cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pdc_stable.c (30466B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* 
      3 *    Interfaces to retrieve and set PDC Stable options (firmware)
      4 *
      5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
      6 *
      7 *    DEV NOTE: the PDC Procedures reference states that:
      8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
      9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
     10 *    optional locations from 96 to 192 results in the loss of certain
     11 *    functionality during boot."
     12 *
     13 *    Since locations between 96 and 192 are the various paths, most (if not
     14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
     15 *    following code can deal with just 96 bytes of Stable Storage, and all
     16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
     17 *    device_path size, eg: 128, 160 and 192) to provide full information.
     18 *    One last word: there's one path we can always count on: the primary path.
     19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
     20 *
     21 *    The first OS-dependent area should always be available. Obviously, this is
     22 *    not true for the other one. Also bear in mind that reading/writing from/to
     23 *    osdep2 is much more expensive than from/to osdep1.
     24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
     25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
     26 *    sacrificed: -ETOOLAZY :P
     27 *
     28 *    The current policy wrt file permissions is:
     29 *	- write: root only
     30 *	- read: (reading triggers PDC calls) ? root only : everyone
     31 *    The rationale is that PDC calls could hog (DoS) the machine.
     32 *
     33 *	TODO:
     34 *	- timer/fastsize write calls
     35 */
     36
     37#undef PDCS_DEBUG
     38#ifdef PDCS_DEBUG
     39#define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
     40#else
     41#define DPRINTK(fmt, args...)
     42#endif
     43
     44#include <linux/module.h>
     45#include <linux/init.h>
     46#include <linux/kernel.h>
     47#include <linux/string.h>
     48#include <linux/capability.h>
     49#include <linux/ctype.h>
     50#include <linux/sysfs.h>
     51#include <linux/kobject.h>
     52#include <linux/device.h>
     53#include <linux/errno.h>
     54#include <linux/spinlock.h>
     55
     56#include <asm/pdc.h>
     57#include <asm/page.h>
     58#include <linux/uaccess.h>
     59#include <asm/hardware.h>
     60
     61#define PDCS_VERSION	"0.30"
     62#define PDCS_PREFIX	"PDC Stable Storage"
     63
     64#define PDCS_ADDR_PPRI	0x00
     65#define PDCS_ADDR_OSID	0x40
     66#define PDCS_ADDR_OSD1	0x48
     67#define PDCS_ADDR_DIAG	0x58
     68#define PDCS_ADDR_FSIZ	0x5C
     69#define PDCS_ADDR_PCON	0x60
     70#define PDCS_ADDR_PALT	0x80
     71#define PDCS_ADDR_PKBD	0xA0
     72#define PDCS_ADDR_OSD2	0xE0
     73
     74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
     75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
     76MODULE_LICENSE("GPL");
     77MODULE_VERSION(PDCS_VERSION);
     78
     79/* holds Stable Storage size. Initialized once and for all, no lock needed */
     80static unsigned long pdcs_size __read_mostly;
     81
     82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
     83static u16 pdcs_osid __read_mostly;
     84
     85/* This struct defines what we need to deal with a parisc pdc path entry */
     86struct pdcspath_entry {
     87	rwlock_t rw_lock;		/* to protect path entry access */
     88	short ready;			/* entry record is valid if != 0 */
     89	unsigned long addr;		/* entry address in stable storage */
     90	char *name;			/* entry name */
     91	struct device_path devpath;	/* device path in parisc representation */
     92	struct device *dev;		/* corresponding device */
     93	struct kobject kobj;
     94};
     95
     96struct pdcspath_attribute {
     97	struct attribute attr;
     98	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
     99	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
    100};
    101
    102#define PDCSPATH_ENTRY(_addr, _name) \
    103struct pdcspath_entry pdcspath_entry_##_name = { \
    104	.ready = 0, \
    105	.addr = _addr, \
    106	.name = __stringify(_name), \
    107};
    108
    109#define PDCS_ATTR(_name, _mode, _show, _store) \
    110struct kobj_attribute pdcs_attr_##_name = { \
    111	.attr = {.name = __stringify(_name), .mode = _mode}, \
    112	.show = _show, \
    113	.store = _store, \
    114};
    115
    116#define PATHS_ATTR(_name, _mode, _show, _store) \
    117struct pdcspath_attribute paths_attr_##_name = { \
    118	.attr = {.name = __stringify(_name), .mode = _mode}, \
    119	.show = _show, \
    120	.store = _store, \
    121};
    122
    123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
    124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
    125
    126/**
    127 * pdcspath_fetch - This function populates the path entry structs.
    128 * @entry: A pointer to an allocated pdcspath_entry.
    129 * 
    130 * The general idea is that you don't read from the Stable Storage every time
    131 * you access the files provided by the facilities. We store a copy of the
    132 * content of the stable storage WRT various paths in these structs. We read
    133 * these structs when reading the files, and we will write to these structs when
    134 * writing to the files, and only then write them back to the Stable Storage.
    135 *
    136 * This function expects to be called with @entry->rw_lock write-hold.
    137 */
    138static int
    139pdcspath_fetch(struct pdcspath_entry *entry)
    140{
    141	struct device_path *devpath;
    142
    143	if (!entry)
    144		return -EINVAL;
    145
    146	devpath = &entry->devpath;
    147	
    148	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
    149			entry, devpath, entry->addr);
    150
    151	/* addr, devpath and count must be word aligned */
    152	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
    153		return -EIO;
    154		
    155	/* Find the matching device.
    156	   NOTE: hardware_path overlays with device_path, so the nice cast can
    157	   be used */
    158	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
    159
    160	entry->ready = 1;
    161	
    162	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
    163	
    164	return 0;
    165}
    166
    167/**
    168 * pdcspath_store - This function writes a path to stable storage.
    169 * @entry: A pointer to an allocated pdcspath_entry.
    170 * 
    171 * It can be used in two ways: either by passing it a preset devpath struct
    172 * containing an already computed hardware path, or by passing it a device
    173 * pointer, from which it'll find out the corresponding hardware path.
    174 * For now we do not handle the case where there's an error in writing to the
    175 * Stable Storage area, so you'd better not mess up the data :P
    176 *
    177 * This function expects to be called with @entry->rw_lock write-hold.
    178 */
    179static void
    180pdcspath_store(struct pdcspath_entry *entry)
    181{
    182	struct device_path *devpath;
    183
    184	BUG_ON(!entry);
    185
    186	devpath = &entry->devpath;
    187	
    188	/* We expect the caller to set the ready flag to 0 if the hardware
    189	   path struct provided is invalid, so that we know we have to fill it.
    190	   First case, we don't have a preset hwpath... */
    191	if (!entry->ready) {
    192		/* ...but we have a device, map it */
    193		BUG_ON(!entry->dev);
    194		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
    195	}
    196	/* else, we expect the provided hwpath to be valid. */
    197	
    198	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
    199			entry, devpath, entry->addr);
    200
    201	/* addr, devpath and count must be word aligned */
    202	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
    203		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
    204				"It is likely that the Stable Storage data has been corrupted.\n"
    205				"Please check it carefully upon next reboot.\n", __func__);
    206		
    207	/* kobject is already registered */
    208	entry->ready = 2;
    209	
    210	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
    211}
    212
    213/**
    214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
    215 * @entry: An allocated and populated pdscpath_entry struct.
    216 * @buf: The output buffer to write to.
    217 * 
    218 * We will call this function to format the output of the hwpath attribute file.
    219 */
    220static ssize_t
    221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
    222{
    223	char *out = buf;
    224	struct device_path *devpath;
    225	short i;
    226
    227	if (!entry || !buf)
    228		return -EINVAL;
    229
    230	read_lock(&entry->rw_lock);
    231	devpath = &entry->devpath;
    232	i = entry->ready;
    233	read_unlock(&entry->rw_lock);
    234
    235	if (!i)	/* entry is not ready */
    236		return -ENODATA;
    237	
    238	for (i = 0; i < 6; i++) {
    239		if (devpath->bc[i] >= 128)
    240			continue;
    241		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
    242	}
    243	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
    244	
    245	return out - buf;
    246}
    247
    248/**
    249 * pdcspath_hwpath_write - This function handles hardware path modifying.
    250 * @entry: An allocated and populated pdscpath_entry struct.
    251 * @buf: The input buffer to read from.
    252 * @count: The number of bytes to be read.
    253 * 
    254 * We will call this function to change the current hardware path.
    255 * Hardware paths are to be given '/'-delimited, without brackets.
    256 * We make sure that the provided path actually maps to an existing
    257 * device, BUT nothing would prevent some foolish user to set the path to some
    258 * PCI bridge or even a CPU...
    259 * A better work around would be to make sure we are at the end of a device tree
    260 * for instance, but it would be IMHO beyond the simple scope of that driver.
    261 * The aim is to provide a facility. Data correctness is left to userland.
    262 */
    263static ssize_t
    264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
    265{
    266	struct hardware_path hwpath;
    267	unsigned short i;
    268	char in[64], *temp;
    269	struct device *dev;
    270	int ret;
    271
    272	if (!entry || !buf || !count)
    273		return -EINVAL;
    274
    275	/* We'll use a local copy of buf */
    276	count = min_t(size_t, count, sizeof(in)-1);
    277	strncpy(in, buf, count);
    278	in[count] = '\0';
    279	
    280	/* Let's clean up the target. 0xff is a blank pattern */
    281	memset(&hwpath, 0xff, sizeof(hwpath));
    282	
    283	/* First, pick the mod field (the last one of the input string) */
    284	if (!(temp = strrchr(in, '/')))
    285		return -EINVAL;
    286			
    287	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
    288	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
    289	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
    290	
    291	/* Then, loop for each delimiter, making sure we don't have too many.
    292	   we write the bc fields in a down-top way. No matter what, we stop
    293	   before writing the last field. If there are too many fields anyway,
    294	   then the user is a moron and it'll be caught up later when we'll
    295	   check the consistency of the given hwpath. */
    296	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
    297		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
    298		in[temp-in] = '\0';
    299		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
    300	}
    301	
    302	/* Store the final field */		
    303	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
    304	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
    305	
    306	/* Now we check that the user isn't trying to lure us */
    307	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
    308		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
    309			"hardware path: %s\n", __func__, entry->name, buf);
    310		return -EINVAL;
    311	}
    312	
    313	/* So far so good, let's get in deep */
    314	write_lock(&entry->rw_lock);
    315	entry->ready = 0;
    316	entry->dev = dev;
    317	
    318	/* Now, dive in. Write back to the hardware */
    319	pdcspath_store(entry);
    320	
    321	/* Update the symlink to the real device */
    322	sysfs_remove_link(&entry->kobj, "device");
    323	write_unlock(&entry->rw_lock);
    324
    325	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
    326	WARN_ON(ret);
    327
    328	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
    329		entry->name, buf);
    330	
    331	return count;
    332}
    333
    334/**
    335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
    336 * @entry: An allocated and populated pdscpath_entry struct.
    337 * @buf: The output buffer to write to.
    338 * 
    339 * We will call this function to format the output of the layer attribute file.
    340 */
    341static ssize_t
    342pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
    343{
    344	char *out = buf;
    345	struct device_path *devpath;
    346	short i;
    347
    348	if (!entry || !buf)
    349		return -EINVAL;
    350	
    351	read_lock(&entry->rw_lock);
    352	devpath = &entry->devpath;
    353	i = entry->ready;
    354	read_unlock(&entry->rw_lock);
    355
    356	if (!i)	/* entry is not ready */
    357		return -ENODATA;
    358	
    359	for (i = 0; i < 6 && devpath->layers[i]; i++)
    360		out += sprintf(out, "%u ", devpath->layers[i]);
    361
    362	out += sprintf(out, "\n");
    363	
    364	return out - buf;
    365}
    366
    367/**
    368 * pdcspath_layer_write - This function handles extended layer modifying.
    369 * @entry: An allocated and populated pdscpath_entry struct.
    370 * @buf: The input buffer to read from.
    371 * @count: The number of bytes to be read.
    372 * 
    373 * We will call this function to change the current layer value.
    374 * Layers are to be given '.'-delimited, without brackets.
    375 * XXX beware we are far less checky WRT input data provided than for hwpath.
    376 * Potential harm can be done, since there's no way to check the validity of
    377 * the layer fields.
    378 */
    379static ssize_t
    380pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
    381{
    382	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
    383	unsigned short i;
    384	char in[64], *temp;
    385
    386	if (!entry || !buf || !count)
    387		return -EINVAL;
    388
    389	/* We'll use a local copy of buf */
    390	count = min_t(size_t, count, sizeof(in)-1);
    391	strncpy(in, buf, count);
    392	in[count] = '\0';
    393	
    394	/* Let's clean up the target. 0 is a blank pattern */
    395	memset(&layers, 0, sizeof(layers));
    396	
    397	/* First, pick the first layer */
    398	if (unlikely(!isdigit(*in)))
    399		return -EINVAL;
    400	layers[0] = simple_strtoul(in, NULL, 10);
    401	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
    402	
    403	temp = in;
    404	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
    405		if (unlikely(!isdigit(*(++temp))))
    406			return -EINVAL;
    407		layers[i] = simple_strtoul(temp, NULL, 10);
    408		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
    409	}
    410		
    411	/* So far so good, let's get in deep */
    412	write_lock(&entry->rw_lock);
    413	
    414	/* First, overwrite the current layers with the new ones, not touching
    415	   the hardware path. */
    416	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
    417	
    418	/* Now, dive in. Write back to the hardware */
    419	pdcspath_store(entry);
    420	write_unlock(&entry->rw_lock);
    421	
    422	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
    423		entry->name, buf);
    424	
    425	return count;
    426}
    427
    428/**
    429 * pdcspath_attr_show - Generic read function call wrapper.
    430 * @kobj: The kobject to get info from.
    431 * @attr: The attribute looked upon.
    432 * @buf: The output buffer.
    433 */
    434static ssize_t
    435pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
    436{
    437	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
    438	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
    439	ssize_t ret = 0;
    440
    441	if (pdcs_attr->show)
    442		ret = pdcs_attr->show(entry, buf);
    443
    444	return ret;
    445}
    446
    447/**
    448 * pdcspath_attr_store - Generic write function call wrapper.
    449 * @kobj: The kobject to write info to.
    450 * @attr: The attribute to be modified.
    451 * @buf: The input buffer.
    452 * @count: The size of the buffer.
    453 */
    454static ssize_t
    455pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
    456			const char *buf, size_t count)
    457{
    458	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
    459	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
    460	ssize_t ret = 0;
    461
    462	if (!capable(CAP_SYS_ADMIN))
    463		return -EACCES;
    464
    465	if (pdcs_attr->store)
    466		ret = pdcs_attr->store(entry, buf, count);
    467
    468	return ret;
    469}
    470
    471static const struct sysfs_ops pdcspath_attr_ops = {
    472	.show = pdcspath_attr_show,
    473	.store = pdcspath_attr_store,
    474};
    475
    476/* These are the two attributes of any PDC path. */
    477static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
    478static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
    479
    480static struct attribute *paths_subsys_attrs[] = {
    481	&paths_attr_hwpath.attr,
    482	&paths_attr_layer.attr,
    483	NULL,
    484};
    485ATTRIBUTE_GROUPS(paths_subsys);
    486
    487/* Specific kobject type for our PDC paths */
    488static struct kobj_type ktype_pdcspath = {
    489	.sysfs_ops = &pdcspath_attr_ops,
    490	.default_groups = paths_subsys_groups,
    491};
    492
    493/* We hard define the 4 types of path we expect to find */
    494static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
    495static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
    496static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
    497static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
    498
    499/* An array containing all PDC paths we will deal with */
    500static struct pdcspath_entry *pdcspath_entries[] = {
    501	&pdcspath_entry_primary,
    502	&pdcspath_entry_alternative,
    503	&pdcspath_entry_console,
    504	&pdcspath_entry_keyboard,
    505	NULL,
    506};
    507
    508
    509/* For more insight of what's going on here, refer to PDC Procedures doc,
    510 * Section PDC_STABLE */
    511
    512/**
    513 * pdcs_size_read - Stable Storage size output.
    514 * @buf: The output buffer to write to.
    515 */
    516static ssize_t pdcs_size_read(struct kobject *kobj,
    517			      struct kobj_attribute *attr,
    518			      char *buf)
    519{
    520	char *out = buf;
    521
    522	if (!buf)
    523		return -EINVAL;
    524
    525	/* show the size of the stable storage */
    526	out += sprintf(out, "%ld\n", pdcs_size);
    527
    528	return out - buf;
    529}
    530
    531/**
    532 * pdcs_auto_read - Stable Storage autoboot/search flag output.
    533 * @buf: The output buffer to write to.
    534 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
    535 */
    536static ssize_t pdcs_auto_read(struct kobject *kobj,
    537			      struct kobj_attribute *attr,
    538			      char *buf, int knob)
    539{
    540	char *out = buf;
    541	struct pdcspath_entry *pathentry;
    542
    543	if (!buf)
    544		return -EINVAL;
    545
    546	/* Current flags are stored in primary boot path entry */
    547	pathentry = &pdcspath_entry_primary;
    548
    549	read_lock(&pathentry->rw_lock);
    550	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
    551					"On" : "Off");
    552	read_unlock(&pathentry->rw_lock);
    553
    554	return out - buf;
    555}
    556
    557/**
    558 * pdcs_autoboot_read - Stable Storage autoboot flag output.
    559 * @buf: The output buffer to write to.
    560 */
    561static ssize_t pdcs_autoboot_read(struct kobject *kobj,
    562				  struct kobj_attribute *attr, char *buf)
    563{
    564	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
    565}
    566
    567/**
    568 * pdcs_autosearch_read - Stable Storage autoboot flag output.
    569 * @buf: The output buffer to write to.
    570 */
    571static ssize_t pdcs_autosearch_read(struct kobject *kobj,
    572				    struct kobj_attribute *attr, char *buf)
    573{
    574	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
    575}
    576
    577/**
    578 * pdcs_timer_read - Stable Storage timer count output (in seconds).
    579 * @buf: The output buffer to write to.
    580 *
    581 * The value of the timer field correponds to a number of seconds in powers of 2.
    582 */
    583static ssize_t pdcs_timer_read(struct kobject *kobj,
    584			       struct kobj_attribute *attr, char *buf)
    585{
    586	char *out = buf;
    587	struct pdcspath_entry *pathentry;
    588
    589	if (!buf)
    590		return -EINVAL;
    591
    592	/* Current flags are stored in primary boot path entry */
    593	pathentry = &pdcspath_entry_primary;
    594
    595	/* print the timer value in seconds */
    596	read_lock(&pathentry->rw_lock);
    597	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
    598				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
    599	read_unlock(&pathentry->rw_lock);
    600
    601	return out - buf;
    602}
    603
    604/**
    605 * pdcs_osid_read - Stable Storage OS ID register output.
    606 * @buf: The output buffer to write to.
    607 */
    608static ssize_t pdcs_osid_read(struct kobject *kobj,
    609			      struct kobj_attribute *attr, char *buf)
    610{
    611	char *out = buf;
    612
    613	if (!buf)
    614		return -EINVAL;
    615
    616	out += sprintf(out, "%s dependent data (0x%.4x)\n",
    617		os_id_to_string(pdcs_osid), pdcs_osid);
    618
    619	return out - buf;
    620}
    621
    622/**
    623 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
    624 * @buf: The output buffer to write to.
    625 *
    626 * This can hold 16 bytes of OS-Dependent data.
    627 */
    628static ssize_t pdcs_osdep1_read(struct kobject *kobj,
    629				struct kobj_attribute *attr, char *buf)
    630{
    631	char *out = buf;
    632	u32 result[4];
    633
    634	if (!buf)
    635		return -EINVAL;
    636
    637	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
    638		return -EIO;
    639
    640	out += sprintf(out, "0x%.8x\n", result[0]);
    641	out += sprintf(out, "0x%.8x\n", result[1]);
    642	out += sprintf(out, "0x%.8x\n", result[2]);
    643	out += sprintf(out, "0x%.8x\n", result[3]);
    644
    645	return out - buf;
    646}
    647
    648/**
    649 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
    650 * @buf: The output buffer to write to.
    651 *
    652 * I have NFC how to interpret the content of that register ;-).
    653 */
    654static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
    655				    struct kobj_attribute *attr, char *buf)
    656{
    657	char *out = buf;
    658	u32 result;
    659
    660	if (!buf)
    661		return -EINVAL;
    662
    663	/* get diagnostic */
    664	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
    665		return -EIO;
    666
    667	out += sprintf(out, "0x%.4x\n", (result >> 16));
    668
    669	return out - buf;
    670}
    671
    672/**
    673 * pdcs_fastsize_read - Stable Storage FastSize register output.
    674 * @buf: The output buffer to write to.
    675 *
    676 * This register holds the amount of system RAM to be tested during boot sequence.
    677 */
    678static ssize_t pdcs_fastsize_read(struct kobject *kobj,
    679				  struct kobj_attribute *attr, char *buf)
    680{
    681	char *out = buf;
    682	u32 result;
    683
    684	if (!buf)
    685		return -EINVAL;
    686
    687	/* get fast-size */
    688	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
    689		return -EIO;
    690
    691	if ((result & 0x0F) < 0x0E)
    692		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
    693	else
    694		out += sprintf(out, "All");
    695	out += sprintf(out, "\n");
    696	
    697	return out - buf;
    698}
    699
    700/**
    701 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
    702 * @buf: The output buffer to write to.
    703 *
    704 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
    705 */
    706static ssize_t pdcs_osdep2_read(struct kobject *kobj,
    707				struct kobj_attribute *attr, char *buf)
    708{
    709	char *out = buf;
    710	unsigned long size;
    711	unsigned short i;
    712	u32 result;
    713
    714	if (unlikely(pdcs_size <= 224))
    715		return -ENODATA;
    716
    717	size = pdcs_size - 224;
    718
    719	if (!buf)
    720		return -EINVAL;
    721
    722	for (i=0; i<size; i+=4) {
    723		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
    724					sizeof(result)) != PDC_OK))
    725			return -EIO;
    726		out += sprintf(out, "0x%.8x\n", result);
    727	}
    728
    729	return out - buf;
    730}
    731
    732/**
    733 * pdcs_auto_write - This function handles autoboot/search flag modifying.
    734 * @buf: The input buffer to read from.
    735 * @count: The number of bytes to be read.
    736 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
    737 * 
    738 * We will call this function to change the current autoboot flag.
    739 * We expect a precise syntax:
    740 *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
    741 */
    742static ssize_t pdcs_auto_write(struct kobject *kobj,
    743			       struct kobj_attribute *attr, const char *buf,
    744			       size_t count, int knob)
    745{
    746	struct pdcspath_entry *pathentry;
    747	unsigned char flags;
    748	char in[8], *temp;
    749	char c;
    750
    751	if (!capable(CAP_SYS_ADMIN))
    752		return -EACCES;
    753
    754	if (!buf || !count)
    755		return -EINVAL;
    756
    757	/* We'll use a local copy of buf */
    758	count = min_t(size_t, count, sizeof(in)-1);
    759	strncpy(in, buf, count);
    760	in[count] = '\0';
    761
    762	/* Current flags are stored in primary boot path entry */
    763	pathentry = &pdcspath_entry_primary;
    764	
    765	/* Be nice to the existing flag record */
    766	read_lock(&pathentry->rw_lock);
    767	flags = pathentry->devpath.flags;
    768	read_unlock(&pathentry->rw_lock);
    769	
    770	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
    771
    772	temp = skip_spaces(in);
    773
    774	c = *temp++ - '0';
    775	if ((c != 0) && (c != 1))
    776		goto parse_error;
    777	if (c == 0)
    778		flags &= ~knob;
    779	else
    780		flags |= knob;
    781	
    782	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
    783		
    784	/* So far so good, let's get in deep */
    785	write_lock(&pathentry->rw_lock);
    786	
    787	/* Change the path entry flags first */
    788	pathentry->devpath.flags = flags;
    789		
    790	/* Now, dive in. Write back to the hardware */
    791	pdcspath_store(pathentry);
    792	write_unlock(&pathentry->rw_lock);
    793	
    794	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
    795		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
    796		(flags & knob) ? "On" : "Off");
    797	
    798	return count;
    799
    800parse_error:
    801	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
    802	return -EINVAL;
    803}
    804
    805/**
    806 * pdcs_autoboot_write - This function handles autoboot flag modifying.
    807 * @buf: The input buffer to read from.
    808 * @count: The number of bytes to be read.
    809 *
    810 * We will call this function to change the current boot flags.
    811 * We expect a precise syntax:
    812 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
    813 */
    814static ssize_t pdcs_autoboot_write(struct kobject *kobj,
    815				   struct kobj_attribute *attr,
    816				   const char *buf, size_t count)
    817{
    818	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
    819}
    820
    821/**
    822 * pdcs_autosearch_write - This function handles autosearch flag modifying.
    823 * @buf: The input buffer to read from.
    824 * @count: The number of bytes to be read.
    825 *
    826 * We will call this function to change the current boot flags.
    827 * We expect a precise syntax:
    828 *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
    829 */
    830static ssize_t pdcs_autosearch_write(struct kobject *kobj,
    831				     struct kobj_attribute *attr,
    832				     const char *buf, size_t count)
    833{
    834	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
    835}
    836
    837/**
    838 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
    839 * @buf: The input buffer to read from.
    840 * @count: The number of bytes to be read.
    841 *
    842 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
    843 * write approach. It's up to userspace to deal with it when constructing
    844 * its input buffer.
    845 */
    846static ssize_t pdcs_osdep1_write(struct kobject *kobj,
    847				 struct kobj_attribute *attr,
    848				 const char *buf, size_t count)
    849{
    850	u8 in[16];
    851
    852	if (!capable(CAP_SYS_ADMIN))
    853		return -EACCES;
    854
    855	if (!buf || !count)
    856		return -EINVAL;
    857
    858	if (unlikely(pdcs_osid != OS_ID_LINUX))
    859		return -EPERM;
    860
    861	if (count > 16)
    862		return -EMSGSIZE;
    863
    864	/* We'll use a local copy of buf */
    865	memset(in, 0, 16);
    866	memcpy(in, buf, count);
    867
    868	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
    869		return -EIO;
    870
    871	return count;
    872}
    873
    874/**
    875 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
    876 * @buf: The input buffer to read from.
    877 * @count: The number of bytes to be read.
    878 *
    879 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
    880 * byte-by-byte write approach. It's up to userspace to deal with it when
    881 * constructing its input buffer.
    882 */
    883static ssize_t pdcs_osdep2_write(struct kobject *kobj,
    884				 struct kobj_attribute *attr,
    885				 const char *buf, size_t count)
    886{
    887	unsigned long size;
    888	unsigned short i;
    889	u8 in[4];
    890
    891	if (!capable(CAP_SYS_ADMIN))
    892		return -EACCES;
    893
    894	if (!buf || !count)
    895		return -EINVAL;
    896
    897	if (unlikely(pdcs_size <= 224))
    898		return -ENOSYS;
    899
    900	if (unlikely(pdcs_osid != OS_ID_LINUX))
    901		return -EPERM;
    902
    903	size = pdcs_size - 224;
    904
    905	if (count > size)
    906		return -EMSGSIZE;
    907
    908	/* We'll use a local copy of buf */
    909
    910	for (i=0; i<count; i+=4) {
    911		memset(in, 0, 4);
    912		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
    913		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
    914					sizeof(in)) != PDC_OK))
    915			return -EIO;
    916	}
    917
    918	return count;
    919}
    920
    921/* The remaining attributes. */
    922static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
    923static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
    924static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
    925static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
    926static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
    927static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
    928static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
    929static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
    930static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
    931
    932static struct attribute *pdcs_subsys_attrs[] = {
    933	&pdcs_attr_size.attr,
    934	&pdcs_attr_autoboot.attr,
    935	&pdcs_attr_autosearch.attr,
    936	&pdcs_attr_timer.attr,
    937	&pdcs_attr_osid.attr,
    938	&pdcs_attr_osdep1.attr,
    939	&pdcs_attr_diagnostic.attr,
    940	&pdcs_attr_fastsize.attr,
    941	&pdcs_attr_osdep2.attr,
    942	NULL,
    943};
    944
    945static const struct attribute_group pdcs_attr_group = {
    946	.attrs = pdcs_subsys_attrs,
    947};
    948
    949static struct kobject *stable_kobj;
    950static struct kset *paths_kset;
    951
    952/**
    953 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
    954 * 
    955 * It creates kobjects corresponding to each path entry with nice sysfs
    956 * links to the real device. This is where the magic takes place: when
    957 * registering the subsystem attributes during module init, each kobject hereby
    958 * created will show in the sysfs tree as a folder containing files as defined
    959 * by path_subsys_attr[].
    960 */
    961static inline int __init
    962pdcs_register_pathentries(void)
    963{
    964	unsigned short i;
    965	struct pdcspath_entry *entry;
    966	int err;
    967	
    968	/* Initialize the entries rw_lock before anything else */
    969	for (i = 0; (entry = pdcspath_entries[i]); i++)
    970		rwlock_init(&entry->rw_lock);
    971
    972	for (i = 0; (entry = pdcspath_entries[i]); i++) {
    973		write_lock(&entry->rw_lock);
    974		err = pdcspath_fetch(entry);
    975		write_unlock(&entry->rw_lock);
    976
    977		if (err < 0)
    978			continue;
    979
    980		entry->kobj.kset = paths_kset;
    981		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
    982					   "%s", entry->name);
    983		if (err) {
    984			kobject_put(&entry->kobj);
    985			return err;
    986		}
    987
    988		/* kobject is now registered */
    989		write_lock(&entry->rw_lock);
    990		entry->ready = 2;
    991		write_unlock(&entry->rw_lock);
    992		
    993		/* Add a nice symlink to the real device */
    994		if (entry->dev) {
    995			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
    996			WARN_ON(err);
    997		}
    998
    999		kobject_uevent(&entry->kobj, KOBJ_ADD);
   1000	}
   1001	
   1002	return 0;
   1003}
   1004
   1005/**
   1006 * pdcs_unregister_pathentries - Routine called when unregistering the module.
   1007 */
   1008static inline void
   1009pdcs_unregister_pathentries(void)
   1010{
   1011	unsigned short i;
   1012	struct pdcspath_entry *entry;
   1013	
   1014	for (i = 0; (entry = pdcspath_entries[i]); i++) {
   1015		read_lock(&entry->rw_lock);
   1016		if (entry->ready >= 2)
   1017			kobject_put(&entry->kobj);
   1018		read_unlock(&entry->rw_lock);
   1019	}
   1020}
   1021
   1022/*
   1023 * For now we register the stable subsystem with the firmware subsystem
   1024 * and the paths subsystem with the stable subsystem
   1025 */
   1026static int __init
   1027pdc_stable_init(void)
   1028{
   1029	int rc = 0, error = 0;
   1030	u32 result;
   1031
   1032	/* find the size of the stable storage */
   1033	if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 
   1034		return -ENODEV;
   1035
   1036	/* make sure we have enough data */
   1037	if (pdcs_size < 96)
   1038		return -ENODATA;
   1039
   1040	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
   1041
   1042	/* get OSID */
   1043	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
   1044		return -EIO;
   1045
   1046	/* the actual result is 16 bits away */
   1047	pdcs_osid = (u16)(result >> 16);
   1048
   1049	/* For now we'll register the directory at /sys/firmware/stable */
   1050	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
   1051	if (!stable_kobj) {
   1052		rc = -ENOMEM;
   1053		goto fail_firmreg;
   1054	}
   1055
   1056	/* Don't forget the root entries */
   1057	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
   1058
   1059	/* register the paths kset as a child of the stable kset */
   1060	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
   1061	if (!paths_kset) {
   1062		rc = -ENOMEM;
   1063		goto fail_ksetreg;
   1064	}
   1065
   1066	/* now we create all "files" for the paths kset */
   1067	if ((rc = pdcs_register_pathentries()))
   1068		goto fail_pdcsreg;
   1069
   1070	return rc;
   1071	
   1072fail_pdcsreg:
   1073	pdcs_unregister_pathentries();
   1074	kset_unregister(paths_kset);
   1075	
   1076fail_ksetreg:
   1077	kobject_put(stable_kobj);
   1078	
   1079fail_firmreg:
   1080	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
   1081	return rc;
   1082}
   1083
   1084static void __exit
   1085pdc_stable_exit(void)
   1086{
   1087	pdcs_unregister_pathentries();
   1088	kset_unregister(paths_kset);
   1089	kobject_put(stable_kobj);
   1090}
   1091
   1092
   1093module_init(pdc_stable_init);
   1094module_exit(pdc_stable_exit);