cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

of_reserved_mem.c (11566B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Device tree based initialization code for reserved memory.
      4 *
      5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
      6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
      7 *		http://www.samsung.com
      8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
      9 * Author: Josh Cartwright <joshc@codeaurora.org>
     10 */
     11
     12#define pr_fmt(fmt)	"OF: reserved mem: " fmt
     13
     14#include <linux/err.h>
     15#include <linux/of.h>
     16#include <linux/of_fdt.h>
     17#include <linux/of_platform.h>
     18#include <linux/mm.h>
     19#include <linux/sizes.h>
     20#include <linux/of_reserved_mem.h>
     21#include <linux/sort.h>
     22#include <linux/slab.h>
     23#include <linux/memblock.h>
     24#include <linux/kmemleak.h>
     25#include <linux/cma.h>
     26
     27#include "of_private.h"
     28
     29#define MAX_RESERVED_REGIONS	64
     30static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
     31static int reserved_mem_count;
     32
     33static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
     34	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
     35	phys_addr_t *res_base)
     36{
     37	phys_addr_t base;
     38	int err = 0;
     39
     40	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
     41	align = !align ? SMP_CACHE_BYTES : align;
     42	base = memblock_phys_alloc_range(size, align, start, end);
     43	if (!base)
     44		return -ENOMEM;
     45
     46	*res_base = base;
     47	if (nomap) {
     48		err = memblock_mark_nomap(base, size);
     49		if (err)
     50			memblock_phys_free(base, size);
     51		kmemleak_ignore_phys(base);
     52	}
     53
     54	return err;
     55}
     56
     57/*
     58 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
     59 */
     60void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
     61				      phys_addr_t base, phys_addr_t size)
     62{
     63	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
     64
     65	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
     66		pr_err("not enough space for all defined regions.\n");
     67		return;
     68	}
     69
     70	rmem->fdt_node = node;
     71	rmem->name = uname;
     72	rmem->base = base;
     73	rmem->size = size;
     74
     75	reserved_mem_count++;
     76	return;
     77}
     78
     79/*
     80 * __reserved_mem_alloc_size() - allocate reserved memory described by
     81 *	'size', 'alignment'  and 'alloc-ranges' properties.
     82 */
     83static int __init __reserved_mem_alloc_size(unsigned long node,
     84	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
     85{
     86	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
     87	phys_addr_t start = 0, end = 0;
     88	phys_addr_t base = 0, align = 0, size;
     89	int len;
     90	const __be32 *prop;
     91	bool nomap;
     92	int ret;
     93
     94	prop = of_get_flat_dt_prop(node, "size", &len);
     95	if (!prop)
     96		return -EINVAL;
     97
     98	if (len != dt_root_size_cells * sizeof(__be32)) {
     99		pr_err("invalid size property in '%s' node.\n", uname);
    100		return -EINVAL;
    101	}
    102	size = dt_mem_next_cell(dt_root_size_cells, &prop);
    103
    104	prop = of_get_flat_dt_prop(node, "alignment", &len);
    105	if (prop) {
    106		if (len != dt_root_addr_cells * sizeof(__be32)) {
    107			pr_err("invalid alignment property in '%s' node.\n",
    108				uname);
    109			return -EINVAL;
    110		}
    111		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
    112	}
    113
    114	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
    115
    116	/* Need adjust the alignment to satisfy the CMA requirement */
    117	if (IS_ENABLED(CONFIG_CMA)
    118	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
    119	    && of_get_flat_dt_prop(node, "reusable", NULL)
    120	    && !nomap)
    121		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
    122
    123	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
    124	if (prop) {
    125
    126		if (len % t_len != 0) {
    127			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
    128			       uname);
    129			return -EINVAL;
    130		}
    131
    132		base = 0;
    133
    134		while (len > 0) {
    135			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
    136			end = start + dt_mem_next_cell(dt_root_size_cells,
    137						       &prop);
    138
    139			ret = early_init_dt_alloc_reserved_memory_arch(size,
    140					align, start, end, nomap, &base);
    141			if (ret == 0) {
    142				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
    143					uname, &base,
    144					(unsigned long)(size / SZ_1M));
    145				break;
    146			}
    147			len -= t_len;
    148		}
    149
    150	} else {
    151		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
    152							0, 0, nomap, &base);
    153		if (ret == 0)
    154			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
    155				uname, &base, (unsigned long)(size / SZ_1M));
    156	}
    157
    158	if (base == 0) {
    159		pr_info("failed to allocate memory for node '%s'\n", uname);
    160		return -ENOMEM;
    161	}
    162
    163	*res_base = base;
    164	*res_size = size;
    165
    166	return 0;
    167}
    168
    169static const struct of_device_id __rmem_of_table_sentinel
    170	__used __section("__reservedmem_of_table_end");
    171
    172/*
    173 * __reserved_mem_init_node() - call region specific reserved memory init code
    174 */
    175static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
    176{
    177	extern const struct of_device_id __reservedmem_of_table[];
    178	const struct of_device_id *i;
    179	int ret = -ENOENT;
    180
    181	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
    182		reservedmem_of_init_fn initfn = i->data;
    183		const char *compat = i->compatible;
    184
    185		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
    186			continue;
    187
    188		ret = initfn(rmem);
    189		if (ret == 0) {
    190			pr_info("initialized node %s, compatible id %s\n",
    191				rmem->name, compat);
    192			break;
    193		}
    194	}
    195	return ret;
    196}
    197
    198static int __init __rmem_cmp(const void *a, const void *b)
    199{
    200	const struct reserved_mem *ra = a, *rb = b;
    201
    202	if (ra->base < rb->base)
    203		return -1;
    204
    205	if (ra->base > rb->base)
    206		return 1;
    207
    208	/*
    209	 * Put the dynamic allocations (address == 0, size == 0) before static
    210	 * allocations at address 0x0 so that overlap detection works
    211	 * correctly.
    212	 */
    213	if (ra->size < rb->size)
    214		return -1;
    215	if (ra->size > rb->size)
    216		return 1;
    217
    218	return 0;
    219}
    220
    221static void __init __rmem_check_for_overlap(void)
    222{
    223	int i;
    224
    225	if (reserved_mem_count < 2)
    226		return;
    227
    228	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
    229	     __rmem_cmp, NULL);
    230	for (i = 0; i < reserved_mem_count - 1; i++) {
    231		struct reserved_mem *this, *next;
    232
    233		this = &reserved_mem[i];
    234		next = &reserved_mem[i + 1];
    235
    236		if (this->base + this->size > next->base) {
    237			phys_addr_t this_end, next_end;
    238
    239			this_end = this->base + this->size;
    240			next_end = next->base + next->size;
    241			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
    242			       this->name, &this->base, &this_end,
    243			       next->name, &next->base, &next_end);
    244		}
    245	}
    246}
    247
    248/**
    249 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
    250 */
    251void __init fdt_init_reserved_mem(void)
    252{
    253	int i;
    254
    255	/* check for overlapping reserved regions */
    256	__rmem_check_for_overlap();
    257
    258	for (i = 0; i < reserved_mem_count; i++) {
    259		struct reserved_mem *rmem = &reserved_mem[i];
    260		unsigned long node = rmem->fdt_node;
    261		int len;
    262		const __be32 *prop;
    263		int err = 0;
    264		bool nomap;
    265
    266		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
    267		prop = of_get_flat_dt_prop(node, "phandle", &len);
    268		if (!prop)
    269			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
    270		if (prop)
    271			rmem->phandle = of_read_number(prop, len/4);
    272
    273		if (rmem->size == 0)
    274			err = __reserved_mem_alloc_size(node, rmem->name,
    275						 &rmem->base, &rmem->size);
    276		if (err == 0) {
    277			err = __reserved_mem_init_node(rmem);
    278			if (err != 0 && err != -ENOENT) {
    279				pr_info("node %s compatible matching fail\n",
    280					rmem->name);
    281				if (nomap)
    282					memblock_clear_nomap(rmem->base, rmem->size);
    283				else
    284					memblock_phys_free(rmem->base,
    285							   rmem->size);
    286			}
    287		}
    288	}
    289}
    290
    291static inline struct reserved_mem *__find_rmem(struct device_node *node)
    292{
    293	unsigned int i;
    294
    295	if (!node->phandle)
    296		return NULL;
    297
    298	for (i = 0; i < reserved_mem_count; i++)
    299		if (reserved_mem[i].phandle == node->phandle)
    300			return &reserved_mem[i];
    301	return NULL;
    302}
    303
    304struct rmem_assigned_device {
    305	struct device *dev;
    306	struct reserved_mem *rmem;
    307	struct list_head list;
    308};
    309
    310static LIST_HEAD(of_rmem_assigned_device_list);
    311static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
    312
    313/**
    314 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
    315 *					  given device
    316 * @dev:	Pointer to the device to configure
    317 * @np:		Pointer to the device_node with 'reserved-memory' property
    318 * @idx:	Index of selected region
    319 *
    320 * This function assigns respective DMA-mapping operations based on reserved
    321 * memory region specified by 'memory-region' property in @np node to the @dev
    322 * device. When driver needs to use more than one reserved memory region, it
    323 * should allocate child devices and initialize regions by name for each of
    324 * child device.
    325 *
    326 * Returns error code or zero on success.
    327 */
    328int of_reserved_mem_device_init_by_idx(struct device *dev,
    329				       struct device_node *np, int idx)
    330{
    331	struct rmem_assigned_device *rd;
    332	struct device_node *target;
    333	struct reserved_mem *rmem;
    334	int ret;
    335
    336	if (!np || !dev)
    337		return -EINVAL;
    338
    339	target = of_parse_phandle(np, "memory-region", idx);
    340	if (!target)
    341		return -ENODEV;
    342
    343	if (!of_device_is_available(target)) {
    344		of_node_put(target);
    345		return 0;
    346	}
    347
    348	rmem = __find_rmem(target);
    349	of_node_put(target);
    350
    351	if (!rmem || !rmem->ops || !rmem->ops->device_init)
    352		return -EINVAL;
    353
    354	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
    355	if (!rd)
    356		return -ENOMEM;
    357
    358	ret = rmem->ops->device_init(rmem, dev);
    359	if (ret == 0) {
    360		rd->dev = dev;
    361		rd->rmem = rmem;
    362
    363		mutex_lock(&of_rmem_assigned_device_mutex);
    364		list_add(&rd->list, &of_rmem_assigned_device_list);
    365		mutex_unlock(&of_rmem_assigned_device_mutex);
    366
    367		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
    368	} else {
    369		kfree(rd);
    370	}
    371
    372	return ret;
    373}
    374EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
    375
    376/**
    377 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
    378 *					   to given device
    379 * @dev: pointer to the device to configure
    380 * @np: pointer to the device node with 'memory-region' property
    381 * @name: name of the selected memory region
    382 *
    383 * Returns: 0 on success or a negative error-code on failure.
    384 */
    385int of_reserved_mem_device_init_by_name(struct device *dev,
    386					struct device_node *np,
    387					const char *name)
    388{
    389	int idx = of_property_match_string(np, "memory-region-names", name);
    390
    391	return of_reserved_mem_device_init_by_idx(dev, np, idx);
    392}
    393EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
    394
    395/**
    396 * of_reserved_mem_device_release() - release reserved memory device structures
    397 * @dev:	Pointer to the device to deconfigure
    398 *
    399 * This function releases structures allocated for memory region handling for
    400 * the given device.
    401 */
    402void of_reserved_mem_device_release(struct device *dev)
    403{
    404	struct rmem_assigned_device *rd, *tmp;
    405	LIST_HEAD(release_list);
    406
    407	mutex_lock(&of_rmem_assigned_device_mutex);
    408	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
    409		if (rd->dev == dev)
    410			list_move_tail(&rd->list, &release_list);
    411	}
    412	mutex_unlock(&of_rmem_assigned_device_mutex);
    413
    414	list_for_each_entry_safe(rd, tmp, &release_list, list) {
    415		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
    416			rd->rmem->ops->device_release(rd->rmem, dev);
    417
    418		kfree(rd);
    419	}
    420}
    421EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
    422
    423/**
    424 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
    425 * @np:		node pointer of the desired reserved-memory region
    426 *
    427 * This function allows drivers to acquire a reference to the reserved_mem
    428 * struct based on a device node handle.
    429 *
    430 * Returns a reserved_mem reference, or NULL on error.
    431 */
    432struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
    433{
    434	const char *name;
    435	int i;
    436
    437	if (!np->full_name)
    438		return NULL;
    439
    440	name = kbasename(np->full_name);
    441	for (i = 0; i < reserved_mem_count; i++)
    442		if (!strcmp(reserved_mem[i].name, name))
    443			return &reserved_mem[i];
    444
    445	return NULL;
    446}
    447EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);