->cm_id = cm_id;
   1890	return 0;
   1891
   1892out_destroy_id:
   1893	rdma_destroy_id(cm_id);
   1894	return ret;
   1895}
   1896
   1897static void nvmet_rdma_repair_port_work(struct work_struct *w)
   1898{
   1899	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
   1900			struct nvmet_rdma_port, repair_work);
   1901	int ret;
   1902
   1903	nvmet_rdma_disable_port(port);
   1904	ret = nvmet_rdma_enable_port(port);
   1905	if (ret)
   1906		queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
   1907}
   1908
   1909static int nvmet_rdma_add_port(struct nvmet_port *nport)
   1910{
   1911	struct nvmet_rdma_port *port;
   1912	__kernel_sa_family_t af;
   1913	int ret;
   1914
   1915	port = kzalloc(sizeof(*port), GFP_KERNEL);
   1916	if (!port)
   1917		return -ENOMEM;
   1918
   1919	nport->priv = port;
   1920	port->nport = nport;
   1921	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
   1922
   1923	switch (nport->disc_addr.adrfam) {
   1924	case NVMF_ADDR_FAMILY_IP4:
   1925		af = AF_INET;
   1926		break;
   1927	case NVMF_ADDR_FAMILY_IP6:
   1928		af = AF_INET6;
   1929		break;
   1930	default:
   1931		pr_err("address family %d not supported\n",
   1932			nport->disc_addr.adrfam);
   1933		ret = -EINVAL;
   1934		goto out_free_port;
   1935	}
   1936
   1937	if (nport->inline_data_size < 0) {
   1938		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
   1939	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
   1940		pr_warn("inline_data_size %u is too large, reducing to %u\n",
   1941			nport->inline_data_size,
   1942			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
   1943		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
   1944	}
   1945
   1946	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
   1947			nport->disc_addr.trsvcid, &port->addr);
   1948	if (ret) {
   1949		pr_err("malformed ip/port passed: %s:%s\n",
   1950			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
   1951		goto out_free_port;
   1952	}
   1953
   1954	ret = nvmet_rdma_enable_port(port);
   1955	if (ret)
   1956		goto out_free_port;
   1957
   1958	pr_info("enabling port %d (%pISpcs)\n",
   1959		le16_to_cpu(nport->disc_addr.portid),
   1960		(struct sockaddr *)&port->addr);
   1961
   1962	return 0;
   1963
   1964out_free_port:
   1965	kfree(port);
   1966	return ret;
   1967}
   1968
   1969static void nvmet_rdma_remove_port(struct nvmet_port *nport)
   1970{
   1971	struct nvmet_rdma_port *port = nport->priv;
   1972
   1973	cancel_delayed_work_sync(&port->repair_work);
   1974	nvmet_rdma_disable_port(port);
   1975	kfree(port);
   1976}
   1977
   1978static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
   1979		struct nvmet_port *nport, char *traddr)
   1980{
   1981	struct nvmet_rdma_port *port = nport->priv;
   1982	struct rdma_cm_id *cm_id = port->cm_id;
   1983
   1984	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
   1985		struct nvmet_rdma_rsp *rsp =
   1986			container_of(req, struct nvmet_rdma_rsp, req);
   1987		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
   1988		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
   1989
   1990		sprintf(traddr, "%pISc", addr);
   1991	} else {
   1992		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
   1993	}
   1994}
   1995
   1996static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
   1997{
   1998	if (ctrl->pi_support)
   1999		return NVMET_RDMA_MAX_METADATA_MDTS;
   2000	return NVMET_RDMA_MAX_MDTS;
   2001}
   2002
   2003static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
   2004{
   2005	return NVME_RDMA_MAX_QUEUE_SIZE;
   2006}
   2007
   2008static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
   2009	.owner			= THIS_MODULE,
   2010	.type			= NVMF_TRTYPE_RDMA,
   2011	.msdbd			= 1,
   2012	.flags			= NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
   2013	.add_port		= nvmet_rdma_add_port,
   2014	.remove_port		= nvmet_rdma_remove_port,
   2015	.queue_response		= nvmet_rdma_queue_response,
   2016	.delete_ctrl		= nvmet_rdma_delete_ctrl,
   2017	.disc_traddr		= nvmet_rdma_disc_port_addr,
   2018	.get_mdts		= nvmet_rdma_get_mdts,
   2019	.get_max_queue_size	= nvmet_rdma_get_max_queue_size,
   2020};
   2021
   2022static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
   2023{
   2024	struct nvmet_rdma_queue *queue, *tmp;
   2025	struct nvmet_rdma_device *ndev;
   2026	bool found = false;
   2027
   2028	mutex_lock(&device_list_mutex);
   2029	list_for_each_entry(ndev, &device_list, entry) {
   2030		if (ndev->device == ib_device) {
   2031			found = true;
   2032			break;
   2033		}
   2034	}
   2035	mutex_unlock(&device_list_mutex);
   2036
   2037	if (!found)
   2038		return;
   2039
   2040	/*
   2041	 * IB Device that is used by nvmet controllers is being removed,
   2042	 * delete all queues using this device.
   2043	 */
   2044	mutex_lock(&nvmet_rdma_queue_mutex);
   2045	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
   2046				 queue_list) {
   2047		if (queue->dev->device != ib_device)
   2048			continue;
   2049
   2050		pr_info("Removing queue %d\n", queue->idx);
   2051		list_del_init(&queue->queue_list);
   2052		__nvmet_rdma_queue_disconnect(queue);
   2053	}
   2054	mutex_unlock(&nvmet_rdma_queue_mutex);
   2055
   2056	flush_workqueue(nvmet_wq);
   2057}
   2058
   2059static struct ib_client nvmet_rdma_ib_client = {
   2060	.name   = "nvmet_rdma",
   2061	.remove = nvmet_rdma_remove_one
   2062};
   2063
   2064static int __init nvmet_rdma_init(void)
   2065{
   2066	int ret;
   2067
   2068	ret = ib_register_client(&nvmet_rdma_ib_client);
   2069	if (ret)
   2070		return ret;
   2071
   2072	ret = nvmet_register_transport(&nvmet_rdma_ops);
   2073	if (ret)
   2074		goto err_ib_client;
   2075
   2076	return 0;
   2077
   2078err_ib_client:
   2079	ib_unregister_client(&nvmet_rdma_ib_client);
   2080	return ret;
   2081}
   2082
   2083static void __exit nvmet_rdma_exit(void)
   2084{
   2085	nvmet_unregister_transport(&nvmet_rdma_ops);
   2086	ib_unregister_client(&nvmet_rdma_ib_client);
   2087	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
   2088	ida_destroy(&nvmet_rdma_queue_ida);
   2089}
   2090
   2091module_init(nvmet_rdma_init);
   2092module_exit(nvmet_rdma_exit);
   2093
   2094MODULE_LICENSE("GPL v2");
   2095MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */